โŒ

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

The forward-deployed engineer: Why talent, not technology, is the true bottleneck for enterprise AI

20 January 2026 at 07:15

Despite unprecedented investment in artificial intelligence, most enterprises have hit an integration wall. The technology works in isolation. The proofs of concept impress.

But when it comes time to deploy AI into production that touches real customers, impacts revenue and introduces legitimate risk, organizations balkโ€“for valid reasons: AI systems are fundamentally non-deterministic.

Unlike traditional software that behaves predictably, large language models can produce unexpected results. They risk providing confidently wrong answers, hallucinated facts and off-brand responses. For risk-conscious enterprises, this uncertainty creates a barrier that no amount of technical sophistication can overcome.

This pattern is common across industries. In my years helping enterprises deploy AI technology, Iโ€™ve watched many organizations build impressive AI demos that never made it past the integration wall.ย  The technology was ready. The business case was sound. But the organizational risk tolerance wasnโ€™t there, and nobody knew how to bridge the gap between what AI could do in a sandbox and what the enterprise was willing to deploy in production. At that point, I came to believe that the bottleneck wasnโ€™t the technology. It was the talent deploying it.

A few months ago, I joined Andela, which provides technical talent to enterprises for short or long-term assignments. From this vantage point, it remains clearer than ever that the capability that enterprises need has a name: the forward-deployed engineer (FDE). Palantir originally coined the term to describe customer-centric technologists essential to deploying their platform inside government agencies and enterprises. More recently, frontier labs, hyperscalers and startups have adopted the model. OpenAI, for example, will assign senior FDEs to high-value customers as investments to unlock platform adoption.

But hereโ€™s what CIOs need to understand: this capability has been concentrated with AI platform companies to drive their own growth. For enterprises to break through the integration wall, they need to develop FDEs internally.

What makes a forward-deployed engineer

The defining characteristic of an FDE is the ability to bridge technical solutions with business outcomes in ways traditional engineers simply donโ€™t. FDEs are not just builders. Theyโ€™re translators operating at the intersection of engineering, architecture and business strategy.

They are what I think of as โ€œexpedition leadersโ€ guiding organizations through the uncharted terrain of generative AI. Critically, they understand that deploying AI into production is more than a technical challenge. Itโ€™s also a risk management challenge that requires earning organizational trust through proper guardrails, monitoring and containment strategies.

In 15 years at Google Cloud and now at Andela, Iโ€™ve met only a handful of individuals who embody this archetype. What sets them apart isnโ€™t a single skill but a combination of four working in concert.

  • The first is problem-solving and judgment. AI output is often 80% to 90% correct, which makes the remaining 10% to 20% dangerously deceptive (or maddeningly overcomplicated). Effective FDEs possess the contextual understanding to catch what the model gets wrong. They spot AI workslop or the recommendation that ignores a critical business constraint. More importantly, they know how to design systems that contain this risk: output validation, human-in-the-loop checkpoints and deterministic fallback responses when the model is uncertain. This is what makes the difference between a demo that impresses and a production system that executives will sign off on.
  • The second competency is solutions engineering and design. FDEs must translate business requirements into technical architectures while navigating real trade-offs: cost, performance, latency and scalability. They know when a small language model (with lower inference cost) will outperform a frontier model for a specific use case, and they can justify that decision in terms of economics rather than technical elegance. Critically, they prioritize simplicity. The fastest path through the integration wall almost always begins with the minimum viable product (MVP) that solves 80% of the problem with appropriate guardrails. The solution will not be the elegant system that addresses every edge case but introduces uncontainable risk.
  • Third is client and stakeholder management. The FDE serves as the primary technical interface with business stakeholders, which means explaining technical mechanics to executives who often lack significant experience with AI. Instead, these leaders care about risk, timeline and business impact. This is where FDEs earn the organizational trust that allows AI to move into production. They translate non-deterministic behavior into risk frameworks that executives understand: whatโ€™s the blast radius if something goes wrong, what monitoring is in place and whatโ€™s the rollback plan? This makes AIโ€™s uncertainty legible and manageable to risk-conscious decision makers.
  • The fourth competency is strategic alignment. FDEs connect AI implementations to measurable business outcomes. They advise on which opportunities will move the needle versus which are technically interesting but carry disproportionate risk relative to value. They think about operational costs and long-term maintainability, as well as initial deployment. This commercial orientationโ€”paired with an honest assessment of riskโ€”is what separates an FDE from even the most talented software engineer.

The individuals who possess all of these competencies share a common profile. They typically started their careers as developers or in another deeply technical function. They likely studied computer science. Over time, they developed expertise in a specific industry and cultivated unusual adaptability and the willingness to stay curious as the landscape shifts beneath them. Because of this rare combination, theyโ€™re concentrated at the largest technology companies and command high compensation.

The CIOโ€™s dilemma

If FDEs are as scarce as Iโ€™m suggesting, what options do CIOs have?

Waiting for the talent market to produce more of them will take time. Every month that AI initiatives stall at the integration wall, the gap widens between organizations capturing real value and those still showcasing demos to their boards. The non-deterministic nature of AI isnโ€™t going away. If anything, as models become more capable, their potential for unexpected behavior increases. The enterprises that thrive will be those that develop the internal capability to deploy AI responsibly and confidently, not those waiting for the technology to become risk-free.

The alternative is to grow FDEs from within. This is harder than hiring, but itโ€™s the only path that scales. The good news: FDE capability can be developed. It requires the right raw material and an intensive, structured approach. At Andela, weโ€™ve built a curriculum that takes experienced engineers and trains them to operate as FDEs. Hereโ€™s what weโ€™ve learned about what works.

Building your FDE bench

Start by identifying the right candidates. Not every strong engineer will make the transition.ย  Look for experienced software engineers who demonstrate curiosity beyond their technical domain. You want people with foundational strength in core development practices and exposure to data science and cloud architecture. Prior industry expertise is a significant accelerant. Someone who understands healthcare compliance or financial services risk frameworks will ramp faster than someone learning the domain from scratch.

The technical development path has three layers. The foundation is AI and ML literacy: LLM concepts, prompting techniques, Python proficiency, understanding of tokens and basic agent architectures. These are table stakes.

The middle layer is the applied toolkit. Engineers need working competency in three areas that map to the โ€œthree hatsโ€ an FDE wears.

  • First is RAG, or retrieval-augmented generation, knowing how to connect models to enterprise data sources reliably and accurately.
  • Second is agentic AI, orchestrating multi-step reasoning and action sequences with appropriate checkpoints and controls.
  • Third is production operations, ensuring solutions can be deployed with proper monitoring, guardrails and incident response capabilities.

