โŒ

Normal view

There are new articles available, click to refresh the page.
Yesterday โ€” 5 December 2025Main stream

At VA, cyber dominance is in, cyber compliance is out

The Department of Veterans Affairs is moving toward a more operational approach to cybersecurity.

This means VA is applying a deeper focus on protecting the attack surfaces and closing off threat vectors that put veteransโ€™ data at risk.

Eddie Pool, the acting principal assistant secretary for information and technology and acting principal deputy chief information officer at VA, said the agency is changing its cybersecurity posture to reflect a cyber dominance approach.

Eddie Pool is the acting principal assistant secretary for information and technology and acting principal deputy chief information officer at the Department of Veterans Affairs.

โ€œThatโ€™s a move away from the traditional and an exclusively compliance based approach to cybersecurity, where we put a lot of our time resources investments in compliance based activities,โ€ Pool said on Ask the CIO. โ€œFor example, did someone check the box on a form? Did someone file something in the right place? Weโ€™re really moving a lot of our focus over to the risk-based approach to security, pushing things like zero trust architecture, micro segmentation of our networks and really doing things that are more focused on the operational landscape. We are more focused on protecting those attack surfaces and closing off those threat vectors in the cyber space.โ€

A big part of this move to cyber dominance is applying the concepts that make up a zero trust architecture like micro segmentation and identity and access management.

Pool said as VA modernizes its underlying technology infrastructure, it will โ€œbake inโ€ these zero trust capabilities.

โ€œOver the next several years, youโ€™re going to see that naturally evolve in terms of where we are in the maturity model path. Our approach here is not necessarily to try to map to a model. Itโ€™s really to rationalize what are the highest value opportunities that those models bring, and then we prioritize on those activities first,โ€ he said. โ€œWeโ€™re not pursuing it in a linear fashion. We are taking parts and pieces and what makes the most sense for the biggest thing for our buck right now, thatโ€™s where weโ€™re putting our energy and effort.โ€

One of those areas that VA is focused on is rationalizing the number of tools and technologies itโ€™s using across the department. Pool said the goal is to get down to a specific set instead of having the โ€œ31 flavorsโ€ approach.

โ€œWeโ€™re going to try to make it where you can have any flavor you want so long as itโ€™s chocolate. We are trying to get that standardized across the department,โ€ he said. โ€œThat gives us the opportunity from a sustainment perspective that we can focus the majority of our resources on those enterprise standardized capabilities. From a security perspective, itโ€™s a far less threat landscape to have to worry about having 100 things versus having two or three things.โ€

The business process reengineering priority

Pool added that redundancy remains a key factor in the security and tool rationalization effort. He said VA will continue to have a diversity of products in its IT investment portfolios.

โ€œWhere we are at is we are looking at how do we build that future state architecture, as elegantly and simplistically as possible so that we can manage it more effectively, they can protect it more securely,โ€ he said.

In addition to standardizing on technology and cyber tools and technologies, Pool said VA is bringing the same approach to business processes for enterprisewide services.

He said over the years, VA has built up a laundry list of legacy technology all with different versions and requirements to maintain.

โ€œWeโ€™ve done a lot over the years in the Office of Information and Technology to really standardize on our technology platforms. Now itโ€™s time to leverage that, to really bring standard processes to the business,โ€ he said. โ€œWhat that does is that really does help us continue to put the veteran at the center of everything that we do, and it gives a very predictable, very repeatable process and expectation for veterans across the country, so that you donโ€™t have different experiences based on where you live or where youโ€™re getting your health care and from what part of the organization.โ€

Part of the standardization effort is that VA will expand its use of automation, particularly in processing of veterans claims.

Pool said the goal is to take more advantage of the agencyโ€™s data and use artificial intelligence to accelerate claims processing.

โ€œThe richness of the data and the standardization of our data that weโ€™re looking at and how we can eliminate as many steps in these processes as we can, where we have data to make decisions, or we can automate a lot of things that would completely eliminate what would be a paper process that is our focus,โ€ Pool said. โ€œWeโ€™re trying to streamline IT to the point that itโ€™s as fast and as efficient, secure and accurate as possible from a VA processing perspective, and in turn, itโ€™s going to bring a decision back to the veteran a lot faster, and a decision thatโ€™s ready to go on to the next step in the process.โ€

Many of these updates already are having an impact on VAโ€™s business processes. The agency said that it set a new record for the number of disability and pension claims processed in a single year, more than 3 million. That beat its record set in 2024 by more than 500,000.

โ€œWeโ€™re driving benefit outcomes. Weโ€™re driving technology outcomes. From my perspective, everything that we do here, every product, service capability that the department provides the veteran community, itโ€™s all enabled through technology. So technology is the underpinning infrastructure, backbone to make all things happen, or where all things can fail,โ€ Pool said. โ€œFirst, on the internal side, itโ€™s about making sure that those infrastructure components are modernized. Everythingโ€™s hardened. We have a reliable, highly available infrastructure to deliver those services. Then at the application level, at the actual point of delivery, IT is involved in every aspect of every challenge in the department, to again, bring the best technology experts to the table and look at how can we leverage the best technologies to simplify the business processes, whether thatโ€™s claims automation, getting veterans their mileage reimbursement earlier or by automating processes to increase the efficacy of the outcomes that we deliver, and just simplify how the veterans consume the services of VA. Thatโ€™s the only reason why we exist here, is to be that enabling partner to the business to make these things happen.โ€

The post At VA, cyber dominance is in, cyber compliance is out first appeared on Federal News Network.

ยฉ Getty Images/ipopba

Cyber security network and data protection technology on virtual interface screen.

How Android audio zooming works and when should you use it

5 December 2025 at 11:30

Ever recorded a college lecture and found the audio crystal clear, only to have your concert footage from that very day come out sounding like trash? This happened to me, and after some digging, I found the specific setting to blameโ€”and why you shouldn't actually deactivate it completely.

Before yesterdayMain stream

Ethereum Coils For A Breakout As IH&S + Heavy Accumulation Emerges

4 December 2025 at 22:00

Ethereum is approaching a critical moment as multiple bullish signals begin to align. A clear Inverse Head & Shoulders formation, combined with rising accumulation and weakening trend rejection, suggests that the market may be gearing up for a powerful upside move. With momentum tightening and key levels coming into focus, ETH now stands on the verge of a breakout that could set the stage for its next major rally.

Inverse Head And Shoulders Signals Brewing Momentum

According to a recent update shared by crypto analyst Donald Dean, Ethereum may be gearing up for a significant move. He highlighted the development of a potential inverse head and shoulders pattern, a classic bullish reversal formation that often precedes strong upward momentum. This emerging structure suggests that ETH could soon shift into a more aggressive bullish phase if confirmed.

Dean also pointed out that the weekly chart is showing solid support near the 50% Fibonacci retracement level, positioned around $2,750. Adding to the bullish signals, a hammer candle has appeared on the weekly timeframe, hinting at buying pressure stepping back in after recent downside movement.

Ethereum

If the pattern plays out, Dean noted that Ethereumโ€™s first major target lies at $4,109, a level that would allow ETH to challenge previous resistance/support zones. Reclaiming this region would mark a meaningful shift in momentum and strengthen the bullish outlook for the asset.

Beyond that, the next upside target sits near $5,766, which aligns closely with the 1.618 Golden Ratio extension calculated at approximately $5,793.51. Dean described this confluence as particularly noteworthy, suggesting that if Ethereum breaks above its nearer targets, a larger rally toward this golden-ratio level becomes a realistic possibility.

Growing Accumulation Suggests Bulls Are Preparing For Action

In an earlier analysis, LSTRADER reminded followers of the impressive move from $1,600 to $4,800, noting that this surge had been identified in advance through both the ETH chart and the ETH/BTC setup. The analysis captured the momentum shift that preceded the rally, reinforcing the value of tracking key structural signals.

In the current market structure, LSTRADER noted that the chart clearly shows multiple instances where the trend faced rejection. Despite these rejections, the trend is steadily losing strength while accumulation continues to build, a combination that typically reflects growing bullish interest and the potential for an upward breakout.

However, LSTRADER stressed that no major move should be assumed until the trendline itself is broken, and confirmation is still required. For now, patience is key as traders continue monitoring the structure and waiting for a decisive shift in trend direction.

Ethereum

XRP Coils At Support: Refusal To Drop Hints At Potential Reversal โ€” Hereโ€™s Why

4 December 2025 at 07:00

The XRP price action is now showing signs of resilience as it coils tightly around a key support level, fighting against further downside pressure. Despite recent pressure across the broader crypto landscape, XRP has repeatedly held this level. With bearish momentum fading and volatility compressing, it could be preparing for a potential reversal.

Support Cluster Shows Strength As XRP Holds Its Ground

XRP is reaching a point where it refuses to go any lower. Crypto analyst Henry has noted on X that the token is whispering loudly right now, showing strength exactly where it matters, and rising clearly from its trendline support after days of bleeding.

This level has been tested, rejected, and respected with precision, but this bounce feels different as the structure looks cleaner, the moment feels calmer, and the overall price action seems controlled. Whether it breaks out this time or not, the setup is undeniably shifting fast.ย 

Adding to the momentum narrative, Bloomberg reports that $11 trillion asset manager Vanguard will begin to allow clients to access their XRP ETFs starting from tomorrow. Meanwhile, the US spot crypto ETF flows on December 1st came in at a solid $90+ million. As a result of the setup, Henry has suggested that the next major target sits around $2.20 region if the market confirms the move.

XRP

An inverted look at the XRP chart over the last six weeks reveals a textbook 3-drive pattern, a formation that has constantly preceded major reversal events in crypto. According to Dom, the translation into a higher low has finally formed, which hints at the first sign that a trend change could be developing.

However, bulls need to regain the monthly RVWAP around the $2.22 region, and holding above this area would mark a significant shift in structure, opening the door for a continuation rally towards the $2.50 range. The order books are clear enough that, if momentum is going to flip, this is the time. If this price setup fails to hold this structure and slips back below $2.00, Don warns that the end of the year could turn less favorable.

Why Exchange Balance Is The Ultimate Supply Metric

The Co-founder of Tedlabsio, trader and investor Niels, pointed out that XRP has just flashed one of the strongest bullish signals seen in the current market cycle. Over the past two months, roughly 45% of the XRP supply held on exchanges has been withdrawn and moved off trading platforms.ย 

A drop in exchange supply this sharp only happens when the smart money is accumulating heavily. When the supply available on the exchange reduces, the selling pressure reduces, and this is how big moves begin. Niels believes that XRP is entering that phase where most people havenโ€™t noticed yet.

XRP

From oversight to intelligence: AIโ€™s impact on project management and business transformation

4 December 2025 at 05:00

For CIOs, the conversation around AI has moved from innovation to orchestration, and project management, long a domain of human coordination and control, is rapidly becoming the proving ground for how intelligent systems can reshape enterprise delivery and accelerate transformation.

In boardrooms across industries, CIOs face the same challenge of how to quantify AIโ€™s promise in operational terms: shorter delivery cycles, reduced overhead, and greater portfolio transparency. A 2025 Georgia Institute of Technology-sponsored study of 217 project management professionals and C-level tech leaders revealed that 73% of organizations have adopted AI in some form of project management.

Yet amid the excitement, the question of how AI will redefine the role of the project manager (PM) remains, as does how will the future framework for the business transformation program be defined.

A shift in the PMโ€™s role, not relevance

Across industries, project professionals are already seeing change. Early adopters in the study report project efficiency gains of up to 30%, but success depends less on tech and more on how leadership governs its use. The overwhelming majority found it highly effective in improving efficiency, predictive planning, and decision-making. But what does that mean for the associates running these projects?

Roughly one-third of respondents believed AI would allow PMs to focus more on strategic oversight, shifting from day-to-day coordination to guiding long-term outcomes. Another third predicted enhanced collaboration roles, where managers act as facilitators who interpret and integrate AI insights across teams. The rest envisioned PMs evolving into supervisors of AI systems themselves, ensuring that algorithms are ethical, accurate, and aligned with business goals.

These perspectives converge on a single point: AI will not replace PMs, but it will redefine their value. The PM of the next decade wonโ€™t simply manage tasks, theyโ€™ll manage intelligence and translate AI-driven insights into business outcomes.

Why PMOs canโ€™t wait

For project management offices (PMOs), the challenge is no longer whether to adopt AI but how. AI adoption is accelerating, with most large enterprises experimenting with predictive scheduling, automated risk reporting, and gen AI for documentation. But the integration is uneven.

Many PMOs still treat AI as an add-on, a set of tools rather than its strategic capability. This misses the point since AI is about augmenting judgment and automation. The organizations gaining a real competitive advantage are those embedding AI into their project methodologies, governance frameworks, and performance metrics with this five-point approach in mind.

1. Begin with pilot projects

Think small, scale fast. The most successful AI integrations begin with targeted use cases that automate project status reports, predict schedule slippage, or identify resource bottlenecks. These pilot projects create proof points, generate enthusiasm, and expose integration challenges early.

2. Measure value, not just activity

One common pitfall is adopting AI without clear performance metrics. PMOs should set tangible KPIs such as reduction in manual reporting time, improved accuracy in risk forecasts, shorter project cycle times, and higher stakeholder satisfaction. Communicating these outcomes across the organization is just as important as achieving them. Success stories build momentum, foster buy-in, and demystify AI for skeptical teams.

3. Upskill PMs

AI will only be as valuable as the people who use it. Nearly half of the surveyed professionals cited lack of a skilled workforce as a barrier to AI integration. Project managers donโ€™t need to become data scientists, but they must understand AI fundamentals, how algorithms work, where biases emerge, and what data quality means. In this evolving landscape, the most effective PMs will combine data literacy with human-centered leadership, including critical thinking, emotional intelligence, and communication.

4. Strengthen governance and ethics

Increasing AI raises pressing ethical questions, especially when algorithms influence project decisions. PMOs must take the lead in establishing AI governance frameworks that emphasize transparency, fairness, and human oversight. Embedding these principles into the PMOโ€™s charter doesnโ€™t just mitigate risk, it builds trust.

5. Evolve from PMO to BTO

The traditional PMO focuses on execution through scope, schedule, and cost. But AI-driven organizations are shifting toward business transformation offices (BTOs), which align projects directly with strategic value creation through process improvement in parallel. A PMO ensures projects are done right. A BTO ensures the right projects are done. A crucial element of this framework is the transition from a Waterfall to an Agile mindset. The evolution of project management has shifted from rigid plans to iterative, customer-centric, and collaborative methods, with hybrid methodologies becoming increasingly common. This Agile approach is vital for adapting to the rapid changes brought by AI and digital disruption.

The new PM career path

By 2030, AI could manage most routine project tasks, such as status updates, scheduling, and risk flagging, while human leaders focus on vision, collaboration, and ethics. This shift mirrors past revolutions in project management from the rise of Agile to digital transformation, but at an even faster pace. But as organizations adopt AI, the risk of losing the human element persists. Project management has always been about people and aligning interests, resolving conflicts, and inspiring teams. However, while AI can predict a delay, it canโ€™t motivate a team to overcome it. The PMโ€™s human ability to interpret nuance, build trust, and foster collaboration remains irreplaceable.

A call to action

AI represents the next frontier in enterprise project delivery, and the next decade will test how well PMOs, executives, and policymakers can navigate the evolution of transformation. To thrive, organizations must invest in people as much as in platforms, adopt ethical, transparent governance, foster continuous learning and experimentation, and measure success by outcomes rather than hype.

For CIOs, the mandate is clear: lead with vision, govern with integrity, and empower teams with intelligent tools. AI, after all, isnโ€™t a threat to the project management profession. Itโ€™s a catalyst for its reinvention, and when executed responsibly, AI-driven project management will not only deliver operational gains but also build more adaptive, human-centered organizations ready for the challenges ahead. By embracing it thoughtfully, PMs can elevate their roles from administrators to architects of change.

La checklist del CIO per ottenere dallโ€™intelligenza artificiale un ROI positivo

4 December 2025 at 00:00

Allโ€™inizio di questโ€™anno, il MIT ha fatto notizia perchรฉ, in unย rapporto [in inglese], ha rilevato che il 95% delle aziende non sta ottenendo alcun ritorno dallโ€™intelligenza artificiale, nonostante investimenti sostanziosi. Ma perchรฉ cosรฌ tante iniziative di intelligenza artificiale non riescono a garantire un ROI positivo? Perchรฉ spesso mancano di un chiaro collegamento al valore aziendale, afferma Neal Ramasamy, CIO globale di Cognizant, una societร  di consulenza IT.

โ€œQuesto porta a progetti tecnicamente impressionanti, ma che non risolvono unโ€™esigenza reale nรฉ creano un vantaggio tangibileโ€, aggiunge. I tecnologi spesso seguono lโ€™entusiasmo del momento, immergendosi a capofitto nei test sullโ€™intelligenza artificiale senza considerare i risultati aziendali. โ€œMolti iniziano con modelli e progetti pilota piuttosto che partire da ciรฒ che vogliono ottenereโ€, osserva Saket Srivastava, CIO di Asana, unโ€™applicazione per il project management.ย 

โ€œI team eseguono demo in modo isolato, senza riprogettare il flusso di lavoro sottostante o assegnare un responsabile dei profitti e delle perditeโ€.

