Enterprise Application Integration (EAI) and modern iPaaS platforms have become two of the most strategically important โ and resource-constrained โ functions inside todayโs enterprises. As organizations scale SaaS adoption, modernize core systems, and automate cross-functional workflows, integration teams face mounting pressure to deliver faster while upholding strict architectural, data quality, and governance standards.
AI has entered this environment with the promise of acceleration. But CIOs are discovering a critical truth:
Not all AI is built for the complexity of enterprise integrations โ whether in traditional EAI stacks or modern iPaaS environments.
Generic coding assistants such as Cursor or Claude Code can boost individual productivity, but they struggle with the pattern-heavy, compliance-driven reality of integration engineering. What looks impressive in a demo often breaks down under real-world EAI/iPaaS conditions.
This widening gap has led to the rise of a new category: Vertical AI Development Agents โ domain-trained agents purpose-built for integration and middleware development. Companies like CurieTech AI are demonstrating that specialized agents deliver not just speed, but materially higher accuracy, higher-quality outputs, and far better governance than general-purpose tools.
For CIOs running mission-critical integration programs, that difference directly affects reliability, delivery velocity, and ROI.
Why EAI and iPaaS integrations are not a โGeneric Codingโ problem
Integrationsโwhether built on legacy middleware or modern iPaaS platforms โ operate within a rigid architectural framework:
multi-step orchestration, sequencing, and idempotency
canonical data transformations and enrichment
platform-specific connectors and APIs
standardized error-handling frameworks
auditability and enterprise logging conventions
governance and compliance embedded at every step
Generic coding models are not trained on this domain structure. They often produce code that looks correct, yet subtly breaks sequencing rules, omits required error handling, mishandles transformations, or violates enterprise logging and naming standards.
Vertical agents, by contrast, are trained specifically to understand flow logic, mappings, middleware orchestration, and integration patterns โ across both EAI and iPaaS architectures. They donโt just generate code โ they reason in the same structures architects and ICC teams use to design integrations.
This domain grounding is the critical distinction.
The hidden drag: Context latency, expensive context managers, and prompt fatigue
Teams experimenting with generic AI encounter three consistent frictions:
Context Latency
Generic models cannot retain complex platform context across prompts. Developers must repeatedly restate platform rules, logging standards, retry logic, authentication patterns, and canonical schemas.
Developers become โexpensive context managersโ
A seemingly simple instructionโโTransform XML to JSON and publish to Kafkaโโ quickly devolves into a series of corrective prompts:
โUse the enterprise logging format.โ
โAdd retries with exponential backoff.โ
โFix the transformation rules.โ
โApply the standardized error-handling pattern.โ
Developers end up managing the model instead of building the solution.
Prompt fatigue
The cycle of re-prompting, patching, and enforcing architectural rules consumes time and erodes confidence in outputs.
This is why generic tools rarely achieve the promised acceleration in integration environments.
Benchmarks show vertical agents are about twice as accurate
CurieTech AI recently published comparative benchmarks evaluating its vertical integration agents against leading generic tools, including Claude Code. The tests covered real-world tasks:
generating complete, multi-step integration flows
building cross-system data transformations
producing platform-aligned retries and error chains
implementing enterprise-standard logging
converting business requirements into executable integration logic
The results were clear: generic tools performed at roughly half the accuracy of vertical agents.
Generic outputs often looked plausible but contained structural errors or governance violations that would cause failures in QA or production. Vertical agents produced platform-aligned, fully structured workflows on the first pass.
For integration engineering โ where errors cascade โ this accuracy gap directly impacts delivery predictability and long-term quality.
The vertical agent advantage: Single-shot solutioning
The defining capability of vertical agents is single-shot task execution.
Generic tools force stepwise prompting and correction. But vertical agentsโbecause they understand patterns, sequencing, and governanceโcan take a requirement like:
โCreate an idempotent order-sync flow from NetSuite to SAP S/4HANA with canonical transformations, retries, and enterprise logging.โ
โฆand return:
the flow
transformations
error handling
retries
logging
and test scaffolding
in one coherent output.
This shift โ from instruction-oriented prompting to goal-oriented promptingโremoves context latency and prompt fatigue while drastically reducing the need for developer oversight.
Built-in governance: The most underrated benefit
Integrations live and die by adherence to standards. Vertical agents embed those standards directly into generation:
naming and folder conventions
canonical data models
PII masking and sensitive-data controls
logging fields and formats
retry and exception handling patterns
platform-specific best practices
Generic models cannot consistently maintain these rules across prompts or projects.
Vertical agents enforce them automatically, which leads to higher-quality integrations with far fewer QA defects and production issues.
The real ROI: Quality, consistency, predictability
Organizations adopting vertical agents report three consistent benefits:
1. Higher-Quality Integrations
Outputs follow correct patterns and platform rulesโreducing defects and architectural drift.
2. Greater Consistency Across Teams
Standardized logic and structures eliminate developer-to-developer variability.
3. More Predictable Delivery Timelines
Less rework means smoother pipelines and faster delivery.
A recent enterprise using CurieTech AI summarized the impact succinctly:
โFor MuleSoft users, generic AI tools wonโt cut it. But with domain-specific agents, the ROI is clear. Just start.โ
For CIOs, these outcomes translate to increased throughput and higher trust in integration delivery.
Preparing for the agentic future
The industry is already moving beyond single responses toward agentic orchestration, where AI systems coordinate requirements gathering, design, mapping, development, testing, documentation, and deployment.
Vertical agentsโbecause they understand multi-step integration workflowsโare uniquely suited to lead this transition.
Generic coding agents lack the domain grounding to maintain coherence across these interconnected phases.
The bottom line
Generic coding assistants provide breadth, but vertical AI development agents deliver the depth, structure, and governance enterprise integrations require.
Vertical agents elevate both EAI and iPaaS programs by offering:
significantly higher accuracy
higher-quality, production-ready outputs
built-in governance and compliance
consistent logic and transformations
predictable delivery cycles
As integration workloads expand and become more central to digital transformation, organizations that adopt vertical AI agents early will deliver faster, with higher accuracy, and with far greater confidence.
In enterprise integrations, specialization isnโt optionalโit is the foundation of the next decade of reliability and scale.
For CIOs, the conversation around AI has moved from innovation to orchestration, and project management, long a domain of human coordination and control, is rapidly becoming the proving ground for how intelligent systems can reshape enterprise delivery and accelerate transformation.
In boardrooms across industries, CIOs face the same challenge of how to quantify AIโs promise in operational terms: shorter delivery cycles, reduced overhead, and greater portfolio transparency. A 2025 Georgia Institute of Technology-sponsored study of 217 project management professionals and C-level tech leaders revealed that 73% of organizations have adopted AI in some form of project management.
Yet amid the excitement, the question of how AI will redefine the role of the project manager (PM) remains, as does how will the future framework for the business transformation program be defined.
A shift in the PMโs role, not relevance
Across industries, project professionals are already seeing change. Early adopters in the study report project efficiency gains of up to 30%, but success depends less on tech and more on how leadership governs its use. The overwhelming majority found it highly effective in improving efficiency, predictive planning, and decision-making. But what does that mean for the associates running these projects?
Roughly one-third of respondents believed AI would allow PMs to focus more on strategic oversight, shifting from day-to-day coordination to guiding long-term outcomes. Another third predicted enhanced collaboration roles, where managers act as facilitators who interpret and integrate AI insights across teams. The rest envisioned PMs evolving into supervisors of AI systems themselves, ensuring that algorithms are ethical, accurate, and aligned with business goals.
These perspectives converge on a single point: AI will not replace PMs, but it will redefine their value. The PM of the next decade wonโt simply manage tasks, theyโll manage intelligence and translate AI-driven insights into business outcomes.
Why PMOs canโt wait
For project management offices (PMOs), the challenge is no longer whether to adopt AI but how. AI adoption is accelerating, with most large enterprises experimenting with predictive scheduling, automated risk reporting, and gen AI for documentation. But the integration is uneven.
Many PMOs still treat AI as an add-on, a set of tools rather than its strategic capability. This misses the point since AI is about augmenting judgment and automation. The organizations gaining a real competitive advantage are those embedding AI into their project methodologies, governance frameworks, and performance metrics with this five-point approach in mind.
1. Begin with pilot projects
Think small, scale fast. The most successful AI integrations begin with targeted use cases that automate project status reports, predict schedule slippage, or identify resource bottlenecks. These pilot projects create proof points, generate enthusiasm, and expose integration challenges early.
2. Measure value, not just activity
One common pitfall is adopting AI without clear performance metrics. PMOs should set tangible KPIs such as reduction in manual reporting time, improved accuracy in risk forecasts, shorter project cycle times, and higher stakeholder satisfaction. Communicating these outcomes across the organization is just as important as achieving them. Success stories build momentum, foster buy-in, and demystify AI for skeptical teams.
3. Upskill PMs
AI will only be as valuable as the people who use it. Nearly half of the surveyed professionals cited lack of a skilled workforce as a barrier to AI integration. Project managers donโt need to become data scientists, but they must understand AI fundamentals, how algorithms work, where biases emerge, and what data quality means. In this evolving landscape, the most effective PMs will combine data literacy with human-centered leadership, including critical thinking, emotional intelligence, and communication.
4. Strengthen governance and ethics
Increasing AI raises pressing ethical questions, especially when algorithms influence project decisions. PMOs must take the lead in establishing AI governance frameworks that emphasize transparency, fairness, and human oversight. Embedding these principles into the PMOโs charter doesnโt just mitigate risk, it builds trust.
5. Evolve from PMO to BTO
The traditional PMO focuses on execution through scope, schedule, and cost. But AI-driven organizations are shifting toward business transformation offices (BTOs), which align projects directly with strategic value creation through process improvement in parallel. A PMO ensures projects are done right. A BTO ensures the right projects are done. A crucial element of this framework is the transition from a Waterfall to an Agile mindset. The evolution of project management has shifted from rigid plans to iterative, customer-centric, and collaborative methods, with hybrid methodologies becoming increasingly common. This Agile approach is vital for adapting to the rapid changes brought by AI and digital disruption.
The new PM career path
By 2030, AI could manage most routine project tasks, such as status updates, scheduling, and risk flagging, while human leaders focus on vision, collaboration, and ethics. This shift mirrors past revolutions in project management from the rise of Agile to digital transformation, but at an even faster pace. But as organizations adopt AI, the risk of losing the human element persists. Project management has always been about people and aligning interests, resolving conflicts, and inspiring teams. However, while AI can predict a delay, it canโt motivate a team to overcome it. The PMโs human ability to interpret nuance, build trust, and foster collaboration remains irreplaceable.
A call to action
AI represents the next frontier in enterprise project delivery, and the next decade will test how well PMOs, executives, and policymakers can navigate the evolution of transformation. To thrive, organizations must invest in people as much as in platforms, adopt ethical, transparent governance, foster continuous learning and experimentation, and measure success by outcomes rather than hype.
For CIOs, the mandate is clear: lead with vision, govern with integrity, and empower teams with intelligent tools. AI, after all, isnโt a threat to the project management profession. Itโs a catalyst for its reinvention, and when executed responsibly, AI-driven project management will not only deliver operational gains but also build more adaptive, human-centered organizations ready for the challenges ahead. By embracing it thoughtfully, PMs can elevate their roles from administrators to architects of change.
Artificial intelligence is the most transformative technology shift since the birth of cloud computing.
Two decades ago, cloud platforms changed how enterprises thought about infrastructure. Right now, as youโre reading this, AI platforms are changing how enterprises think about intelligence.
The parallels between the two are well worth highlighting. In the early 2000s, CIOs debated whether to build their own data centers or trust a shared platform like AWS. Now, 20 years on, theyโre asking a similar question: should we build our own large language models, or build on them?
I believe that the lesson from the cloud era still applies. Competitive advantage comes from leveraging the platforms that already exist and innovating on top of them rather than owning the infrastructure. Letโs get into why thatโs the case.
The cloudโs first lesson: Leverage, donโt reinvent
When the first generation of cloud services appeared, their broadest appeal was speed. Developers could launch applications in minutes instead of months.
However, while speed was the most obvious appeal here, the cloudโs real breakthrough was strategic. By handing off infrastructure management, companies could redirect their energy toward experience and innovation.
The enterprises that tried to replicate the โhyperscalersโ by building their own clouds from scratch discovered how hard it was to keep up with the pace of platform evolution. Costs ballooned at the same time that velocity disappeared. Those who embraced the leverage model (using shared platforms as a foundation) moved faster and spent less.
AI is now at the same crossroads. The instinct to build proprietary models from the ground up feels familiar, but itโs no more the right move than it was with cloud. Large language models have become a new layer of digital infrastructure that is analogous to compute and storage in the cloud era. They are utilities that are powerful, scalable and continuously improving through collective use.
I believe that owning the plumbing no longer differentiates you, and that it never did. The question for leaders isnโt โCan we build our own model?โ Itโs โWhat unique value can we deliver by building upon one?โ
The power of open ecosystems
The rise of cloud was never about one product. It was about an ecosystem that invited participation. I worked at AWS, and I can tell you that its greatest innovation was an architecture that encouraged others to build on top of it. Every API call became a building block for something new.
AI platforms are following the same pattern. Tools like OpenAI, Anthropic and others are offering open interfaces and SDKs that turn intelligence into an accessible service. This openness fuels compounding innovation in the form of an ecosystem that every developer, data scientist and business analyst can contribute to.
Enterprises that align with open ecosystems benefit from shared progress. They can experiment without owning the entire stack and move faster as the underlying technology improves. Closed systems, though, tend to stagnate. When innovation depends solely on internal capacity, growth slows, costs rise and talent disperses.
From what Iโve seen across my career, the future belongs to platforms that treat users as co-creators. Products and ecosystems scale exponentially because every user is also a contributor!
The feedback flywheel
Feedback is one of technologyโs most underappreciated engines of progress. I remember AWS famously saying that 90% of its roadmap came directly from customer requests. When I was there, I saw firsthand how each improvement drove more usage, which generated more feedback, which drove more innovation.
AI systems are built on the same dynamic. Reinforcement learning, fine-tuning and user telemetry all feed the modelโs evolution. Every query, correction or prompt becomes a signal that refines the next response.
This feedback flywheel is now extending into enterprise AI adoption. Each workflow, chat interaction and model output is an opportunity to learn. The organizations that intentionally design feedback loops to flow between users, data and developers evolve their systems faster than those treating AI as a static tool. The former will become industry leaders while the latter lags behind.
What does this look like it practice? Teams must instrument AI use cases with metrics, monitor accuracy and context, and close the loop quickly when things go wrong. Feedback is a strategy for continuous learning, not some trivial support function.
The most advanced AI organizations are the ones with the tightest feedback loops, not the biggest models.
Platform thinking inside the enterprise
What does all of this mean for CIOs and technology leaders? It means applying the principles of platform thinking within your own walls.
I tell my clients to start by viewing their enterprise not as a collection of systems, but as a platform others can build upon. Create reusable AI capabilities like data pipelines, governance frameworks and integration patterns that different business units can safely leverage. Encourage decentralized innovation by giving teams the guardrails and APIs to experiment.
In the cloud era, self-service infrastructure changed how developers worked. In the AI era, self-service intelligence is doing the same. Marketing teams generate insights from unstructured data, HR automates knowledge discovery for onboarding, finance uses AI-powered forecasting to model business outcomes, and so on and so forth. Each function builds on a shared foundation while adding its own flavor of domain expertise.
CIOs play the critical role of orchestrator. Their job is to ensure interoperability, security and ethical use while enabling freedom at the edge. That balance between control and creativity will define the next generation of enterprise leaders.
Avoiding the reinvention trap
Thereโs a natural temptation to build everything in-house, especially in technology-driven organizations. It feels safer and more controllable, but history shows how easily that instinct can slow progress.
Iโve seen enterprises that tried to build their own private clouds fail to match the scale or speed of public ones. The same is true of AI. Training proprietary models consumes extraordinary compute and talent, while the underlying platforms advance faster than any single company can replicate.
The smarter move is to differentiate at the application layer through data strategy, user experience and domain-specific integration. Build the intelligence that understands your business while also relying on established platforms for the generic cognition that everyone needs.
The organizations that thrive will be those that orchestrate AI across their ecosystems, not those that try to reinvent it in isolation.
The leadership imperative
AI represents a once-in-a-generation shift. However, like every major shift before it, the winners will be those who learn the right lessons from history.
The cloud taught us that leverage beats ownership, ecosystems beat silos and feedback beats static roadmaps. AI simply brings those lessons into a new domain.
For CIOs and senior technology leaders, the mandate is clear: build architectures that learn and that use open ecosystems to accelerate progress. Make feedback a cultural habit instead of an afterthought. Focus your talent on solving unique business problems instead of replicating what the platforms already provide.
The question isnโt whether AI will transform your enterprise; it already is. The question is whether youโll build on the right platform to make that transformation sustainable, ethical and fast.
I believe that the future belongs to leaders who understand that innovation is about what you enable, not โjustโ about what you own.
This article is published as part of the Foundry Expert Contributor Network. Want to join?
Banks have always been technology pioneers, yet many are now prisoners of their own legacy. Despite spending more on IT than any other major industry and funneling over $2.8 trillion into digital transformation since 2011, too many retail banks still canโt deliver the seamless digital experiences customers expect.