These skills are developed through building and shipping actual systems that have to survive contact with real-world risk requirements.

The advanced layer is deep expertise: model internals, fine-tuning, the kind of knowledge that allows an FDE to troubleshoot when standard approaches fail. This is what separates someone who can follow a playbook from someone who can improvise when the playbook doesnโ€™t cover the situation. It is also someone who can explain to a skeptical CISO why a particular approach is safe to deploy.

Professional capabilities are equally as important as technical training and can be harder to develop. FDEs must learn to reframe conversations, to stop talking about technical agents and start discussing business problems and risk mitigation. They must manage high-stakes stakeholder relationships, including difficult conversations around scope changes, timeline slips and the inherent uncertainties of non-deterministic systems. Most importantly, they must develop judgment: the ability to make good decisions under ambiguity and to inspire confidence in executives who are being asked to accept a new kind of technology risk.

Set realistic expectations with your leadership and your candidates. Even with a strong program, not everyone will complete the transition. But even a small cohort of FDE-capable talent can dramatically accelerate your path to overcoming the integration wall. One effective FDE embedded with a business unit can accomplish more than a dozen traditional engineers working in isolation from the business context. Thatโ€™s because the FDE understands that the barrier was never primarily technical.

The stakes

The enterprises that develop FDE capability will break through the integration wall. Theyโ€™ll move from impressive demos to production systems that generate real value. Each successful deployment will build organizational confidence for the next. Those that donโ€™t will remain stuck, unable to convert AI investment into AI returns, watching more risk-tolerant competitors pull ahead.

My bet when I joined Andela was that AI would not outpace human brilliance. I still believe that. But humans have to evolve. The FDE represents that evolution: technically deep, commercially minded, fluent in risk and adaptive enough to lead through continuous change. This is the archetype for the AI era. CIOs who invest in building this capability now wonโ€™t just keep pace with AI advancement; theyโ€™ll be the ones who finally capture the enterprise value that has remained stubbornly hard to reach.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

Digital transformation 2026: Whatโ€™s in, whatโ€™s out

20 January 2026 at 05:01

I remind CIOs, โ€œYou will always be transforming.โ€ Every two years, new business drivers emerge, such as the pandemic from 2020-2022 and automation-driven efficiencies from 2023-2024. Weโ€™re now in the gen AI era, where most CIOs are under pressure to shift from driving broad experiments to delivering business value and ROI.

As a result, CIOs need to refocus their strategies and communicate an updated vision for transformation. My 2025 article on whatโ€™s in and out for digital transformation stressed the importance of developing transformational leaders and AI-ready employees while avoiding AI moonshots and ending lift-and-shift cloud migrations.

In 2026, experts suggest that CIOs must transform IT, transition AI to customer experience (CX) opportunities, and double down on data governance and security. ย ย 

In: Reengineering ITโ€™s digital operating model

In 2025, I wrote about how AI is the end of IT as we know it and how CIOs are rethinking IT for the agentic AI era. World-class IT organizations are setting higher expectations, partnering with departments on AI change management, and committing to lifelong learning.

With all the AI innovations impacting IT, CIOs will need to refocus their digital operating models to deliver more capabilities faster, at lower cost, and with higher resiliency.

Sesh Tirumala, CIO at Western Digital, says, โ€œVelocity gets us ahead, resilience keeps us steady, and adaptability ensures we stay ahead. Direction matters, and in 2026, velocity is the real currency of success.โ€

How can CIOs aim higher when CEOs and boards are demanding ROI from AI? Jay Upchurch, CIO at SAS, says the best and brightest CIOs will snap up commercial responsibilities. โ€œTop CIOs will sell customers and their divisional peers on technology like CMOs, and answer the constant call to do more with less like CFOs.โ€

I expect many CIOs will reorganize IT in 2026. Some will be mandated to reduce costs and headcount, while others will drive efficient collaboration in their product management, agile, and DevOps practices. Top CIOs will seek opportunities to guide reorganization across the enterprise as agentic AI creates new workflow patterns and cross-department collaboration opportunities.

โ€œCEOs will conclude that AI adoption is no longer a technology problem but a workforce and management problem,โ€ says Florian Douetteau, co-founder and CEO of Dataiku. โ€œInstead of selling cloud migrations and data platforms, consultants will start selling organizational rewiring to prepare for AI-run operations. This shift creates tension inside enterprises because it surfaces the real blocker: leadership culture, not technology.โ€

Raja Roy, senior managing partner in the office of technology excellence at Concentrix, adds, โ€œThe new priority: operating models that support rapid learning, collaboration, and real-time evolution, keeping the human/AI balance aligned to the right tasks, whether an interaction calls for a human touch or machine efficiency.โ€

Recommendation: CIOs should review ITโ€™s structure and agile practices to increase the effectiveness of delivering AI innovations and improve operational resilience.

Out: Underinvesting in data governance

Data governance is a critical function in global regulated enterprises, where governance, risk, and compliance (GRC) are critical top-down mandates. Midsize organizations are catching up, as they evolve to data-driven organizations and centralize data for AI initiatives.

While governing relational databases and warehouses is a relatively mature process, deploying agentic AI capabilities requires new tools and practices to extend data governance to unstructured data sources.ย 

โ€œUnstructured data now moves too fast for manual oversight, and organizations can finally govern it as itโ€™s created instead of cleaning it up later,โ€ says Felix Van de Maele, CEO of Collibra. โ€œIn 2026, human judgment still matters, but AI-assisted systems, not spreadsheets or static controls, will carry the day-to-day load.โ€

Van de Maele suggests that AI-powered metadata generation for unstructured data, with integrated data practices for building reliable AI at scale is in, while CIOs should move away from manual tagging, siloed datasets, and one-time compliance efforts.

Additionally, many data governance leaders must get more granular controls on who gets access to what data. Authorizing users to full datasets and file systems is no longer sufficient as more organizations deploy AI agents on top of whatever data an employee can access.ย ย 

โ€œMany organizations do not know where their sensitive data lives, who can access it, or how much is exposed across cloud and SaaS systems,โ€ says Yair Cohen, co-founder and VP of product at Sentra. โ€œLeaders in 2026 will treat governance as an engineering practice by embedding classification, tagging, and access rules directly into data pipelines, warehouses, and AI workflows.โ€

Recommendation: CIOs should be paranoid about data risks, take a sponsorship role in data governance, and ensure that improving data quality is prioritized in every AI initiative.