La combinazione di una mancanza di pensiero iniziale sul prodotto, pratiche di dati sottostanti inadeguate, governance inesistente e incentivi culturali minimi allโ€™adozione dellโ€™AI puรฒ produrre risultati negativi. Quindi, per evitare esiti scadenti, molte delle tecniche si riducono a una migliore gestione del cambiamento. โ€œSenza una revisione dei processi, lโ€™intelligenza artificiale accelera le inefficienze odierneโ€, aggiunge spiega.

Qui di seguito esaminiamo cinque modi per il change management allโ€™interno di unโ€™azienda che i CIO possono mettere in pratica oggi stesso. Seguendo questa checklist, le imprese dovrebbero iniziare a invertire la tendenza del ROI negativo dellโ€™AI, imparare dagli anti-modelli e scoprire quali tipi di metriche convalidano le iniziative di intelligenza artificiale di successo a livello aziendale.

1. Allineare la leadership in anticipo comunicando gli obiettivi aziendali e guidando lโ€™iniziativa di AI

Le iniziative di intelligenza artificiale richiedono il sostegno dei dirigenti e una visione chiara di come possono migliorare il business. โ€œUna leadership forte รจ essenziale per tradurre gli investimenti nellโ€™AI in risultatiโ€, dichiara Adam Lopez, presidente e leadvCIO del managed IT support provider CMIT Solutions. โ€œIl sostegno dei dirigenti e la supervisione dei programmi di intelligenza artificiale, idealmente a livello di CEO o di consiglio di amministrazione, sono correlati a un ROI piรน elevatoโ€.

Per esempio, nella societร  di servizi IT e consulenza Xebia, un sottogruppo di dirigenti guida le attivitร  interne di AI. Presieduto dal CIO globale Smit Shanker, il team comprende il CFO globale e i responsabili dellโ€™intelligenza artificiale, dellโ€™automazione, dellโ€™infrastruttura IT, della sicurezza e delle operation aziendali.

Una volta costituita la leadership di livello piรน alto, la responsabilitร  diventa fondamentale. โ€œIniziate assegnando la titolaritร  dellโ€™attivitร โ€, consiglia Srivastava.ย 

โ€œOgni caso dโ€™uso dellโ€™AI necessita di un leader responsabile con un obiettivo legato a traguardi e risultati chiaveโ€. Raccomanda, poi, di istituire unย PMO [in inglese]ย interfunzionale per definire casi dโ€™uso di riferimento, fissare obiettivi di successo, applicare misure di sicurezza e comunicare regolarmente i progressi compiuti.

Tuttavia, anche con una leadership in atto, molti dipendenti avranno bisogno di una guida pratica per applicare lโ€™intelligenza artificiale nel loro lavoro quotidiano. โ€œPer la maggior parte delle persone, anche se si forniscono loro gli strumenti, non sanno da dove iniziareโ€, commenta Orla Daly, CIO di Skillsoft, un sistema di gestione dellโ€™apprendimento. Il manager raccomanda di identificare chi, in azienda, puรฒ far emergere casi dโ€™uso significativi e condividere consigli pratici, come ottenere il massimo da strumenti come Copilot. Coloro che hanno curiositร  e volontร  di imparare faranno i progressi maggiori, sostiene.

Infine, i dirigenti devono investire in infrastrutture, talenti e formazione. โ€œI leader devono promuovere una cultura basata sui dati e una visione chiara di come lโ€™AI risolverร  i problemi aziendaliโ€, afferma Ramasamy di Cognizant. Ciรฒ richiede una stretta collaborazione tra la prima linea del management, i data scientist e lโ€™IT per eseguire e misurare i progetti pilota prima di passare alla fase di scalabilitร .

2. Evolversi modificando il quadro dei talenti e investendo nellโ€™aggiornamento delle competenze

Le imprese devono essere aperte a modificare il loro quadro dei talenti e a riprogettare i ruoli. โ€œI CIO dovrebbero adattare le loro strategie di gestione dei talenti per garantire il successo dellโ€™adozione dellโ€™AI e del ROIโ€, afferma Ramasamy. โ€œCiรฒ potrebbe comportare la creazione di nuove figure e percorsi di carriera per i professionisti che si occupano di AI, come i data scientist e i prompt engineer, aggiornando, al contempo, le competenze dei dipendenti esistentiโ€.

I CIO dovrebbero anche considerare il talento come una pietra miliare di qualsiasi strategia di AI, aggiunge Lopez di CMIT. โ€œInvestendo nelle persone attraverso la formazione, la comunicazione e nuovi ruoli specialistici, i CIO possono essere certi che i dipendenti adotteranno gli strumenti di intelligenza artificiale e ne determineranno il successoโ€. Aggiunge che gli hackathon interni e le sessioni di formazione spesso producono notevoli miglioramenti nelle competenze e nella fiducia.

Lโ€™aggiornamento delle competenze, per esempio, dovrebbe soddisfare le esigenze dei dipendenti, quindi Srivastava di Asana raccomanda percorsi a piรน livelli: tutto il personale ha bisogno di una formazione di base sulla prompt literacy e sulla sicurezza, mentre gli utenti esperti richiedono una conoscenza piรน approfondita della progettazione del flusso di lavoro e della creazione di agenti. โ€œAbbiamo adottato lโ€™approccio di sondare la forza lavoro, puntare sullโ€™abilitazione e rimisurare per confermare che la maturitร  si muovesse nella giusta direzioneโ€, sottolinea.

Tuttavia, la valutazione dellโ€™attuale struttura dei talenti va oltre le competenze umane. Significa anche rivalutare il lavoro da svolgere e i compiti di ciascuno al suo interno. โ€œรˆ essenziale rivedere i processi aziendali per individuare opportunitร  di rifattorizzazione, date le nuove capacitร  offerte dallโ€™AIโ€, dichiara Scott Wheeler, responsabile delle attivitร  cloud della societร  di consulenza Asperitas Consulting.

Per Daly di Skillsoft, lโ€™era dellโ€™AI odierna richiede un quadro di gestione dei talenti moderno che bilanci abilmente le quattro B:ย build, buy, borrow e bots [in inglese]. In altre parole, i leader dovrebbero considerare la loro azienda come un insieme di competenze e applicare il giusto mix di personale interno, software, partner o automazione in base alle necessitร . โ€œCiรฒ richiede di suddividere le attivitร  in lavori o compiti da svolgere e di considerare lโ€™attivitร  di tutti in modo piรน frammentatoโ€, rileva Daly.

Per esempio, il suo team ha utilizzato GitHub Copilot per codificare rapidamente un portale di apprendimento per un determinato cliente. Il progetto ha evidenziato come lโ€™abbinamento di sviluppatori umani con assistenti AI possa accelerare notevolmente la consegna, sollevando nuove domande sulle competenze necessarie agli altri sviluppatori per essere altrettanto produttivi ed efficienti.

Tuttavia, poichรฉ gliย agenti AIย assumono sempre piรน compiti di routine, i leader devono dissipare i timori che lโ€™intelligenza artificiale sostituisca completamente i posti di lavoro. โ€œComunicare il motivo alla base delle iniziative di AI puรฒ alleviare i timori e dimostrare come questi strumenti possano potenziare i ruoli umaniโ€, fa notare Ramasamy. Srivastava รจ dโ€™accordo. โ€œIl filo conduttore รจ la fiduciaโ€, afferma, โ€œMostrate alle persone come lโ€™AI elimina la fatica e aumenta lโ€™impatto; mantenete gli esseri umani nel ciclo decisionale e lโ€™adozione seguirร โ€.

3. Adattare i processi organizzativi per sfruttare appieno i vantaggi dellโ€™intelligenza artificiale

Cambiare lโ€™organico รจ solo lโ€™inizio: le aziende devono anche riprogettare i processi fondamentali. โ€œSfruttare appieno il valore dellโ€™intelligenza artificiale richiede, spesso, una riprogettazione del funzionamento dellโ€™aziendaโ€, dichiara Lopez di CMIT, che esorta a integrare lโ€™AI nelle operazioni quotidiane e a supportarla con una sperimentazione continua, piuttosto che trattarla come unโ€™aggiunta statica.

A tal fine, un adattamento necessario รจ quello che consiste nel trattare i flussi di lavoro interni basati sullโ€™intelligenza artificiale come prodotti e codificare i modelli in tutta lโ€™azienda, afferma Srivastava. โ€œStabilire un rigoroso sistema di gestione dei prodotti per lโ€™acquisizione, la definizione delle prioritร  e la pianificazione dei casi dโ€™uso dellโ€™AI, con responsabili chiari, descrizioni dei problemi e ipotesi di valoreโ€, sottolinea.

In Xebia, un comitato di governance supervisiona questo rigore attraverso un processo in tre fasi che consiste nellโ€™identificare e misurare il valore, garantire lโ€™accettazione da parte dellโ€™azienda e poi passare allโ€™IT per il monitoraggio e il supporto. โ€œUn gruppo centrale รจ responsabile della semplificazione organizzativa e funzionale di ogni caso dโ€™usoโ€, spiega Shanker. โ€œCiรฒ incoraggia i processi interfunzionali e aiuta ad abbattere i silosโ€.

Allo stesso modo, per Ramasamy, lโ€™ostacolo piรน grande รจ la resistenza organizzativa. โ€œMolte aziende sottovalutano la gestione del cambiamento necessaria per unโ€™adozione di successoโ€, dice. โ€œIl cambiamento piรน critico รจ il passaggio da un processo decisionale compartimentato a un approccio incentrato sui dati. I processi aziendali dovrebbero integrare perfettamente i risultati dellโ€™AI, automatizzando le attivitร  e fornendo ai dipendenti informazioni basate sui datiโ€.

Identificare le aree giuste da automatizzare dipende anche dalla visibilitร . โ€œรˆ qui che la maggior parte delle aziende fallisce perchรฉ non dispone di processi validi e documentatiโ€, afferma Daly di Skillsoft, che raccomanda di coinvolgere esperti in materia di tutte le linee di business per esaminare i flussi di lavoro e ottimizzarli. โ€œรˆ importante nominare persone allโ€™interno dellโ€™azienda che si occupino di capire come integrare lโ€™intelligenza artificiale nel flusso di lavoroโ€, precisa.

Una volta identificate le unitร  di lavoro comuni a tutte le funzioni che lโ€™AI puรฒ semplificare, il passo successivo รจ renderle visibili e standardizzarne lโ€™applicazione. Skillsoft sta facendo questo attraverso un registro degli agenti che documenta le loro capacitร , le misure di sicurezza e i processi di gestione dei dati. โ€œStiamo formalizzando un framework di AI aziendale in cui lโ€™etica e la governance fanno parte del modo in cui gestiamo il portafoglio di casi dโ€™usoโ€, aggiunge.

Le imprese dovrebbero quindi anticipare gli ostacoli e creare strutture di supporto per aiutare gli utenti. โ€œUna strategia per raggiungere questo obiettivo รจ quella di disporre di team SWAT di intelligenza artificiale, il cui scopo รจ facilitare lโ€™adozione e rimuovere gli ostacoliโ€, osserva Wheeler di Asperitas.

4. Misurare i progressi per convalidare il ritorno sullโ€™investimento

Per valutare il ROI, i CIO devono stabilire una linea di base pre-AI e fissare in anticipo dei parametri di riferimento. I leader raccomandano di assegnare la responsabilitร  di metriche quali il time-to-value, i risparmi sui costi, i risparmi di tempo, il lavoro gestito dagli agenti umani e le nuove opportunitร  di guadagno generate.

โ€œLe misurazioni di riferimento dovrebbero essere stabilite prima di avviare i progetti di intelligenza artificialeโ€, argomenta Wheeler, che consiglia di integrare gli indicatori predittivi delle singole unitร  aziendali nelle regolari revisioni delle prestazioni da parte della leadership. Un errore comune, afferma, รจ quello di misurare solo i KPI tecnici come lโ€™accuratezza del modello, la latenza o la precisione, senza collegarli ai risultati aziendali, come i risparmi, i ricavi o la riduzione dei rischi.

Pertanto, il passo successivo รจ definire obiettivi chiari e misurabili che dimostrino un valore tangibile. โ€œIncorporare la misurazione nei progetti fin dal primo giornoโ€, dichiara Lopez di CMIT. โ€œI CIO dovrebbero definire una serie di KPI rilevanti per ogni iniziativa di intelligenza artificiale. Per esempio, un tempo di elaborazione piรน veloce del 20% o un aumento del 15% della soddisfazione dei clientiโ€. Iniziare con piccoli progetti pilota che producono risultati rapidi e quantificabili, aggiunge.

Una misura chiara รจ il risparmio di tempo.

Per esempio, Eamonn Oโ€™Neill, CTO di Lemongrass, un fornitore di servizi basati su software, racconta di aver visto clienti documentare manualmente lo sviluppo SAP, un processo che puรฒ richiedere molto tempo. โ€œLโ€™utilizzo dellโ€™IA generativa per creare questa documentazione comporta una chiara riduzione dello sforzo umano, che puรฒ essere misurato e tradotto in un ROI in modo abbastanza sempliceโ€, commenta. La riduzione del lavoro umano per attivitร  รจ un altro segnale chiave.ย 

โ€œSe lโ€™obiettivo รจ ridurre il numero di chiamate al servizio di assistenza gestite da operatori umani, i leader dovrebbero stabilire una metrica chiara e monitorarla in tempo realeโ€, illustra Ram Palaniappan, CTO di TEKsystems, fornitore di servizi tecnologici full-stack. Aggiunge, inoltre, che lโ€™adozione dellโ€™AI puรฒ anche far emergere nuove opportunitร  di guadagno.

Alcuni CIO monitorano piรน KPI granulari nei singoli casi dโ€™uso e adeguano le strategie in base ai risultati. Srivastava di Asana, per esempio, monitora lโ€™efficienza ingegneristica controllando i tempi di ciclo, la produttivitร , la qualitร , il costo per transazione e gli eventi di rischio. Misura anche la percentuale di esecuzioni assistite da agenti, gli utenti attivi, lโ€™accettazione da parte degli esseri umani e le escalation delle eccezioni. Lโ€™analisi di questi dati, spiega, aiuta a mettere a punto i prompt e le misure di sicurezza in tempo reale.

Il punto fondamentale รจ stabilire le metriche fin dallโ€™inizio e non cadere nellโ€™errore di non monitorare i segnali o il valore ottenuto. โ€œSpesso la misurazione viene aggiunta in un secondo momento, quindi i leader non sono in grado di dimostrare il valore o decidere cosa scalareโ€, dichiara Srivastava. โ€œLa soluzione รจ iniziare con una metrica di missione specifica, stabilirne la linea di base e integrare lโ€™AI direttamente nel flusso di lavoro, in modo che le persone possano concentrarsi su giudizi di valore piรน elevatoโ€.

5. Governare la cultura dellโ€™AI per evitare violazioni e instabilitร 

Gli strumenti di AI generativa sono ormai comuni, ma molti dipendenti non hanno ancora ricevuto una formazione adeguata per utilizzarli in modo sicuro. Per esempio, secondo uno studio delย 2025 di SmallPDF [in inglese], quasi un dipendente su cinque negli Stati Uniti ha inserito le proprie credenziali di accesso in strumenti di AI. โ€œUna buona leadership implica la creazione di governance e guardrailโ€, afferma Lopez. Ciรฒ include la definizione di politiche per impedire che dati sensibili e riservati vengano inseriti in strumenti come ChatGPT.

Un uso intensivo dellโ€™intelligenza artificiale amplia anche la superficie di attacco dellโ€™azienda. La leadership deve ora considerare seriamente aspetti quali le vulnerabilitร  di sicurezza nei browser basati sullโ€™AI, lโ€™AI shadow e le hallucination [in inglese]ย LLM. Man mano che lโ€™AI agentica diventa sempre piรน coinvolta neiย processi critici per il business [in inglese], unโ€™adeguata autorizzazione e controlli di accesso sono essenziali per prevenire lโ€™esposizione di dati sensibili o lโ€™ingresso dannoso nei sistemi IT.

Dal punto di vista dello sviluppo software, il rischio di fuga di password, chiavi e token attraverso gli agenti di codifica AI รจ molto reale. Gli ingegneri hanno adottato iย server MCP [in inglese]ย per consentire agli agenti di codifica AI di accedere a dati, strumenti e API esterni, ma unaย ricerca di Wallarm [in inglese]ย ha rilevato un aumento del 270% delle vulnerabilitร  legate agli MCP dal secondo al terzo trimestre del 2025, insieme a un aumento delle vulnerabilitร  delle API.

Trascurare lโ€™identitร  degli agenti, le autorizzazioni e le tracce di audit รจ una trappola comune in cui spesso cadono i CIO con lโ€™AI aziendale, afferma Srivastava. โ€œIntrodurre la gestione dellโ€™identitร  e dellโ€™accesso degli agenti in modo che questi ultimi ereditino le stesse autorizzazioni e la stessa verificabilitร  degli esseri umani, compresi la registrazione e le approvazioniโ€, dice.