The loyalty crisis: Spending more, delivering less
More than one in three customers (35%) have switched banks in the past five years, most in search of better digital experiences, not better rates. And 68% of banking executives admit that their existing technology architecture actively hinders their ability to meet customer needs.
Mobile is now the dominant channel, with 45% of customers using it as their primary means of banking. Yet, itโs also the most requested area for improvement, with 44% wanting a better mobile experience. Customers want personalized, intuitive and secure interactions but instead, they encounter friction.
The result? Diminishing loyalty in an age when switching bank accounts is as simple as a few taps on a screen.
Legacy technology: The hidden barrier to progress
The problem isnโt a lack of investment. Yes, the cost is high, but effective treatment strategies are available to manage this condition. Itโs the age and complexity of the systems beneath the surface that is the true problem. Our survey found that 63% of banks still rely on code written before the year 2000, while 67% say their entire technology stack would fail if the oldest systems stopped working. Even more worryingly, 77% report that only โone or two peopleโ in their organization still have the skills to maintain this code and most are nearing retirement.
In other words, critical national infrastructure in banking runs on software designed before the internet age. This outdated technology creates three compounding problems:
Operational fragility. Legacy code and unsupported platforms make outages and compliance failures more likely. One executive described systems still reliant on 8-inch floppy drives for critical updates, a vivid metaphor for how far behind the curve some institutions remain.
Run-cost burden. According to Gartner, over 75% of IT budgets in many financial institutions are consumed by maintaining these old systems, starving innovation budgets and slowing transformation.
Inhibited agility. Modernization programs overrun as banks struggle to deal with legacy architecture and data complexities. Indeed, 94% of large banking transformations exceed planned timelines, leaving customer improvements delayed and diluted.
The result is a vicious cycle. Every dollar spent patching and upgrading outdated systems is a dollar diverted from the modernization that could restore customer loyalty.
Breaking the cycle: A new technology blueprint
There is a path forward, but it demands decisive action. From our work across global banking and markets, we consistently see these issues and we believe these can be addressed over the long term with the following three strategies.
Refocus: Lead with purpose, not platforms
Banks need to start with truly understanding why (customer needs) and how their customers want to interact (experience) with their services, then define how they are going to differentiate. Technology alone will not win back loyalty. Sometimes, the greatest return comes from improving service, trust or personalization rather than layering on more tech.
Replace or renovate: Build the modern digital spine
For many banks, the technological foundations are simply too old to adapt. If two-thirds of institutions say their operations would cease if legacy systems failed, the cost of inaction now exceeds the cost of replacement.
The answer lies in defining a technology strategy around a digital spine. A modular architecture that allows agility, integration and personalization at scale and is centered around three design principles:
Build the core technology and data spine internally to retain strategic differentiation and control.
Buy external solutions for commodity or repeatable processes that donโt define the customer experience.
Integrate third-party and marketplace services for specialized or fast-evolving capabilities, enabling banks to scale quickly without adding new legacy dependencies.
This build-buy-integrate approach allows banks to modernize strategically and maintain control where it matters, while reducing cost and delivery risk elsewhere.
Itโs also how challenger banks are winning. Monzo, for instance, built its business on this philosophy, focusing on customer differentiation through a lightweight, API-driven core. As its ex-CEO, TS Anil, recently noted, Monzo has become โa scaling, profitable digital bank with a world-class user experience that customers donโt just like, but love.โ
The culture shift: Continuous transformation
Finally, transformation can no longer be treated as a one-off program. Modernization must become a continuous capability, not a project with an end date. For banks to break free of legacy constraints, the following considerations are essential:
Transformation never ends. Change on this scale will be a multiyear, multidimensional journey. Change leaders should aim to secure a consistent stream of investment that allows the organization to build enduring capabilities. Every technology and data initiative should align with long-term strategic goals, creating compounding value across the organization.
Full organizational shift. Transformation is everyoneโs responsibility. While technology drives change, this transformation canโt be owned by IT alone. From boardroom to back office, everyone needs to be committed to making change happen. When transformation becomes embedded in organizational DNA rather than delegated to technical teams, banks can sustain the pace of change their customers demand.
The bottom line
Banks stand at a crossroads. 68% of executives acknowledge that legacy technology is holding them back. Every quarter spent maintaining outdated systems compounds risk, cost and customer attrition.
But those that act now and redefine their customer proposition, rebuild their digital spine and embed continuous change, will turn technology from a constraint into a competitive edge.
The future belongs to banks that leave legacy behind and build loyalty by design.
This article is published as part of the Foundry Expert Contributor Network. Want to join?
The increasing hype around AI has exceeded any other technology shift, perhaps ever. This has been met with a corresponding amount of investment. Gartner estimates worldwide spending on AI through 2025 will be nearly $1.5 trillion. Despite the staggering amount, most organizations continue to grapple with a chronic gap between promise and realized value.
The most widely recognized data point to support this comes from an MIT report from earlier this year that reveals 95% of gen AI pilots fail. A McKinsey study also found that nearly 80% of companies use gen AI, yet almost as many report no significant impact to the bottom line.
But thereโs proof AI is working, if modestly. The 2025 Cisco AI Readiness Index shows 13% of all companies get consistently measurable returns from AI. So while this is a minority, leading organizations are starting to see value. But the origins of that value increasingly stem from leadership clarity, strategic alignment, and execution, not the technology itself. The Cisco AI Readiness Index measured this and found 99% of companies that have realized value from AI have a well-defined strategy that embraces change, and includes formal programs to help employees get comfortable with the new technology.
Todayโs CEOs and CIOs face a generational inflection point. They must redefine success for AI not as a means of cost-cutting, but as a driver for capacity creation, innovation, and human-centric outcomes. The path forward requires breaking down work, reassessing where automation helps, and empowering talent to focus on growth and transformation.
Setting the stage: AI promise vs. reality
Among many CIOs, the biggest challenge is the C-Suite and board know they need AI but arenโt sure what for. This creates unrealistic expectations that AI will be a panacea to all problems and send productivity skyrocketing. When the outcomes are unrealistic, a successful project may be deemed unsuccessful because the initial goals were incorrect. A contributing factor to this problem is that many business units donโt have the KPIs to create the business metrics to measure.
An example of this is with contact centers where AI agents could be used for agent coaching, virtual agents, scheduling, scoring calls, note taking and more. Measuring the value of these can be difficult, so many businesses have defaulted to cutting costs by reducing agents. This can backfire if not done in a measured way. Klarna, for instance, eliminated about 700 agents, saw customer service scores tank, and then hired people back. This wasnโt a technology problem but rather leadership didnโt put the right plan in place to understand the impact.
Diagnosing the problem: Tech limitations or leadership gaps?
Issues with achieving ROI on AI and automation technology efforts are often confused with the diagnosis of the issue at hand. A lack of tech readiness concerning integrating complex data and scaling automation remains a challenge. More often than not, however, the issue that gets acted upon may be less with the technology itself and more with the way technology efforts are governed and led. This would indicate the obstacles that exist to technologyโs successful implementation lie more with the board than the code and cloud setup. Failures happen because business leaders prioritize expediency driven by market hype instead of thinking about genuine business transformation.
Itโs also important that prior to AI projects being kicked off, thereโs clear business alignment and an understanding of the metrics being measured to calculate ROI. Projects launched as isolated technology experiments without a well-defined business case tied to a strategic priority are hard to measure and often vague in value, leading to projects that are easy to cut.
The leadership inflection point: Beyond cost cutting
The business world sits at a leadership inflection point where for the first time, workforce transformation will be more than just human. With the rapid adoption of AI and autonomous agents, leaders now face complex decisions about how value is derived and maintained within their organizations. This shift requires cutting costs but also reimagining the relationship between human skills and the technical capabilities of AI, which ensures organizational cultures and processes can adapt to this new era of hybrid workforces.
โEveryoneโs been racing to build more AI models, compute, and agents, but the real bottleneck to enterprise AI adoption isnโt supply, itโs that enterprises donโt know where or how to use AI to do real work,โ says Greg Shewmaker, CEO of enterprise intelligence company r.Potential. โWe believe the missing piece is the coordination layer between human and digital work, where you can capture actual workforce demand, generate realistic and deployable configurations of human and AI capabilities, and tie them to real business outcomes. If we donโt get this right, the next wave of automation wonโt just reshape companies, itโll destabilize work itself.โย
His point underscores what many executives miss: AIโs promise isnโt just a technological or operational challenge, itโs an existential leadership one. As the boundaries blur between tasks suited for humans and those automated by machines, IT and business leaders will need to focus on maximizing value creation through deep integration of people, technology, and culture.โ
So it becomes critical for the C-suite to reconsider timelines related to investments and expand capacity in accordance with tech and market needs. This shift in human capital management involves being able to forecast the future workforce and deploy human resources in sync with machine-based intelligence. Innovation should take precedence thatโs less about adding to current performance and more about ensuring organizations can remain agile and ready to facilitate innovation in terms of related infrastructure and preparedness to reinvent themselves.
Breaking down work and value creation
Understanding the key components of work is essential to developing understandable ROI from AI. Any returns must consider the adoption of technology and the transformation of processes. The goal should be to leverage AI to amplify human effort in areas that require human judgment, empathy, and creativity rather than in areas where thereโs only repetition of tasks, thereby assigning human resources to higher-value supervisory and human roles where they can be most productive and valuable.
The key to success is to refocus on enabling talent to drive revenue growth and innovation through AI. So the goal is to apply AI strategically to liberate highly-skilled people from working on the 80% of any job that can, should, and must be automated so they can focus on the last 20%, which drives new revenue growth, customer loyalty, and innovation breakthroughs.
The AI era will reshape every industry, and if CIOs and CEOs arenโt evolving, the AI investment will be wasted. The key to realizing real value in AI is to ensure leadership is future-ready and embraces new skills and change. Itโs not about being the best coder in the room but instilling the right leadership structure. This involves a leadership mentality that uses AI to further human-centric goals and not simply fill an operational spreadsheet with AI data. This requires strict ethics and governance modeled in every aspect of decision-making, and firm alignment on the business side where every AI project has a defined purpose for the organization.
Si se cogiesen todas las verduras que se tiran cada aรฑo en Espaรฑa, se podrรญan hacer millones de platos de sopa. En concreto, saldrรญan 390 millones, como calcula Too Good To Go aplicando unas cuantas recetas a los 117 millones de kilos de verduras que acaban en el contenedor. Es un ejemplo concreto de un problema que tiene una escala mucho mayor, tanto en kilos como en alcance geogrรกfico. Ya en 2023 la consultora McKinsey estimaba que, de todos los alimentos que se producรญan en el mundo, acababa en la basura entre el 30 y el 40%. El problema estรก repartido por toda la cadena de valor y no se limita solo a lo que ocurrรญa una vez entraban en el hogar del consumidor.
Todo esto genera costes. Uno es el econรณmico. McKinsey seรฑalaba entonces que suponรญa unas pรฉrdidas de unos 545.000 millones de euros al aรฑo. Otro es el medioambiental, porque para producir esos alimentos que no se consumen se genera una huella de carbono que no tiene ninguna contrapartida positiva. Al tiempo, una vez que llegan a los vertederos se convierten en un problema nuevo, con una cuenta nueva de costes para el medio ambiente. Y a todo a ello hay que sumar la cuestiรณn social, ya que se estรก tirando comida en un planeta en el que todavรญa muchas personas pasan hambre.
Pero esto no es solo una cuestiรณn de sostenibilidad, de responsabilidad social corporativa o de los departamentos de innovaciรณn y logรญstica o de estrategia de negocio, tambiรฉn es una cuestiรณn en la que la tecnologรญa tiene mucho que decir. Entra ya dentro del รกmbito de influencia del CIO, aunque no siempre se tenga presente a primera vista cuando se abordan estas cuestiones.
โEse es el punto. No pensamos en tecnologรญa cuando el tomate se pone pocho, pensamos en la parte humanaโ, responde Antonio Dรญaz Otero, gerente de cuentas estratรฉgicas de Phenixย Espaรฑa, startup que trabaja en soluciones que reducen elย desperdicio alimentarioย en todos los eslabones de laย cadena alimentaria. Lo humano importa, pero tambiรฉn lo tecnolรณgico. La aproximaciรณn al problema es muy de procesos, โmuy ingenieril, por asรญ decirloโ, y requiere una estrategia TI que toque todas las fases, desde que el producto sale de la tierra hasta que el consumidor final lo tiene en su nevera. โHay que pensar a lo largo de la vida de ese producto, que va perdiendo valor. Se trata de extraer el mayor valor posibleโ, resume el experto.
La investigaciรณn de McKinsey ya advertรญa que se podรญa reducir el desperdicio entre un 50 y un 70% con una mejor metodologรญa, que tocase desde las mejoras de las tรฉcnicas de cultivo hasta la gestiรณn de los procesos de venta y los tiempos de llegada del alimento al consumidor final.
Phenixย
El papel de la tecnologรญa
Muchas compaรฑรญas han aplicado ya la innovaciรณn contra el desperdicio alimentario para perfilar mejores productos y convencer a la ciudadanรญa de su potencial, diseรฑando desde neveras a hornos mรกs innovadores hasta creando soluciones que permiten acceder a alimentos que estรกn ya en los lรญmites de su vida รบtil. Pero esta no es una revoluciรณn que toque solo al momento del consumo, sino que impacta tambiรฉn en las fases previas. La estrategia de TI permite optimizar procesos y reducir el desperdicio alimentario en la cadena de producciรณn.
โLa tecnologรญa hoy dรญa nos ayuda en dos niveles, preventivo y reactivoโ, confirman desde el equipo de Sostenibilidad de Nestlรฉ Espaรฑa. En el primero, usan โsoftware estadรญstico para mejorar la precisiรณn del forecastโ, lo que reduce โel sesgo humano y el optimismoโ para centrarse en lo que dice el histรณrico de datos, la estacionalidad y las tendencias y evitar asรญ la sobreestimaciรณn. En el segundo, monitorizan stocks en tiempo real. โEsto permite detectar productos que potencialmente podrรญan caducar y lanzar asรญ acciones rรกpidas, como promociones, para evitar que se conviertan en desperdicioโ, indican.
En resumidas cuentas, la tecnologรญa posibilita que las compaรฑรญas del sector puedan conocer mejor los procesos y saber quรฉ estรก ocurriendo, para tomar decisiones mรกs informadas y acertadas. Al aplicarla a las diferentes fases, se van atajando potenciales focos de desperdicio, desde la propia producciรณn a los procesos de venta.
En Nestlรฉ usan โsoftware estadรญstico para la previsiรณn y Power BI para anรกlisis y seguimiento de vida รบtilesโ y evalรบan incorporar inteligencia artificial โen los pronรณsticos de demanda y mejorar aรบn mรกs la precisiรณnโ. โNuestro objetivo principal al aplicar la tecnologรญa era abordar problemas muy concretos relacionados con el desperdicio alimentario a lo largo de toda la cadena de valorโ, explican. Asรญ, trabajaron primero la trazabilidad y la visibilidad de cada etapa, para lograr โanticipar con mayor precisiรณn situaciones que puedan derivar en pรฉrdidasโ. โEn segundo lugar, necesitรกbamos disponer de informaciรณn en tiempo real que nos permitiera comparar la previsiรณn de ventas con los niveles reales de stockโ, seรฑalan, para poder detectar quรฉ no se va a vender a tiempo y activar mecanismos que atajen que se convierta en un potencial desperdicio.
โEn conjunto, la tecnologรญa nos permitiรณ transformar un proceso tradicionalmente reactivo en un modelo predictivo y eficiente, en el que la toma de decisiones se adelanta a los problemas y reduce de manera significativa el desperdicio alimentarioโ, resumen.
โLa fรณrmula del รฉxito es un compendio de servicio y tecnologรญaโ, seรฑala Dรญaz Otero, que lista la automatizaciรณn, el procesado de datos y su analรญtica, la parametrizaciรณn de procesos, la estadรญstica avanzada, el anรกlisis continuo o la inteligencia artificial como las herramientas clave que ayudan a comprender quรฉ estรก ocurriendo. โLlegamos a ser como el canario en la minaโ, indica, ya que gracias a las TI se logra ver los problemas antes de que ocurran.
Y esto es especialmente importante en un sector, como es el de la alimentaciรณn, en el que los mรกrgenes pueden ser muy ajustados. Ocurre con la distribuciรณn, ya que los supermercados afrontan mรกrgenes muy bajos y lograr una buena eficiencia es clave para una mejor rentabilidad econรณmica. โEl diablo estรก en los detallesโ, recuerda el experto. Saber que algo va a caducar y darle vidilla a sus ventas o gestionar mejor los frescos (que son muy populares en Espaรฑa, pero tienen un ciclo muy corto) logra optimizar los datos econรณmicos. Un mix de tecnologรญa y buenas prรกcticas consigue una โmejora continuaโ.