In: Targeting AI for growth and UX

In 2025, I warned CIOs about promoting AI as a driver of productivity and efficiency. Eventually, the CFO wants to see ROI, and this is one reason we saw significant technology layoffs in 2025.

I compiled over 50 expert predictions around 2026 on AI, from agentic workflows improving operations through gen AI embedded in customer experiences. I believe AI will have its Uber and Airbnb moment in 2026, as startups revolutionize customer experiences and disrupt slower-moving business-to-consumer (B2C) enterprises.

One easy way to embrace AI-enabled customer experiences is to upgrade call centers and chatbots without major infrastructure investments. Rob Scudiere, CTO at Verint, says, โ€œBrands can layer an AI-powered chatbot onto their existing application instead of replacing an outdated telephony system and interactive voice response (IVR).โ€

When considering improving customer experiences, Pasquale DeMaio, VP of Amazon Connect, says to embrace systems that leverage AI and human strengths. โ€œIn customer support, agentic AI will manage routine requests while human agents will address complex issues with empathy and nuance, guided by AI insights and recommendations.โ€

CIOs should recognize a paradigm shift in UX, as data entry forms, customer journeys, and prescriptive reports get replaced with agentic AI capabilities. Focusing on AI in customer support is an easy entry point, as the entire customer experience, especially in ecommerce and SaaS tools, requires redesigning with AI capabilities.

โ€œAI agents will become the frontend of the company as the primary starting point for any and all external contact,โ€ says Antoine Nasr, head of AI at Forethought. โ€œEnd-users will no longer have to try and navigate to the correct department and tool to get the help or information they need โ€” they will simply interact with the companyโ€™s public AI agent in natural language. With that, agent design will become a key concern for several functions, not just customer support.โ€

Recommendation: Product-based IT organizations are a step ahead in anticipating how AI will evolve CX, and they should plan to segment and learn from early AI adopters. ย 

Out: AI experimentation without paths to short-term business value

Several research reports in 2025 highlighted how few AI experiments are being deployed into production and delivering business value. CEOs and boards will demand that CIOs narrow the portfolio of AI experiments and have real plans to deliver ROI from AI investments.

Conal Gallagher, CISO and CIO at Flexera, says in the next era of AI, execution matters more than experimentation. โ€œCIOs will only continue to face bigger challenges and pressure to move beyond the AI experimentation phase and deliver clear, actionable, and measurable business outcomes.โ€

AI agents from top enterprise SaaS and security companies follow common patterns. These AI agents focus on a primary employee workflow, connect to multiple data sources, and aim to do more than complete tasks. CIOs will have to demonstrate the business value of how these AI agents guide employees in making smarter, faster decisions and the financial impacts of AI-revolutionized workflows.

โ€œAgentic AI delivers measurable ROI in months, not years, because it replaces entire processes, not just parts of them,โ€ says Luke Norris, co-founder and CEO of KamiwazaAI. โ€œEach successful deployment accelerates the next, creating a self-funding innovation loop. More and more enterprises will be realizing this compounding ROI in the coming 6-12 months.โ€

Experts offer guidance on transitioning from an experimental to an outcome-based mindset. Kerry Brown, transformation evangelist at Celonis, says after years of big AI investment, itโ€™s time to rethink end-to-end processes rather than just adding more automation on top.

โ€œLeaders need to empower employees with visibility into how work really happens, and give them ownership in redesigning it,โ€ says Brown. โ€œWhen teams have that context and agency, they become true drivers of transformation and help create a faster, more direct path to ROI.โ€

Ed Frederici, CTO at Appfire, adds, โ€œWhatโ€™s out in 2026 is treating AI as a standalone, isolated initiative, and the next wave of digital transformation moves beyond scattered pilots to full operational integration. CIOs will treat AI as core business infrastructure rather than a special project โ€” holding it to the same expectations for accuracy, security, and performance as every other critical system.โ€

Recommendation: Organizations with too many independently running AI experiments should revisit their AI governance strategy, communicate clear objectives, and prioritize where to build AI delivery plans.ย 

In: Implementing security before AI deployments

Nearly every transformational technology started with a gold rush to deliver innovations, and bolting on security afterward. CIOs will face pressure to move last yearโ€™s AI experiments into production this year, and weโ€™ll have to see to what extent security will be implemented in initial deployments.

Many experts chimed in on where CIOโ€™s need to get ahead of the curve. Here are three recommendations:

  • Implement agentic AI observability and trust verification frameworks. โ€œ2026 marks a major shift in the threat landscape as agentic commerce takes hold, and in turn, AI-driven deception accelerates,โ€ says Gavin Reid, CISO at HUMAN Security. โ€œCIOs need visibility into how and what AI agents operate across their environments and deploy trust verification frameworks that continuously validate identity, intent, and behavior in real-time.โ€
  • Establish security by design, especially around identity. โ€œA unified identity layer is now a prerequisite for effective AI security implementation and is an urgent priority for any organization making AI investments,โ€ says Ev Kontsevoy, CEO and co-founder of Teleport. โ€œOrganizations that embed these secure-by-design practices across development, delivery, and operations, and treat infrastructure security as a necessary mandate, will be best prepared for the transformational changes that AI will introduce.โ€
  • Extend data loss prevention to AI-powered browsers. โ€œAI-powered browsers like OpenAIโ€™s Atlas and Perplexityโ€™s Comet are one of the biggest blind spots in enterprise security,โ€ said Rohan Sathe, co-founder and CEO at Nightfall. โ€œEmployees use them to research deals, draft customer outreach, and summarize strategy docs, giving agents with memory and sync direct access to logged-in Gmail, CRM, and code repos. Legacy data loss prevention cannot see this, since it was built for files, not browser-level activity, prompts, or clipboard moves.โ€

Recommendation: CIOs must partner with CISOs, legal, and risk management to clearly define AI security non-negotiables, platforms, and implementation requirements.

CIOs should expect the unexpected in 2026, whether driven by volatile economic conditions, new AI capabilities, or headline-making security incidents. My back-to-basics recommendations for digital transformation in 2026 aim to guide CIOs toward growth opportunities while improving operational resiliency.