Nonostante i rischi, la supervisione rimane debole. Un rapporto di AuditBoard ha rilevato che, mentre lโ€™82% delle imprese sta implementando lโ€™intelligenza artificiale, solo il 25% ha implementato programmi di governance completi. Con violazioni dei dati che ora costano in media quasi 4,5 milioni di dollari ciascuna, secondo IBM, eย IDC che riferisce [in inglese]ย che le organizzazioni che sviluppano unโ€™intelligenza artificiale affidabile hanno il 60% di probabilitร  in piรน di raddoppiare il ROI dei progetti basati su di essa, i vantaggi commerciali dellaย governance dellโ€™intelligenza artificiale [in inglese]ย sono evidenti. โ€œAbbinate lโ€™ambizione a solide misure di protezione: ciclo di vita dei dati e controlli di accesso chiari, valutazione e red teaming, e checkpoint con intervento umano nei casi in cui la posta in gioco รจ altaโ€, afferma Srivastava.ย 

โ€œIntegrate la sicurezza, la privacy e la governance dei dati nellโ€™SDLC in modo che la distribuzione e la sicurezza procedano di pari passo, senza scatole nere per la provenienza dei dati o il comportamento dei modelliโ€.

Non รจ magia

Secondoย BCG [in inglese], solo il 22% delle aziende ha portato la propria AI oltre la fase di POC e solo il 4% sta creando un valore sostanziale. Tenendo presenti queste statistiche che fanno riflettere, i CIO non dovrebbero nutrire aspettative irrealistiche in termini di ritorno sullโ€™investimento.

Ottenere un ROI dallโ€™intelligenza artificiale richiederร  uno sforzo iniziale significativo e necessiterร  di cambiamenti fondamentali nei processi organizzativi. Come ha affermato George Maddaloni, CTO delle operazioni di Mastercard, in una recente intervista con Runtime, lโ€™adozione delle app di GenAI riguarda, in gran parte, la gestione del cambiamento e lโ€™adozione.

Le insidie dellโ€™AI sono pressochรฉ infinite ed รจ comune che le imprese inseguano lโ€™hype piuttosto che il valore, lancino prodotti senza una chiara strategia sui dati, scalino troppo rapidamente e implementino la sicurezza come un ripensamento. Molti programmi di intelligenza artificiale semplicemente non dispongono del sostegno esecutivo o della governance necessari per raggiungere gli obiettivi prefissati. In alternativa, รจ facile credere allโ€™hype dei fornitori sui guadagni in termini di produttivitร  e spendere troppo, oppure sottovalutare la difficoltร  di integrare le piattaforme di intelligenza artificiale con lโ€™infrastruttura IT legacy.

Guardando al futuro, per massimizzare lโ€™impatto dellโ€™AI sul business, i leader raccomandano di investire nellโ€™infrastruttura dati e nelle capacitร  della piattaforma necessarie per scalare, e di concentrarsi su uno o due casi dโ€™uso ad alto impatto che possano eliminare il lavoro umano e aumentare chiaramente i ricavi o lโ€™efficienza.

รˆ necessario fondare lโ€™entusiasmo per lโ€™intelligenza artificiale su principi fondamentali e comprendere la strategia aziendale che si intende perseguire per avvicinarsi al ROI.ย 

Senza una leadership solida e obiettivi chiari, infatti, lโ€™AI รจ solo una tecnologia affascinante con un ritorno economico che rimane sempre fuori portata.

ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฎCIOใŒ่ชžใ‚‹ใ€ŒCIOใฎๅฝนๅ‰ฒใ‚„้ญ…ๅŠ›ใ€ใจใฏ

3 December 2025 at 16:33

ใ‚ญใƒฃใƒชใ‚ขใฎ็พ…้‡็›คใ‚’ๅค‰ใˆใŸๅ ดๆ‰€๏ผšๆฐดๅณถใ‹ใ‚‰ใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใ€ใใ—ใฆ็ตŒๅ–ถใฎๆœ€ๅ‰็ทšใธ

1989ๅนดใ€็งใฏไธ‰่ฑๅŒ–ๆˆ๏ผˆ็พใƒปไธ‰่ฑใ‚ฑใƒŸใ‚ซใƒซ๏ผ‰ใซ็”Ÿ็”ฃๆŠ€่ก“ใฎใ‚จใƒณใ‚ธใƒ‹ใ‚ขใจใ—ใฆๆ–ฐๅ’ๅ…ฅ็คพใ—ใพใ—ใŸใ€‚้…ๅฑžๅ…ˆใฏๅฒกๅฑฑ็œŒๅ€‰ๆ•ทๅธ‚ใฎๆฐดๅณถไบ‹ๆฅญๆ‰€โ”€โ”€็Ÿณๆฒนใ‚ณใƒณใƒ“ใƒŠใƒผใƒˆใฎ็พๅ ดใงใ€ใƒ•ใ‚ฃใƒผใƒซใƒ‰ใ‚จใƒณใ‚ธใƒ‹ใ‚ขใƒชใƒณใ‚ฐใซๅพ“ไบ‹ใ™ใ‚‹ๆ—ฅใ€…ใŒๅง‹ใพใ‚Šใพใ—ใŸใ€‚

่ปขๆฉŸใŒ่จชใ‚ŒใŸใฎใฏ1996ๅนดใ€‚ใ‚ขใƒกใƒชใ‚ซๆฑๆตทๅฒธใฎใƒœใ‚นใƒˆใƒณใŠใ‚ˆใณ่ฅฟๆตทๅฒธใฎใ‚ตใƒณใƒ•ใƒฉใƒณใ‚ทใ‚นใ‚ณใซๆ–ฐใŸใชๆ‹ ็‚นใ‚’็ซ‹ใกไธŠใ’ใ‚‹ใจใ„ใ†่ฉฑใŒใ‚ใ‚Šใ€็งใฏใใฎ่ฅฟๆตทๅฒธใฎ็ซ‹ใกไธŠใ’ใƒกใƒณใƒใƒผใจใ—ใฆใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใซ้งๅœจใ™ใ‚‹ใ“ใจใซใชใ‚Šใพใ—ใŸใ€‚ๅฝ“ๆ™‚ใฏWindows 95ใฎ็™ปๅ ดใ€ใ‚คใƒณใ‚ฟใƒผใƒใƒƒใƒˆใฎๆฐ‘ไธปๅŒ–ใ€ใใ—ใฆeใƒ“ใ‚ธใƒใ‚นใฎ้ปŽๆ˜ŽๆœŸใ€‚ๅ…จ็ฑณใฎๆŠ•่ณ‡ใฎ็ด„3ๅˆ†ใฎ1ใŒ้›†ใพใ‚‹ใจใ„ใ†ใ€ไธ–็•Œๆœ€ๅ…ˆ็ซฏใฎๆŠ€่ก“ใจ่ณ‡ๆœฌใŒไบคๅทฎใ™ใ‚‹ๅ ดๆ‰€ใซ่บซใ‚’็ฝฎใใ“ใจใซใชใฃใŸใฎใงใ™ใ€‚

3ๅนด้–“ใฎ้งๅœจใ‚’็ต‚ใˆใฆๆฐดๅณถใซๆˆปใ‚Šใ€ๅ†ใณ็”Ÿ็”ฃๆŠ€่ก“ใฎๆฅญๅ‹™ใซๅพ“ไบ‹ใ—ใพใ—ใŸใŒใ€็งใฏใ€Œใ„ใ‘ใชใ„ใ‚‚ใฎใ‚’่ฆ‹ใฆใ—ใพใฃใŸใ€ใจใ„ใ†ๆ„Ÿ่ฆšใซ่ฅฒใ‚ใ‚Œใพใ—ใŸใ€‚ใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใงไฝ“้จ“ใ—ใŸใ‚นใƒ”ใƒผใƒ‰ๆ„Ÿใ€้ฉๆ–ฐๆ€งใ€ใใ—ใฆๆœชๆฅใธใฎๆŒ‘ๆˆฆโ”€โ”€ใใ‚Œใ‚‰ใ‚’็Ÿฅใฃใฆใ—ใพใฃใŸไปŠใ€ๅพ“ๆฅใฎไป•ไบ‹ใซๆˆปใ‚‹ใ“ใจใฏใงใใพใ›ใ‚“ใงใ—ใŸใ€‚

ใใ“ใง็งใฏ่‡ชใ‚‰ๅฟ—้ก˜ใ—ใ€ๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ้ƒจ้–€ใธ่ปขๅฑžใ—ใพใ—ใŸใ€‚ไปฅ้™ใ€DXใ‚’ๅซใ‚€ๅคšใใฎใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใซ้–ขใ‚ใ‚Šใ€ๆŠ€่ก“ใจ็ตŒๅ–ถใฎๆฉ‹ๆธกใ—ใ‚’ๆ‹…ใ†ใ‚ˆใ†ใซใชใ‚Šใพใ—ใŸใ€‚ใใ—ใฆ2021ๅนดใ€ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฎๅŸท่กŒๅฝนๅ“กCIOใจใ—ใฆ่ปข่ทใ€‚็พๅœจใฏใ€ไผๆฅญใฎใƒ‡ใ‚ธใ‚ฟใƒซๆˆฆ็•ฅใ‚’็‰ฝๅผ•ใ™ใ‚‹็ซ‹ๅ ดใงใ€ๆœชๆฅใ‚’่ฆ‹ๆฎใˆใŸๆŒ‘ๆˆฆใ‚’็ถšใ‘ใฆใ„ใพใ™ใ€‚

ใ€ŒERPๅ†ๅปบ่ซ‹่ฒ ไบบใ€๏ผš3ๅบฆใฎ้€†่ปขๅЇใŒๆ•™ใˆใฆใใ‚ŒใŸใ€้€ƒใ’ใšใซๅ‘ใๅˆใ†ๅŠ›

็งใฎใ‚ญใƒฃใƒชใ‚ขใฎไธญใงๆœ€ใ‚‚ๅคงใใชๆŒ‘ๆˆฆใ ใฃใŸใฎใฏใ€ใ‚„ใฏใ‚ŠERPใฎๅฎŸ่ฃ…ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใงใ™ใ€‚ๅฎŸใฏใ“ใ‚Œใพใงใซ3ๅ›žใ€ERPใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใฎๅ†ๅปบใ‚’็ตŒ้จ“ใ—ใฆใใพใ—ใŸใ€‚

ใ„ใšใ‚Œใ‚‚ใ€ๅ‰ไปป่€…ใŒ่กŒใ่ฉฐใพใ‚Šใ€ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใŒ้ “ๆŒซใ—ใŸ็Šถๆ…‹ใ‹ใ‚‰ๅผ•ใ็ถ™ใŽใ€็ซ‹ใฆ็›ดใ—ใฆใ‚ดใƒผใƒซใธๅฐŽใใจใ„ใ†ใ‚‚ใฎใงใ—ใŸใ€‚้‡‘้ก็š„ใซใ‚‚่ฆๆจก็š„ใซใ‚‚้žๅธธใซๅคงใใชใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใงใ‚ใ‚Šใ€็งใฎCIOใจใ—ใฆใฎ่€ƒใˆๆ–นใ‚„่กŒๅ‹•ใฎ่ปธใ‚’ๅฝขๆˆใ™ใ‚‹ๆฅตใ‚ใฆ้‡่ฆใช็ตŒ้จ“ใจใชใ‚Šใพใ—ใŸใ€‚

็งใฎใ‚ชใƒชใ‚ธใƒŠใƒชใƒ†ใ‚ฃใŒใ‚ใ‚‹ใจใ™ใ‚Œใฐใ€ใใ‚Œใฏ็”Ÿ็”ฃๆŠ€่ก“ใ‹ใ‚‰ITใธใจใ‚ญใƒฃใƒชใ‚ขใ‚’่ปขๆ›ใ—ใŸใ“ใจใ€ใใ—ใฆใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใฎใฉ็œŸใ‚“ไธญใงๅƒใ„ใŸ็ตŒ้จ“ใซใ‚ใ‚‹ใจ่€ƒใˆใฆใ„ใพใ™ใ€‚ใ•ใ‚‰ใซใ€ๅธฐๅ›ฝๅพŒใฏไผๆฅญๅ†…ใฎๆฅญๅ‹™ใซ็•™ใพใ‚‰ใšใ€ๆฅญ็•Œๆจชๆ–ญใฎๆดปๅ‹•ใซใ‚‚็ฉๆฅต็š„ใซ้–ขใ‚ใฃใฆใใพใ—ใŸใ€‚

ไพ‹ใˆใฐใ€็ŸณๆฒนๅŒ–ๅญฆๅทฅๆฅญๅ”ไผšใงใฎITๆดปๅ‹•ใ‚„ใ€ไผๆฅญ้–“ๅ–ๅผ•ใฎ้›ปๅญๅŒ–๏ผˆEDI๏ผ‰ใ€ๅ›ฝๅ†…ๅค–ใฎๅคงๆ‰‹ๅŒๆฅญไป–็คพ22็คพใŒ้›†ใพใฃใŸใ‚ฐใƒญใƒผใƒใƒซใชๅŒ–ๅญฆๅ“ใ‚คใƒผใ‚ณใƒžใƒผใ‚นใ‚ตใ‚คใƒˆใฎ็ซ‹ใกไธŠใ’ใชใฉใ€ๆฅญ็•Œๅ…จไฝ“ใ‚’ๅทปใ่พผใ‚“ใ ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใซใ‚‚ๆบใ‚ใ‚Šใพใ—ใŸใ€‚

็พๅ ดใจใ‚ชใƒ•ใ‚ฃใ‚นใ€ๅ›ฝๅ†…ใจๆตทๅค–ใ€ๆฅญๅ‹™ใจITโ”€โ”€ใ“ใฎๆง˜ใชๅขƒ็•Œใ‚’่ถŠใˆใฆไป•ไบ‹ใ‚’ใ—ใฆใใŸ็ตŒ้จ“ใŒใ€็พๅœจใฎCIOใจใ—ใฆใฎ่ฆ–้‡Žใจๅˆคๆ–ญๅŠ›ใซใคใชใŒใฃใฆใ„ใพใ™ใ€‚

็งใŒๅคงๅˆ‡ใซใ—ใฆใ„ใ‚‹ใฎใฏใ€ใ€Œ็›ฎใฎๅ‰ใฎใ“ใจใซ้›†ไธญใ—ใฆใ€ๅ…จๅŠ›ใ‚’ๅฐฝใใ™ใ€ใจใ„ใ†ๅงฟๅ‹ขใงใ™ใ€‚่‡ชๅˆ†่‡ช่บซใฎ็›ฎๆจ™ใ‚’็ซ‹ใฆใ™ใŽใ‚‹ใ“ใจใงใ€ๅฐ†ๆฅใฎๅฏ่ƒฝๆ€งใ‚’็‹ญใ‚ใฆใ—ใพใ†ใฎใงใฏใชใ„ใ‹ใจใ„ใ†่€ƒใˆใ‹ใ‚‰ใ€ใ‚ใˆใฆๆ˜Ž็ขบใช็›ฎๆจ™ใ‚’ๅฎšใ‚ใšใ€ไปŠใ“ใฎ็žฌ้–“ใซๅ…จๅŠ›ใ‚’ๆณจใใ“ใจใ‚’ๅฟƒใŒใ‘ใฆใ„ใพใ™ใ€‚

ERPใฎใ‚ˆใ†ใชๅคง่ฆๆจกใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใงใฏใ€ๅ›ฐ้›ฃใ‚„ไบˆๆœŸใ›ใฌ่ชฒ้กŒใŒๆฌกใ€…ใจ็พใ‚Œใพใ™ใ€‚ใใ†ใ„ใฃใŸ็Šถๆณใงใ‚‚ใ€Œ้€ƒใ’ใชใ„ใ€ใ€ใ€Œ่ฒฌไปปใ‚’ๆŒใฃใฆๆœ€ๅพŒใพใงใ‚„ใ‚Š้‚ใ’ใ‚‹ใ€ใจใ„ใ†ๅงฟๅ‹ขใ‚’่ฒซใ„ใฆใใพใ—ใŸใ€‚็ตŒ้จ“ใ‚’็ฉใฟ้‡ใญใ€่‡ชๅˆ†ใง่€ƒใˆใ€่‡ชๅˆ†ใฎ่ปธใ‚’ๆŒใฃใฆๆ–ฝ็ญ–ใ‚’ๆ‰“ใคโ”€โ”€ใใ‚ŒใŒใ€็งใฎใƒชใƒผใƒ€ใƒผใ‚ทใƒƒใƒ—ใฎๆ นๅนนใงใ™ใ€‚

ใใ—ใฆไฝ•ใ‚ˆใ‚Šใ€ใ€Œๆตทๅค–ใ‚’็Ÿฅใ‚‹ใ“ใจใงๆ—ฅๆœฌใ‚’็Ÿฅใ‚‹ใ€ใ€ใ€Œไป–็คพใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ช็คพใ‚’็Ÿฅใ‚‹ใ€ใ€ใ€Œไบบใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใ€โ”€โ”€ใ“ใฎๆฐ—ใฅใใ“ใใŒใ€็งใซใจใฃใฆๆœ€ๅคงใฎ่ฒก็”ฃใงใ‚ใ‚Šใ€CIOใจใ—ใฆใฎๅŽŸๅ‹•ๅŠ›ใซใชใฃใฆใ„ใพใ™ใ€‚