El reto de la compliance normativa
La reducciรณn del desperdicio alimentario no tiene un impacto directo notable, todavรญa, en las decisiones de compra de la ciudadanรญa. De hecho, el I Estudio Triodos Bank Conductas sostenibles de la poblaciรณn espaรฑola concluye que se desperdicia aรบn muchos alimentos en los hogares espaรฑoles (y mรกs que se harรก en la campaรฑa navideรฑa) y que solo el 37,1% de las personas tiene en cuenta โel impacto ambiental y social de los alimentos que compra y consumeโ. Pero si aรบn no es un factor decisivo en cรณmo se ordena la cesta de la compra, sรญ es uno que la industria de la alimentaciรณn ha empezado a tener muy presente en los รบltimos aรฑos.
Dรญaz confirma que existe un interรฉs claro en estos temas. โLa situaciรณn ha cambiado radicalmenteโ, explica. Las empresas del sector se enfrentan a un โtsunami legislativoโ sobre desperdicio alimentario, que obliga de una manera o de otra a actuar. Aun asรญ, el experto insiste que esta es tambiรฉn โuna oportunidad para la mejoraโ.
Nestlรฉ
La Uniรณn Europea cuanta ya con una normativa que crea un marco comรบn, que no solo marca patrones de actuaciรณn contra el desperdicio alimentario sino tambiรฉn contra el textil. Este mes de septiembre, el Parlamento aprobรณ un paquete legislativo, que ha establecido objetivos vinculantes que tendrรกn que ser introducidos en las normas de cada uno de los Estados miembros antes del 31 de diciembre de 2030. En el procesamiento y fabricaciรณn de alimentos, se deberรญa reducir en un 10% el desperdicio. En โcomercio minorista, los restaurantes, los servicios de alimentaciรณn y los hogaresโ, serรก un 30%.
En el caso espaรฑol, se aplica tambiรฉn la Ley de Prevenciรณn de Pรฉrdidas y Desperdicio Alimentario, que obliga a prevenirlo y a dar salida a los excedentes (por ejemplo, con donaciones) antes de que se conviertan en simple basura. โLa tecnologรญa facilita el cumplimiento de la Ley 1/2025 de prevenciรณn del desperdicio alimentario en Espaรฑaโ, confirman desde Nestlรฉ, ya que les deja realizar mediciรณn y trazabilidad, ser proactivos, ganar transparencia, tener โflexibilidad escalableโ o crear planes de acciรณn automatizados. โEn conjunto, la tecnologรญa convierte la gestiรณn del desperdicio en un proceso predictivo, eficiente y conforme a la ley, garantizando reducciรณn de pรฉrdidas y cumplimiento normativoโ, indican.
Nuevos productos, nuevas oportunidades
El CIO y su departamento se convierten asรญ en una palanca para afrontar los retos del presente y lograr mejorar la eficiencia para ser mรกs sรณlidos de cara al futuro. Gracias a las tecnologรญas punteras, โse puede reducir bastanteโ el desperdicio alimentario, como confirma Dรญaz. En su caso, estรกn viendo una reducciรณn media del 50% en el primer aรฑo, que llega al 80% en algunos casos.
Pero, ademรกs, enfrentarse al desperdicio puede ser una palanca indirecta para la innovaciรณn. En el caso de los supermercados, especialmente en un mercado atomizado en el que hay compaรฑรญas de รกmbito regional mucho mรกs pequeรฑas que las grandes multinacionales, es el empujรณn para la digitalizaciรณn, con todo lo que esto abre. En paralelo, y mรกs de forma general para la industria, este conocimiento optimizado de lo que estรก ocurriendo en sus lรญneas de producciรณn permite encontrar potenciales nuevas ideas, mejorando el aprovechamiento de recursos. Nestlรฉ ha convertido los posos del cafรฉ de su fรกbrica de Girona en materia prima para biocombustible.
As enterprises accelerate their digital transformation journeys, they are facing a growing challenge around modernizing infrastructure while maintaining control, compliance, and performance across increasingly distributed environments. The convergence of IT and OT systems, historically managed in silos, can become key to unlocking new operational agility, real-time insights, and secure automation. However, with the creation of data shifting from centralized data centers to the edge, the conventional approach of implementing sovereign clouds may no longer work, and a new dimension of sovereignty is emerging that demands a fundamental change in cloud strategy.
In mission-critical use cases across aerospace, defense, industrial/manufacturing, energy, and healthcare, the stakes are high. These industries require infrastructure that not only meets performance and reliability standards but also complies with strict regulatory requirements. Traditional cloud models, built around centralized architectures, can fall short in delivering the regional autonomy and processing locality that are needed by these organizations.
Data everywhere, decisions at the edge
Todayโs enterprise environments will increasingly be influenced by data that is generated and processed at the edge, such as on factory floors, in remote installations, and across mobile platforms. This shift is driven by the need for low-latency decision-making, bandwidth efficiency, and operational resilience. AI, automation, and real-time analytics are fueling this transformation, making edge-native infrastructure a strategic imperative.
However, sovereignty now is no longer just about where data is stored. Itโs also about where data is processed and how decisions are made. Enterprises must now consider inference sovereignty (AI models processing sensitive data locally), operational sovereignty (autonomous systems complying with local laws), and telemetry sovereignty (governing metadata flows to central systems). These factors are reshaping how organizations design, deploy, and govern their cloud infrastructure.
The challenge: Fragmentation, compliance, and control
As industries look to the growth of the intelligent edge, enterprises will continue to face significant obstacles. These challenges include:
Fragmented IT/OT environments hinder visibility and automation.
Legacy systems resist integration with cloud-native platforms.
Regulatory requirements demand strict control over data residency and processing locality.
Vendor lock-in and opaque infrastructure limit flexibility and innovation.
Internal expertise gaps, slow adoption of edge-native architectures, and AI governance.
These issues are especially acute in industries where uptime, compliance, and security are non-negotiable.
The opportunity: Sovereign cloud at scale
To meet changing demands, enterprises are turning to private and hybrid cloud solutions that span core, edge, and far-edge environments. Sovereign cloud infrastructure enables organizations to maintain full control over data, workloads, and compliance, without compromising scalability or performance.
At Wind River, weโve architected our cloud platform from the ground up to support sovereign deployments. Our commercially hardened stack, Wind River Cloud Platform (based on the open source StarlingX), Wind River Analytics, and Wind River Conductor, empowers enterprises to enforce sovereignty policies not only over where data resides, but also over where and how it is processed, analyzed, and acted upon.
This ensures compliance, operational autonomy, and security across highly distributed, mission-critical environments. Sovereignty must extend seamlessly across core and edge, supporting unified deployments from the largest data center to the smallest, most remote facility.
The path forward: Strategy, technology, and partnership
To succeed, enterprises must take a structured approach. It will be important to unify IT and OT systems to enable seamless data flow and governance. They must plan to adopt cloud-native platforms that support containerized workloads and open interfaces. It will be helpful to deploy private/hybrid cloud infrastructure to balance control with scalability. Additionally, enterprises should look to implement edge-native solutions for latency-sensitive, mission-critical operations. Simultaneously, it will be essential to enforce sovereignty policies across data residency, processing locality, and AI inference governance.
And just as important, companies must choose the right partners, such as technology providers with deep expertise in intelligent edge, cloud-native software, and mission-critical deployments. Sovereign-ready platforms, like those from Wind River, offer the flexibility, transparency, and control needed to build cloud infrastructure on your own terms.
As the next wave of innovation moves to the edge, sovereignty can be critical to enterprise success. Those who embrace this shift will be better positioned to lead in a world where control, compliance, and confidence are not optional but essential.
Start Yourย Sovereign Cloud Journey
From edge to core, Wind River enables unified, scalable, and consistent operations โ wherever data resides. Build, manage, and secure your cloud infrastructure today with Wind River. Learn more at: https://www.windriver.com/products/sovereign-cloud
About the Author
Sandeep Modhvadia
Chief Product Officer
As Wind River Chief Product Officer, Sandeep Modhvadia is responsible for driving product strategy and product management, playing a critical role in Wind Riverโs leadership advancing the software-defined future of mission-critical systems.
He has over two decades of technology and product management experience. Most recently at Acuity Brands, he led product management for its cloud software business as part of the Intelligent Space Group, focused on sustainability, automation, and optimization of buildings. Before Acuity, he founded and led the product and solutions team for the Google Cloud Automotive and Manufacturing group, launching its platforms for connected vehicles and connected factories. Prior to Google, he held multiple product, sales, and marketing leadership positions at Microsoft.
He holds a BSc degree in computer science from University College London.
As CIOs enter 2026, the urgency surrounding AI adoption andย data sovereigntyย has reached a critical turning point. Artificial intelligence is now embedded in every strategic conversationโfrom operational efficiency to board-level riskโand data sovereignty has become the linchpin of regulatory readiness, security posture, and competitive differentiation. The question is no longer whether to pursue AI-driven transformation. Itโs how to do so with enough speed, compliance, and architectural integrity to keep pace with an increasingly volatile digital landscape.
Why speed to sovereignty matters
Industry research reveals a striking pattern. While 95% of enterprise leaders plan toย build their own AI and data platformwithin the next thousand days, only 13% are currently on track. Those who are succeeding are realizing up to five times the ROI of their peers, largely because they have established sovereign, AI-ready foundations that unify data, governance, and operational control.ย
With sovereignty now a proxy for resilience, hundreds of enterprises will make this foundational decision every day over the next 1,000 days. The value is clearโand the gap between those who act quickly and those who delay will widen rapidly. You canย assess your own readinessย in 15 seconds to understand where you stand.ย
The forces increasing the pressure on CIOs
CIOs today face a convergence of challenges that elevate sovereignty from a strategic initiative to a missionโcritical requirement. Most organizations are burdened by fragmented data estates spanning legacy systems, multiโcloud deployments, and siloed analytics environments, each of which hinders AI readiness.ย
At the same time, global regulatory mandatesโincluding the EU AI Act, U.S. Executive Orders, and increasing data localization requirementsโdemand transparent, governed, and explainable AI systems. These regulatory demands come on top of talent bottlenecks: Some sources estimate that globally,ย AI-talent demandย exceeds supply by more than 3:1.ย
Finally, many enterprises are moving away from the old model of โmove data to AIโ toward โbring AI to governed data,โ embedding models and inference engines directly inside controlled, compliant environments, reducing exposure and accelerating outcomes.
A 120-day path to data and AI sovereignty
To respond to these pressures, forwardโleaning enterprises are adopting a structured 120-day path that delivers fast, stable, and compliant AI readiness:
Days 0โ30:ย Establish a unified AI and data foundation capable of connecting major data sources, enforcing consistency, and enabling analytics without excessive data movement.
Days 30โ90:ย Introduce governance and policy controls, including encryption, lineage, auditability, and regulated access frameworks.
Days 90โ120:ย Begin secure AI operationalization by integrating model preparation, vector indexing, inference pipelines, and hybrid-cloud controls within the governed perimeter.
This rapid cadence shifts sovereignty from aspiration to reality and enables enterprises to compete in the agentic AI era.ย
The CIOโs four sovereignty challengesโand how leading organizations are solving them
As organizations accelerate their AI roadmaps, four challenges consistently define the maturity curve:
Modernizing legacy systemsย without disrupting mission-critical applications
Achieving unified hybrid orchestrationย across on-premises systems, multiple clouds, and edge environments
Automating data preparation and AI lifecycle managementย so adoption does not overwhelm IT operations
Upskilling teamsย in vector search, embedding pipelines, hybrid operations, and autonomous AI operations
Enterprises overcoming these barriers are investing in unified architectures, intelligent automation, and continuous capability development.
From foundation to long-term advantage
Establishing sovereign AI and data foundations is not merely a compliance exercise; it is a longโterm competitive strategy.ย EDBโs findingsย show that the โDeeply Committedโ 13% are not just experimentingโthey are unlocking scalable AI and data platforms that yieldย 5x the ROI.
Such foundations enable enterprises to:
Scale securely in hybrid environmentsย
Adapt quickly to evolving regulations and market demandsย
Maintain operational continuity and resilienceย
This is the architecture of the next decade of advantage.
The bottom line for CIOs
2026 will be the inflection point for AI and data, and sovereignty is the operating model of this era. Competitive pressure is generating a widening innovation gap between leaders and followersโup toย 87% of enterprises risk falling behindย if they do not commit.
Enterprises that build governed, AIโready foundations within months rather than years will lead the next wave of technological and competitive transformation. In 2026, sovereignty delivered at speed is the bedrock of innovation, resilience, and sustainable advantage.
Organizations face rising pressure to deliver measurable results from technology investments. Yet, despite expanding their software portfolios, many struggle to realize their full value. Fragmented systems, siloed data, and isolated AI efforts often stall transformation. The real opportunity lies inย uniting these investments into a connected ecosystemย that powers daily operations while unlocking new levels of agility, resilience, and growth.
SAP helps companies derive business value withย SAP Business Suite,ย our integrated offering of SAP business applications, data, and AI, all powered by the underlyingย SAP Business Technology Platformย (SAP BTP). The combined power of integrated applications, harmonized data, and AI provides customers with a transformation engine that creates a cycle of innovation and improvement. It enables access to real-time data insights, streamlined and integrated workflows, consistency across processes, collaboration, and enhanced market responsiveness.
SAP
Transforming technology spend to business outcomes
In July 2025,ย IDC published a whitepaperย to understand and report the business value that current SAP customers get from their use of SAP BTP in conjunction with key SAP business applications, specificallyย SAP Cloud ERP,ย SAP SuccessFactors, andย SAP Intelligent Spendย including SAP Ariba. IDC interviewed 15 SAP customers who use SAP BTP in conjunction with SAP S/4HANA, SuccessFactors, or Ariba.
The findings revealed that organizations using SAP BTP benefit from significant improvements in operational quality and efficiency, developer productivity, data-driven decision-making, and business agility.ย In fact, on average, interviewed organizations reported achieving annual benefits worthย $13.88 millionย per organization ($259,400 per 1,000 employees) in the following areas.
Application development and automation benefits
Interviewed organizations using SAP BTP reported a 164% increase in SAP application extensions, delivered 41% faster. On average,ย SAP Build, SAP BTPโs unified application development and process automation solution, enabled development teams to achieve 46% higher productivity. With integration across SAP and third-party systems, customers can rapidly develop custom applications and automate core business processes such as onboarding, compliance tracking, and spend management. IDC reported customers saying:
SAP
Foundation for impactful new customer-facing solutions (SAP S/4HANA):
โOur smart metering wouldnโt have been possible without SAP BTP. We even use AI integrated with S/4HANA Customer Service to classify and route customer inquiries based on metadata and sentiment, which would not have been feasible without SAP BTP.โ
Flexibility of low-code environment for specific functionalities (SAP Ariba):
โSAP BTP helps with integrations to some of our other systems, ensuring master data consistency. Also, SAP BTPโs low-code environment empowers different departments to build micro-apps that help manage spending more effectively than before.โย
Integration benefits
SAP BTPโs single, scalable AI assisted integration solution,ย SAP Integration Suite, unifies fragmented data and applications, enabling real-time connectivity across SAP and third-party systems. Study participants reported a 29% efficiency gain for teams managing business processes and a 43% faster resolution of process errors, as integration and automation reduced manual effort. With a unified integration layer, organizations gain real-time analytics, improved collaboration, and faster decision-makingโturning complexity into operational efficiency and innovation. IDC reported customers saying:
Ease of integrating SAP Ariba to broader SAP ecosystem (SAP Ariba):ย
โOne of the most valuable aspects of SAP BTP has been its ability to integrate Ariba with S/4HANA โฆ without SAP BTP, the integration would have taken significantly longer and required more resources.โ
Compliance benefits from automation (SAP SuccessFactors):ย
SAP
โWeโve automated the management of high-risk licenses with SAP BTP, simplifying the process of tracking qualifications and training for our transient workforce. This saves time and ensures compliance.โ
Platform benefits
IDCโs research shows that SAP BTP delivers platform-wide benefits that strengthen performance, resilience, and business impact across SAP environments. Improved integration, monitoring, and automation reduced unplanned downtime by 90% on average. In fact, study participants completed 187% more innovative projects, delivered 44% faster. These gainsโspanning reliability, innovation, and agilityโenabled faster decision-making, improved customer experiences, and new revenue opportunities, while driving cross-functional value for both IT and business teams. IDC reported customers saying:
Foundation for positive interactions with customers (SAP S/4HANA):ย
โWe use SAP BTP integrated with S4/HANA customer service to classify and give metadata on customer questions and emails. We even have information about customer moodโare they mad?โthen that gets more urgency. None of this would be possible without SAP BTP.โย
SAP
Foundation for real-time decision-making (SAP Ariba):ย
โBefore SAP BTP, our data modeling process took so long that we relied on more static, snapshot-style analysis rather than a continuous stream of data. Now, with SAP BTP providing real-time data updates and forecasts, users can make decisions with more information at their fingertips.โ
SAP
SAP application optimizationย benefits
Study participants reported significant application-specific benefits from using SAP BTP across SAP Cloud ERP, SAP SuccessFactors, SAP Intelligent Spend, and SAP Ariba. On average, IDC calculated customers will realize three-year benefits worth $32.68 million per organization ($610,500 per 1,000 employees), with total three-year investment costs of $5.31 million per organization ($99,200 per 1,000 employees) based on a net-present value financial calculation. These benefits and costs would yield an average three-year ROI of 516%, with payback happening on average, after eight months, demonstrating the significant value they are realizing by using SAP BTP. IDC reported customers saying:
Cost savings through better understanding of spending:ย
โSAP BTP with SAP Ariba helps us manage our vendor relationships and monitor how much money weโre spending, ensuring weโre not duplicating capabilities with vendor spend. Additionally, it allows us to take advantage of early pay discounts and other cost-saving opportunities.โ
SAP
Get started today
Customers who unite their investments into a connected ecosystem of applications, data, and AI unlock new levels of agility, resilience, and growth. SAP BTP achieves this for SAP Business Suite and is intentionally engineered to integrate, automate, extend, and build AI-powered business applications and processes across the enterprise.ย Read dozens ofย customer examples, across all sizes and industries, who are using SAP BTP to unlock innovation together with their SAP Business Suite applications.ย
And ifย youโre inspired to learn more, get started today with the following resources:ย
Compliance is no longer the brake on digital transformation. It is the steering system that determines how fast and how far innovation can go. In sectors such as healthcare, insurance, manufacturing, and banking, regulation defines how fast and how far innovation can progress. When compliance becomes an architectural principle rather than a procedural constraint, it transforms from a cost center to a competitive edge.