๋„ค์ด๋ฒ„, ๋ฐ์ดํ„ฐยท์ฑ…์ž„๊ฒฝ์˜ยท์ธ์‚ฌ ์ด๊ด„ C๋ ˆ๋ฒจ ์ธ์‚ฌ ๋ฐœํ‘œ

20 January 2026 at 03:18

๋„ค์ด๋ฒ„๋Š” ์ด๋ฒˆ C๋ ˆ๋ฒจ ๋ฆฌ๋”์‹ญ ์ฒด๊ณ„ ๊ฐœํŽธ์„ ํ†ตํ•ด AI ์—์ด์ „ํŠธ๋ถ€ํ„ฐ ํ”ผ์ง€์ปฌ AI, ์›น3 ๋“ฑ ๋ณ€ํ™”ํ•˜๋Š” ๊ธ€๋กœ๋ฒŒ ํ™˜๊ฒฝ์— ๋ณด๋‹ค ๊ธฐ๋ฏผํ•˜๊ฒŒ ๋Œ€์‘ํ•˜๊ณ , ์‹ ๊ทœ ์‚ฌ์—… ๋ชจ๋ธ ๋ฐœ๊ตด๊ณผ ์ „๋žต์  ๊ธ€๋กœ๋ฒŒ ํŒŒํŠธ๋„ˆ์‹ญ ํ™•๋Œ€์— ์†๋„๋ฅผ ๋‚ผ ๊ณ„ํš์ด๋‹ค. ์•„์šธ๋Ÿฌ AI๋ฅผ ๋น„๋กฏํ•œ ๊ธฐ์ˆ ์˜ ์‚ฌํšŒ์  ์˜ํ–ฅ๋ ฅ์ด ํ™•๋Œ€๋˜๋Š” ํ๋ฆ„์— ๋งž์ถฐ, ๊ธฐ์—…์˜ ์‚ฌํšŒ์  ์ฑ…์ž„์„ ํ•œ์ธต ๊ฐ•ํ™”ํ•ด ๋‚˜๊ฐ„๋‹ค๋Š” ๋ฐฉ์นจ์ด๋‹ค.

๋จผ์ €, ๋„ค์ด๋ฒ„ ์ฃผ์š” ์„œ๋น„์Šค ์ „๋ฐ˜์— AI ์—์ด์ „ํŠธ ์ ์šฉ์„ ๊ฐ€์†ํ™”ํ•˜๊ณ  ๊ฒ€์ƒ‰ ๋ฐ ๋ฐ์ดํ„ฐ ๊ธฐ์ˆ  ํ”Œ๋žซํผ์˜ ํ†ตํ•ฉยท๊ณ ๋„ํ™”๋ฅผ ์ถ”์ง„ํ•˜๊ธฐ ์œ„ํ•ด ๊น€๊ด‘ํ˜„ ๊ฒ€์ƒ‰ ํ”Œ๋žซํผ ๋ถ€๋ฌธ์žฅ์ด CDO(Chief Data & Contents Officer, ์ตœ๊ณ  ๋ฐ์ดํ„ฐยท์ฝ˜ํ…์ธ  ์ฑ…์ž„์ž)๋กœ ์„ ์ž„๋  ์˜ˆ์ •์ด๋‹ค. ๊น€๊ด‘ํ˜„ CDO๋Š” ๋„ค์ด๋ฒ„ ์ „๋ฐ˜์— ์ถ•์ ๋œ ์‚ฌ์šฉ์ž ๋ฐ์ดํ„ฐ์™€ ์ฝ˜ํ…์ธ ๋ฅผ ์œ ๊ธฐ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•ด ๋„ค์ด๋ฒ„ ์•ฑ๊ณผ ์ฃผ์š” ์„œ๋น„์Šค ์ „๋ฐ˜์— ์ฐจ๋ณ„ํ™”๋œ AI ์—์ด์ „ํŠธ ๊ฒฝํ—˜์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ค‘ยท์žฅ๊ธฐ์ ์ธ ์„œ๋น„์Šค ๊ฒฝ์Ÿ๋ ฅ ๊ฐ•ํ™”๋ฅผ ์ด๋Œ ๊ณ„ํš์ด๋‹ค.

๋˜ํ•œ ์œ ๋ด‰์„ ์ •์ฑ…/RM ๋ถ€๋ฌธ์žฅ์€ ์‹ ์ž„ CRO(Chief Corporate Responsibility Officer, ์ตœ๊ณ  ์ฑ…์ž„๊ฒฝ์˜ ์ฑ…์ž„์ž)๋กœ์„œ ๊ธ‰๋ณ€ํ•˜๋Š” ๋Œ€์™ธ ํ™˜๊ฒฝ ์†์—์„œ ํšŒ์‚ฌ ์ „๋ฐ˜์˜ ์ •์ฑ… ๋ฐ ๋ฆฌ์Šคํฌ ๊ด€๋ฆฌ ์ฒด๊ณ„๋ฅผ ์ด๊ด„ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋„ค์ด๋ฒ„๊ฐ€ ์ดํ•ด๊ด€๊ณ„์ž์™€ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌํšŒ์  ์ฑ…์ž„์„ ๋‹คํ•˜๋Š” ํ”Œ๋žซํผ์œผ๋กœ ์ง€์† ์„ฑ์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ด€๋ จ ์ •์ฑ… ์šด์˜๊ณผ ์•ˆ์ •์ ์ธ ์„œ๋น„์Šค ํ™˜๊ฒฝ ๊ตฌ์ถ•์„ ์ถ”์ง„ํ•  ์˜ˆ์ •์ด๋‹ค.

์•„์šธ๋Ÿฌ ํšŒ์‚ฌ์™€ ๊ตฌ์„ฑ์›์˜ ์„ฑ์žฅ์„ ์ง€์›ํ•˜๋Š” ์ธ์‚ฌ ์šด์˜ ์ฒด๊ณ„๋ฅผ ๋งˆ๋ จํ•˜๊ธฐ ์œ„ํ•ด ํ™ฉ์ˆœ๋ฐฐ HR ๋ถ€๋ฌธ์žฅ์ด CHRO(Chief Human Resources Officer, ์ตœ๊ณ  ์ธ์‚ฌ ์ฑ…์ž„์ž)๋กœ ์„ ์ž„๋  ์˜ˆ์ •์ด๋‹ค. ํ™ฉ์ˆœ๋ฐฐ CHRO๋Š” ๊ธฐ์ˆ  ํ™˜๊ฒฝ๊ณผ ์—…๋ฌด ๋ฐฉ์‹ ๋ณ€ํ™”์— ๋Œ€์‘ํ•ด ์ „์‚ฌ ์ธ์‚ฌ ์ „๋žต๊ณผ ์กฐ์ง ์šด์˜ ์ฒด๊ณ„๋ฅผ ์ด๊ด„ํ•˜๋ฉฐ, ์ค‘์žฅ๊ธฐ ์ธ์‚ฌ ์ •์ฑ… ์ˆ˜๋ฆฝ๊ณผ AI ์‹œ๋Œ€์— ๋ถ€ํ•ฉํ•˜๋Š” ์กฐ์ง ๊ฒฝ์Ÿ๋ ฅ ๊ฐ•ํ™”๋ฅผ ์ฃผ๋„ํ•  ๊ณ„ํš์ด๋‹ค.