ใƒˆใƒƒใƒ—ใƒ€ใ‚ฆใƒณใ ใ‘ใงใฏๅ‹•ใ‹ใชใ„๏ผš็พๅ ดใŒไธปๅฝนใซใชใ‚‹ใ‚ฌใƒใƒŠใƒณใ‚นใฎๅ†ๅฎš็พฉ

57ๆญณใงใฎ่ปข่ทโ”€โ”€ใใ‚Œใฏๆฑบใ—ใฆๆ—ฉใ„ใ‚ฟใ‚คใƒŸใƒณใ‚ฐใงใฏใ‚ใ‚Šใพใ›ใ‚“ใงใ—ใŸใ€‚ใ—ใ‹ใ—ใ€่ปข่ทใ—ใฆๅˆใ‚ใฆ่ฆ‹ใˆใฆใใŸใ“ใจใŒๆ•ฐๅคšใใ‚ใ‚Šใพใ—ใŸใ€‚็‰นใซๅฐ่ฑก็š„ใ ใฃใŸใฎใฏใ€ITๆˆฆ็•ฅใซใŠใ‘ใ‚‹ใ€Œใ‚ฌใƒใƒŠใƒณใ‚นใ€ใจใ€Œใ‚ทใƒŠใ‚ธใƒผใ€ใจใ„ใ†2ใคใฎใ‚ญใƒผใƒฏใƒผใƒ‰ใงใ™ใ€‚

ๅ‰่ทใงใฏใ€่ค‡ๆ•ฐใฎไธŠๅ ดๅญไผš็คพใ‚’ๅซใ‚€ๅคง่ฆๆจกใ‚ฐใƒซใƒผใƒ—ใฎๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ใ‚’็ตฑๆ‹ฌใ™ใ‚‹ใจใ„ใ†ใƒŸใƒƒใ‚ทใƒงใƒณใ‚’ๆ‹…ใ„ใพใ—ใŸใ€‚็‹ฌ็ซ‹ๆ€งใฎๅผทใ„ๅ„็คพใ‚’ๆŸใญใ‚‹ใซใฏใ€ๅ˜ใชใ‚‹ใ‚ฌใƒใƒŠใƒณใ‚นใฎๆŠผใ—ไป˜ใ‘ใงใฏใชใใ€ใ€Œใใฎๆ–ฝ็ญ–ใŒ็พๅ ดใซใจใฃใฆใฉใ‚“ใชใƒกใƒชใƒƒใƒˆใ‚’ใ‚‚ใŸใ‚‰ใ™ใฎใ‹ใ€ใ‚’ไธๅฏงใซไผใˆใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ—ใŸใ€‚

ใ‚ฌใƒใƒŠใƒณใ‚นใฎๅ…ˆใซใ‚ทใƒŠใ‚ธใƒผใŒ็”Ÿใพใ‚Œใ€ๅพ“ๆฅญๅ“กไธ€ไบบใฒใจใ‚ŠใŒ็ดๅพ—ใ—ใฆๅ‹•ใๅ‡บใ™โ”€โ”€ใใฎไป•็ต„ใฟใฅใใ‚Šใ“ใใŒใ€ๆŒ็ถšๅฏ่ƒฝใชITๆˆฆ็•ฅใฎ้ตใ ใจๅฎŸๆ„Ÿใ—ใพใ—ใŸใ€‚

ใพใŸใ€DXใฎๆŽจ้€ฒใซใŠใ„ใฆใ‚‚ใ€ใƒˆใƒƒใƒ—ใƒ€ใ‚ฆใƒณใจใƒœใƒˆใƒ ใ‚ขใƒƒใƒ—ใฎไธกๆ–นใŒ้‡่ฆใงใ‚ใ‚‹ใ“ใจใ‚’ๅญฆใณใพใ—ใŸใ€‚ใƒˆใƒƒใƒ—ใƒ€ใ‚ฆใƒณใงใฏๅ…จ็คพ็š„ใชใ‚คใƒณใƒ‘ใ‚ฏใƒˆใ‚’็”Ÿใฟๅ‡บใ™ไธ€ๆ–นใ€ใƒœใƒˆใƒ ใ‚ขใƒƒใƒ—ใงใฏ็พๅ ดใฎ่‹ฅๆ‰‹ใŒ่‡ชๅˆ†ใ”ใจใจใ—ใฆๆŒ‘ๆˆฆใ—ใ€่‚ฒๆˆใซใ‚‚ใคใชใŒใ‚‹ใ€‚ไธก่€…ใŒ้€ฃๅ‹•ใ™ใ‚‹ใ“ใจใงใ€DXใฏ็ต„็น”ๅ…จไฝ“ใซๅบƒใŒใฃใฆใ„ใใฎใงใ™ใ€‚

CIOใฏใ€Œ็ตŒๅ–ถ่€…ใ€ใซใชใ‚Œใ‚‹ใ‹๏ผŸโ”€โ”€37ๅนดใฎใ‚ญใƒฃใƒชใ‚ขใŒๅฐŽใ„ใŸ2ใคใฎใ‚ฟใ‚คใƒ—่ซ–

ใใ—ใฆไปŠใ€CIOใจใ—ใฆใฎๅฝนๅ‰ฒใ‚’ๆŒฏใ‚Š่ฟ”ใ‚‹ใจใ€2ใคใฎใ‚ฟใ‚คใƒ—ใŒใ‚ใ‚‹ใจๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚ไธ€ใคใฏใ€Œๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ใ‚’็ตฑๆ‹ฌใ™ใ‚‹CIOใ€ใ€ใ‚‚ใ†ไธ€ใคใฏใ€Œ็ตŒๅ–ถใฎไธ€็ฟผใ‚’ๆ‹…ใ†CIOใ€ใงใ™ใ€‚

็งใฏๅพŒ่€…ใ‚’็›ฎๆŒ‡ใ—ใฆใใพใ—ใŸใ€‚ITใฎๅฐ‚้–€ๆ€งใซใจใฉใพใ‚‰ใšใ€ๅค–ใฎไธ–็•Œใ‚’็Ÿฅใ‚Šใ€ๆฅญ็•Œใ‚’่ถŠใˆใ€็พๅ ดใจ็ตŒๅ–ถใ‚’ใคใชใโ”€โ”€ใใ‚“ใช่ฆ–็‚นใŒใ€CIOใฎๅฏ่ƒฝๆ€งใ‚’ๅบƒใ’ใ‚‹ใจไฟกใ˜ใฆใ„ใพใ™ใ€‚

ใใฎใŸใ‚ใซ็งใŒ้‡่ฆ–ใ—ใฆใ„ใ‚‹ใฎใŒใ€ใ€Œใƒชใƒ™ใƒฉใƒซใ‚ขใƒผใƒ„๏ผไบบ้กžใŒ่“„็ฉใ—ใŸๅกๆ™บใ€ใงใ™ใ€‚

ๆ–ฐใ—ใ„ใ‚‚ใฎใฏใ‚ผใƒญใ‹ใ‚‰็”Ÿใพใ‚Œใ‚‹ใฎใงใฏใชใใ€ๆง˜ใ€…ใชๅกๆ™บใฎ็ต„ใฟๅˆใ‚ใ›ใ‹ใ‚‰ๅ‰ต็™บใ•ใ‚Œใ‚‹ใ‚‚ใฎใงใ™ใ€‚็”ŸๆˆAIใฎ็™ปๅ ดใซใ‚ˆใฃใฆใ€็งใŸใกใฏใ“ใ‚ŒใพใงไปฅไธŠใซๅ‰ต้€ ็š„ใชไพกๅ€คใ‚’็”Ÿใฟๅ‡บใ™ใƒใƒฃใƒณใ‚นใ‚’ๆ‰‹ใซใ—ใฆใ„ใพใ™ใ€‚

ๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ้ƒจ้–€ใฎ็š†ใ•ใ‚“ใซใฏใ€ใœใฒใ“ใฎ่ฆ–็‚นใ‚’ๆŒใฃใฆใ„ใŸใ ใใŸใ„ใจๆ€ใ„ใพใ™ใ€‚ๆ™‚ใซใฏๅฐ‚้–€้ ˜ๅŸŸใ‹ใ‚‰่ถŠๅขƒใ—ใ€็พๅ ดใซๅฏ„ใ‚Šๆทปใ„ใ€็ตŒๅ–ถใจๅฏพ่ฉฑใ™ใ‚‹โ”€โ”€ใใฎๅ…ˆใซใ€CIOใจใ—ใฆใฎๆ–ฐใ—ใ„ๅฏ่ƒฝๆ€งใŒๅบƒใŒใฃใฆใ„ใ‚‹ใจใ€็งใฏ็ขบไฟกใ—ใฆใ„ใพใ™ใ€‚

ใ‚ˆใ‚Šๅ…ทไฝ“็š„ใชCIOใฎไป•ไบ‹่ฆณใ€ใ‚„ใ‚ŠใŒใ„ใ‚„้ญ…ๅŠ›ใซ็„ฆ็‚นใ‚’ๅฝ“ใฆใ€ใƒชใƒผใƒ€ใƒผใ‚ทใƒƒใƒ—ใ‚„ITใƒชใƒผใƒ€ใƒผใธใฎๅŠนๆžœ็š„ใชใ‚ขใƒ‰ใƒใ‚คใ‚นใชใฉใ€ๆฟ้‡Žๆฐใซ่ฉฑใ‚’่žใใพใ—ใŸใ€‚่ฉณ็ดฐใซใคใ„ใฆใฏใ€ใ“ใกใ‚‰ใฎใƒ“ใƒ‡ใ‚ชใ‚’ใ”่ฆงใใ ใ•ใ„ใ€‚

็ตŒๅ–ถใฎ่ปธใ‚’ๆŒใคCIOใธ๏ผš้‹็”จใƒปไฟๅฎˆใฎไพกๅ€คใจไบบใ‚’ๅ‹•ใ‹ใ™ๅŠ›

57ๆญณใงใฎ่ปข่ทใ‹ใ‚‰4ๅนดโ”€โ”€็งใฏ็พๅœจใ€ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฎCIOใจใ—ใฆใ€็ตŒๅ–ถ่ฆ–็‚นใงITใจDXใ‚’ๆ‰ใˆใ€็คพๆฅญใซใฉใ†่ฒข็Œฎใ™ใ‚‹ใ‹ใ‚’ๆ—ฅใ€…่€ƒใˆใ€ๅฎŸ่กŒใ—ใฆใ„ใพใ™ใ€‚

CIOใฎๅฝนๅ‰ฒใฏใ€ๆ–ฐใ—ใ„ๆŠ€่ก“ใ‚’ๅฐŽๅ…ฅใ™ใ‚‹ใ“ใจใ ใ‘ใงใฏใ‚ใ‚Šใพใ›ใ‚“ใ€‚

ใ‚€ใ—ใ‚ใ€ๅฐŽๅ…ฅใ—ใŸไป•็ต„ใฟใŒๅฎ‰ๅฎšใ—ใฆ้‹็”จใ•ใ‚Œใ€ไฟๅฎˆใ•ใ‚Œใ€ใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใŒ็ขบไฟใ•ใ‚ŒใŸ็Šถๆ…‹ใงๅˆใ‚ใฆไพกๅ€คใŒ็”Ÿใพใ‚Œใ‚‹ใ€‚ๅ…จไฝ“ใŒใ€ŒๅฎŒ็ตใ€ใ—ใฆใ“ใใ€็ตŒๅ–ถใซ่ฒข็Œฎใงใใ‚‹ใฎใงใ™ใ€‚

ใ“ใฎ4ๅนด้–“ใงใ€็งใŸใกใฏใ€ŒMMCใ‚ฐใƒซใƒผใƒ— IT WAYใ€ใจใ„ใ†ๅ…จ็คพใƒปใ‚ฐใƒซใƒผใƒ—ๆจชๆ–ญใฎITๆˆฆ็•ฅใ‚’ๆŽฒใ’ใ€ใ‚ฌใƒใƒŠใƒณใ‚นใจใ‚ทใƒŠใ‚ธใƒผใ‚’่ปธใซใ€็ต„็น”ใƒปไบบๆใƒปไบˆ็ฎ—ใฎๆœ€้ฉๅŒ–ใ‚’้€ฒใ‚ใฆใใพใ—ใŸใ€‚ๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ้ƒจ้–€ใฏใ€ใƒฆใƒผใ‚ถใƒผใซๅฏ„ใ‚Šๆทปใ„ใชใŒใ‚‰ใ‚‚ใ€ๆ ธใจใชใ‚‹ๆฉŸ่ƒฝใ‚’้›†็ด„ใ—ใ€ๅ…จไฝ“ๆœ€้ฉใ‚’็›ฎๆŒ‡ใ™ไฝ“ๅˆถใธใจ้€ฒๅŒ–ใ—ใฆใ„ใพใ™ใ€‚

ERPๅฐŽๅ…ฅใ€้›†ไธญ่ณผ่ฒทใ€ใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใฎ็ตฑๅˆใ€ใใ—ใฆใƒฌใ‚ฌใ‚ทใƒผใ‚ทใ‚นใƒ†ใƒ ใฎใƒขใƒ€ใƒŠใ‚คใ‚ผใƒผใ‚ทใƒงใƒณโ”€โ”€ใ“ใ‚Œใ‚‰ใฎๆ–ฝ็ญ–ใฏใ€ๅ˜ใชใ‚‹ๆŠ€่ก“ๆ›ดๆ–ฐใงใฏใชใใ€็ตŒๅ–ถใฎๆ„ๆ€ใจ็พๅ ดใฎๅฎŸ่กŒๅŠ›ใ‚’ใคใชใไป•็ต„ใฟใจใ—ใฆ่จญ่จˆใ•ใ‚Œใฆใ„ใพใ™ใ€‚้Žๅบฆใชๅˆทๆ–ฐใงใฏใชใใ€ๅฟ…่ฆใช้ƒจๅˆ†ใ‚’่ฆ‹ๆฅตใ‚ใฆ้ฉๅˆ‡ใซ้ธใณใ€ๅค‰ใˆใ‚‹ใ€‚ใใ‚ŒใŒใ€็งใŸใกใฎใƒขใƒ€ใƒŠใ‚คใ‚ผใƒผใ‚ทใƒงใƒณใฎๅŸบๆœฌๅงฟๅ‹ขใงใ™ใ€‚

ใ“ใฎใ‚ˆใ†ใช่ฒฌไปปใฎ้‡ใ•ใฏใ€ๅŒๆ™‚ใซๅคงใใชใƒขใƒใƒ™ใƒผใ‚ทใƒงใƒณใจใ‚„ใ‚ŠใŒใ„ใซใ‚‚ใคใชใŒใฃใฆใ„ใพใ™ใ€‚ITใŒ็ตŒๅ–ถใฎไธ€็ฟผใ‚’ๆ‹…ใ†ๆ™‚ไปฃใซใŠใ„ใฆใ€CIOใฏๅ˜ใชใ‚‹ๆŠ€่ก“็ตฑๆ‹ฌ่€…ใงใฏใชใใ€็ตŒๅ–ถ่€…ใจใ—ใฆใฎ่ฆ–ๅบงใ‚’ๆŒใกใ€ๅ…จไฝ“ใ‚’ๅฎŒ็ตใ•ใ›ใ‚‹ๅญ˜ๅœจใงใ‚ใ‚‹ในใใ ใจใ€็งใฏๅผทใๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚

ใ‚ฐใƒญใƒผใƒใƒซใ‚’็Ÿฅใ‚Šใ€ๆ—ฅๆœฌใ‚’็Ÿฅใ‚‹๏ผšCIOใŒ่ชžใ‚‹ใ€Œๆœฌ่ณช็š„ใชใƒชใƒผใƒ€ใƒผๅƒใ€

37ๅนดใซใ‚ใŸใ‚‹ใƒ“ใ‚ธใƒใ‚นไบบ็”Ÿใฎไธญใงใ€็งใŒๆœ€ใ‚‚ๅผทใๆ„Ÿใ˜ใฆใ„ใ‚‹ใฎใฏใ€ใ€Œไบบใ‚’ใฉใ†ๅ‹•ใ‹ใ™ใ‹ใ€ใจใ„ใ†ใ“ใจใฎ้‡่ฆๆ€งใงใ™ใ€‚ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใ€้ƒจไธ‹ใ€ๅŒๅƒšใ€้–ขไฟ‚่€…ใ€ใใ—ใฆไธŠๅธโ”€โ”€ใ‚ใ‚‰ใ‚†ใ‚‹ไบบใจใฎ้–ขไฟ‚ใฎไธญใงใ€ๆœ€ใ‚‚้›ฃใ—ใใ€ๆœ€ใ‚‚ไพกๅ€คใŒใ‚ใ‚‹ใฎใฏใ€ใ€Œ็ตŒๅ–ถใ‚’ใฉใ†ๅ‹•ใ‹ใ™ใ‹ใ€ใจใ„ใ†ใ“ใจใงใ™ใ€‚