But in the past decade, leading enterprise transformation across these industries, Iโve learned that compliance isnโt the enemy of innovation. Itโs the foundation of digital confidence. When handled strategically, compliance can evolve from a passive checklist into an active driver of resilience, trust and growth.
The enterprises that thrive in todayโs regulated world share a common trait: they design their technology, data and culture to make compliance an enabler, not a barrier.
The compliance paradox
Across regulated industries, the paradox is striking. Regulations grow more complex each year, yet the demand for agility and innovation grows just as fast.
In healthcare, HIPAA, FDA and CMS guidelines shape how patient data flows and how AI models can be used in clinical or administrative decisions.
In insurance, frameworks such as NAIC, SOC 2 and emerging state-level data protection acts determine how claims, underwriting and member engagement systems are designed.
In manufacturing, ISO standards and environmental disclosures require traceability across the entire production lifecycle.
And in banking, AML, KYC, Basel III and now AI-model-risk rules require transparency at every level of algorithmic decision-making.
Each industry has its own acronym soup of regulation, but the underlying challenge is the same: enterprises must prove what they know, how they know it and how responsibly they use it. For CIOs, this means leading ecosystems that are innovative, interoperable and fully auditable simultaneously.
From burden to differentiator
In one large healthcare transformation I led, the audit process for claims and provider data reconciliation took more than a month and consumed hundreds of manual hours. By embedding audit trails directly into workflow engines and metadata layers, we reduced preparation time by 70% and achieved complete transparency for regulators and internal reviewers.
This experience reinforced a key lesson: compliance should be built into the architecture, not appended after deployment.
Iโve seen similar results in other sectors.
In insurance, predictive underwriting models were facing long delays due to regulatory explainability reviews. We built an AI governance layer that automatically tracked model lineage, dataset evolution and decision thresholds. The review cycle was shortened from six weeks to two and the same system later became the benchmark for model transparency across the enterprise.
In manufacturing, a digital twin initiative used IoT data to monitor production quality. Initially designed for efficiency, it later became the foundation for audit-ready traceability; every material change, machine calibration and test record became part of a verifiable digital thread.
And in banking, Iโve seen model-risk governance evolve from compliance paperwork into real-time dashboards. These systems can generate โtrust reportsโ visualizing every variable used by credit or fraud models and making them defensible before regulators even ask.
These examples prove a point: compliance, when operationalized, becomes a differentiator. It transforms oversight into foresight.
Why the mindset must shift
Technology rarely fails because of a lack of innovation. It fails when organizations lack the governance maturity to scale innovation responsibly.
Too often, compliance is viewed as a bottleneck. Itโs a scalability accelerator when embedded early.
The shift begins when leaders see compliance not as external policing but as internal assurance. A well-designed governance framework turns regulation into predictability. Predictability, in turn, builds trust, and trust is what enables adoption at scale.
In one cross-industry transformation roundtable I facilitated, a manufacturing CIO said something that stayed with me: โCompliance doesnโt slow us down. It prevents us from having to stop.โ That insight captures the new reality. In regulated industries, digital maturity is measured not by how quickly you deploy AI, but by how confidently you can defend and explain it.
Governance as a growth engine
When governance and compliance converge, they unlock a feedback loop of trust. Consider a payer-provider network that unified its claims, care and compliance data into a single โtruth layer.โ Not only did this integration reduce audit exceptions by 45%, but it also improved member-satisfaction scores because interactions became transparent and consistent.
In manufacturing, integrated governance platforms now allow plant managers to monitor non-conformance trends and compliance risks in real time. Instead of waiting for a quarterly audit, teams can act within hours, preventing both downtime and regulatory penalties.
In banking, machine-learning models for AML detection can now explain why a transaction was flagged, not just that it was. This explainability builds regulator confidence, which in turn accelerates approval for new AI-based risk tools.
The pattern is consistent: when compliance data feeds into operational decision-making, it creates a growth multiplier. Transparency isnโt just a legal requirement; itโs a market advantage. When governance and compliance share data pipelines instead of separate dashboards, they move from passive monitoring to active performance management, transforming risk control into business acceleration.
The CIOโs leadership imperative
No transformation from compliance to confidence happens without leadership alignment. The CIO sits at the intersection of technology, policy and culture and therefore carries the greatest influence over whether compliance is reactive or proactive.
Here are four imperatives every CIO in a regulated enterprise should champion:
1. Treat governance as architecture, not administration
Governance is not documentation. Its design. CIOs must ensure that auditability, traceability and explainability are engineered into systems from day one.
For example, instead of creating external audit logs, modern architectures can use blockchain-based or immutable metadata records to self-document every change. In my experience, systems built this way reduce compliance reporting time by 40โ50% while improving internal confidence in data quality.
2. Unite data, risk and compliance under a single operating model
Many enterprises still treat compliance as a department instead of a discipline. The CIO must align data governance, risk management and IT controls into one cohesive framework.
Cross-functional governance councils that include compliance officers, business heads and data owners help make compliance a shared accountability not an afterthought.
3. Humanize compliance through transparency
Technology maturity alone is not enough. The workforce must trust the system. When employees understand how AI or analytics systems make decisions, they become more confident using them.
In one insurance contact center, we trained representatives on how the AI recommendation engine worked. Within two months, adoption rose 37% and call-resolution accuracy improved significantly. Transparency builds human alignment.
4. Champion ethical AI as the next compliance frontier
AI ethics is no longer philosophical; itโs operational. The CIO must ensure algorithms are tested for fairness, bias and explainability before deployment. Tools like Googleโs What-If Tool and IBMโs AI Fairness 360 provide practical methods for continuous assurance.
As regulatory frameworks like the EU AI Act and US Algorithmic Accountability Act evolve, ethical compliance will define enterprise reputation. CIOs who prepare early will not just pass audits theyโll earn stakeholder trust.
Measuring Progress: CIOs should define success not only by audit completion rates but by trust readiness metrics, for example, governance-maturity scores, audit-cycle speed or AI-model explainability indexes. These indicators convert compliance from a legal requirement into a performance KPI, signaling to boards and regulators that trust is being operationalized.
Ultimately, the modern CIOโs role extends far beyond systems integration. Itโs about trust integration connecting people, policy and platforms under a single banner of accountability.
From compliance to confidence
Confidence is not the absence of regulation; itโs mastery of it. A confident enterprise doesnโt fear audits because its systems are inherently explainable. It doesnโt delay innovation because its teams understand how to govern data responsibly. It doesnโt treat compliance as a paperwork exercise; it sees it as a performance framework. Consider what โconfidenceโ looks like across industries:
In healthcare, itโs the ability to trace every AI-supported clinical recommendation back to source data.
In insurance, itโs the assurance that pricing or claim decisions can be justified algorithmically.
In manufacturing, itโs having a digital thread that ties every product to its quality, safety and sustainability metrics.
In banking, itโs demonstrating that customer risk models are explainable, unbiased and resilient under regulatory scrutiny.
Confidence grows when leadership builds systems that are transparent by design, not by request.
ย This shift is gaining policy traction worldwide. The EU AI Act requires enterprises to maintain verifiable documentation on AI systemsโ training data, bias tests and human oversight. Similarly, the proposed U.S. Algorithmic Accountability Act pushes organizations to conduct regular impact assessments. Together, these frameworks formalize what leading CIOs already practice: governance as a continuous, auditable process rather than a reactive audit cycle.
According to Deloitteโs 2025 outlook, 70% of CEOs in regulated industries now see โdigital trustโ as a direct growth lever. Companies that combine compliance automation with clear governance frameworks experience 20% higher stakeholder trust ratings and outperform peers on market reputation. In practical terms, moving from compliance to confidence means:
Embedding trust checkpoints into product development life cycles.
Establishing AI assurance frameworks that test every model for fairness, accuracy and auditability.
Building explainable data architectures where every decision is traceable.
Creating a culture of shared accountability between compliance, data and product teams.
The result is not just regulatory alignment, itโs operational resilience and reputational strength.
The future of regulated transformation
As AI reshapes every sector, regulation will continue to evolve faster than technology stacks. Enterprises that succeed will be those that internalize compliance as part of their DNA.
In healthcare, this means using AI responsibly to support clinical and administrative workflows. In insurance, it means linking predictive analytics to transparent customer journeys. In manufacturing, it means aligning IoT and sustainability reporting under one trusted data fabric. In banking, it means moving from algorithmic opacity to algorithmic accountability. The future will belong to organizations that govern as they innovate.
CIOs are at the epicenter of this shift. CIOs are now the custodians of digital trust, responsible not only for running systems but for ensuring that every line of code and every algorithm earns confidence from regulators, customers and employees. The real competitive edge in a regulated world isnโt speed or scale. Itโs trust engineered through transparency and sustained by governance-driven leadership.
This article is published as part of the Foundry Expert Contributor Network. Want to join?
Caught between change and stability, many companies find themselves hesitating on how to square the two. The pace of change is increasing in the age of AI, and the weight of making inspired choices has only become more critical. GS Caltex, one of Koreaโs leading refining companies, faced the same dilemma and recently embraced a new guiding principle of good risk taking โ a phrase reportedly often heard in GS Caltex meetings, and initially proposed by company CEO Hur Sae-hong. โOnce the word โgoodโ was added to โrisk-taking,โ a culture began to spread where people are willing to attempt any challenge,โ says CIO, CDO, and DX Center head Lee Eunjoo.
Amid growing uncertainties around crude oil prices and product demand, intensifying competition over production scale, and demographic decline, the value of good risk taking is pushing the company to pursue new opportunities and innovation. And a changing mindset is reshaping the organization from within.
The AI platform changing the enterprise
Even without any top-down mandate, itโs common at GS Caltex to see not just IT but LOB teams in production, sales, finance, legal, PR, and HR building and using AI agents in their day-to-day work. Finance, for instance, recently built an FAQ agent and asked Leeโs team to review it. โItโs incredibly rewarding to see employees actively using the new technologies provided by the DX Center.โ
So far, theyโve created more than 50 agents, including ones that support pre-job safety briefings for partner company staff, review crude oil purchase contracts, automate a complex medical expense reimbursement process, and automatically classify and analyze gas station customer feedback.
All of these agents were developed on AiU, the companyโs in-house gen AI service platform launched in June this year, which combines AI with yu, the Korean word for oil, and is also a play on โAI for you,โ reflecting its role as AI tailored to each employee.
Lee says AiU is the clearest expression of the companyโs approach to transformation. โItโs not just about DX anymore but DAX, combining digital with AI transformation,โ she says. โFrom our production sites to headquarters, weโre rolling out initiatives that let every employee experience it all side by side. Thatโs how weโre reshaping ourselves into an energy company that uses AI broadly and with confidence.โ
A secret to its rapid success is because no one feels pressured to build a perfect agent. โPeople are much more willing to try things and experiment,โ says Lee. From the DX Centerโs standpoint, that mindset has made it possible to support a growing number of AI projects with a relatively small team. โPlus, the AiU playground lets employees build and test agents themselves, which makes AI feel far more approachable and familiar in their day-to-day work,โ she adds.
An AI agent platform might sound like something only developers can use, but AiU is designed so non-experts can easily work with it. The experience isnโt very different from ChatGPT as GS Caltex deliberately embedded AiU into the side of core business systems that employees check every day, so theyโd naturally encounter and use AI in their daily workflows. Even if they donโt build agents themselves, employees can still ask the AI questions using internal company data, and search across both external information and internal systems at once.
Itโs only been a few months since AiU officially launched, and around 85% of employees are now regular users, and nearly the entire workforce has tried it at least once. โMost of our production and technical staff work in a mobile-only environment without desktops,โ Lee says. โThe fact 95% of them have already used AiU shows just how fast the platform is spreading.โ
Sowing seeds of success
AiU drew strong interest from employees even during its pilot stage. The DX Center began discussing AI service adoption in 2023, and in 2024, the team built a pilot service on AWS in just a few days. Although it was an early version with only basic UI, more than 300 employees participated and shared the features and requirements they needed. This underscored just how many people were eager to bring AI into their work.
Through this pilot, the DX Center was able to clearly identify what kinds of problems employees wanted to solve with AI, and which capabilities they needed most. The team then considered whether to adopt an external solution or develop one in house. In the end, they chose to build on MISO, the AI transformation platform developed by the GS Group, and add GS Caltexโspecific capabilities on top. The entire development took about six months.
In designing AiUโs technical architecture, Lee focused most heavily on minimizing dependence on any single LLM. The platform supports multiple models that employees can choose from, including OpenAI and Anthropic.
โAI moves incredibly fast, so we built the system in a way that lets us easily plug in better technologies as they come along,โ she says. โThe AI layer will keep changing, but the internal data and applications underneath it will remain our core assets, which is why weโve focused on strengthening the underlying infrastructure. Thatโs where our DAX philosophy โ advancing digital and AI transformation together โ comes into play.โ
But AiU has done more than speed up AI adoption. Itโs also put new life into existing systems. GS Caltex already had an internal enterprise search platform, but over time, its accuracy and usability declined, and usage dropped. AiU stepped in to augment that system with AI. Employees can now search M365 documents, work rules, and HR information in one go, and have the results summarized for them by the AI.
โAll we really did was layer AI on top of what we already had to make it a little easier to use,โ Lee says. โBut in the end, that AI layer ended up reviving a service that was close to being forgotten.โ
The growth engines behind the projects
Rolling out and scaling new IT technologies like AI across an entire organization isnโt easy. Itโs common to see transformation stall at the slogan stage, held back by resistance to new tools or the simple reality that people are too busy to change how they work.
GS Caltex, however, has avoided treating DX as a one-off initiative. Instead, the company has built three pillars to sustain company-wide change over the long term: culture, performance management, and education.
The first step was to build a bottom-up DX culture. Traditional IT projects often begin with large-scale planning, writing RFPs, and selecting external vendors โ a process so long that customer needs frequently change before anything goes live.
GS Caltex chose a different path: a fast-execution model focused on solving customer needs in real time. Even a small app or a single dashboard is recognized as DX, and each attempt is treated as valuable. One example is an app that automatically collects and organizes external news, built by a frontline business team not the IT department.
As these small wins accumulated, a voluntary culture of digital innovation took root. Since the establishment of the DX Center in 2019, GS Caltex has carried out hundreds of projects this way.
Behind this transformation is a high level of organizational acceptance. No matter how well something is built, if colleagues donโt respond favorably, it doesnโt advance. That hasnโt been a problem at GS Caltex, though, largely due to the embedded good risk taking philosophy.
โDX inevitably involves a certain level of risk,โ says Lee. โFor good risk taking to really work, you need to understand the level of risk and have leaders actively backing it. We have that kind of culture in place.โ
After joining GS Caltex, Lee learned a new approach to positive communication. Rather than focusing on fixing problems, the company emphasizes recognizing small achievements, celebrating them together, and then building on that foundation to find areas to improve. โIโve personally experienced the value of a positive feedback culture,โ she says. โA culture that openly recognizes achievements has become a natural driving force encouraging frontline employees to participate in DX.โ
This philosophy has been embedded into reward and performance management systems, including a performance innovation committee, which selects outstanding DX projects initiated by business teams and presents awards. And presentations are delivered not by team leaders but by the frontline employees who actually led the work. The monthly selected cases are then published on the companyโs internal website, making sure their contributions are visibly acknowledged.
These practices give other employees confidence to do the same, and thus fuels wider voluntary participation. The committee also actively shares failure cases. By openly discussing what was attempted in each project and what could be improved, the company aims to turn failure into an opportunity for learning.
Lee says that GS Caltex only recognizes outcomes that can be proven in financial terms. Common IT metrics such as conversion rates or click-through rates, often used as proxy indicators, arenโt treated as final measures of success. Instead, the company tracks more meaningful indicators such as productivity gains that drive innovation, cost reductions, and improvements in customer satisfaction. These results are all centrally managed through the company-wide performance management system.
But itโs education that the DX Center prioritizes most. Rather than relying on a small group of experts, GS Caltex has chosen a strategy of cultivating hundreds of frontline DX specialists and sees strong results. The more business-side DX experts there are who can use digital tools to directly solve on-site problems, the faster digital adoption spreads. So once technology takes hold in the field, the DX organization provides the necessary development environment and additional support.