๋„ค์ด๋ฒ„๋Š” ๋ณด๋„์ž๋ฃŒ๋ฅผ ํ†ตํ•ด โ€œ์•ž์œผ๋กœ C๋ ˆ๋ฒจ ๋ฆฌ๋”์‹ญ ์ค‘์‹ฌ์˜ ์ฑ…์ž„๊ฒฝ์˜ ์ฒด์ œ ํ•˜์—์„œ ์‡ผํ•‘, ๊ธˆ์œต, ํด๋ผ์šฐ๋“œ, AI ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฌ์—… ๋ฐ ๊ธฐ์ˆ  ์˜์—ญ์—์„œ โ€˜ํŒ€ ๋„ค์ด๋ฒ„โ€™์˜ ์—ญ๋Ÿ‰์„ ์œ ๊ธฐ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•ด โ€˜์—์ด์ „ํŠธ Nโ€™์„ ์ค‘์‹ฌ์œผ๋กœ AI ๊ฒฝ์Ÿ๋ ฅ์„ ํ•œ์ธต ๊ณ ๋„ํ™”ํ•˜๊ณ , ์ƒˆ๋กœ์šด ๊ธ€๋กœ๋ฒŒ ์‚ฌ์—… ๊ธฐํšŒ ๋ฐœ๊ตด๊ณผ ๋„์ „์„ ์ด์–ด๊ฐˆ ๊ฒƒโ€์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

ํ•œํŽธ, ์ƒˆ๋กญ๊ฒŒ ์„ ์ž„๋˜๋Š” C๋ ˆ๋ฒจ ๋ฆฌ๋”๋Š” ์˜ค๋Š” 2์›” 1์ผ์ž๋กœ ๊ณต์‹ ์ทจ์ž„ํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ๋ฆฌ๋”์‹ญ ์ฒด๊ณ„์— ๋”ฐ๋ฅธ ์„ธ๋ถ€ ์กฐ์ง ๊ฐœํŽธ์€ ์ˆœ์ฐจ์ ์œผ๋กœ ์ง„ํ–‰๋  ์˜ˆ์ •์ด๋‹ค.
jihyun.lee@foundryco.com

์นผ๋Ÿผ | 2026๋…„ IT ์ „๋žต์— ์•ž์„œ โ€˜ํ‘œ์ค€ ์šด์˜์ ˆ์ฐจโ€™๋ฅผ ์†๋ด์•ผ ํ•  ์ด์œ 

20 January 2026 at 02:43

์ˆ˜์‹ญ ๋…„ ๋™์•ˆ IT ์šด์˜ ๋งค๋‰ด์–ผ์€ ๋Œ€๊ฐœ 50ํŽ˜์ด์ง€ ๋ถ„๋Ÿ‰์˜ ๋นฝ๋นฝํ•œ PDF ๋ฌธ์„œ์˜€๋‹ค. ์‚ฌ๋žŒ์ด ๋งŒ๋“ค๊ณ  ์‚ฌ๋žŒ์ด ์ฝ๋„๋ก ์„ค๊ณ„๋œ ๋ฌธ์„œ๋Š”, ๊ฐ์‚ฌ๊ฐ€ ํ•„์š”ํ•ด์งˆ ๋•Œ๊นŒ์ง€ ๋””์ง€ํ„ธ ์ €์žฅ์†Œ ์–ด๋”˜๊ฐ€์—์„œ ๋ฐฉ์น˜๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 2026๋…„์— ์ ‘์–ด๋“  ์ง€๊ธˆ, ์ „ํ†ต์ ์ธ SOP๋Š” ์‚ฌ์‹ค์ƒ ์ˆ˜๋ช…์„ ๋‹คํ•œ ์ƒํƒœ๋‹ค. ์ด์ œ ์ด ๋งค๋‰ด์–ผ์˜ ์ฃผ๋œ ์‚ฌ์šฉ์ž๊ฐ€ ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์‹œ์Šคํ…œ์€ ์ ์  ๋” ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜์œผ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ๋‹จ์ˆœํžˆ ๋Œ€์‹œ๋ณด๋“œ๋ฅผ ๊ฐ์‹œํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ์Šค์Šค๋กœ ์‚ฌ๊ณ ํ•˜๊ณ  ๊ณ„ํšํ•˜๋ฉฐ ์ธํ”„๋ผ ๋‚ด ๋ณ€๊ฒฝ์„ ์‹คํ–‰ํ•˜๋Š” ์ž์œจํ˜• ์—์ด์ „ํŠธ๊ฐ€ ๋ฐฐ์น˜๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค ์—์ด์ „ํŠธ๋Š” PDF ๋ฌธ์„œ๋ฅผ ์ฝ์„ ์ˆ˜ ์—†๊ณ , ๋ฒ•๋ฅ  ์šฉ์–ด๋กœ ์ž‘์„ฑ๋œ ๋ณด์•ˆ ์ •์ฑ…์˜ ์ทจ์ง€๋ฅผ ํ•ด์„ํ•˜์ง€๋„ ๋ชปํ•œ๋‹ค. ์ž์œจํ˜• IT ์‹œ๋Œ€์— ํ†ต์ œ๋ ฅ์„ ์œ ์ง€ํ•˜๋ ค๋ฉด ๊ณ ์ •๋œ ๊ทœ์น™์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ  โ€˜์—์ด์ „ํŠธ ํ—Œ๋ฒ•โ€™, ์ฆ‰ ์•คํŠธ๋กœํ”ฝ์ด ์ œ์‹œํ•œ โ€˜ํ—Œ๋ฒ• ์ค‘์‹ฌ AI(Constitutional AI)โ€™๋ฅผ ๊ธฐ์—… ํ™˜๊ฒฝ์— ์ ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” AI์˜ ๋ฌธ์ œ์ ์„ AI๊ฐ€ ์Šค์Šค๋กœ ๊ฒ€์ฆํ•˜๊ณ  ๊ณ ์น˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•œ๋‹ค.