ใใฎใŸใ‚ใซใฏใพใšใ€่‡ชๅˆ†่‡ช่บซใŒไฝ•ใ‚’ใ—ใŸใ„ใฎใ‹ใ€ไฝ•ใ‚’ไผใˆใŸใ„ใฎใ‹ใจใ„ใ†่ปธใ‚’ๆŒใคใ“ใจใŒไธๅฏๆฌ ใงใ™ใ€‚่ปธใŒใถใ‚Œใฆใ—ใพใˆใฐใ€ไบบใฏใคใ„ใฆใใพใ›ใ‚“ใ€‚ใใ—ใฆใ€ใใฎ่ปธใ‚’่จ€่ชžๅŒ–ใ™ใ‚‹ๅŠ›ใŒๅฟ…่ฆใงใ™ใ€‚่จ€่‘‰ใซใ—ใชใ‘ใ‚Œใฐใ€ๆ€ใ„ใฏไผใ‚ใ‚Šใพใ›ใ‚“ใ€‚

่จ€่‘‰ใŒไผใ‚ใ‚‹ใŸใ‚ใซใฏใ€ไฟก้ ผ้–ขไฟ‚ใŒๅ‰ๆใจใชใ‚Šใพใ™ใ€‚ไฟก้ ผใŒใ‚ใ‚Œใฐใ€็›ธๆ‰‹ใฏๅ…ฑๆ„Ÿใ—ใ€่กŒๅ‹•ๅค‰ๅฎนใŒ่ตทใ“ใ‚Šใพใ™ใ€‚ใ“ใฎไธ€้€ฃใฎใƒ—ใƒญใ‚ปใ‚นโ”€โ”€่ปธใ‚’ๆŒใกใ€่จ€่ชžๅŒ–ใ—ใ€ไฟก้ ผใ‚’็ฏ‰ใใ€ๅ…ฑๆ„Ÿใ‚’ๅพ—ใฆใ€่กŒๅ‹•ใ‚’ไฟƒใ™โ”€โ”€ใ“ใ‚Œใ‚’ใ„ใ‹ใซ็พŽใ—ใๅ›žใ™ใ‹ใŒใ€ใƒชใƒผใƒ€ใƒผใจใ—ใฆใฎๆœ€ๅคงใฎ่ชฒ้กŒใ ใจๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚

ใใฎใŸใ‚ใซใฏใ€่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใจใฏใ€ๅ“ฒๅญฆ็š„ใงใ‚ใ‚Šใ€็ฐกๅ˜ใงใฏใ‚ใ‚Šใพใ›ใ‚“ใ€‚ใ—ใ‹ใ—ใ€ใ€Œๆตทๅค–ใ‚’็Ÿฅใ‚‹ใ“ใจใงๆ—ฅๆœฌใ‚’็Ÿฅใ‚Šใ€ๆ—ฅๆœฌใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ช็คพใ‚’็Ÿฅใ‚Šใ€่‡ช็คพใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใ€โ”€โ”€ใ“ใฎๅพช็’ฐใŒใ€ใƒชใƒผใƒ€ใƒผใจใ—ใฆใฎ่ฆ–ๅบงใ‚’้ซ˜ใ‚ใฆใใ‚Œใพใ™ใ€‚

ใพใŸใ€ๆ—ฅๆœฌใฎITๆฅญ็•Œใฎๆง‹้€ ็š„ใช็‰นๅพดใจใ—ใฆใ€SEใฎ็ด„7ๅ‰ฒใŒๅค–้ƒจใƒ‘ใƒผใƒˆใƒŠใƒผใซๆ‰€ๅฑžใ—ใฆใ„ใ‚‹ใจใ„ใ†็พๅฎŸใŒใ‚ใ‚Šใพใ™ใ€‚ๅ†…่ฃฝๅŒ–ใŒๅซใฐใ‚Œใ‚‹ไธญใงใ€้™็•Œใ‚‚ใ‚ใ‚‹ใ€‚ใ ใ‹ใ‚‰ใ“ใใ€ใƒ™ใƒณใƒ€ใƒผใ‚„ใ‚ณใƒณใ‚ตใƒซใ‚ฟใƒณใƒˆใจใ€Œๆˆฆๅ‹ใ€ใจใ—ใฆๅ…ฑใซๆˆฆใ†้–ขไฟ‚ๆ€งใ‚’็ฏ‰ใใ“ใจใŒๅฟ…่ฆใงใ™ใ€‚

็™บๆณจ่€…ใจใ—ใฆๆŒ‡็คบใ™ใ‚‹ใ ใ‘ใงใฏใชใใ€่ฌ™่™šใซๅญฆใณๅˆใ„ใ€็Ÿฅๆตใ‚’ๅ‡บใ—ๅˆใ†้–ขไฟ‚ๆ€งใ‚’็ฏ‰ใใ“ใจใ€‚ใใ‚ŒใŒใ€ใ“ใ‚Œใ‹ใ‚‰ใฎITใƒปDXใฎไธ–็•Œใงใ€็œŸใซไพกๅ€คใ‚ใ‚‹ๆˆๆžœใ‚’็”Ÿใฟๅ‡บใ™ใŸใ‚ใฎ้ตใ ใจ่€ƒใˆใฆใ„ใพใ™ใ€‚

ITใฏไบบใ‚’ๅนธใ›ใซใ™ใ‚‹ใŸใ‚ใซใ‚ใ‚‹๏ผšCIOใŒ่ฆ‹ใคใ‘ใŸใ€Œไบบ้–“ไธญๅฟƒใ€ใฎ็ตŒๅ–ถๅ“ฒๅญฆ

ๅ€‹ไบบ็š„ใชใƒขใƒƒใƒˆใƒผใจใ—ใฆใ€21ไธ–็ด€ใฎไบบ้กžใŒ็ตถๅฏพใซๅคงไบ‹ใซใ—ใชใ„ใจใ„ใ‘ใชใ„ใจๆ€ใ†2ใคใฎใ‚ญใƒผใƒฏใƒผใƒ‰ใŒใ‚ใ‚Šใพใ™ใ€‚

ใ€Œใ‚ขใ‚ฆใ‚งใ‚ขใƒใ‚น๏ผˆๆฐ—ใฅใใƒปๆ„่ญ˜๏ผ‰ใ€ใจใ€Œใ‚ณใƒณใƒ‘ใƒƒใ‚ทใƒงใƒณ๏ผˆๅˆฉไป–ใƒปๆ€ใ„ใ‚„ใ‚Š๏ผ‰ใ€ใงใ™ใ€‚

ไบบ้กžใŒใ“ใ‚Œใ‹ใ‚‰ใฎๆ™‚ไปฃใซใŠใ„ใฆๅคงๅˆ‡ใซใ™ในใไพกๅ€ค่ฆณใจใ—ใฆใ€็งใฏใ€Œใ‚ขใ‚ฆใ‚งใ‚ขใƒใ‚นใ€ใจใ€Œใ‚ณใƒณใƒ‘ใƒƒใ‚ทใƒงใƒณใ€ใฎ2ใคใ‚’ๅผทใๆ„่ญ˜ใ—ใฆใ„ใพใ™ใ€‚

ใ“ใฎ่€ƒใˆๆ–นใฏใ€็งใŒไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใซCIOใจใ—ใฆ่ฟŽใˆใ‚‰ใ‚ŒใŸ้š›ใ€ไผš็คพใซๅฏพใ—ใฆๆžœใŸใ™ในใ่ฒฌๅ‹™ใจใ€ๆ—ฅๆœฌใฎ่ฃฝ้€ ๆฅญๅ…จไฝ“ใ‚’ๅผทใใ—ใŸใ„ใจใ„ใ†ๆƒณใ„ใฎไธก้ขใซใŠใ„ใฆใ€ๅธธใซ่ปธใจใชใฃใฆใใพใ—ใŸใ€‚

ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใงใฏใ€Œไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใ‚ฐใƒซใƒผใƒ— IT Wayใ€ใจใ„ใ†ๆŒ‡้‡ใ‚’็ขบ็ซ‹ใ—ใ€ใ“ใ‚Œใ‚’ๅŸบ็›คใซITๆ–ฝ็ญ–ใ‚’ๆŽจ้€ฒใ—ใฆใ„ใพใ™ใ€‚

็พๅœจใ€็”ŸๆˆAIใฏ้ฟใ‘ใฆ้€šใ‚Œใชใ„ใƒ†ใƒผใƒžใจใชใฃใฆใŠใ‚Šใ€ใ„ใ‹ใซไบบใŒใใ‚Œใ‚’ไฝฟใ„ใ“ใชใ™ใ‹ใŒๅ•ใ‚ใ‚Œใฆใ„ใพใ™ใ€‚้‡่ฆใชใฎใฏใ€็”ŸๆˆAIใŒไฝ•ใ‹ใ‚’็”Ÿใฟๅ‡บใ™ใฎใงใฏใชใใ€ใ€ŒไบบใŒ็”ŸๆˆAIใ‚’ไฝฟใฃใฆไฝ•ใ‹ใ‚’็”Ÿใฟๅ‡บใ™ใ€ใจใ„ใ†้–ขไฟ‚ๆ€งใงใ™ใ€‚

็”ŸๆˆAIใฏใ‚ใใพใงITใƒ„ใƒผใƒซใฎไธ€ใคใงใ‚ใ‚Šใ€ไฝฟใ†ไธปไฝ“ใฏไบบ้–“ใงใ™ใ€‚็งใฏๅธธใซใ€Œไบบใ‚’ไธญๅฟƒใซใ™ใ‚‹ใ€ใจใ„ใ†่€ƒใˆๆ–นใ‚’็คพๅ†…ๅค–ใซไผใˆ็ถšใ‘ใฆใŠใ‚Šใ€ใ“ใฎๆ€ๆƒณใ‚’ใ‚‚ใจใซๆง˜ใ€…ใชๆ–ฝ็ญ–ใ‚’ๅฑ•้–‹ใ—ใฆใ„ใพใ™ใ€‚

ๆ—ฅๆœฌใฎ่ฃฝ้€ ๆฅญใ‚’ๅผทใใ™ใ‚‹ใซใฏใ€ไผๆฅญใฎๆž ใ‚’่ถ…ใˆใŸ้€ฃๆบใจๅฏพ่ฉฑใŒไธๅฏๆฌ ใงใ™ใ€‚็งใฏ่ปข่ทๅ‰ใ‹ใ‚‰็พๅœจใพใงใฎ็ด„5ๅนด้–“ใงใ€็ด„70็คพใƒป6,000ไบบไปฅไธŠใฎๆ–นใ€…ใจๅ‹‰ๅผทไผšใ‚„่ฌ›ๆผ”ไผšใ‚’้€šใ˜ใฆๅฏพ่ฉฑใ‚’้‡ใญใฆใใพใ—ใŸใ€‚

ใใฎไธญใงใ€่‡ชๅˆ†ใฎ่€ƒใˆใซๅ…ฑๆ„Ÿใ—ใฆใใ ใ•ใ‚‹ๆ–นใ€…ใจใฎๅ‡บไผšใ„ใŒใ‚ใ‚Šใ€ใใ“ใ‹ใ‚‰ๅพ—ใ‚‰ใ‚Œใ‚‹ๅญฆใณใซใ‚ˆใฃใฆใ€็ง่‡ช่บซใ‚‚ๆˆ้•ทใ—ใฆใ„ใ‚‹ใจๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚ใ“ใ†ใ—ใŸ็Ÿฅใฎ้›†็ฉใŒใ€ๆ–ฐใ—ใ„ๆ–ฝ็ญ–ใ‚„ๅ–ใ‚Š็ต„ใฟใ‚’็”Ÿใฟๅ‡บใ™ๅŽŸๅ‹•ๅŠ›ใซใชใ‚‹ใจไฟกใ˜ใฆใ„ใพใ™ใ€‚

็งใŒ็š†ใ•ใ‚“ใซๆœ€ใ‚‚ไผใˆใŸใ„ใƒกใƒƒใ‚ปใƒผใ‚ธใฏใ€ใ€Œใ™ในใฆใฎใƒ†ใ‚ฏใƒŽใƒญใ‚ธใƒผใฏไบบใ‚’ๅนธใ›ใซใ™ใ‚‹ใ‚‚ใฎใงใชใ‘ใ‚Œใฐใชใ‚‰ใชใ„ใ€ใจใ„ใ†ใ“ใจใงใ™ใ€‚100ๅนดๅพŒใ€200ๅนดๅพŒใฎๆœชๆฅใซใŠใ„ใฆใ€็งใŸใกใฎๅญๅญซใŒใ€Œใ‚ใฎๆ™‚ไปฃใ‹ใ‚‰ไฝ•ใ‹ใŒๅค‰ใ‚ใฃใŸใ€ใจ่ช่ญ˜ใ™ใ‚‹ใจใ™ใ‚Œใฐใ€ใใ‚Œใฏใ‚คใƒณใ‚ฟใƒผใƒใƒƒใƒˆใฎใ‚ˆใ†ใชๅคงใใชๅค‰้ฉใงใ‚ใ‚Šใ€ไปŠใพใ•ใซ้€ฒ่กŒใ—ใฆใ„ใ‚‹็”ŸๆˆAIใ‚‚ใใฎไธ€ใคใงใ™ใ€‚

ใใ—ใฆใ‚‚ใ†ไธ€ใคใ€็งใŸใกใŒไปŠใƒใƒฃใƒฌใƒณใ‚ธใ™ในใใ“ใจใฏใ€ใ€Œๅœฐ็ƒ็’ฐๅขƒใ‚’ๅฎˆใ‚ŠใชใŒใ‚‰ใƒ“ใ‚ธใƒใ‚นใŒใงใใ‚‹ใ‚ˆใ†ใซใชใฃใŸใ€ใจๆœชๆฅใซ่ชžใ‚‰ใ‚Œใ‚‹ใ“ใจใงใ™ใ€‚ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฏ่ณ‡ๆบๅพช็’ฐใ‚’ๆŽจ้€ฒใ™ใ‚‹ไผๆฅญใงใ‚ใ‚Šใ€ใใฎๅงฟๅ‹ขใฏใพใ•ใซใ“ใฎๆœชๆฅๅƒใ‚’ๅ…ท็พๅŒ–ใ—ใ‚ˆใ†ใจใ—ใฆใ„ใพใ™ใ€‚

ใƒ“ใ‚ธใƒใ‚นใฎไธ–็•Œใงใฏใ€Œ็”˜ใ„ใ“ใจใ‚’่จ€ใฃใฆใฏใ„ใ‘ใชใ„ใ€ใจใ•ใ‚ŒใŒใกใงใ™ใŒใ€ๅœฐ็ƒ็’ฐๅขƒใ‚’ๅฎˆใ‚‹ใจใ„ใ†่ฆ–็‚นใซใŠใ„ใฆใฏใ€ใ‚ณใƒณใƒ‘ใƒƒใ‚ทใƒงใƒณ๏ผˆๅˆฉไป–ใƒปๆ€ใ„ใ‚„ใ‚Š๏ผ‰ใŒไธๅฏๆฌ ใงใ™ใ€‚ใ“ใ‚Œใฏไบบ้กžๅ…จไฝ“ใŒใ‚‚ใฃใจๆ„่ญ˜ใ™ในใใ‚ญใƒผใƒฏใƒผใƒ‰ใ ใจ่€ƒใˆใฆใ„ใพใ™ใ€‚

CIOใซใฏๅฐ‚้–€้ ˜ๅŸŸใซๅผทใ„ๆ–นใŒๅคšใใ€็ตŒๅ–ถๅฑคใจๅŒ็ญ‰ใฎใƒฌใƒ™ใƒซใง่ญฐ่ซ–ใงใใ‚‹ใ“ใจใŒๆฑ‚ใ‚ใ‚‰ใ‚Œใพใ™ใ€‚

ใ—ใ‹ใ—ใ€ITใฎ้ ˜ๅŸŸใ ใ‘ใงใฏ่ถณใ‚Šใพใ›ใ‚“ใ€‚ๆตทๅค–ใฎ็Ÿฅ่ฆ‹ใ€ๆฅญ็•Œใฎๅ‹•ๅ‘ใ€ใใ—ใฆใƒชใƒ™ใƒฉใƒซใ‚ขใƒผใƒ„ใชใฉใ€ITไปฅๅค–ใฎๅˆ†้‡Žใซใ‚‚็›ฎใ‚’ๅ‘ใ‘ใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚ใใ‚Œใžใ‚Œใฎไผๆฅญใ‚„ๆฅญ็จฎใซใ‚ˆใฃใฆ็Šถๆณใฏ็•ฐใชใ‚Šใพใ™ใŒใ€ITใ ใ‘ใ‚’่€ƒใˆใฆใ„ใฆใฏๆœฌ่ณช็š„ใช่ชฒ้กŒ่งฃๆฑบใซใฏ่‡ณใ‚Šใพใ›ใ‚“ใ€‚ใ ใ‹ใ‚‰ใ“ใใ€่‡ชๅˆ†ใฎๅพ—ๆ„้ ˜ๅŸŸใ‚’ๆดปใ‹ใ—ใชใŒใ‚‰ใ€่ค‡ๅˆ็š„ใซๅ–ใ‚Š็ต„ใ‚€ใ“ใจใŒใ€ใ“ใ‚Œใ‹ใ‚‰ใฎCIOใซๆฑ‚ใ‚ใ‚‰ใ‚Œใ‚‹ๅงฟๅ‹ขใ ใจ็งใฏ่€ƒใˆใฆใ„ใพใ™ใ€‚

Guitar amp sims have gotten astonishingly good

3 December 2025 at 07:15

Itโ€™s an incredible time to be a guitarist who doesnโ€™t want to own a bunch of $2,000 amps and an expensive pedalboard of gear. Amp and pedal simulators, which have been around for decades, have in the last few years finally come into their own as nearly indistinguishable sonic replacements. Even John Mayer is now willing to ditch his beloved tube amps for digital models.