This training initiative, called the digital academy, runs as full-day programs ranging from a single day up to three months. It focuses on reskilling and deepening professional expertise to develop DX talent. The curriculum includes low-code developer tracks and in-house DX expert courses, enabling frontline employees to learn technologies themselves and apply them directly to their work. Topics include RPA, Tableau, Python, AI, and data science. Most notably in recent months, every executive has gone through gen AI training themselves, setting the tone from the top and actively championing a culture of continuous learning.
From IT support to proactive DX engine
Two years into her tenure, Lee is now reimagining how DX governance works. Historically, the DX organization operated in reactive mode, fielding requests from business units as they came in. Now, itโs flipping the script. That means taking the lead on company-wide DX priorities, vetting technologies for maturity and feasibility, and consolidating redundant projects.
One clear target is to streamline the system portfolio. Lee also plans to retire underutilized systems and those where operating costs outweigh the value they deliver, cutting waste while boosting efficiency.
At the same time, GS Caltex is leaning into global outsourcing. The company is building a distributed operations model, partnering with offshore teams not just for IT infrastructure, but for internal systems spanning HR, procurement, legal, and beyond. The savings are being funneled back into critical areas, like bolstering disaster recovery capabilities to strengthen business continuity, and reinforcing the DX foundation to deliver more reliable support across the organization.
AI, of course, remains a top priority, and internal demand is surging. โEmployees, especially senior leaders, want services that pull together even more data,โ Lee says. โDown the road, Iโd like AiU to evolve to the point where you can ask whatโs been happening with a particular customer lately, and instantly get a unified view of what division A is working on, what division B needs, and live customer inquiries all in one snapshot.โ
La campaรฑa de Navidad ha sido el tradicional motor econรณmico para muchos sectores, que veรญan cรณmo se concentraba en ese perรญodo el grueso de sus ventas. Ahora, la Navidad sigue siendo altamente relevante, pero el perรญodo de ventas arranca antes y se ha hecho mรกs complejo. Si hace un par de dรฉcadas nadie celebraba en Espaรฑa (y en Europa en general) el Black Friday, ahora es uno de los momentos candentes del aรฑo. Es uno de los grandes dรญas de consumo.
Un estudio de Ipsos para Amazon concluye que el 72% de la poblaciรณn espaรฑola adelantarรก sus compras navideรฑas al Black Friday y otro de la OCU que el 78% de la ciudadanรญa acabarรก haciรฉndose con algรบn producto. El gasto medio oscila, tomando los baremos que dan las diferentes estimaciones, en una horquilla que va de los 201 a los 230 euros. Se comprarรก mucho y se someterรก a los sistemas a mucho estrรฉs, de ahรญ que el Black Friday no solo importe a los departamentos de marketing y ventas. Tambiรฉn lo hace para el CIO.
Las compaรฑรญas lo tienen cada vez mรกs en cuenta. โLa concienciaciรณn ha aumentado muchoโ, explica Stefan Kรผhn, especialista en documentaciรณn informรกtica de FNT Software. โCada aรฑo vemos en las noticias interrupciones del servicio muy sonadas y las empresas comprenden el daรฑo financiero y reputacional que estos incidentes pueden causarโ, suma. Y, โaunque hay margen de mejoraโ, las empresas se preparan antes y con mรกs conciencia de lo que se les viene encima. โLa resiliencia del Black Friday no se construye en noviembreโ, advierte Kรผhn. Lo ven quienes lo observan desde fuera, como las empresas que les dan servicios, pero tambiรฉn los CIO que lo trabajan desde dentro.
Un trabajo de meses
โCada preparaciรณn de Black Friday subes un peldaรฑoโ, sintetiza Kiko Leรณn Barroso, CIO de IskayPet. โCasi empiezas a prepararlo al dรญa siguiente de haber terminado el aรฑo anterior, cuando haces un anรกlisis posmortem con los aprendizajesโ, indica. El trabajo supone meses de ajustes, mejoras y refuerzos. En Amazon, revisan y analizan en verano, intensifican pruebas en otoรฑo y se ponen en mรกximos las semanas previas, โendurecemos la seguridad, congelamos cambios de alto riesgo e implementamos las mejoras que han superado todos los controlesโ, apunta Merce Mariรฑo, directora de Tecnologรญa de AWS Espaรฑa.
Los sistemas TI deben afrontar una avalancha. โBlack Friday es, junto con Prime Day, uno de los mayores picos del aรฑoโ, confirma Mariรฑo, que habla de โmillones de sesiones, realizaciรณn de pedidos y publicaciรณn de ofertas, ademรกs de las operaciones de inventario y logรญsticaโ.ย Es, ademรกs, el pistoletazo de salida para unas semanas muy intensas. ยฟSe puede esperar un momento de descanso tras el viernes de compra? โEn la prรกctica, no. Las campaรฑas se encadenan y la continuidad operativa es permanente: Black Friday, Cyber Monday y la campaรฑa navideรฑaโ, explica Sergio Peinado, CIO-director de Transformaciรณn Digital y Tecnologรญa en Ontime. โLa mayor transformaciรณn no ha sido solo tecnolรณgica, tambiรฉnย cultural. El โpicoโ ya no es una excepciรณn, sino parte del modeloโ, suma.
โEl โpicoโ ya no es una excepciรณn, sino parte del modeloโ, reconoce el CIO de Ontime, Sergio Peinado
Los grandes retos del Black Friday
Todo esto convierte a la campaรฑa de Black Friday en un momento de elevada exigencia, en la que se juegan demasiadas papeletas para afrontar una sobrecarga tรฉcnica.
ย โLo que suele fallar primero no es un servidor o una base de datos especรญficos. Es la falta de visibilidad sobre cรณmo estรก todo conectadoโ, indica Kรผhn. Ese el talรณn de Aquiles de las empresas, ya que lleva a que el personal TI tenga โdificultades para comprender de dรณnde proviene el cuello de botella, cรณmo dependen los componentes entre sรญ o quรฉ efectos secundarios podrรญa tener un cambio rรกpidoโ. โSegรบn mi experiencia, el verdadero punto dรฉbil no es la tecnologรญa en sรญ, sino la ausencia de una visiรณn clara y unificada de toda la infraestructuraโ, seรฑala.
Peinado suma que โlo mรกs difรญcil no es la tecnologรญa, sino la gestiรณn de la incertidumbreโ. โEs una combinaciรณn de volumen, incertidumbre y criticidadโ, explica.
Por tanto, la estrategia mรกs eficiente pasa por prevenir antes que curar, testear mucho y dejar todo bien atado antes de que llegue el momento de enfrentarse al frenesรญ de compras. Mariรฑo explica que hacen pruebas de carga y simulaciones de estrรฉs con las que analizan el estado de sus rutas crรญticas. โSi algo no alcanza el objetivo, se refuerzaโ, indica. โAdemรกs, contamos con planes de โdegradaciรณn eleganteโ: si un componente โno esencialโ sufre, la plataforma prioriza la disponibilidad y el checkout para mantener el flujo de compraโ, suma.
Al final, la tecnologรญa debe conseguir obrar casi algo digno de magia, que en el momento en el que los sistemas afrontan una avalancha de consumidores todo funcione sin problemas. โLo mรกs complejo es lograr que, aun con un trรกfico muy superior al habitual, la experiencia โse sienta normalโโ, seรฑala Mariรฑo. โEl objetivo es que, aunque por detrรกs haya diez veces mรกs actividad, el cliente navegue, aรฑada al carrito y pague con la misma fluidez de un dรญa cualquieraโ, aรฑade. Ellos usan una โarquitectura elรกstica y distribuidaโ. โAquรญ entran en juego el CDN para contenido estรกtico y dinรกmico (Amazon CloudFront), el balanceo inteligente de carga (Elastic Load Balancing) y el autoescalado en compute (Amazon EC2 Auto Scaling, AWS Fargate sobre ECS o EKS para contenedores)โ, indica, reforzando tambiรฉn la respuesta de sus bases de datos para que sobrevivan a los picos.
โLa tecnologรญa debe conseguir obrar casi algo digno de magia, que en el momento en el que los sistemas afrontan una avalancha de consumidores todo funcione sin problemasโ, Merce Mariรฑo, directora de Tecnologรญa de AWS
La presiรณn se nota en el canal online, pero tambiรฉn en las tiendas fรญsicas. Allรญ el personal de tienda debe gestionar ese aumento de ventas, pero para ello necesitan que la tecnologรญa les dรฉ respuesta. Leรณn Barroso explica que, mรกs allรก de lo que el cliente directo ve, estรก todo lo que cubre lo que no se ve, desde el cloud a los sistemas de envรญos de mensajes de marketing pasando por la logรญstica que permitirรก sincronizar ventas en los diferentes canales y llevar los productos al comprador final. Predecir a quรฉ se va a enfrentar su almacรฉn ayuda a que luego pueda โfuncionar con su productividad habitualโ.
โLas herramientas clave no son las mรกs sofisticadas, sino las que dan visibilidad, control y capacidad de reacciรณn: observabilidad avanzada, cloud-native y automatizaciรณn de extremo a extremoโ, resume Peinado.
Rupixen | Unsplash
El papel de la IA ย
ยฟY quรฉ papel ocupa en todo esto la inteligencia artificial? La IA se ha integrado ya en las campaรฑas de marketing y en el anรกlisis de patrones. Asรญ, por ejemplo, desde The Valley recomiendan sacarle provecho como guรญa que anticipa comportamientos y herramienta que optimiza campaรฑas, escogiendo los mensajes mรกs relevantes y posicionando mejor a la marca.
Sin embargo, serรญa un error limitar la IA solo a lo que puede hacer a nivel marketing y comunicaciรณn. Desde el รกrea de tecnologรญa tambiรฉn se emplea para predecir demanda de producto, identificar potenciales fallos, personalizar experiencias o reforzar la seguridad. ย โLa IA estรก muy presente y actรบa en varias capasโ, confirma Mariรฑo. Aunque, eso sรญ, Peinado recuerda que โno hay que olvidar que la IA es tan buena como la calidad del datoโ. No todos los sectores tienen los datos รณptimos para sacarle todo ese buen partido.
โLa resiliencia del Black Friday no se construye en noviembreโ, advierte Stefan Kรผhn
Momento candente de amenazas
Sobrevivir a los picos de consumo es fundamental para llegar con bien al final de la campaรฑa de Black Friday, pero ese no es el รบnico punto caliente en una temporada que estรก repleta de retos. Uno de ellos es la ciberseguridad. โLa seguridad no puede ser una cuestiรณn secundariaโ, recuerda Kรผhn, que habla de que โel Black Friday es un objetivo perfecto para los ciberdelincuentesโ.
Las estadรญsticas lo confirman. Segรบn investigaciones de NordVPN, las tiendas falsas crecieron en un 250% en estos dรญas previos a la campaรฑa y el phishing y otras estafas que llegan a los usuarios finales alcanza cifras โsin precedentesโ. Al fin y al cabo, esto no es mรกs que una extensiรณn de la tรณnica del resto del aรฑo. Segรบn Signicat, una de cada cinco altas de clientes es fraudulenta, el 59% de las empresas se ha enfrentado a intentos de fraude de identidad exitosos y el 22% de los ingresos anuales se va ya a prevenirlos. La Navidad y el Black Friday son puntos calientes para el fraude en pagos, por algo tan bรกsico como el propio flujo de compras se dispara.
Pero todo esto es algo que tienen muy presente los CIO, que listan las amenazas a las que se enfrentan estos dรญas. โEn campaรฑas asรญ aumentan los intentos de ataques tipo DDoS, scraping automatizado, de inyecciรณn y fraude onlineโ, apunta Mariรฑo. Amazon refuerza su estructura con una larga serie de soluciones propias. โTodo esto se acompaรฑa de simulacros operativos y runbooks claros, con equipos de respuesta 24/7, de modo que cualquier incidente se detecte y mitigue en minutosโ, indica la experta.
Aun asรญ, y por mucho que este sea un momento caliente, no es รบnico. โRealmente puede pasar en cualquier momentoโ, recuerda Leรณn Barroso, โy tienes que estar siempre prevenido y preparado. Es la prioridad ceroโ.
โEsos dรญas buscas tener planes B, C y D para casi todoโ, reconoce Kiko Leรณn Barroso, CIO de IskayPet
Sobrevivir al Black Friday pasa por el dรญa despuรฉs
Si durante el resto del aรฑo los consumidores no suelen tomarse muy bien que sus compras lleguen tarde o que se extravรญen, las cosas se vuelven todavรญa mรกs complejas durante el Black Friday y la campaรฑa de Navidad. Lo que se compra es, por asรญ decirlo, mรกs sensible, ya que se aprovecha para hacerse con regalos o productos necesarios para las fiestas, y la tolerancia a los errores se desploma. Al tiempo, la cantidad de paquetes y gestiones que deben asumir las empresas se dispara. Que todo fluya es fundamental y, ahรญ tambiรฉn, los CIO tienen un papel crucial.
Se necesita afinar muy bien para que todo funcione. Leรณn Barroso seรฑala que hay que adelantarse a los cuellos de botella, para que no se acaben pasando al transportista. Postergarlos al dรญa despuรฉs aplazarรญa el problema, que seguirรญa estando ahรญ. Se necesita ser capaz de flexibilizar, de buscar soluciones. โEsos dรญas buscas tener planes B, C y D para casi todoโ, apunta. Lo que para los compradores resulta simple tiene, en realidad, mucha infraestructura detrรกs. โQueremos que lo que se ve parezca sencillo, aunque por detrรกs haya una operaciรณn tecnolรณgica y de datos a gran escalaโ, apunta Mariรฑo. โTodo estรก orquestado por software y datos: desde que el usuario hace clic y hasta que recibe el paqueteโ, explica. โLa idea es que la tienda no se caiga, las ofertas sean claras y la logรญstica responda a tiempoโ, resume.
La prueba de estrรฉs de estas fechas es tambiรฉn un aviso a navegantes. โEl dรญa despuรฉs es un indicador estratรฉgico del nivel de madurez digitalโ, seรฑala Peinado, uno que cuenta en quรฉ nivel estรก la transformaciรณn digital de la compaรฑรญa. Si las cosas fallan, estรก avisando de que se necesita todavรญa hacer ajustes y mejoras. โEl Black Friday no es la excepciรณn,ย es un recordatorio. Nuestro sistema debe soportar cualquier escenario, no uno puntual.ย El objetivo real es operar con elasticidad y resiliencia continua los 365 dรญasโ, advierte.
Este 25 de noviembre, Madrid volviรณ a acoger una nueva gala de entrega (la cuarta) de los prestigiosos premios CIO 100 en Espaรฑa, que organiza la cabecera editorial CIO para distinguir la labor de los lรญderes de TI, de seguridad de la informaciรณn (CISO) y de empresas y organismos pรบblicos en materia de modernizaciรณn tecnolรณgica y la innovaciรณn.
El encuentro, patrocinado por Cognizant, Dell Technologies, NetApp, HP y Kyocera, aglutinรณ a unas 120 personas de los que mรกs de 100 eran lรญderes de TI de las principales empresas y organismos pรบblicos del paรญs. La gala se celebrรณ coincidiendo con el 20 aniversario del nacimiento de la cabecera CIO en Espaรฑa en el Hotel Mandarin Oriental Ritz y fue presentada por Fernando Muรฑoz, director del CIO Executive de Foundry en el paรญs, y Esther Macรญas, directora editorial del grupo que tambiรฉn edita en Espaรฑa la decana COMPUTERWORLD.
โHoy nos reunimos para celebrar la innovaciรณn, el talento y, sobre todo, el liderazgo que estรก transformando el mundo tecnolรณgico en nuestro paรญs. Y lo hacemos en un momento muy especial para CIO ESPAรA, la publicaciรณn de referencia del grupo Foundry de y para los lรญderes de TI empresarial, porque esta acaba de cumplir 20 aรฑos de vidaโ, seรฑalรณ Esther Macรญas, recordando los orรญgenes de esta cabecera nacida en Estados Unidos en 1987. โEstos han sido unos aรฑos apasionantes en los que nunca hemos perdido de vista nuestro propรณsito: proporcionar a nuestra audiencia y grandes protagonistas, los CIO, informaciรณn contrastada y trabajada sobre los grandes proyectos y estrategias de TI del รกmbito empresarial y del sector pรบblicoโ, aรฑadiรณ, afirmando que las ediciones de CIO que tiene el grupo Foundry en el mundo suman unos dos millones de visitas mensuales.
โLa tecnologรญa no avanza sola: la impulsan las personas. Personas como vosotros, que hacรฉis posible el cambio en vuestras organizaciones y en la sociedadโ, indicรณ por su parte Fernando Muรฑoz, quien no dudรณ en afirmar que, entre tantas transformaciones, hay algo que no cambia: โEl nivel excepcional de los lรญderes que hoy reconocemos. Vuestras historias reflejan no solo excelencia tรฉcnica, sino tambiรฉn visiรณn, resiliencia y humanidad. Hablan de equipos guiados con propรณsito, de decisiones valientes, y de la capacidad de convertir la incertidumbre en oportunidad. En un mundo cada vez mรกs digital, el liderazgo autรฉntico, el que inspira, escucha y construye, es mรกs importante que nunca. Y eso es lo que hoy celebramos aquรญโ.