๋ฌธ์„œ ์† ์ •์ฑ…์—์„œ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„๋œ ์ •์ฑ…์œผ๋กœ

๊ณผ๊ฑฐ IT ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ์‚ฌํ›„ ๋Œ€์‘๋งŒ ๊ฐ€๋Šฅํ•œ โ€˜์ฒดํฌ๋ฆฌ์ŠคํŠธโ€™ ๋ฐฉ์‹์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์˜ค๋Š˜๋‚  ๊ธฐ์—…์€ ์ •์ฑ…์„ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„ํ•˜๋Š” โ€˜PaC(Policy as Code)โ€™๋กœ์˜ ์ „ํ™˜์ด ํ•„์š”ํ•˜๋‹ค.

  • ์ „์ „๋‘์—ฝ ์—ญํ• : ์—์ด์ „ํŠธ ํ—Œ๋ฒ•์€ ์ž์œจ ์‹œ์Šคํ…œ ๊ธฐ๊ณ„๊ฐ€ ์ฝ์„ ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ณธ ์›์น™ ์ง‘ํ•ฉ์ด๋‹ค.
  • ์šด์˜ ๊ฒฝ๊ณ„: ์—์ด์ „ํŠธ๊ฐ€ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์—… ๋ฒ”์œ„์™€ ์ ˆ๋Œ€ ๋„˜์ง€ ๋ง์•„์•ผ ํ•  ์œค๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ๊ทœ์ •ํ•œ๋‹ค.
  • ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ๊ทœ์น™: ์ฝ”๋“œ๋กœ ๊ตฌํ˜„๋œ ๊ฐ•์ œ ๊ทœ์น™์˜ ์˜ˆ๋กœ๋Š” โ€˜ํ”ผํฌ ์‹œ๊ฐ„๋Œ€์—๋Š” ์ธ๊ฐ„ ๊ฐœ์ž… ํ† ํฐ ์—†์ด๋Š” ์šด์˜ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์ˆ˜์ •ํ•˜์ง€ ์•Š๋Š”๋‹คโ€™์™€ ๊ฐ™์€ ์›์น™์ด ์žˆ๋‹ค.
  • LLM ์ดํ•ด ๊ฐ€๋Šฅ์„ฑ: ์ด๋Ÿฌํ•œ ๊ทœ์น™์€ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜์„ ๋‹ด๋‹นํ•˜๋Š” LLM์ด ์ดํ•ดํ•˜๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฐ ์ „ํ™˜์€ ๊ทผ๋ณธ์ ์ธ ๋ณ€ํ™”๋ฅผ ์˜๋ฏธํ•œ๋‹ค. IT ์ „๋ฌธ๊ฐ€์˜ ์—ญํ• ์€ โ€˜์šด์˜์žโ€™์—์„œ โ€˜์˜๋„ ์„ค๊ณ„์žโ€™๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. IT ์ง์›์€ ๋” ์ด์ƒ ์‹œ์Šคํ…œ์„ ์ง์ ‘ ์กฐ์ž‘ํ•˜๋Š” ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๋ผ, ์ž์œจ ์‹œ์Šคํ…œ์ด ๋”ฐ๋ผ์•ผ ํ•  ํ–‰๋™ ๊ทœ์น™์„ ์„ค๊ณ„ํ•˜๋Š” ์ฃผ์ฒด๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค.

IT ์šด์˜์„ ์œ„ํ•œ ์ž์œจ์„ฑ ๊ณ„์ธต ๊ตฌ์กฐ

๊ธฐ์—…์ด โ€˜ํ‚ฌ ์Šค์œ„์น˜โ€™์— ๋Œ€ํ•œ ํ†ต์ œ๊ถŒ์„ ์œ ์ง€ํ•˜๋ฉด์„œ AI ์—ญ๋Ÿ‰์„ ํ™•์žฅํ•˜๋ ค๋ฉด, โ€˜์ž์œจ์„ฑ์˜ ๊ณ„์ธต ๊ตฌ์กฐโ€™์— ์ดˆ์ ์„ ๋งž์ถœ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋Š” 1978๋…„ ์—ฐ๊ตฌ์ž ํ† ๋จธ์Šค ์…ฐ๋ฆฌ๋˜์™€ ์œŒ๋ฆฌ์—„ ๋ฒ„ํ”Œ๋žญํฌ์˜ ๊ธฐ์ดˆ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐœ๋…์ด๋‹ค.

1๋‹จ๊ณ„: ์™„์ „ ์ž์œจํ™” ์˜์—ญ(๊ฐ€์žฅ ์‰ฝ๊ฒŒ ๋„์ž…ํ•  ์ˆ˜ ์žˆ๋Š” ์˜์—ญ)

  • ์ด๋Š” ์‚ฌ๋žŒ์ด ๊ฐœ์ž…ํ•˜๋Š” ๋น„์šฉ์ด ํ•ด๋‹น ์ž‘์—…์˜ ๊ฐ€์น˜๋ณด๋‹ค ๋” ํฐ ์—…๋ฌด๋ฅผ ์˜๋ฏธํ•œ๋‹ค.
  • ์‚ฌ๋ก€
    • ์ž๋™ ํ™•์žฅ
    • ๋กœ๊ทธ ๋กœํ…Œ์ด์…˜
    • ๊ธฐ๋ณธ ํ‹ฐ์ผ“ ๋ผ์šฐํŒ…
    • ์บ์‹œ ์ •๋ฆฌ
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ์‚ฌ์ „์— ์ •์˜๋œ ์ž„๊ณ„๊ฐ’ ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋™์ž‘ํ•˜๋Š” ํ†ต์ œ๋œ ์ž๋™ํ™” ์˜์—ญ(sandbox of trust)์—์„œ ๊ด€๋ฆฌ๋œ๋‹ค.