I certainly donโ€™t have Mayerโ€™s chops or gear budget, but I do love messing with this sort of tech and have purchased everything from NeuralDSPโ€˜s Archetypes series to Amplitube and Guitar Rig. Last week, as part of an early Black Friday sale, I picked up two amp/effects suites from British developer Polychrome DSPโ€”Nunchuck (Marshall amps) and Lumos (clean through mid-gain tones). They are both excellent.

Any reasonable person should be satisfied with this tech stack, which models gear that collectively costs as much as my house. After my Polychrome DSP purchases, I reminded myself that I am a reasonable person, and that I could therefore ignore any further amp sims that might tempt my wandering eye.

Read full article

Comments

Agentic AIโ€™s rise is making the enterprise architect role more fluid

3 December 2025 at 05:00

In a previous feature about enterprise architects, gen AI had emerged, but its impact on enterprise technology hadnโ€™t been felt. Today, gen AI has spawned a plethora of agentic AI solutions from the major SaaS providers, and enterprise architecture and the role of enterprise architect is being redrawn. So what do CIOs and their architects need to know?

Organizations, especially their CEOs, have been vocal of the need for AI to improve productivity and bring back growth, and analysts have backed the trend. Gartner, for example, forecasts that 75% of IT work will be completed by human employees using AI over the next five years, which will demand, it says, a proactive approach to identifying new value-creating IT work, like expanding into new markets, creating additional products and services, or adding features that boost margins.

If this radical change in productivity takes place, organizations will need a new plan for business processes and the tech that operates those processes. Recent history shows if organizations donโ€™t adopt new operating models, the benefits of tech investments canโ€™t be achieved.

As a result of agentic AI, processes will change, as well as the software used by the enterprise, and the development and implementation of the technology. Enterprise architects, therefore, are at the forefront of planning and changing the way software is developed, customized, and implemented.

In some quarters of the tech industry, gen AI is seen as a radical change to enterprise software, and to its large, well-known vendors. โ€œTo say AI unleashed will destroy the software industry is absurd, as it would require an AI perfection that even the most optimistic couldnโ€™t agree to,โ€ says Diego Lo Giudice, principal analyst at Forrester. Speaking at the One Conference in the fall, Lo Giudice reminded 4,000 business technology leaders that change is taking place, but itโ€™s built on the foundations of recent successes.

โ€œAgile has given better alignment, and DevOps has torn down the wall between developers and operations,โ€ he said. โ€œTheyโ€™re all trying to do the same thing, reduce the gap between an idea and implementation.โ€ Heโ€™s not denying AI will change the development of enterprise software, but like Agile and DevOps, AI will improve the lifecycle of software development and, therefore, the enterprise architecture. The difference is the speed of change. โ€œIn the history of development, thereโ€™s never been anything like this,โ€ adds Phil Whittaker, AI staff engineer at content management software provider Umbraco.

Complexity and process change

As the software development and customization cycle changes, and agentic applications become commonplace, enterprise architects will need to plan for increased complexity and new business processes. Existing business processes canโ€™t continue if agentic AI is taking on tasks currently done manually by staff.

Again, Lo Giudice adds some levity to a debate that can often become heated, especially in the wake of major redundancies by AI leaders such as AWS. โ€œThe view that everyone will get a bot that helps them do their job is naรฏve,โ€ he said at the One Conference. โ€œOrganizations will need to carry out a thorough analysis of roles and business processes to ensure they spend money and resources on deploying the right agents to the right tasks. Failure to do so will lead to agentic technology being deployed thatโ€™s not needed, canโ€™t cope with complex tasks, and increases the cloud costs of the business.

โ€œItโ€™s easy to build an agent that has access to really important information,โ€ says Tiago Azevedo, CIO for AI-powered low-code platform provider OutSystems. โ€œYou need segregation of data. When you publish an agent, you need to be able to control it, and thereโ€™ll be many agents, so costs will grow.โ€

The big difference, though, is deterministic and non-deterministic, says Whittaker. So non-deterministic requires guardrails of deterministic agents that produce the same output every time over the more random outcomes of non-deterministic agents. Defining business outcomes by deterministic and non-deterministic is a clear role for enterprise architecture. He adds that this is where AI can help organizations fill in gaps. Whittaker, whoโ€™s been an enterprise architect, says itโ€™ll be vital for organizations to experiment with AI to see how it can benefit their architecture and, ultimately, business outcomes.

โ€œThe path to greatness lies not in chasing hype or dismissing AIโ€™s potential, but in finding the golden middle ground where value is truly captured,โ€ write Gartner analysts Daryl Plummer and Alicia Mullery. โ€œAIโ€™s promise is undeniable, but realizing its full value is far from guaranteed. Our research reveals the sobering odds that only one in five AI initiatives achieve ROI, and just one in 50 deliver true transformation.โ€ Further research also finds just 32% of employees trust the organizationโ€™s leadership to drive transformation. โ€œAgents bring an additional component of complexity to architecture that makes the role so relevant,โ€ Azevedo adds.

In the past, enterprise architects were focused on frameworks. Whittaker points out that new technology models will need to be understood and deployed by architects to manage an enterprise that comprises employees, applications, databases, and agentic AI. He cites MCP as one as it provides a standard way to connect AI models to data sources, and simplifies the current tangle of bespoke integrations and RAG implementations. AI will also help architects with this new complexity. โ€œThere are tools for planning, requirements, creating epics, user stories, code generation, documenting code, and translating it,โ€ added Lo Giudice.

New responsibilities

Agentic AI is now a core feature of every major EA tool, says Stรฉphane Vanrechem, senior analyst at Forrester. โ€œThese agents automate data validation, capability mapping, and artifact creation, freeing architects to focus on strategy and transformation.โ€ He cites the technology of Celonis, SAP Signavio, and ServiceNow for their agentic integrations. Whittaker adds that the enterprise architect has become an important human in the loop to protect the organization and be responsible for the decisions and outcomes that agentic AI delivers.

Although some enterprise architects will see this as a collapse of their specialization, Whittaker thinks it broadens the scope of the role and makes them more T-shaped. โ€œI can go deep in different areas,โ€ he says. โ€œPigeon-holing people is never a great thing to do.โ€

Traditionally, architecture has suggested that something is planned, built, and then exists. The rise of agentic AI in the enterprise means the role of the enterprise architect is becoming more fluid as they continue to design and oversee construction. But the role will also involve continual monitoring and adjustment to the plan. Some call this orchestration, or perhaps itโ€™s akin to map reading. An enterprise architect may plan a route, but other factors will alter the course. And just like weather or a fallen tree, which can lead to a route deviation, so too will enterprise architects plan and then lead when business conditions change.

Again, this new way of being an enterprise architect will be impacted by technology. Lo Guidice believes thereโ€™ll be increased automation, and Azevedo sides with the orchestration view, saying agents are built and a catalogue of them is created across the organization, which is an opportunity for enterprise architects and CIOs to be orchestrators.

Whatever the job title, Whittaker says enterprise architecture is more important than ever. โ€œMore people will become enterprise architects as more software is written by AI,โ€ he says. โ€œThen itโ€™s an architectural role to coordinate and conduct the agents in front of you.โ€ He argues that as technologists allow agents and AI to do the development work for them, the responsibility of architecting how agents and processes function broadens and becomes the responsibility of many more technologists.

โ€œAI can create code for you, but itโ€™s your responsibility to make sure itโ€™s secure,โ€ he adds. Rather than developing the code, technology teams will become architecture teams, checking and accepting the technology that AI has developed, and then managing its deployment into the business processes.

With shadow AI already embedded in organizations, Whittakerโ€™s view shows the need for a team of enterprise architects that can help business align with the AI agents theyโ€™ve deployed, and at the same time protect customer data and cybersecurity posture.

AI agents are redrawing the enterprise, and at the same time replanning the role of enterprise architects.

โ€œ๋ฐ”์ด๋ธŒ ๋Ÿฌ๋‹๊ณผ AI ๋ฆฌ๋”์‹ญโ€ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ž„์›์ด ๋˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๊ฒƒ

3 December 2025 at 00:24

์—ฌ๋Ÿฌ ๋””์ง€ํ„ธ ์ „ํ™˜ ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋Œ๊ณ  ์žฌ๋ฌด ์„ฑ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด๋ƒˆ๋‹ค. ๊ฒฝ์˜์ง„์€ ๊ณ ๊ฐ๊ณผ ์ง์› ๊ฒฝํ—˜์„ ๋ชจ๋‘ ๊ฐœ์„ ํ•œ ๋ณ€ํ™” ๋ฆฌ๋”์‹ญ ์—ญ๋Ÿ‰์„ ๋†’๊ฒŒ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ฃผ๋„์ ์œผ๋กœ ๊ตฌํ˜„ํ•œ ์•„ํ‚คํ…์ฒ˜๋Š” ์ด์ œ ํ”Œ๋žซํผ ํ‘œ์ค€์ด ๋๊ณ , ์กฐ์ง์˜ ๋ฐ์ดํ„ฐ์™€ AI ์ „๋žต์„ ๋– ๋ฐ›์น˜๋Š” ๊ธฐ๋ฐ˜์ด ๋๋‹ค.

์ด ๋‹จ๊ณ„์—์„œ ๋งŽ์€ IT ์ฑ…์ž„์ž๊ฐ€ ์ด์ œ CIO๋‚˜ ๋ฐ์ดํ„ฐ, ๋””์ง€ํ„ธ, ๋ณด์•ˆ ๋ถ„์•ผ์˜ ๋‹ค๋ฅธ C ๋ ˆ๋ฒจ ์ž๋ฆฌ์— ๋„์ „ํ•  ์ž๊ฒฉ์ด ์žˆ๋Š”์ง€ ์ž๋ฌธํ•œ๋‹ค.

CIO.com์˜ ์—ฐ๋ก€ CIO ํ˜„ํ™ฉ(State of the CIO) ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, CIO์˜ 80% ์ด์ƒ์ด ์—ญํ• ์ด ์ ์  ๋” ๋””์ง€ํ„ธ๊ณผ ํ˜์‹  ์ค‘์‹ฌ์œผ๋กœ ๋ฐ”๋€Œ๊ณ  ์žˆ๊ณ  ๋””์ง€ํ„ธ ์ „ํ™˜์„ ์ด๋„๋Š” ๋ฐ ๋” ๊นŠ์ด ๊ด€์—ฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, CIO๊ฐ€ ๋ณ€ํ™”์˜ ์ด‰๋งค ์—ญํ• ์„ ๋งก๊ณ  ์žˆ๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค. ์ด ์กฐ๊ฑด์„ ์ถฉ์กฑํ•˜๊ณ  ์žˆ๋‹ค๋ฉด, C ๋ ˆ๋ฒจ ์ž๋ฆฌ์— ์–ด๋–ป๊ฒŒ ์˜ฌ๋ผ์„ค ์ˆ˜ ์žˆ์„์ง€ ๊ณ ๋ฏผํ•ด์•ผ ํ•œ๋‹ค.

๋””์ง€ํ„ธ ํ˜์‹  ์ฑ…์ž„์ž๋Š” ํ›Œ๋ฅญํ•œ C ๋ ˆ๋ฒจ ํ›„๋ณด

๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜ ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋„๋Š” ๊ฒฝํ—˜์€ C ๋ ˆ๋ฒจ ์ž๋ฆฌ์— ์˜ค๋ฅด๊ธฐ ์œ„ํ•œ ์ค‘์š”ํ•œ ์ „์ œ ์กฐ๊ฑด์ด๋‹ค. ํ•˜์ง€๋งŒ C ๋ ˆ๋ฒจ ์ž„์›์ด ๋˜๋ฉด, ๋ชจ๋“  IT ํ”„๋กœ์ ํŠธ๋Š” ๋ฌผ๋ก , ์šด์˜ ์ „๋ฐ˜์˜ ์„ฑ๊ณผ์™€ ๋ฆฌ์Šคํฌ์— ๋Œ€ํ•ด ์ฑ…์ž„์„ ์ง€๋ฉด์„œ ์—ญํ• ๊ณผ ์ฑ…์ž„์ด ํฌ๊ฒŒ ํ™•๋Œ€๋œ๋‹ค. C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ž„์›์€ CEO์™€ CFO๊ฐ€ ๊ณต๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ์ „๋žต์„ ์ˆ˜๋ฆฝํ•ด์•ผ ํ•˜๊ณ , ๋Š์ž„์—†์ด ์ง„ํ™”ํ•˜๋Š” ๋””์ง€ํ„ธ ์šด์˜ ๋ชจ๋ธ์„ ์ด๊ด„ํ•ด์•ผ ํ•œ๋‹ค.

์›Œํฌ๋ฐ์ด(Workday)์˜ CIO ๋ผ๋‹ˆ ์กด์Šจ์€ โ€œ๋ฆฌ๋”๋กœ ์„ฑ์žฅํ•˜๊ณ ์ž ํ•˜๋Š” ๊ธฐ์ˆ  ์ฑ…์ž„์ž๋Š” ํ”„๋กœ์ ํŠธ ๊ธฐ๋ฐ˜ ๋ณ€ํ™” ์‹คํ–‰์„ ๊ด€๋ฆฌํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๊ธฐ์—… ์ „์ฒด์˜ ๊ธฐ์ˆ , ์•„ํ‚คํ…์ฒ˜, IT ์ „๋žต์— ๋Œ€ํ•ด ์™„์ „ํ•œ ์†Œ์œ ๊ถŒ๊ณผ ์ฑ…์ž„์„ ์ ธ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์กด์Šจ์€ โ€œIT ์ธํ”„๋ผ, ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ, AI ํ”Œ๋žซํผ, ํ•ต์‹ฌ ์‹œ์Šคํ…œ ์šด์˜, ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ณ  ์‹ค๋ฌด์ ์ธ ์ „๋ฌธ์„ฑ์„ ์Œ“์•„์•ผ ํ•œ๋‹ค. ๊ธฐ์ˆ  ์ „๋žต์„ ์•ˆ์ •์ ์œผ๋กœ ์šด์˜ํ•˜๋ฉด์„œ๋„ ์ง€์†์ ์ธ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋กœ ์—ฐ๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์—ญ๋Ÿ‰์„ ๋ณด์—ฌ์ค˜์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

C ๋ ˆ๋ฒจ ์—ญํ• ์„ ์ค€๋น„ํ•˜๋ ค๋Š” IT ๋ฆฌ๋”๋Š” ํ‰์ƒ ํ•™์Šต ํ”„๋กœ๊ทธ๋žจ์„ ์„ค๊ณ„ํ•ด ์ „๋ฌธ์„ฑ์„ ํ‚ค์šฐ๊ณ  ์ž์‹ ๊ฐ์„ ์Œ“์•„์•ผ ํ•œ๋‹ค. 70-20-10 ํ•™์Šต ๋ชจ๋ธ์€ ์—…๋ฌด ๊ฒฝํ—˜ 70%, ๋™๋ฃŒ์™€์˜ ์†Œ์…œ ๋Ÿฌ๋‹ 20%, ์ •๊ทœ ๊ต์œก 10%์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ๋””์ง€ํ„ธ ํ˜์‹ ์„ ์ด๋„๋Š” ๋ฆฌ๋”๋Š” ์ด ๋ชจ๋ธ์„ C ๋ ˆ๋ฒจ ๊ธฐํšŒ๋ฅผ ํ–ฅํ•œ ์—ฌ์ •์— ์–ด๋–ป๊ฒŒ ์ ์šฉํ•˜๋Š”์ง€ ์•Œ์•„๋ณด์ž.

์ „๋ฌธ๊ฐ€์—์„œ โ€˜๋น„์ „๋ฌธ ์˜์—ญโ€™์˜ ์ธํ”Œ๋ฃจ์–ธ์„œ๋กœ ์ „ํ™˜ํ•˜๋Š” ๊ฒฝํ—˜

๋งŽ์€ ๋””์ง€ํ„ธ ํ˜์‹  ๋ฆฌ๋”๊ฐ€ ์—ฌ๋Ÿฌ ํ•ด์— ๊ฑธ์นœ ์ „์‚ฌ ์ฐจ์›์˜ ์ „๋žต ํ”„๋กœ์ ํŠธ๊นŒ์ง€ ํฌํ•จํ•ด ์ž์‹ ์ด ๋งก์€ ํ”„๋กœ๊ทธ๋žจ ์ „๋ฐ˜์— ๋Œ€ํ•œ ์ „๋ฌธ์„ฑ์„ ํ™•๋ณดํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•œ๋‹ค. ์šฐ์„ ์ˆœ์œ„๋ฅผ ์กฐ์ •ํ•˜๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด ์• ์ž์ผ ํ”„๋กœ๊ทธ๋žจ์˜ ๋ชจ๋“  ์ƒํ™ฉ์„ ๋“ค์—ฌ๋‹ค๋ณด๋ ค๋Š” ๋ฆฌ๋”๋„ ๋งŽ๋‹ค.