Fernando Muรฑoz y Esther Macรญas en los CIO 100 Awards 2025.
Garpress.
Estos son los premiados y finalistas de la ediciรณn 2025 en Espaรฑa de los CIO 100 Awards.
CIO del aรฑo: Dimitris Bountolos (Ferrovial)
Dimitris Bountolos, CIO de Ferrovial, fue el ganador de la categorรญa estrella de los premios, la distinciรณn al mejor lรญder de TI del aรฑo, un reconocimiento que pone en valor la excelencia, la visiรณn y el liderazgo de aquellos directivos que marcan el rumbo de la transformaciรณn tecnolรณgica en nuestro paรญs.
Con el Plan de Transformaciรณn Digital Horizon, Bountolos ha demostrado que la tecnologรญa solo genera valor cuando estรก plenamente integrada en la estrategia y la operaciรณn del negocio. El jurado ha valorado especialmente su modelo de colaboraciรณn top-down y bottom-up que une al comitรฉ de direcciรณn y toda la organizaciรณn, lo que garantiza una adopciรณn real de las iniciativas y sitรบa la tecnologรญa en el centro de la estrategia corporativa.
El galardรณn lo entregรณ Manuel รvalos, director general de Cognizant para Espaรฑa, Portugal e Italia.
Dimitris Bountolos, CIO de Ferrrovial, recibe el premio al CIO del aรฑo de manos de Manuel รvalos, director general de Cognizant para Espaรฑa, Portugal e Italia.
Garpress.
Los finalistas de esta categorรญa fueron:
Jordi Roda, CIO de Decathlon, quien con su visiรณn de la tecnologรญa como game changer, ha impulsado la evoluciรณn de una cadena de retail a una plataforma integral de servicios deportivos.
รngel Blanco, CIO de Quirรณnsalud, quien ha logrado liderar en el grupo sanitario una transformaciรณn sin precedentes del modelo asistencial, incorporando la inteligencia artificial como motor del cambio.
Miguel รngel Iglesias, CIO de Seat & Cupra, que, en un contexto desafiante para el sector de la automociรณn, marcado por la electrificaciรณn, la transformaciรณn de las fรกbricas y la irrupciรณn de la inteligencia artificial, ha impulsado una iniciativa de TI que ha redefinido el modelo de relaciรณn entre IT y negocio en el grupo, acelerando la transformaciรณn global de la compaรฑรญa.
Dimitris Bountolos (Ferrovial), Jordi Roda (Decathlon), Manuel รvalos (Cognizant), รngel Blanco (Quirรณnsalud) y Miguel รngel Iglesias (Seat & Cupra).
Garpress.
CISO del aรฑo: Izaskun Onandia (ITP Aero)
La directora asociada de seguridad y cumplimiento de informaciรณn de ITP Aero, Izaskun Onandia, fue la ejecutiva elegida como CISO del aรฑo en los CIO 100 Awards por su capacidad de integrar la seguridad fรญsica, la ciberseguridad, la seguridad de la informaciรณn y la gobernanza del dato, aportando una visiรณn transversal y adaptada a cada entorno.
Izaskun Onandia.
ITP Aero.
La directiva no sรณlo ha logrado incorporar la gobernanza de la inteligencia artificial en la compaรฑรญa, promoviendo un uso seguro, รฉtico y responsable de estas tecnologรญas, sino que su visiรณn innovadora y su capacidad para anticiparse a los retos de la era digital la posicionan como una referente en la gestiรณn integral de la seguridad y la informaciรณn.
Josรฉ Luis Basabe Echezarraga, director asociado de Infraestructura de ITP Aero, fue quien recogiรณ el premio de Izaskun Onandia ante la imposibilidad de la directiva de acudir a la gala.
Josรฉ Luis Basabe Echezarraga (ITP Aero) y Esther Macรญas.
Garpress.
En la categorรญa de CISO del aรฑo, una funciรณn directiva clave en un momento en el que la ciberseguridad se ha convertido en un eje esencial para la confianza, la continuidad y la innovaciรณn de las organizaciones, y que reconoce a quienes lideran con visiรณn estratรฉgica, impulsando la resiliencia y el crecimiento desde la protecciรณn digital, destacaron como finalistas:
Javier Torres Alonso, CISO de Allfunds, por la profunda transformaciรณn de la arquitectura de seguridad de la entidad, logrando modernizar sus capacidades de monitorizaciรณn y respuesta ante incidentes.
Juan Manuel Bahamonde, CISO de Metro Food Sourcing, por haber liderado con รฉxito la implantaciรณn del framework de seguridad en las empresas de las oficinas de comercio internacional del grupo METRO/MAKRO con una filosofรญa de gestiรณn apoyada en la colaboraciรณn y el pragmatismo.
Esther Macรญas, Javier Torres (Allfunds), Josรฉ Luis Basabe Echezarraga (ITP Aeropor) y Juan Manuel Bahamonde (Metro Food Sourcing).
Garpress.
Empresa del aรฑo: Coca-Cola Europacific Partners
La historia de transformaciรณn tecnolรณgica y organizativa presentada por Coca-Cola Europacific Partners ha hecho merecedora a esta compaรฑรญa del premio a Empresa del aรฑo en los CIO 100 Awards. En apenas una dรฉcada, ha pasado de ser una compaรฑรญa local en Espaรฑa a operar en 31 paรญses de Europa y Asia-Pacรญfico. Desde la integraciรณn de las embotelladoras espaรฑolas en 2013, pasando por su expansiรณn europea en 2016, hasta su llegada a Asia y Oceanรญa en 2021 y Filipinas en 2024, la empresa ha afrontado enormes retos tecnolรณgicos, de integraciรณn y de adopciรณn.
Actualmente, lidera una migraciรณn estratรฉgica a la nube, incluyendo CRM, productividad, fuerza comercial y prรณximamente su ERP SAP, con una visiรณn a siete aรฑos. Una plataforma global, una respuesta local y un enfoque en las personas โcon iniciativas como la IA Academy y la AI Incubatorโ definen su apuesta por una tecnologรญa al servicio de la cultura. Una transformaciรณn constante que une innovaciรณn, escalabilidad y cercanรญa en todos sus mercados.
David Marimรณn, vicepresidente y CIO para Iberia & IT Head Customer Service & Supply Chain de Coca-Cola Europacific Partners, recogiรณ el galardรณn de manos de Fernando Muรฑoz, director del CIO Executive de Foundry Espaรฑa.
David Marimรณn (Coca-Cola Europacific Partners) con Fernando Muรฑoz (CIO Executive).
Garpress.
La de Empresa del aรฑo es una categorรญa que reconoce a aquellas organizaciones que han hecho de la tecnologรญa y la innovaciรณn el motor de su transformaciรณn, empresas que evolucionan, inspiran y marcan el camino hacia el futuro. Los finalistas de esta categorรญa son:
Air Europa, por haber puesto en marcha un ambicioso Programa de Estrategia de Datos 2023โ2027, con el objetivo de convertir el dato en un autรฉntico activo estratรฉgico, lo que estรก transformando su cultura y su manera de trabajar, ademรกs de aportar mayor valor para el negocio y los clientes.
CEPSA GLP-GASIB, por haber llevado a cabo en los รบltimos aรฑos una profunda transformaciรณn tecnolรณgica y cultural con el propรณsito de innovar con impacto, lo que le ha hecho ser una empresa 100% cloud, con un puesto de trabajo digital y con proyectos que aceleran la transformaciรณn digital y contribuyen a la descarbonizaciรณn.
Zurich Insurance, que con una filosofรญa โbusiness-led, tech-poweredโ, ha transformado su modelo en torno a dos ejes: la One Customer House, centrada en la relaciรณn con el cliente, y el Intermediaries Service Center, que optimiza el soporte a la mediaciรณn, ademรกs de haber desarrollado una fรกbrica digital, basada en tecnologรญa de nube nativa e IA generativa, permite ajustar precios en minutos, automatizar siniestros o asistir a agentes y clientes con lenguaje natural, entre otros grandes proyectos.
Fernando Muรฑoz, Josรฉ Luis Serra (CEPSA GLP GASIB), David Marimรณn (Coca-Cola Europacific Partners), Josรฉ Carlos Bermejo (Air Europa) y y Ricard Guasch (Zurich).
Garpress.
Organismo pรบblico del aรฑo: Lantik SAMP-Diputaciรณn Foral de Bizkaia
La categorรญa Organismo Pรบblico del Aรฑo reconoce a aquellas instituciones que han demostrado una visiรณn ejemplar en la modernizaciรณn del sector pรบblico, impulsando proyectos transformadores con impacto real en la ciudadanรญa. En este caso, la Diputaciรณn Foral de Bizkaia, a travรฉs de Lantik, ha resultado ganadora por haber liderado una apuesta pionera por las tecnologรญas cuรกnticas, basada en el liderazgo pรบblico, la colaboraciรณn y el impacto social.
La propuesta integra laboratorios, programas de adopciรณn temprana y un ecosistema donde confluyen Administraciรณn, industria, centros tecnolรณgicos y universidades. Bizkaia ha logrado impulsar un nuevo sector estratรฉgico y su propuesta BIQAIN sitรบa la innovaciรณn, la sostenibilidad y la competitividad en el centro de un modelo referente en Espaรฑa y Europa.
Valentรญn Garcรญa, director de Innovaciรณn de Lantik, recogiรณ el premio, que entregรณ Esther Macรญas, directora editorial de CIO y COMPUTERWORLD en Espaรฑa.
Valentรญn Garcรญa (Lantik) y Esther Macรญas.
Garpress.
En esta categorรญa quedaron finalistas:
La Generalitat de Catalunya, por haber impulsado una transformaciรณn integral hacia una Administraciรณn plenamente omnicanal, situando a la ciudadanรญa en el centro, con una estrategia que avanza hacia servicios mรกs proactivos, accesibles y personalizados y un modelo basado en datos, colaboraciรณn y una clara visiรณn de futuro.
El Hospital Universitario 12 de Octubre, por haber llevado a cabo la mayor transformaciรณn digital hospitalaria en Espaรฑa, coincidiendo con la puesta en marcha de uno de los mayores proyectos de obra civil de Europa, una iniciativa con impacto directo en la mejora de la atenciรณn a los pacientes y que reconoce el compromiso ejemplar de los equipos clรญnicos y tecnolรณgicos de la Comunidad de Madrid.
La Agencia Madrid Digital, por haber liderado la modernizaciรณn de la Administraciรณn de la Comunidad de Madrid mediante soluciones tecnolรณgicas que simplifican y agilizan la relaciรณn con ciudadanos, empresas y empleados pรบblicos, siendo un referente en servicios pรบblicos digitales seguros, accesibles y orientados al futuro.
Ester Manzano (Generalitat de Catalunya); Elena Liria (Madrid Digital), Valentรญn Garcรญa (Lantik), Carmen Martรญnez de Pancorbo y Juan Luis Cruz (Hospital Universitario 12 de Octubre), junto a Esther Macรญas.
Garpress.
Premio al mejor proyecto de IA y automatizaciรณn inteligente: Cruz Roja Espaรฑola
En la categorรญa que distingue a las organizaciones que han sabido integrar la inteligencia artificial y la automatizaciรณn avanzada para transformar procesos, ampliar capacidades y generar un impacto real, seguro y responsable en sus operaciones y en la sociedad, resultรณ ganadora Cruz Roja Espaรฑola, por la soluciรณn Simula tu entrevista de trabajo, que utiliza inteligencia artificial generativa para mejorar la empleabilidad de personas con mayores dificultades de acceso al mercado laboral. Se trata de un simulador de entrevistas realista, accesible y personalizado que ofrece retroalimentaciรณn inmediata y contribuye a una inclusiรณn sociolaboral efectiva.
Javier Cressi, responsable de los Servicios multicanal de orientaciรณn para el empleo de Cruz Roja Espaรฑola, recogiรณ el premio de manos de Isabel Reis, directora general de Dell Technologies para Espaรฑa y Portugal.
Javier Cressi (Cruz Roja Espaรฑola) e Isabel Reis (Dell).ย
Garpress.
Los finalistas de esta categorรญa fueron:
Ferrovial, por AlexandrIA, un programa innovador que preserva y activa el conocimiento crรญtico de la organizaciรณn mediante agentes de IA especializados.
Renfe, por su Laboratorio de IA, un modelo de innovaciรณn abierta, gobernanza รฉtica y tecnologรญa avanzada para convertir ideas en soluciones reales, que sitรบa al operador como un referente en el uso responsable y estratรฉgico de la inteligencia artificial.
World2Meet, por su proyecto IPA, que impulsa un ecosistema integral de automatizaciรณn inteligente que combina datos, IA generativa y soluciones avanzadas para transformar procesos en toda la organizaciรณn, consolidando la empresa como un actor รกgil e innovador en el sector turรญstico.
Isabel Reis (Dell), Javier Cressi (Cruz Roja), Albert Mercadal (Ferrovial), Irene Muรฑoz (Renfe) y Joan Barcelรณ (World2Meet).
Garpress.
Premio al mejor proyecto de seguridad y resiliencia: Renfe
En la categorรญa de los CIO 100 que reconoce a aquellas organizaciones que, con visiรณn y determinaciรณn, han logrado proteger sus entornos, garantizar la continuidad de sus operaciones y fortalecer la confianza de sus usuarios frente a los desafรญos de la era digital, ha resultado ganadora Renfe. El jurado ha seleccionado esta candidatura por el ambicioso plan de modernizaciรณn de estaciones y trenes de Cercanรญas emprendido por el operador ferroviario, que integra conectividad, ciberseguridad y digitalizaciรณn. Con inversiones histรณricas y un despliegue tecnolรณgico sin precedentes, Renfe ha logrado fortalecer la seguridad de sus infraestructuras, mejorar la experiencia de millones de pasajeros y consolidar la resiliencia operativa de su red ferroviaria, estableciendo un referente de innovaciรณn y servicio pรบblico.
Sonia Segade, CIO de Renfe, y Carmelo Plana, responsable de Administraciรณn y Operaciรณn de Comunicaciones en la organizaciรณn, recogieron el premio, que entregรณ Fernando Muรฑoz, del CIO Executive.
Sonia Segade y Carmelo Plana con Fernando Muรฑoz.ย
Garpress.
Quedaron finalistas en esta categorรญa:
El Banco Santander, por haber desarrollado un enfoque integral para proteger la experiencia de sus clientes frente al fraude digital y haber creado un ecosistema capaz de anticipar ataques sofisticados, empoderar a los usuarios y fortalecer la resiliencia interna.
Nationale-Nederlanden, por un proyecto (IT Assurance) con el que ha transformado la manera en que se construye la seguridad y la calidad en el desarrollo de sistemas, basado en automatizaciรณn, observabilidad y colaboraciรณn.
Fernando Muรฑoz, Carmelo Plana y Sonia Segade (Renfe), Eva Mosquera (Banco Santander) y Josรฉ Luis Campuzano (Nationale-Nederlanden).
Garpress.
Premio al mejor proyecto de infraestructura digital y cloud: Merlin Properties
Merlin Properties ha sido la compaรฑรญa ganadora en esta categorรญa, que distingue a aquellas organizaciones que han llevado la tecnologรญa mรกs allรก de la infraestructura tradicional, transformando sus sistemas en plataformas รกgiles, seguras y escalables y a quienes, con visiรณn estratรฉgica y excelencia tรฉcnica, han convertido la nube y la infraestructura digital en palancas de innovaciรณn, eficiencia y resiliencia, sirviendo de base para el futuro de sus negocios y de la sociedad.
En concreto, el jurado ha valorado positivamente cรณmo la empresa ha logrado desplegar en Espaรฑa una red de data centers sostenibles, hiperconectados y preparados para la inteligencia artificial, fortaleciendo la infraestructura digital del paรญs. Un proyecto que combina mรกxima disponibilidad, neutralidad climรกtica y eficiencia energรฉtica, ofreciendo entornos escalables y seguros para clientes y empresas y que se consolida como un modelo de innovaciรณn tecnolรณgica alineado con los desafรญos de la economรญa digital y la sostenibilidad.
รlvaro Ontaรฑรณn, CIO de Merlin Properties, recogiรณ el premio, entregado por Maite Ramos, directora general de NetApp en Espaรฑa y Portugal.
Francisco Porras y รlvaro Ontaรฑรณn (Merlin Properties) junto a Maite Ramos (NetApp).
Garpress.
Los finalistas de esta categorรญa fueron:
GALP, por haber recorrido un viaje ejemplar hacia la adopciรณn de la nube, afrontando retos complejos en eficiencia financiera, control de costes y creaciรณn de valor.
MAPFRE, por su Plataforma de Ingenierรญa Zeus, con la que ha logrado unificar y modernizar su ecosistema tecnolรณgico global, acelerando la entrega de valor al negocio y mejorando de manera significativa la experiencia de sus desarrolladores.
Nationale-Nederlanden, por haber migrado completamente su infraestructura a un entorno 100% cloud, adoptando un enfoque โCloud Firstโ que acelera la innovaciรณn y mejora la resiliencia.