2๋‹จ๊ณ„: ๊ฐ๋…ํ˜• ์ž์œจํ™” ์˜์—ญ(์‚ฌ์ „ ํ™•์ธ ๊ตฌ๊ฐ„)

  • ์—์ด์ „ํŠธ๊ฐ€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘๊ณผ ๋ฌธ์ œ ์›์ธ ๋ถ„์„, ํ•ด๊ฒฐ ๋ฐฉ์•ˆ ๋„์ถœ ๋“ฑ ํ•ต์‹ฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ์ตœ์ข… ์‹คํ–‰ ๋‹จ๊ณ„์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ์Šน์ธ, ์ฆ‰ ํ™•์ธ ์ ˆ์ฐจ๊ฐ€ ํ•„์š”ํ•œ ๋‹จ๊ณ„๋‹ค.
  • ์‚ฌ๋ก€
    • ์‹œ์Šคํ…œ ํŒจ์น˜
    • ์‚ฌ์šฉ์ž ๊ณ„์ • ํ”„๋กœ๋น„์ €๋‹
    • ๋น„์ค‘์š” ์„ค์ • ๋ณ€๊ฒฝ
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ์—์ด์ „ํŠธ๋Š” ํ•ด๋‹น ์กฐ์น˜๋ฅผ ์™œ ์ˆ˜ํ–‰ํ•˜๋ ค๋Š”์ง€์— ๋Œ€ํ•œ ํŒ๋‹จ ๊ทผ๊ฑฐ, ์ฆ‰ ์ถ”๋ก  ๊ณผ์ •์„ ๊ด€๋ฆฌ์ž์—๊ฒŒ ์ œ์‹œํ•ด์•ผ ํ•œ๋‹ค.

3๋‹จ๊ณ„: ์‚ฌ๋žŒ ์ „์šฉ ์˜์—ญ

  • ์–ด๋–ค ์ƒํ™ฉ์—์„œ๋„ ์—์ด์ „ํŠธ๊ฐ€ ์ž์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•ด์„œ๋Š” ์•ˆ ๋˜๋Š”, ์‹œ์Šคํ…œ์˜ ์กด๋ฆฝ๊ณผ ์ง๊ฒฐ๋œ ํ•ต์‹ฌ ์ž‘์—…์„ ์˜๋ฏธํ•œ๋‹ค.
  • ์‚ฌ๋ก€
    • ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์‚ญ์ œ
    • ํ•ต์‹ฌ ๋ณด์•ˆ ์„ค์ • ์šฐํšŒ
    • ์—์ด์ „ํŠธ ํ—Œ๋ฒ• ์ž์ฒด์— ๋Œ€ํ•œ ์ˆ˜์ •
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ๋‹ค๋‹จ๊ณ„ ์ธ์ฆ(MFA) ๋˜๋Š” ๋ณต์ˆ˜ ์ธ์›์˜ ์ด์ค‘ ์Šน์ธ๊ณผ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ํ†ต์ œ ์ ˆ์ฐจ๋ฅผ ์ ์šฉํ•œ๋‹ค.

์ˆจ๊ฒจ์ง„ ๊ณต๊ฒฉ ํ‘œ๋ฉด ์ค„์ด๊ธฐ

์ค‘์•™ํ™”๋œ ํ—Œ๋ฒ• ์ฒด๊ณ„๋ฅผ ๊ตฌํ˜„ํ•˜๋ฉด, ์ค‘์•™ IT์˜ ๊ด€๋ฆฌ ๋ฐ ๊ฐ๋… ์—†์ด ๋ฐฐํฌ๋˜๋Š” ์„€๋„์šฐ AI ์—์ด์ „ํŠธ๋กœ ์ธํ•œ ๋ฆฌ์Šคํฌ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

  • ํ†ตํ•ฉ API: ๋ชจ๋“  ์—์ด์ „ํŠธ๋Š” ํ•ต์‹ฌ ์ธํ”„๋ผ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ธฐ ์ „์— ํ•ด๋‹น ์šด์˜ ์›์น™ ์ฒด๊ณ„์— ๋”ฐ๋ผ ์ธ์ฆ์„ ๊ฑฐ์ณ์•ผ ํ•œ๋‹ค.
  • ์ปดํ”Œ๋ผ์ด์–ธ์Šค ์ด๋ ฅ: ์ด๋ฅผ ํ†ตํ•ด SOC2๋‚˜ EU AI ๋ฒ•๊ณผ ๊ฐ™์€ ๊ทœ์ œ ๋Œ€์‘์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์•™ํ™”๋œ ๊ฐ์‚ฌ ์ด๋ ฅ์ด ์ƒ์„ฑ๋œ๋‹ค.
  • ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์˜์‚ฌ๊ฒฐ์ •: ์ž์œจ์ ์œผ๋กœ ๋‚ด๋ ค์ง„ ํŒ๋‹จ๊ณผ ์‹คํ–‰์— ๋Œ€ํ•œ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๊ธฐ๋ก์„ ์ถ•์ ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ธฐ๊ณ„ ์ค‘์‹ฌ ์„ธ๊ณ„ ์† ์‚ฌ๋žŒ์˜ ๋ชฉ์†Œ๋ฆฌ

์ด๋ฅธ๋ฐ” โ€˜ํ—Œ๋ฒ•โ€™์€ ์ฝ”๋“œ๊ฐ€ ์•„๋‹ˆ๋ผ, ์—”์ง€๋‹ˆ์–ด์˜ ๊ฒฝํ—˜๊ณผ ํŒ๋‹จ์ด ์ง‘์•ฝ๋œ ์‚ฌ๋žŒ์˜ ๋ฌธ์„œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ๋žŒ์˜ ์—ญํ• ์€ ์—ฌ์ „ํžˆ ์ค‘์š”ํ•˜๋‹ค.

  • ์˜๋„ ์„ค๊ณ„์ž: IT ์ „๋ฌธ๊ฐ€์˜ ์—ญํ• ์€ โ€˜์šด์˜์žโ€™์—์„œ โ€˜์˜๋„์˜ ์„ค๊ณ„์žโ€™๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค.
  • ๋ฌธํ™”์  ์ „ํ™˜: IT ํŒ€์€ ๊ฐœ์ธ์ด ๋‚˜์„œ์„œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์—์„œ ๋ฒ—์–ด๋‚˜, ์‹œ์Šคํ…œ ์ค‘์‹ฌ์˜ ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ฌธํ™”๋กœ ์ „ํ™˜ํ•ด์•ผ ํ•œ๋‹ค.

โ€˜ํ—Œ๋ฒ• ์ œ์ • ํšŒ์˜โ€™๋ฅผ ์‹œ์ž‘ํ•  ๋•Œ

2020๋…„๋Œ€ ํ›„๋ฐ˜์—๋„ PDF ํ˜•์‹์˜ ๊ธฐ์กด SOP์— ์˜์กดํ•œ๋‹ค๋ฉด, IT ์šด์˜์€ ๋น„์ฆˆ๋‹ˆ์Šค์˜ ๋ฐœ๋ชฉ์„ ์žก๋Š” ๋ณ‘๋ชฉ์œผ๋กœ ์ „๋ฝํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค.