ํ•˜์ง€๋งŒ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ฑ…์ž„์ž๋Š” ๋ชจ๋“  ์ „๋žต ํ”„๋กœ์ ํŠธ์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ๊นŒ์ง€ ๊ด€์—ฌํ•  ์‹œ๊ฐ„๋„ ์—†๊ณ , ๊ธฐ์ˆ  ๊ตฌํ˜„์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์— ๋Œ€ํ•ด ์ตœ๊ณ ์˜ ์ „๋ฌธ๊ฐ€๋„ ์•„๋‹ˆ๋‹ค. C ๋ ˆ๋ฒจ ์ž„์›์ด ๋˜๊ณ ์ž ํ•˜๋Š” IT ๋ฆฌ๋”๊ฐ€ ์ฑ„์›Œ์•ผ ํ•  70%์˜ ์—…๋ฌด ๊ฒฝํ—˜์€ ์ „๋ฌธ์„ฑ๊ณผ ์ฑ…์ž„ ๋ฒ”์œ„๋ฅผ ๋„˜์–ด์„œ๋Š” ์˜์—ญ์— ๊ณผ๊ฐํ•˜๊ฒŒ ๋ฐœ์„ ๋“ค์—ฌ๋†“๋Š” ๋ฐ์„œ ๋‚˜์˜จ๋‹ค.

ํ”„๋ฆฐ์‹œํŽ„(Principal)์˜ CIO ์บ์‹œ ์ผ€์ด๋Š” โ€œC ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ž„์› ์—ญํ• ๋กœ ์˜ฌ๋ผ์„œ๋Š” ๋ฐ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ชจ๋“  ๋‹ต์„ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ชจํ˜ธํ•จ๊ณผ ๋ณต์žก์„ฑ ์†์—์„œ ๋ฆฌ๋”์‹ญ์„ ๋ฐœํœ˜ํ•˜๋Š” ๋ฒ•์„ ๋ฐฐ์šฐ๋Š” ๊ฒƒ์ด๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์ผ€์ด๋Š” โ€œ๊ฐ€์žฅ ๊ฐ’์ง„ ์„ฑ์žฅ์€ ์ŠคํŠธ๋ ˆ์น˜ ๊ณผ์ œ๋ฅผ ๋งก๊ณ , ์ž„ํŒฉํŠธ๊ฐ€ ํฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ฉด์„œ, IT ์กฐ์ง ๋‚ด๋ถ€์—๋งŒ ๋จธ๋ฌผ์ง€ ์•Š๊ณ  ์ „์‚ฌ ์ฐจ์›์—์„œ ์˜ํ–ฅ๋ ฅ์„ ๋ฐœํœ˜ํ•˜๋Š” ๊ณผ์ •์„ ํ†ตํ•ด ์ด๋ค„์ง„๋‹ค. ์ด๋Ÿฐ ๊ฒฝํ—˜์ด ๊ฐ•๋ ฅํ•œ ๋ฉ˜ํ† ์™€ ๋™๋ฃŒ์˜ ์กฐ์–ธ๊ณผ ๊ฒฐํ•ฉ๋˜๋ฉด ์˜ค๋ž˜ ๊ฐ€๋Š” ๋ฆฌ๋”์‹ญ ๊ธฐ๋ฐ˜์ด ๋งŒ๋“ค์–ด์ง„๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋‹ค์Œ์€ ์—…๋ฌด ํ˜„์žฅ์—์„œ ์ฐพ์•„์•ผ ํ•  ๊ฒฝํ—˜์— ๋Œ€ํ•œ ๋ช‡ ๊ฐ€์ง€ ์กฐ์–ธ์ด๋‹ค.

  • ์˜์—… ๋ฐ ๋งˆ์ผ€ํŒ… ์ฑ…์ž„์ž์™€ ํ•จ๊ป˜ ๊ณ ๊ฐ์„ ๋ฐฉ๋ฌธํ•˜๊ณ  ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ๊ฐ์„ ๊ธฐ๋ฅด๊ณ  ๊ตฌ๋งค์ž์˜ ๋‹ˆ์ฆˆ๋ฅผ ์ดํ•ดํ•˜๊ณ , ๊ณ ๊ฐ์˜ ์—”๋“œ ํˆฌ ์—”๋“œ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์ง์ ‘ ๊ฒ€ํ† ํ•œ๋‹ค.
  • ๋‹ค๋ฅธ ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋„๋Š” ๋ฆฌ๋”๋ฅผ ๋ฉ˜ํ† ๋งํ•ด, ์ „๋ฌธ ์˜์—ญ ๋ฐ–์— ์žˆ๋Š” ์‚ฌ์•ˆ์— ๋Œ€ํ•ด์„œ๋„ ์กฐ์–ธ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ์ž์‹ ๊ฐ์„ ํ‚ค์šด๋‹ค.
  • ์›Œํฌ์ˆ์„ ์ง์ ‘ ์ฃผ๊ด€ํ•œ๋‹ค. ํŠนํžˆ ์ค‘๊ฐ„์— ๊ฐˆ๋“ฑ์ด๋‚˜ ๋…ผ์Ÿ์ด ํ„ฐ์ง€๋Š” ์ƒํ™ฉ์„ ์ž˜ ์ˆ˜์Šตํ•ด๋‚ธ๋‹ค๋ฉด, ๊ฒฝ์˜์ง„ ์œ„์›ํšŒ๋‚˜ ์ด์‚ฌํšŒ ์•ž์—์„œ ๋ฐœํ‘œํ•˜๋Š” ํ›Œ๋ฅญํ•œ ์‹ค์ „ ๊ฒฝํ—˜์„ ์Œ“์„ ์ˆ˜ ์žˆ๋‹ค.
  • ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ๋„์ž…์— ๋ถ€์ •์ ์ธ ๋ถ€์„œ ๋ฆฌ๋”๋ฅผ ์ฐพ์•„ ํ˜„ ์ƒํƒœ์— ์•ˆ์ฃผํ•˜๋Š” ์‚ฌ๊ณ ๋ฅผ ๊นจ๋œจ๋ฆด ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๋ชจ์ƒ‰ํ•œ๋‹ค.
  • ์˜์‚ฌ๊ฒฐ์ •์— ๋ฐ์ดํ„ฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ณ  ํšจ์œจ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ AI ๋„์ž…์—์„œ ๋’ค์ฒ˜์ง„ ์šด์˜ ์กฐ์ง์„ ๊ณจ๋ผ ํ˜‘๋ ฅํ•˜๋ฉด์„œ ๋ณ€ํ™”์˜ ์ด‰๋งค ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

๋‘ ๋ฒˆ์งธ๋กœ ํ‚ค์›Œ์•ผ ํ•  ์—ญ๋Ÿ‰์€ ๊ฒฝ์ฒญํ•˜๊ณ  ๋„์ „ํ•˜๊ณ  ์ ์‘ํ•˜๊ณ , ๋ฐฉํ–ฅ์„ ์ „ํ™˜ํ•˜๋Š” ๋Šฅ๋ ฅ์ด๋‹ค. ์„ฑ๊ณต์ ์ธ C ๋ ˆ๋ฒจ ๋ฆฌ๋”๋Š” ๋น„์ „์„ ์ œ์‹œํ•˜๊ณ  ์ง€์†์ ์œผ๋กœ ๊ณ„ํš์„ ์„ธ์›Œ์•ผ ํ•˜์ง€๋งŒ, ์‹œ์žฅ๊ณผ ๊ณ ๊ฐ, ํˆฌ์ž์ž, ์ดํ•ด๊ด€๊ณ„์ž์˜ ์š”๊ตฌ๊ฐ€ ๋ฐ”๋€Œ์–ด ๋ชฉํ‘œ๋ฅผ ์žฌ์กฐ์ •ํ•ด์•ผ ํ•  ๋•Œ๋ฅผ ๊ฐ์ง€ํ•  ์ค„๋„ ์•Œ์•„์•ผ ํ•œ๋‹ค.

๋ฉ”๊ฐ€ํฌํŠธ(Megaport)์˜ CTO ์นด๋ฉ”๋ก  ๋‹ค๋‹ˆ์—˜์€ โ€œ์ƒˆ๋กœ์šด ๊ธฐ์ˆ , ๋น„์ฆˆ๋‹ˆ์Šค ์šฐ์„ ์ˆœ์œ„ ๋ณ€ํ™”, ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๋ณ€์ˆ˜๋Š” ์ž˜ ์„ค๊ณ„๋œ ๊ณ„ํš๋„ ๋‹จ์ˆจ์— ๋ฌด๋ ฅํ™”ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋‹ค๋‹ˆ์—˜์€ โ€œ์„ฑ๊ณต์ ์ธ ๋ฆฌ๋”๋Š” ๋ณ€ํ™”๊ฐ€ ๋ฒŒ์–ด์กŒ์„ ๋•Œ ๊ทธ๋•Œ๊ทธ๋•Œ ๋Œ€์‘ํ•˜๋Š” ์ˆ˜์ค€์— ๋จธ๋ฌผ์ง€ ์•Š๋Š”๋‹ค. ๋ณ€ํ™”๋ฅผ ๋ฏธ๋ฆฌ ์˜ˆ์ธกํ•˜๊ณ , ์กฐ์ง์ด ๋ณ€ํ™”์— ๋Œ€๋น„ํ•ด ์ค€๋น„๋˜๊ณ  ๋ฌด์žฅ๋ผ ์žˆ๋„๋ก ๋งŒ๋“ ๋‹ค. CTO๋Š” ์ด๋Ÿฐ ์ ์‘๋ ฅ์˜ ์ด ์„ค๊ณ„์ž๋กœ์„œ, ์†”๋ฃจ์…˜์ด ํ˜์‹ ์˜ ์†๋„๋ฅผ ๋”ฐ๋ผ ๋ฐœ์ „ํ•˜๋ฉด์„œ๋„ ๋น„์ฆˆ๋‹ˆ์Šค ์˜ํ–ฅ๊ณผ ์ „๋žต์  ๋ชฉํ‘œ๋ฅผ ๊ณ„์† ๋‹ฌ์„ฑํ•˜๋„๋ก ์ฑ…์ž„์ ธ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

AI์™€ ์‹ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์†Œ์…œ ๋Ÿฌ๋‹์— ์ง‘์ค‘

์ƒ์„ฑํ˜• AI์™€ ์ธ๊ณต ์ผ๋ฐ˜ ์ง€๋Šฅ์ด ์–ธ์ œ ๋“ฑ์žฅํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ๊ณผ๋Œ€๊ด‘๊ณ ๊ฐ€ ๋„˜์ณ๋‚˜๋Š” ์ƒํ™ฉ์ด๋‹ค. ์ด์‚ฌํšŒ์™€ ๊ฒฝ์˜์ง„์€ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ๋ฆฌ๋”๊ฐ€ ์ด๋Ÿฐ ์†Œ์Œ์„ ๊ฑธ๋Ÿฌ๋‚ด๊ณ  AI ์ „๋žต์„ ์ด๋Œ๊ณ , ๋ฐ์ดํ„ฐ์™€ AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ํ™•๋ฆฝํ•ด ์ฃผ๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค.

๋ณด๋„์ž๋ฃŒ์™€ ์†Œ๊ทœ๋ชจ PoC๋งŒ์œผ๋กœ๋Š” ํ˜„์‹ค์ ์ธ AI ๋น„์ „๊ณผ ๋‹จ๊ธฐ์ ์ธ ํˆฌ์ž ์ˆ˜์ต์„ ๋งŒ๋“ค ์ˆ˜ ์—†๋‹ค. C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ๋ฆฌ๋”๋Š” ๋™๋ฃŒ์™€ ๋„คํŠธ์›Œํฌ๋ฅผ ๋„“ํžˆ๊ณ  ์ปค๋ฎค๋‹ˆํ‹ฐ์— ์ฐธ์—ฌํ•ด ๋‹ค๋ฅธ ์กฐ์ง์ด ์–ด๋””์— ํˆฌ์žํ•˜๊ณ  AI ๊ธฐ๋ฐ˜ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ๋ฅผ ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค๊ณ  ์žˆ๋Š”์ง€ ๋ฐฐ์šฐ๋ฉด์„œ ์ง€์‹์„ ํ™•์žฅํ•œ๋‹ค.

์ตœ๊ทผ ์—ด๋ฆฐ โ€˜์ปคํ”ผ ์œ„๋“œ ๋””์ง€ํ„ธ ํŠธ๋ ˆ์ผ๋ธ”๋ ˆ์ด์ €(Coffee With Digital Trailblazers)โ€™์—์„œ๋Š” ๋ณ€ํ™” ๋ฆฌ๋”๊ฐ€ C ๋ ˆ๋ฒจ ๋ฆฌ๋”์‹ญ์˜ ๋ฐ”ํ†ต์„ ์–ด๋–ป๊ฒŒ ์ด์–ด๋ฐ›์„ ์ˆ˜ ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์†Œ์…œ ๋Ÿฌ๋‹์„ ์‚ฌ๋‚ด์—์„œ ์–ด๋–ป๊ฒŒ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๋…ผ์˜ํ–ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, ์ปจํ‹ฐ๋‰ด์—„ ์ŠคํŠธ๋ž˜ํ‹ฐ์ง€(Continuums Strategies)์˜ ์„ค๋ฆฝ์ž์ด์ž vCISO์ธ ๋ฐ๋ฆญ ๋ฒ„์ธ ๋Š” AI ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ํƒ์ง€์™€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ AI ๊ธฐ๋ฐ˜ ์ž๋™ํ™” ๊ณต๊ฒฉ์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ํŒ€์— ํ•ฉ๋ฅ˜ํ•  ๊ฒƒ์„ ์ œ์•ˆํ–ˆ๋‹ค. ์„ฑ์žฅ ์ „๋žต๊ฐ€์ด์ž ํ”„๋ž™์…”๋„ CIO์ธ ์กฐ ํ‘ธ๊ธ€๋ฆฌ์‹œ๋Š” AI๋ฅผ ๊ธฐํšŒ๋กœ ์‚ผ๋Š” ์—ด์‡ ๋กœ ํ˜ธ๊ธฐ์‹ฌ๊ณผ ๋Š์ž„์—†๋Š” ์งˆ๋ฌธ์„ ๊ผฝ์•˜๋‹ค.

ํ‘ธ๊ธ€๋ฆฌ์‹œ๋Š” โ€œํ˜ธ๊ธฐ์‹ฌ์ด ์—†๊ณ  ์ผ์ด ์™œ ๊ทธ๋ ‡๊ฒŒ ์ง„ํ–‰๋˜๋Š”์ง€ ๋ฟŒ๋ฆฌ๊นŒ์ง€ ํŒŒ๊ณ ๋“ค์ง€ ์•Š์œผ๋ฉด, ๊ณ ๊ฐ ๋งŒ์กฑ๋„๋ฅผ ์ƒˆ๋กœ์šด ์ˆ˜์ค€์œผ๋กœ ๋Œ์–ด์˜ฌ๋ฆฌ๊ณ , ์ƒˆ๋กœ์šด ์ œํ’ˆ์„ ๋งŒ๋“ค๊ณ , ์ƒˆ๋กœ์šด ๋งค์ถœ์›์„ ์—ด๊ณ , ๋น„์šฉ์„ ์ค„์ด๋Š” ๋” ์ƒˆ๋กญ๊ณ , ๋” ๋น ๋ฅด๊ณ , ๋” ๋˜‘๋˜‘ํ•˜๊ณ , ๋” ์ €๋ ดํ•œ ๋ฐฉ๋ฒ•์„ ์ ˆ๋Œ€ ๋ฐœ๋ช…ํ•˜์ง€ ๋ชปํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์†Œ์…œ ๋Ÿฌ๋‹์—์„œ ๋˜ ํ•˜๋‚˜ ์ง‘์ค‘ํ•ด์•ผ ํ•  ์˜์—ญ์€ ๋น„์ฆˆ๋‹ˆ์Šค ์šด์˜์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋๊นŒ์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ํ˜„์—… ์ „๋ฌธ๊ฐ€์™€์˜ ๋งŒ๋‚จ์ด๋‹ค. ํ€€ํ…์‚ฌ(Quantexa)์˜ CTO ์ œ์ด๋ฏธ ํ—ˆํŠผ์€ โ€œ์—์ด์ „ํ‹ฑ AI๊ฐ€ ํ˜„์‹ค๋กœ ๋‹ค๊ฐ€์˜ค๋ฉด์„œ ๋ฐ์ดํ„ฐ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ๋Š” ํ•ต์‹ฌ ๋ฆฌ๋”์‹ญ ์—ญ๋Ÿ‰์ด ๋˜๊ณ  ์žˆ๋‹ค. ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋””์—์„œ ์™”๋Š”์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋‹ค๋ฉด, ๊ทธ ์œ„์— AI๋ฅผ ์ฑ…์ž„๊ฐ ์žˆ๊ฒŒ ์˜ฌ๋ฆด ์ˆ˜ ์—†๋‹ค. ์‚ฌ๋žŒ๊ณผ AI ์—์ด์ „ํŠธ๊ฐ€ ๋‚˜๋ž€ํžˆ ์ผํ•˜๋Š” ์‹œ๋Œ€๋Š” ๋งŽ์€ ์‚ฌ๋žŒ์ด ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋นจ๋ฆฌ ์˜จ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