Santiago Wiznez (MAPFRE), Francisco Porras y รlvaro Ontaรฑรณn (Merlin Properties) Rebeca Escolรกstico (Galp Energรญa), Maite Ramos (NetApp) y Josรฉ Luis Campuzano (Nationale-Nederlanden).ย
Garpress.
Premio al mejor proyecto de innovaciรณn y excelencia digital: Astrazeneca Espaรฑa
Aquellas organizaciones que han elevado la transformaciรณn digital a un nuevo nivel, impulsando la evoluciรณn de sus negocios y de toda la sociedad mediante soluciones visionarias, modelos avanzados de gestiรณn del dato y experiencias digitales que marcan un antes y un despuรฉs son candidatas a ser premiadas en esta categorรญa. En este caso, la ganadora fue Astrazeneca, por su programa OneSource, que impulsa una profunda transformaciรณn empresarial y sitรบa a la organizaciรณn en el camino hacia convertirse en una compaรฑรญa plenamente orientada al dato.
Con un catรกlogo de negocio unificado, una arquitectura avanzada, paneles intuitivos y soluciones basadas en inteligencia artificial, AstraZeneca impulsa un nuevo modelo de decisiรณn, conocimiento y capacidades digitales a escala corporativa.
Antonio Velasco, CIO de AstraZeneca Espaรฑa, recogiรณ el galardรณn de manos de Josรฉ Marรญa Tavera, miembro del jurado de los CIO 100 Awards Espaรฑa 2025.
Antonio Velasco (AstraZeneca Espaรฑa) y Josรฉ Marรญa Tavera (jurado de los CIO 100 Awards).
Garpress.
Los finalistas de esta categorรญa fueron:
La Agencia Madrid Digital, por Cuenta Digital, un proyecto de referencia nacional que redefine la relaciรณn entre la ciudadanรญa y la administraciรณn pรบblica, una plataforma 100% cloud, basada en datos e inteligencia artificial, que centraliza servicios, simplifica trรกmites y ofrece una experiencia moderna, accesible y segura.
Decathlon Espaรฑa, por la Transformaciรณn digital de la experiencia deportiva omnicanal, un proyecto que aspira a diluir por completo las fronteras entre el mundo fรญsico y el digital para crear una experiencia deportiva sin interrupciones.
Ferrovial, por RIaaS (Research Intelligence as a Service), una plataforma avanzada de inteligencia y gestiรณn del conocimiento que integra agentes inteligentes, modelos de lenguaje, datos externos y automatizaciรณn avanzada.
Antonio Velasco (AstraZeneca) junto a una persona de su equipo; Josรฉ Marรญa Tavera (CIO 100), Marรญa Teresa de Diego (Ferrovial), Jordi Roda (Decathlon) y Marรญa Teresa de Diego (Ferrovial) y Francisco Garcรญa Lombardรญa (Madrid Digital).
Garpress.
Premio al mejor proyecto de talento digital y puesto de trabajo: Iberdrola
Iberdrola resultรณ ganadora de esta categorรญa que reconoce a las organizaciones que han impulsado nuevas formas de trabajar, potenciando las capacidades digitales de sus equipos y construyendo entornos laborales mรกs inteligentes, colaborativos y orientados al futuro.
En concreto, el jurado valorรณ cรณmo la energรฉtica ha logrado reinventar el puesto de trabajo a escala global, empoderando a sus equipos con soluciones digitales de nueva generaciรณn y consolidando un modelo centrado en las personas y la productividad.
Recogiรณ el premio Ana Arjonilla, responsable global de Gestiรณn del Cambio Digital en Iberdrola. Se lo entregรณ Mar Hurtado de Mendoza, miembro de jurado de los CIO 100 Awards y vicepresidenta global de Reclutamiento y de IE University.
Mar Hurtado de Mendoza (CIO 100 e IE University) con Ana Arjonilla y Josรฉ Zabako (Iberdrola).
Garpress.
Los finalistas fueron:
CEPSA GLP-GASIB, por el proyecto โWorkplace 360: Personas en el Centro de la Transformaciรณnโ, todo un reto por transformar la experiencia digital del empleado mediante un puesto de trabajo unificado, automatizado y accesible, que impulsa la colaboraciรณn y la eficiencia en toda la organizaciรณn.
Drรคger Hispania por el proyecto Beloira, que implica la creaciรณn de un ecosistema de trabajo sostenible e innovador que integra espacios versรกtiles, tecnologรญa avanzada y bienestar, redefiniendo la cultura colaborativa de la compaรฑรญa.
La Organizaciรณn Mundial del Turismo, por democratizar la formaciรณn en turismo a travรฉs de Tourism Online Academy, una plataforma global de la academia ONU Turismo, multilingรผe y accesible, que impulsa el talento digital en todo el mundo.
Josรฉ Luis Sierra (Cepsa GLP Gasib), Josรฉ Zabako y Ana Arjonilla (Iberdrola), Mar Hurtado de Mendoza (CIO 100/IE), Natalia Bayona (ONU Turismo) y Eduardo Valladolid (Drรคger).
Garpress.
Premio al mejor proyecto de sostenibilidad e inclusiรณn: Zurich
La categorรญa rinde homenaje a una iniciativa que, por su visiรณn, impacto y compromiso, se alza por sรญ misma como referente indiscutible en sostenibilidad e inclusiรณn. Se trata del proyecto presentado por Zurich, llamado Productos IT para la Resiliencia ante Eventos Meteorolรณgicos, una propuesta que combina innovaciรณn tecnolรณgica y propรณsito social para fortalecer la protecciรณn frente a los riesgos climรกticos y apoyar a empresas y comunidades vulnerables.
Con una aproximaciรณn โTech-powered, business-ledโ, Zurich ha desplegado soluciones avanzadas que permiten anticipar, evaluar y mitigar el impacto de los fenรณmenos extremos, democratizando el acceso a la informaciรณn, elevando la capacidad de respuesta y situando la inclusiรณn en el centro de su estrategia. Una iniciativa que encarna, con claridad y excelencia, el espรญritu de esta categorรญa.
Recogiรณ el premio Ricard Guash, CIO de Zurich Insurance, que le fue entregado por Juan Antonio Relaรฑo, miembro de jurado de los CIO100 Awards y CIO de Bosch Espaรฑa.
Ricard Guash (Zurich Insurance) junto a Juan Antonio Relaรฑo (jurado de los CIO100 Awards y CIO de Bosch Espaรฑa).
Garpress.
Cuatro ediciones en Espaรฑa de los โรscar de la industria tecnolรณgicaโ
Los premios CIO 100, conocidos como los โรscar de la industria tecnolรณgicaโ, son un prestigioso reconocimiento a la excelencia en TI empresarial. La tradiciรณn de distinguir a CIO visionarios comenzรณ en Estados Unidos hace mรกs de tres dรฉcadas y ahora se celebra anualmente en los principales mercados tecnolรณgicos, incluidos Espaรฑa, el Reino Unido, Singapur, Australia, Alemania, Corea del Sur e India.
En esta ocasiรณn, el jurado de los premios ha estado integrado por Fernando Muรฑoz, director del CIO Executive de Foundry Espaรฑa; Esther Macรญas, directora editorial de Foundry Espaรฑa (grupo editor de CIO y COMPUTERWORLD); Romy Tuin, directora global de Contenidos para Eventos y jefa de Operaciones de Eventos en Espaรฑa y Reino Unido en Foundry; el histรณrico CIO, ya retirado, Josรฉ Marรญa Tavera, que liderรณ la estrategia de TI de gigantes como Telefรณnica o Acciona; Juan Antonio Relaรฑo, CIO de Bosch y ganador de la categorรญa CIO del aรฑo de la ediciรณn 2024 de los CIO 100 Awards Spain; la exCIO Kelly Olsen; Madhu Bhabuta, CIO fraccional en Freeman Clarke, el equipo mรกs grande y experimentado de lรญderes de TI en el Reino Unido; y Mar Hurtado de Mendoza, vicepresidenta global de reclutamiento en IE University y profesora adjunta de esta escuela de negocio.
Con 2026 a la vuelta de la esquina, es tiempo de que las compaรฑรญas preparen los desafรญos del nuevo aรฑo. Uno de los principales serรก el cambio de aรฑo en los sistemas de facturaciรณn: la implementaciรณn del sistema de verificaciรณn antifraude Verifactu. No es extraรฑo ver menciones a este cambio como el paso a la facturaciรณn electrรณnica. Pero llamarlo asรญ puede llevar a confusiรณn, porque se trata de dos elementos distintos, regidos por normativas distintas.
Lucรญa Pรฉrez y Meritxell Yus, abogadas especializadas en Fiscalidad Indirecta de Cuatrecasas, son tajantes. โNo debe confundirse la obligaciรณn de facturaciรณn electrรณnica B2B con la normativa sobre sistemas informรกticos de facturaciรณnโ โel conocido como VeriFactuโ โque establece la obligaciรณn del cumplimiento de los requisitos de integridad, conservaciรณn, accesibilidad, legibilidad, trazabilidad e inalterabilidad de los registros de los sistemas informรกticos de facturaciรณn. Ambos proyectos se encuentran regulados en normativa diferentes con un distinto objetivoโ. Si bien convivirรกn y se complementarรกn, buscan distintas finalidades, explican. โLa facturaciรณn electrรณnica regula el formato y la transmisiรณn estructurada de las facturas entre empresarios y profesionales y su finalidad principal es reducir la morosidad comercial, mientras que la normativa de sistemas de facturaciรณn se centra en la calidad, seguridad y fiabilidad de los datos generados por los programas de facturaciรณn, con la finalidad de reducir el fraudeโ.
El paso a Verifactu
La primera en entrar en vigor es la Ley 11/2021, de 9 de julio, de medidas de prevenciรณn y lucha contra el fraude fiscal, conocida popularmente como Ley Antifraude. Esta regulaciรณn transpone una directiva europea que quiere limitar las prรกcticas de evasiรณn fiscal. Aunque el texto habla de concentrar los esfuerzos en las grandes fortunas, sus implicaciones afectan a todo tipo de profesionales, de grandes empresas a personas que cotizan como pequeรฑas autรณnomas. La normativa incorpora distintas medidas para lograr el cumplimiento de los requerimientos fiscales, entre las que se plantea un modelo basado en el control de los softwares de contabilidad y gestiรณn, que quedan obligados a ajustarse a determinados requisitos.
Al calor de esta normativa se ha desarrollado el reglamento Verifactu, que establece los requisitos que deben contemplar los programas de facturaciรณn. Entre otros, se contempla que, al expedir una factura, se genere o guarde una copia o se mande un resumen, directamente, a la Agencia Tributaria. Ademรกs, se deberรก incluir un QR en la factura para poder verificarla con la administraciรณn. Negro sobre blanco, el cambio en la regulaciรณn implica que ya no se podrรก enviar las facturas en un PDF ni hacer los libros de contabilidad sobre un Excel, sino que habrรก que emplear un sistema de facturaciรณn homologado. Para controlar que el modelo sobre el que se haga cumple los necesarios requisitos se ha desarrollado el sistema del mismo nombre, que se puede incorporar a softwares de facturaciรณn ya existentes y que estรก tambiรฉn integrado en la aplicaciรณn informรกtica gratuita desarrollada por la AEAT.
La nueva normativa, dice Estefanรญa Gambin, โimplica un cambio tรฉcnico relevante para los equipos de TIโ
Es decir: si bien este nuevo modelo va hacia la facturaciรณn electrรณnica, no se refiere a esta normativa, sino a la integraciรณn de un sistema antifraude. โVerifactu no es factura electrรณnica, y este matiz es importanteโ, desarrolla รlvaro Villa, director general de Alegra Espaรฑa. โEs un sistema antifraude que obliga a que el software de facturaciรณn cumpla criterios muy estrictos de integridad, trazabilidad e inalterabilidad del datoโ, resume. A nivel de TI tiene un impacto significativo: โNo cambia la interfaz, pero sรญ cambia la arquitectura del sistemaโ, explica. Coincide Estefanรญa Gambin Altare, country success manager en Pleo. โEsta normativa implica un cambio tรฉcnico relevante para los equipos de TIโ, defiende. โLos sistemas deben ser capaces de trabajar con formatos estructurados, integrarse con los sistemas contables y asegurar la transmisiรณn segura y puntual de los datos a Haciendaโ. Gambin lo define como โun reto tรฉcnicoโ, que โcon el apoyo adecuado no tiene por quรฉ ser una cargaโ.
Entre los trabajos en TI a los que obligarรก el reglamento Verifactu, continรบa Villa, estรก la auditorรญa y adaptaciรณn de ERP, CRM, TPV y desarrollos propios a los nuevos requisitos, pero tambiรฉn la integraciรณn de hash encadenado y QR y el compromiso de trazabilidad completa y exportaciรณn en el formato exigido por la AEAT. Habrรก que realizar integraciones vรญa API y definir si la empresa operarรก en modo VeriFactu o no VeriFactu; y asegurar operaciones sin interrupciones, โporque cualquier incidencia ahora tiene tambiรฉn un impacto en cumplimientoโ. Lejos de tratarse de una acciรณn puntual, este cambio requerirรก de un seguimiento continuo, explica. โLo mรกs prรกctico es tratar Verifactu como un programa permanente de cumplimiento digital, no como un proyecto puntual. Esto implica gobernanza de datos, revisiones periรณdicas y formaciรณn continua para que Finanzas, TI y asesores estรฉn alineadosโ. Gambin lo afronta de forma similar. โNo es un cambio puntual que se resuelve una vez y listo. Es un proceso vivo que requerirรก actualizaciones continuas y capacidad de adaptaciรณnโ.
โLo mรกs prรกctico es tratar Verifactu como un programa permanente de cumplimiento digital, no como un proyecto puntualโ, seรฑala รlvaro Villa
En cuanto a su impacto en la relaciรณn entre los departamentos de TI y finanzas, la directiva de Pleo avanza que el equipo financiero se verรก relegado de tareas repetitivas para enfocarse en aportar valor real al negocio. Villa lo desarrolla. โVeriFactu nace como una iniciativa fiscal, pero se implementa a travรฉs de tecnologรญa. Eso obliga a TI y Finanzas a trabajar de forma mรกs coordinada que nuncaโ. Entre otros, augura un impulso a las decisiones compartidas sobre software, integraciones y polรญticas de registro; la fluidez en el lenguaje comรบn en torno a la trazabilidad, integridad y auditorรญa de los datos; y una menor carga manual en finanzas y mรกs control preventivo gracias a la automatizaciรณn. โEn la prรกctica, TI y finanzas pasan de colaborar a copilotar el cumplimiento antifraude dentro de la organizaciรณnโ.
Conviene tambiรฉn repasar el calendario de implementaciรณn. A partir del 1 de enero de 2026, todas las personas jurรญdicas deberรกn usar sistemas de facturaciรณn adaptados, mientras que el resto de profesionales y personas autรณnomas tienen hasta el 1 de julio del prรณximo aรฑo para integrar estas herramientas.
Facturaciรณn electrรณnica
Aunque Verifactu podrรญa considerarse como un primer paso hacia la factura electrรณnica โespecialmente para aquellos negocios que no estaban aรบn utilizando sistemas de este tipoโ, este modelo de facturaciรณn es obligatoria para el trabajo con la administraciรณn desde 2013. En los prรณximos aรฑos estรก previsto que se extienda, gracias a la conocida como Ley Crea y Crece. Esta normativa de 2022 โestablece la obligaciรณn de emitir, remitir y recibir facturas electrรณnicas en las operaciones entre empresarios y profesionalesโ, recuerdan Yus y Pรฉrez, aunque aรบn estรก pendiente de desarrollo reglamentario. โA fecha de hoy, por lo tanto, todavรญa no estรก definido con detalle el alcance de esta medida y su fecha de entrada en vigorโ.
La normativa trabaja en una lรญnea semejante a la de la Ley Antifraude, buscando โcombatir la morosidad comercial, reforzar la transparencia en los pagos y acelerar la digitalizaciรณn de las relaciones empresariales, promoviendo procesos mรกs eficientes, trazables y automatizablesโ, destacan las abogadas de Cuatrecasas. Por el momento, en el รบltimo borrador publicado, se contempla que la factura en operaciones B2B deberรก ser un mensaje electrรณnico estructurado conforme a determinados requerimientos. โEl envรญo de un PDF no resultarรก suficiente, pues se exigen datos estructurados interoperables procesables automรกticamente por los sistemasโ, resumen. Estรก ademรกs prevista una soluciรณn pรบblica de facturaciรณn de la propia AEAT, que actuarรก como repositorio de las facturas electrรณnicas y coexistirรก con plataformas privadas de intercambio de datos. โEstas plataformas deberรกn garantizar la interconexiรณn e interoperabilidad gratuitas entre ellasโ.
โEl envรญo de un PDF no resultarรก suficiente, pues se exigen datos estructurados interoperables procesables automรกticamente por los sistemasโ, indican Lucรญa Pรฉrez y Meritxell Yus
Aunque al no haberse publicado el desarrollo normativo no se puede hablar de un calendario completo, se estima que las grandes empresas, con un volumen de operaciones superior a 8 millones de euros, tendrรกn 12 meses desde su publicaciรณn para adaptarse, mientras que para el resto este plazo se extenderรก hasta los 24 o incluso 36 meses.