โ€˜์™œโ€™๋ผ๋Š” ์งˆ๋ฌธ์„ ๋˜์ง€๋Š” ์†Œ์…œ ๋Ÿฌ๋‹, AI ๋ณด์•ˆ ์ด์Šˆ์— ๋Œ€์‘ํ•˜๋Š” ๋ณด์•ˆํŒ€๊ณผ์˜ ๋ฏธํŒ…, ๋น„์ฆˆ๋‹ˆ์Šค ์šด์˜ ๋ฐ์ดํ„ฐ ๊ฒ€ํ† ๋Š” AI๊ฐ€ ํฐ ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ์˜์—ญ์— ๋Œ€ํ•œ ์•„์ด๋””์–ด๋ฅผ ์ •๋ฆฌํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค€๋‹ค. ์ธ์‚ฌ์ดํŠธ(Insight) ๊ณ„์—ด์‚ฌ SADA์˜ CTO ๋งˆ์ผ์Šค ์›Œ๋“œ๋Š” โ€œC ๋ ˆ๋ฒจ์— ๊ฐ€์žฅ ๋นจ๋ฆฌ ๋‹ค๊ฐ€๊ฐ€๋Š” ๊ธธ์€ ํšŒ์‚ฌ์˜ ๋ช…์šด์ด ๊ฑธ๋ฆฐ ๋ฌธ์ œ๋ฅผ ์ง์ ‘ ์ฐพ์•„ ๋‚˜์„œ๋Š” ๊ฒƒ์ด๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ •๊ทœ ๊ต์œก์„ ๋ฒ„๋ฆฌ์ง€ ๋ง๋ผ

๋งŽ์€ C ๋ ˆ๋ฒจ ๋ฆฌ๋”๋Š” ์—…๋ฌด๊ฐ€ ๋„ˆ๋ฌด ๋ฒ…์ฐจ๊ณ  ์‹œ๊ฐ„์ด ๋ถ€์กฑํ•˜๋‹ค๋Š” ์ด์œ ๋กœ ์ •์‹ ํ•™์Šต ํ™œ๋™์„ โ€˜์žˆ์œผ๋ฉด ์ข‹์€ ๊ฒƒโ€™ ์ •๋„๋กœ ์ทจ๊ธ‰ํ•œ๋‹ค. ํ‰์ƒ ํ•™์Šต์ž๋Š” ๋…์„œ, ์ฒญ์ทจ, ์‹œ์ฒญ, ์˜จ๋ผ์ธ ๊ฐ•์˜, ๊ธฐํƒ€ ํ•™์Šต ๊ฒฝํ—˜์— 10% ์ •๋„ ์‹œ๊ฐ„์„ ํˆฌ์žํ•˜๋ฉด ์‚ฌ๊ณ ์˜ ํญ์ด ๋„“์–ด์ง€๊ณ  ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ ‘ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ดํ•ดํ•˜๊ณ  ์žˆ๋‹ค. ํ•™์Šต์€ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰ ๊ฐœ๋ฐœ์— ๊ทธ์น˜์ง€ ์•Š๋Š”๋‹ค.

์˜ํŠธ์ŠคํŒŸ(ThoughtSpot)์˜ ์ตœ๊ณ  ๋ฐ์ดํ„ฐยทAI ์ „๋žต ์ฑ…์ž„์ž์ธ ์‹ ๋”” ํ•˜์šฐ์Šจ์€ โ€œํ˜์‹  ์†๋„๊ฐ€ ๋น ๋ฅธ ์ง€๊ธˆ์€ 70-20-10 ๊ทœ์น™์ด ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ •์‹ ํ•™์Šต ํ™œ๋™์— ํ•ด๋‹นํ•˜๋Š” 10%๋Š” ๋” ๋Š˜๋ ค์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์ œ์•ˆํ–ˆ๋‹ค. ๋˜, โ€œ์ง‘์ค‘์ ์ธ ํ•ธ์ฆˆ์˜จ ๋ฏธ๋‹ˆ ํด๋ž˜์Šค์™€ ์ตœ์‹  AI ํ˜์‹  ์ตœ์ „์„ ์— ์žˆ๋Š” ๋ฆฌ๋”์™€์˜ ํ”ผ์–ด ๋„คํŠธ์›Œํฌ๊ฐ€ ๊ฒฐํ•ฉ๋œ ์‹œ์˜์ ์ ˆํ•œ ์„œ๋ฐ‹์„ ํ™œ์šฉํ•˜๋Š” โ€˜๋ฐ”์ด๋ธŒ ๋Ÿฌ๋‹(Vibe Learning)โ€™ ๋ฐฉ์‹์ด ํšจ๊ณผ์ ์ด๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค๋ฅธ ํ•™์Šต ๊ธฐํšŒ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜ ํ•„๋…์„œ ๋ชฉ๋ก, CIO ์ถ”์ฒœ ๋„์„œ, CIO๋ฅผ ์œ„ํ•œ ํ•„๋…์„œ 40์„  ๊ฐ™์€ ์ฑ…์„ ์ฝ๋Š”๋‹ค.
  • CIO ๋ฆฌ๋”์‹ญ ๋ผ์ด๋ธŒ(CIO Leadership Live), CXOํ† ํฌ(CXOTalk), ํ”ผํ„ฐ ํ•˜์ด์˜ ํ…Œํฌ๋…ธ๋ฒ ์ด์…˜(Technovation with Peter High), CIO ์ธ ๋” ๋…ธ์šฐ(CIO in the Know) ๊ฐ™์€ ์ธ๊ธฐ CIO ํŒŸ์บ์ŠคํŠธ๋ฅผ ์ž์ฃผ ์ฒญ์ทจํ•œ๋‹ค.
  • ๋งํฌ๋“œ์ธ์˜ ์ด๊ทธ์ œํํ‹ฐ๋ธŒ ๋ฆฌ๋”์‹ญ ๊ณผ์ •๊ณผ CIO ๋Œ€์ƒ ์œ ๋ฐ๋ฏธ(Udemy) ๊ฐ•์˜ ๊ฐ™์€ ์˜จ๋ผ์ธ ํ•™์Šต ๊ธฐํšŒ๋ฅผ ๊ฒ€ํ† ํ•œ๋‹ค.
  • ๋” ํฐ ํˆฌ์ž๋ฅผ ํ•œ๋‹ค๋ฉด ๋ฒ„ํด๋ฆฌ๋‚˜ ์นด๋„ค๊ธฐ ๋ฉœ๋Ÿฐ ๋Œ€ํ•™๊ต, ์™€ํŠผ ๋“ฑ ๊ต์œก๊ธฐ๊ด€์—์„œ ์ œ๊ณตํ•˜๋Š” CTO ๋Œ€์ƒ ํ•™์œ„ ํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, C ๋ ˆ๋ฒจ ์—ญํ• ์ด ๋ชจ๋“  ์‚ฌ๋žŒ์—๊ฒŒ ๋งž๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. CIO ํ˜„ํ™ฉ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, CIO์˜ 43%๋Š” ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€์„ 1~10์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ๋•Œ 8์  ์ด์ƒ์ด๋ผ๊ณ  ๋‹ตํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ C ๋ ˆ๋ฒจ ์ž๋ฆฌ๋ฅผ ์˜ค๋ฅด๊ณ ์ž ํ•œ๋‹ค๋ฉด, ๊ฒฝ๋ ฅ ๋ชฉํ‘œ๋ฅผ ์„ธ์šฐ๊ธฐ ์ „์— ์—ญํ• ์„ ์ถฉ๋ถ„ํžˆ ์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค.
dl-ciokorea@foundryco.com

These are the 3 accessories I wish I had bought with my Raspberry Pi

2 December 2025 at 15:01

My Raspberry Pi 500+ has finally been delivered, but I kept the order brief so I could keep the cost down. In spite of my attempts at being frugal, Iโ€™d be lying if I said I hadnโ€™t toyed with the idea of throwing a few more items on the order.

Seattle biotech startup Curi Bio lands $10M to expand its R&D support for drug discovery

2 December 2025 at 11:54
Curi Bioโ€™s ribbon cutting in April 2025 for its new headquarters on Seattleโ€™s waterfront. Elliot Fisher, co-founder and chief business officer, cuts the ribbon with a sword while CEO Nicholas Geisse holds a pair of scissors. (Curi Bio Photo)

Seattle biotech startup Curi Bio, which enables the screening of new drugs using cells and 3D tissue models derived from human cells, announced $10 million in new funding.

Curi Bioโ€™s customers include large biopharmaceutical and biotech companies such Novo Nordisk, Eli Lilly, Astrazeneca, Pfizer, Boehringer Ingelheim, UCB, Novartis and others. Its Series B round was led by Seoul-based DreamCIS, which supports biopharma R&D through extensive research services.

โ€œWe are thrilled to partner with DreamCIS, who shares our conviction that drug discovery urgently needs more human-relevant data at the preclinical stage,โ€ said Michael Cho, Curi Bioโ€™s chief strategy officer, in a statement. โ€œThe vast majority of new drugs fail in human clinical trials because preclinical animal and 2D cell models have failed to be good predictors of human outcomes.โ€

Curi Bioโ€™s platform integrates bioengineered tissues created from induced pluripotent stem cells (iPSCs) with data collection and analysis. The additional funding will expedite its development of new platforms for cardiac, skeletal muscle, metabolic, smooth muscle and neuromuscular diseases, the company said.

The Seattle area is a hub of life science and biotech companies, including numerous efforts focused on AI-assisted research. Researchers have emphasized the need to test computer-generated drug candidates in the lab to verify their capabilities and impacts.

โ€œCuri Bioโ€™s unique integration of cells, systems, and data is a paradigm shift for preclinical drug discovery,โ€ said Jeounghee Yoo, CEO of DreamCIS. โ€œWe were incredibly impressed by the companyโ€™s innovative platforms and their ability to generate functional data from 3D human tissues at scale.โ€

Curi Bio has raised $20 million from investors and $12 million from federal grants.

The company spun out of the University of Washington a decade ago as NanoSurface Biomedical. In April, Curi Bio celebrated the opening of its new 13,942-square-foot headquarters and research facility on the Seattle waterfront.

What it takes to step into a C-level technology role

2 December 2025 at 05:01

Youโ€™ve led several digital transformation initiatives and delivered financial impacts. Executives recognize your change leadership competencies, having improved both customer and employee experiences. The architectures you helped roll out are now platform standards and are foundational to your organizationโ€™s data and AI strategies.

Now, youโ€™re asking whether youโ€™re ready for a CIO role, or another C-level role in data, digital, or security.ย 

CIO.comโ€™s 24th annual State of the CIO reports that over 80% of CIOs say their role is becoming more digital- and innovation-focused, that they are more involved in leading digital transformation, and that the CIO is becoming a changemaker. If youโ€™re checking these boxes, you should be asking how you can step up into a C-level job.

Transformation leaders are excellent C-level candidates

Leading transformation initiatives is an important prerequisite for C-level roles, but itโ€™s not sufficient. Thereโ€™s a significant step up in responsibilities when you become accountable for outcomes and managing risks across all IT initiatives and operations. C-level technology leaders must define a strategy that the CEO and CFO buy into and they must oversee an evolving digital operating model.

โ€œAspiring leaders need to shift from managing project-based change execution to taking full ownership and accountability for enterprise technology, architecture, and IT strategy,โ€ says Rani Johnson, CIO of Workday. โ€œThey should develop deep, hands-on expertise in IT infrastructure, cybersecurity, AI platforms, core system operations, and data governance. They must demonstrate the ability to translate technical strategy into sustained business value whilst ensuring operational stability.โ€

To prepare for C-level roles, leaders should develop a lifelong learning program to develop expertise and build confidence. The 70-20-10 learning model is one approach that focuses 70% of efforts on on-the-job experiences, 20% on social learning from peers, and 10% on formal education. Hereโ€™s how digital trailblazers can apply the model in their quest for C-level opportunities.

Experience transitioning to the non-expert influencer

Many transformation leaders try to develop expertise across the full scope of their programs, even multi-year enterprise-wide strategic initiatives. Some leaders aim for full visibility into their agile programs to help steer priorities and mitigate risks.

But C-level leaders donโ€™t have the time to get into the weeds on every strategic initiative and are generally not experts on the technology implementation details. The 70% of job experiences that transformation leaders should target require stepping into areas outside their expertise and responsibilities.

โ€œStepping into a C-level technology role is less about having all the answers and more about learning to lead through ambiguity and complexity,โ€ says Kathy Kay, CIO of Principal. โ€œSome of the most valuable growth comes from taking on stretch assignments, solving high-impact business problems, and building the ability to influence across the enterprise, not just within IT. When that experience is paired with the guidance of strong mentors and peers, it creates a lasting foundation for leadership.โ€

Here are some tips for on-the-job experiences to seek out.

  • Visit customers with leaders from sales and marketing to develop business acumen, understand buyer needs, and review customersโ€™ end-to-end workflows.
  • Mentor leaders on other initiatives to build confidence in providing advice in areas outside of your expertise.
  • Facilitate a workshop because itโ€™s a great experience for presenting to executive committees and boards, especially if you successfully navigate a blow-up moment.
  • Identify department leaders who are detractors to adopting new technologies and find ways to break through their status-quo thinking.
  • Become a change agent by partnering with select operations teams that lag in using data for decision-making and in adopting AI to drive efficiencies.

A second area to develop is the skills to listen, challenge, adapt, and pivot. Successful C-level leaders have to sell a vision and continuously plan, but also sense when market, customer, investor, and stakeholder needs require a reset of objectives.

โ€œNew technologies, shifting business priorities, and unexpected challenges can render even the best-laid plans obsolete overnight,โ€ says Cameron Daniel, CTO of Megaport. โ€œSuccessful leaders donโ€™t just respond to change as it happens; they anticipate it and make sure their teams are prepared and equipped to handle it. As CTO, you serve as the chief architect of this adaptability, ensuring that your solution evolves alongside innovation while continuing to drive business impact and strategic goals.โ€

Focus social learning on AI and emerging technologies

Thereโ€™s a lot of hype around generative AI and when artificial generative intelligence will emerge. Boards and executive leaders expect C-level leaders to filter the noise, lead the AI strategy, and establish data and AI governance.

C-level technical leaders canโ€™t rely on press releases and small POCs to develop realistic AI visions that can deliver near-term ROI. Top C-level leaders expand their knowledge by networking with peers and joining communities to learn where others are investing and how they are delivering AI business outcomes.ย 

Communities to consider joining include:

Many of these communities are open to tech leaders aspiring to C-level roles.

At a recent Coffee With Digital Trailblazers, we discussed how transformation leaders prepare to take the C-level leadership baton and how social learning can happen inside the company as well. For example, Derrick Butts, founder and vCISO at Continuums Strategies, suggested joining the team working on AI threat detection and triaging different types of AI-enabled automated attacks.

Joe Puglisi, growth strategist and fractional CIO, added that being curious and asking many โ€œwhyโ€ questions is key to unlocking AI opportunities: โ€œIf youโ€™re not curious and donโ€™t get to the root of the reason things are done the way theyโ€™re done, youโ€™ll never invent that new, better, faster, smarter, cheaper way thatโ€™s going to bring new customer satisfaction levels, new products to your customers, new revenue sources, or cost reductions.โ€

One more area to focus on for social learning about AI opportunities is meeting with subject-matter experts who can fully explain the data underlying a business operation. Jamie Hutton, CTO of Quantexa, says, โ€œAs agentic AI becomes a reality, data literacy becomes a core leadership skill. If you canโ€™t explain where your data comes from, you canโ€™t responsibly deploy AI on top of it. Humans and AI agents will be working side by side much sooner than most realize.โ€

Social learning by asking โ€œwhyโ€ questions, meeting security teams that respond to AI security issues, and reviewing data from business operations can help formulate ideas on where AI can deliver sizable benefits. โ€œThe fastest path to C-level is by seeking out โ€˜bet-the-companyโ€™ problems,โ€ says Miles Ward, CTO of SADA, an Insight company.

Donโ€™t eliminate formal learning

Many C-level leaders find the job too demanding and time-consuming, and leave formal learning activities as a nice-to-have. Lifelong learners recognize that a 10% commitment to reading, listening, viewing, coursework, and other learning experiences can expand their mindsets and expose them to new concepts. Learning is not just about skill development.

โ€œIn a time of rapid innovation, the 70-20-10 rule is inadequate, and that 10% formal education needs to increase,โ€ suggests Cindi Howson, chief data and AI strategy officer atย  ThoughtSpot. โ€œHowever, itโ€™s critical to look for the right formal education as executive training is rapidly out of date.โ€

Howson recommends โ€œvibe learningโ€ with hands-on mini classes and timely summits featuring peer-to-peer network from leaders at the cutting edge of AI innovation.

Other learning opportunities include:

A bigger commitment is to consider CTO degree programs from academic institutions such as Berkeley, Carnegie Mellon University, Wharton, and others.

C-level roles are not for everyone. On a scale of 1-10, 43% of CIOs rated the job 8 or higher on a stress level scale in CIO.comโ€™s State of the CIO. So, for those aspiring to C-level roles, make sure to thoroughly understand the role before making it a career objective.

โŒ
โŒ