When I joined a major retail digital transformation project as a senior specialist with a consulting firm, the first meeting went exactly as I expected: โWe need more tools.โ Every discussion about efficiency seemed to end with another vendor demo or platform suggestion โ a new SaaS for workflow, a chatbot for customer service, an AI dashboard for analytics.
Itโs a reflex many organizations have developed. Digital transformation has become synonymous with tool adoption and executives often measure progress by the number of technologies purchased. But as I listened to the project sponsors enthusiastically list the โmissing systems,โ one question came to mind: Were we transforming the business or simply expanding the toolbox?
I had seen this pattern before โ a well-intentioned accumulation of platforms that ultimately increased complexity rather than capability. So I proposed something that sounded contrarian at the time: Instead of adding more, letโs first see what we can remove.
The suggestion earned a few surprised looks, but that conversation became the turning point of one of the most effective transformation programs Iโve been part of.
The hidden cost of tool sprawl
In the modern enterprise, tool sprawl is a quiet but costly epidemic. Across industries, organizations accumulate overlapping software faster than they can integrate it, creating confusion, duplicating data and raising subscription costs.
The retail client I supported was no exception. Over time, every department had picked its own favorites โ project management boards here, customer feedback tools there and a half-dozen collaboration apps in between.
During my first month, I conducted an audit of the digital ecosystem. The result was startling: 142 separate applications in active use across the organization, with more than a dozen dedicated to collaboration alone. Some departments used three tools to manage the same process, creating duplicate records and confusion about ownership.
In one workshop, a team leader joked that โfinding the right file is harder than finding a new employee.โ It was meant humorously, but it captured the frustration perfectly. Instead of driving productivity, technology was slowing people down.
Those questions changed the conversation. Instead of โwhatโs missing?โ we began asking โwhatโs working?โ
We hosted a series of discovery sessions where employees anonymously rated the tools they used by usefulness and ease of adoption. The results were eye-opening. Nearly 40% of tools had fewer than 15% active users. Some were bought for pilot programs that never scaled; others replicated capabilities already available in enterprise systems.
For example, three departments paid for separate survey tools even though their CRM could already handle feedback collection. Another analytics platform generated reports nearly identical to what finance could produce internally.
When I presented the findings, one executive asked, โSo youโre saying we could cut a third of our software and no one would notice?โ
I replied, โYou might notice โ in a good way.โ
That comment led to our first pilot consolidation: collaboration and analytics, the two most fragmented areas. The pushback came not from IT, but from end-users attached to their preferred systems. We countered that by focusing on the user experience. We showed how simplification would mean fewer logins, consistent data and faster response times. Slowly, the idea gained traction.
Streamlining the stack
Our first step was to standardize the collaboration environment. We reduced 13 communication platforms down to four, implemented single sign-on and integrated the approved tools with the companyโs intranet. Teams no longer had to jump between chat windows, task trackers and document portals to find information.
Next, we rationalized analytics and reporting. Instead of maintaining multiple dashboards across BI tools, we centralized key metrics into one unified view. We created a data-governance checklist and automated report scheduling to eliminate manual reconciliation.
The process took about five months, but the results were immediate and measurable:
25% reduction in software licensing costs within the first year.
38% increase in active usage across remaining tools.
Simplified security posture, reducing the number of vendor integrations by half.
Improved employee satisfaction scores, especially among frontline retail managers who no longer needed to toggle between systems.
One of my favorite moments came a few months later when a department head told me, โI can finally find what I need without calling three people.โ Thatโs when I knew simplification had worked.
Looking back, what surprised me most wasnโt how much we saved, but how much clarity we gained. Simplification forced alignment. Once redundant tools disappeared, teams began to talk more โ not through software, but through collaboration. Decisions became faster because everyone used the same data and systems.
One executive commented that it felt as if โthe fog had lifted.โ They werenโt just working with fewer tools โ they were working with purpose.
The hardest part of the project wasnโt technical execution. It was changing the perception that transformation equals accumulation. For years, digital maturity was measured by how many tools an organization deployed. But as Harvard Business Review points out, tools donโt create productivity โ people and processes do. Our experience mirrored that insight exactly.
Hereโs what I learned:
Simplification enables innovation. You canโt innovate when your foundation is unstable. Consolidation frees up both mental and operational capacity.
Tool governance matters. Every new platform should justify its existence โ what value does it add beyond whatโs already in place?
Culture drives adoption. Removing tools can feel threatening unless employees understand the why. Transparent communication makes all the difference.
Digital transformation isnโt a race to deploy more technology. Itโs a discipline of ensuring the right technology delivers consistent value.
Building for the long term
After the consolidation phase, the clientโs IT roadmap looked dramatically different. Instead of dozens of disconnected platforms, they invested in optimizing integrations, training and analytics literacy. By strengthening the foundation first, they could later introduce new technologies โ AI forecasting, advanced personalization and process automation โ with confidence that the systems underneath would support them.
Thatโs a crucial shift many organizations overlook. As tempting as it is to chase the next big tool, real transformation comes from improving how people and processes work together.
A year later, when I reconnected with the clientโs CIO, she told me, โOur best decision wasnโt the AI tool we added. It was everything we removed before it.โ
Thatโs the paradox of transformation: progress sometimes starts by taking things away.
[Note: The views expressed in this article are my own and do not represent the views of Deloitte or its clients.]
This article is published as part of the Foundry Expert Contributor Network. Want to join?
In 2016, 7-Eleven began a digital transformation aimed at redefining convenience. The starting point was loyalty. โStep one was to build a product discipline, bring the technology in house, and reduce reliance on third parties,โ says Scott Albert, VP and head of store and enterprise products.
Two years later, the Texas-based retailer reapplied the product playbook, now powering store systems across more than 13,000 US and Canadian locations. โWe moved from projects โ start date, end date โ to product: continuous improvement and iteration,โ Albert says. โFrom outputs to outcomes, co-owned with design and engineering.โ
Albert knows the terrain. A company veteran who cut his teeth in operations, he led product for loyalty and now oversees digital product for store systems, fuel, restaurant concepts, and merchandising, evidence of how far the model has scaled.
Setting the foundation
The idea was straightforward but the shift wasnโt. โIt was tough early on because it meant change,โ Albert says. โThe business was used to saying, โI need X.โ Often that wasnโt the real problem. Our job was to get underneath, understand the problem, design a solution for now and the future, and then iterate.โ
It takes several ingredients to solve big problems, like customer research, business process knowledge, data, and technology, so itโs natural that product teams are cross-functional. But that structure can also create competing priorities if not managed correctly. While the setting is convenience retail, the lesson applies to any CIO shifting from project-based delivery to product-driven transformation. โSuccess depends not on org charts, but on cross-functional trust, buy-in, and commitment,โ he says.
That structure set the foundation, and the real breakthroughs came from applying product thinking to their daily work.
Product thinking in action
โFor me and my team, the customer is the store associate,โ Albert says. That focus shaped priorities to remove low-value tasks, surface just-in-time insights, and let systems work for people, not the other way around.
The team learned this firsthand on midnight store walks. In one New York City visit, they noticed a new associate glued to her phone. โWe thought she was distracted,โ Albert says. โTurns out sheโd recorded her trainer so she could remember.โ That single observation sparked a redesign of training to move job aids and how-to videos from a back-room PCs to mobile devices on the floor, embedded in the flow of work.
The same product instinct of watching users, identifying friction, and iterating has carried into 7-Elevenโs AI initiatives. AI-assisted ordering, for example, reduced what was once up to 30 hours a week of manual work to under an hour a day, freeing up associates to focus on customers. At scale, those savings add up to more than 13 million hours reclaimed annually, and test-and-learn pilots tying the changes to about $340 million in incremental sales.
The back office has been transformed as well. After migrating store systems to the cloud with its 7-BOSS platform, 7-Eleven layered in โquick cardsโ that surface AI-generated insights and let associates act in three clicks or less. A clustering model identifies lookalike stores by sales mix, location type, even seasonality, and pushes tailored assortment recommendations. โWith three clicks, you can add an item, forecasting kicks in, and delivery happens in days,โ Albert says.
Together, these stories trace a clear pattern of observing the customer (in this case the store personnel), solving for their pain points, then amplifying the solution with data and AI. Itโs product thinking at work.
Operating like a product company
Behind the scenes, the mechanics mirror digital natives. Teams run in pods with product, engineering, and design as a three-legged stool. Quarterly planning sets direction, but roadmaps flex. โTell me everything youโll do next year โ that was the old model,โ Albert says. โNow we focus on quarters, but sometimes thatโs too long. We plan, then adapt.โ
Release cadence has accelerated as well, from two or three big bangs a year to monthly releases.
The cultural shift is ongoing funding for work that never ends. โThereโs no such thing as done in product,โ he says. โWeโre on the fifth iteration of our forecasting model. Weโll keep improving.โ
Start small, measure hard
Albertโs advice to other tech executives: start small. โFind a problem that matters, build a cross-functional team, measure success, and validate results,โ he says. โThen add a second team, a third, and youโre off.โ
And above all, measure. โPick metrics backed by data so no one can debate the results,โ he adds.
Nearly 10 years after its first loyalty decision, 7-Elevenโs product mindset now extends far beyond consumer apps. The store itself has become a living product, updated monthly, informed by data, and built around the associate.
For Albert, the real measure of success is to make the system work for the associate, so they can delight customers. โItโs the same product discipline, now applied to every corner of the store, and itโs redefining what convenience looks like at scale,โ he says.
An interactive portal at Microsoftโs new Experience Center One grounds visitors in scenes of nature. (GeekWire Photo / Todd Bishop)
[Editorโs Note: Agents of Transformation is an independent GeekWire series and 2026 event, underwritten by Accenture, exploring the people, companies, and ideas behind the rise of AI agents.]
REDMOND, Wash. โ If AI were a religion, this would probably qualify as a cathedral.
On the edge of Microsoftโs headquarters, overlooking Lake Bill amid a stand of evergreens, a new four-story building has emerged as a destination for business and tech decision-makers.
Equal parts briefing center, conference hall, and technology showroom, Microsoftโs โExperience Center Oneโ offers a curated glimpse of the future โ guided tours through glowing demo rooms where AI manages factory lines, models financial markets, and helps design new drugs.
Itโs part of a larger scene playing out across tech. As Microsoft, Google, Amazon and others pour billions into data centers, GPUs, and frontier models, theyโre making the case that AI represents not a bubble but a business transformation thatโs here to stay.ย
Microsoftโs new Experience Center One on the companyโs Redmond campus was designed by WRNS Studio. (Photo by Jason OโRear)
As the new center shows, Microsoftโs pitch isnโt just about off-the-shelf AI models or run-of-the-mill chatbots โ itโs about custom agentic systems that act on behalf of workers to complete tasks across a variety of tools and data sources.
That idea runs through nearly everything inside the facility, a glass-encased building featuring an elevated garden in a soaring open-air atrium, just across from Microsoftโs new executive offices on its revamped East Campus.
Experience Center One highlights what Microsoft calls โfrontier firmsโ โ ambitious companies using AI to push their operations to the edge of whatโs possible in their industries.ย
Agentic AI is โfast becoming the next defining chapter of a frontier organization,โ said Alysa Taylor, Microsoft chief marketing officer for Commercial Cloud and AI, in an interview.
The underlying message is clear: get on board or risk falling behind, both competitively and financially. A new IDC study, commissioned by Microsoft, finds both opportunity in spending big and risk in not being bold enough. Companies integrating AI across an average of seven business functions are realizing a return on investment of 2.84 times, it says. In contrast, โlaggardsโ are seeing returns of 0.84 times โ basically losing money on their initial spend.
The divide extends to revenue, too: 88% of frontier firms report top-line growth from their AI initiatives, compared to just 23% of laggards, according to the IDC study.
And hey, somebody has to foot the bill for those multi-billion-dollar AI superfactories.
For this second installment in ourAgents of Transformation series, GeekWire visited the new Microsoft facility to see first-hand how the company is presenting its vision of the future. Here are some of the takeaways from the sampling of demos we saw.
These are not off-the-shelf solutions. Each demo reflects a custom deployment built with a major customer, showing how AI tools can be tailored to specific business problems.ย
Collin Vandament of Microsoft demonstrates a BlackRock investment-analysis scenario inside Experience Center One, showing how a custom AI copilot can translate natural-language questions into the firmโs proprietary BQL code during a tour of the new facility in Redmond. (GeekWire Photo / Todd Bishop)
For example, one shows how Microsoft has worked with BlackRock to integrate a custom AI copilot inside the investment firmโs Aladdin platform to help analysts process large volumes of client and market data more efficiently. It helps reduce the manual work of gathering data and points analysts to potential risks sooner than they might have spotted it on their own.
As another example of the customization, the system is trained to translate natural language requests into โBQL,โ BlackRockโs proprietary programming language.
This deep level of integration tracks with the findings in the IDC report. It found that 58% of โfrontier firmsโ are already relying on custom-built or fine-tuned solutions rather than generic models. This is expected to accelerate, with 70% planning to move toward customized tools in the next two years to better handle their proprietary data and compliance needs.
โThatโs a trend that weโve seen even in the low-code movement โ taking an out-of-the-box solution, extending it, and customizing it,โ said Taylor, the Microsoft commercial CMO.
OpenAI integration remains critical for many Microsoft customers. Another demo focused on Microsoftโs work with Ralph Lauren, showing how the โAsk Ralphโ assistant interprets a shopperโs intent and recommends full outfits from available inventory.
Like many of the scenarios inside Experience Center One, this experience runs on Microsoftโs Azure OpenAI Service. Itโs a reminder that Microsoftโs partnership with OpenAI โ renewed and expanded in recent months โ is still a key driver of commercial demand for the tech giant, even as both companies increasingly work with other industry partners.
Teams of agents are starting to redefine industrial work. The clearest example of this was a digital twin simulation from Mercedes-Benz โ essentially a virtual version of a factory that lets engineers anticipate and diagnose issues without stopping real production.
The demo begins with a production alert triggered by a drop in efficiency. In a real plant, tracking down the cause (something as small as a slight angle change in a screw) might take a team of specialists days of sorting through machine logs and sensor data.
In Microsoftโs version, a human manager simply asks the system to diagnose whatโs causing the problem, through a natural language interface. That question triggers a set of AI agents, each with a specific role: one pulls the right data, another retrieves machine logs, and a third interprets what it all means in plain language.
Within about 15 minutes, the system produces a clear explanation of the likely cause and possible fixes, shortcutting a task that could otherwise stretch across most of a week.
AI is compressing weeks or months of scientific research into days or hours. A demo focusing on Insilico Medicineโs work with Microsoft showed how AI is starting to significantly collapse the timeline for drug discovery.ย
The process begins with a โdigital researcherโ that scans huge amounts of public biomedical data to surface promising disease targets. Itโs the kind of work that would otherwise take teams of scientists months of reading and analysis.
Collin Vandament demonstrates an Insilico Medicine drug-discovery scenario inside Experience Center One, where interactive displays visualize how AI models surface potential disease targets and rank candidate molecules. (GeekWire Photo / Todd Bishop)
A second system runs simulated chemistry experiments in the cloud, generating and ranking potential molecules that might bind to those targets. These simulations can be completed in a matter of days, or less, replacing weeks or even months of traditional laboratory work.
The demo follows a real example: Insilico used this workflow to identify a potential target for a lung disease and design molecules that could affect it. The company then synthesized dozens of these AI-generated compounds in the lab. One of them is now in Phase 2a human trials.
Thatโs a small sampling of the demos inside Microsoftโs Experience Center One.During our tour, we walked past displays for other major brands, including more iconic U.S. companies, but not everyone was willing to have the media spotlight cast upon their projects. As a condition of access, we agreed to stick to the examples cleared for public release.
Of course, the demos are carefully curated, and it remains to be seen how broadly companies will deploy these kinds of systems in their real-world operations.
The open-air atrium at Microsoftโs Experience Center One brings natural light into the building. (GeekWire Photo / Todd Bishop)
In many ways, the facility is a successor to Microsoftโs longtime Executive Briefing Center and conference facility, which remains in use a short walk away on the Redmond campus.
Trevor Noah with Hadi Partovi of Code.org during an October event at Experience Center One. (GeekWire Photo / Taylor Soper)
Itโs closed to the public, invite-only. Employees can request access to visit.
Visitors arrive via a circular drive, with a plaque at the entrance dedicating the building to John Thompson, the former Microsoft board chair who led the search process that resulted in Satya Nadellaโs appointment as CEO. There are private briefing suites on the upper floors, and a full cafe on the second. The building also includes a conference center with three auditoriums.ย
But perhaps the most distinct feature is the interactive portal. As they leave the demos, visitors walk through an immersive digital corridor with scenes of nature on the virtual walls.
Walking through the tunnel, motion sensors track their movement, causing digital leaves and particles on the wall-sized screens to swirl and flow in their wake.
The audio consists of nature sounds (birds, wind, and rustling trees) that were recorded locally in the Redmond and Sammamish area. And in a fittingly Pacific Northwest touch, the visual display is connected to a weather API. If it has been raining outside (as it often has been recently) the digital environment inside the tunnel turns rainy, too.
Itโs meant to be a final moment of grounding โ a programmed moment of Zen to help executives decompress and center themselves as they contemplate the frontier ahead.