์ง€๊ธˆ ๋ฐ”๋กœ ์ทจํ•ด์•ผ ํ•  ๋‹จ๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ๋ ˆ๋“œ๋ผ์ธ ์ •์˜: ์ˆ˜์„ ์•„ํ‚คํ…ํŠธ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ 3๋‹จ๊ณ„ ์˜์—ญ์˜ ๊ฒฝ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์„ค์ •ํ•œ๋‹ค.
  • ์ž๋™ํ™” ์„ฑ๊ณผ ๋„์ถœ: ์ฆ‰์‹œ ์ž๋™ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•œ 1๋‹จ๊ณ„ ์—…๋ฌด๋ฅผ ์‹๋ณ„ํ•œ๋‹ค.
  • ์ „๋žต์— ์ง‘์ค‘: ์‚ฌ๋žŒ์€ ๋ด‡์„ ๊ฐ์‹œํ•˜๋Š” ๋ฐ ์‹œ๊ฐ„์„ ์“ฐ๋Š” ๋Œ€์‹ , ์ „๋žต๊ณผ ํ˜์‹ ์— ์ง‘์ค‘ํ•˜๋„๋ก ๋ฐฉํ–ฅ์„ ์ „ํ™˜ํ•œ๋‹ค.

dl-ciokorea@foundryco.com

์ผ๋ฌธ์ผ๋‹ต | ์ผ๋ณธ ์™ธ์‹ ๊ธฐ์—…์˜ ๊ธ€๋กœ๋ฒŒ ๋„์•ฝ, ํŠธ๋ฆฌ๋„๋ฅด CIO๊ฐ€ ๋งํ•˜๋Š” ๋ณ€ํ™”์— ๊ฐ•ํ•œ IT ์ „๋žต

20 January 2026 at 02:25

์šฐ๋™ ๋ธŒ๋žœ๋“œ ๋งˆ๋ฃจ๊ฐ€๋ฉ”์ œ๋ฉด ๋“ฑ์„ ์šด์˜ํ•˜๋Š” ์ผ๋ณธ ์™ธ์‹ ๊ธฐ์—… ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค๋Š” ๊ธ€๋กœ๋ฒŒ ์‹œ์žฅ ํ™•์žฅ์„ ๋ชฉํ‘œ๋กœ ๋””์ง€ํ„ธ๊ณผ IT ๊ธฐ๋ฐ˜์˜ ๊ฒฝ์˜ ํ˜์‹ ์— ์†๋„๋ฅผ ๋‚ด๊ณ  ์žˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์‹œ์Šคํ…œ ์ „๋ฉด ํ˜„๋Œ€ํ™”์™€ ์กฐ์ง ๊ฐœํŽธ, SaaSยทAI ํ™œ์šฉ๊นŒ์ง€ ์ง์ ‘ ์ด๋Œ์–ด ์˜จ CIO ์ด์†Œ๋ฌด๋ผ ์•ผ์Šค๋…ธ๋ฆฌ(็ฃฏๆ‘ๅบทๅ…ธ)๊ฐ€ ๋ฒค๋” ๊ฒฝํ—˜๊ณผ ๊ฒฝ์˜ ์‹œ๊ฐ์„ ๋ฐ”ํƒ•์œผ๋กœ ๋ณ€ํ™”์— ๊ฐ•ํ•œ ๊ธฐ์—… ๊ธฐ๋ฐ˜์„ ๊ตฌ์ถ•ํ•˜๋Š” ์ „๋žต๊ณผ ์ฒ ํ•™์„ ์ œ์‹œํ–ˆ๋‹ค.

Q(CIO์žฌํŒฌ) : ์ง€๊ธˆ๊นŒ์ง€์˜ ๊ฒฝ๋ ฅ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ด ๋‹ฌ๋ผ.
A(์ด์†Œ๋ฌด๋ผ ์•ผ์Šค๋…ธ๋ฆฌ) : ์ปค๋ฆฌ์–ด๋Š” ํ›„์ง€์“ฐ์—์„œ ์‹œ์ž‘ํ–ˆ๋‹ค. ์•ฝ 7๋…„ ๋™์•ˆ ์ฃผ๋กœ ๊ณต๊ณต ๋ถ€๋ฌธ ์‹œ์Šคํ…œ์„ ๋‹ด๋‹นํ•˜๋Š” ์‹œ์Šคํ…œ ์—”์ง€๋‹ˆ์–ด๋กœ ์ผํ•˜๋ฉฐ ํ˜„์žฅ์—์„œ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰์„ ๋‹ค์ ธ์™”๋‹ค.

์ดํ›„ 2000๋…„ ์†Œํ”„ํŠธ๋ฑ…ํฌ(ํ˜„ ์†Œํ”„ํŠธ๋ฑ…ํฌ๊ทธ๋ฃน)๋กœ ์ด์งํ–ˆ๋‹ค. ๋‹น์‹œ ์†์ •์˜ ํšŒ์žฅ์ด โ€œ์•ž์œผ๋กœ๋Š” ์ธํ„ฐ๋„ท ์‹œ๋Œ€โ€๋ผ๊ณ  ๊ฐ•์กฐํ•˜๋˜ ์‹œ๊ธฐ๋กœ, ์‚ฌ๋‚ด์—์„œ๋Š” ์ธํ„ฐ๋„ท ๊ด€๋ จ ๋ฒค์ฒ˜๊ฐ€ ์ž‡๋”ฐ๋ผ ์ถœ๋ฒ”ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ๊ทธ์ค‘ ํ•˜๋‚˜๊ฐ€ ์ „์ž์ƒ๊ฑฐ๋ž˜ ์‚ฌ์—…์œผ๋กœ, ํ˜„์žฌ์˜ ์„ธ๋ธ๋„ท์‡ผํ•‘์ด๋‹ค. ๋‚˜๋Š” ์‹œ์Šคํ…œ ์ฑ…์ž„์ž๋กœ ์‚ฌ์—… ์ถœ๋ฒ”์— ์ฐธ์—ฌํ•ด ์•ฝ 8๋…„ ๋™์•ˆ ์‚ฌ์—… ์„ฑ์žฅ์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ์—ญํ• ์„ ๋งก์•˜๋‹ค.

๋‹ค์Œ์œผ๋กœ ๋„์ „ํ•œ ๊ณณ์€ ์™ธ์‹ IT ๋ฒค์ฒ˜ ๊ฐˆํ”„๋„ท์ด๋‹ค. ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค๋ฅผ ๋น„๋กฏํ•œ ์ฃผ์š” ์™ธ์‹ ์ฒด์ธ์„ ๊ณ ๊ฐ์œผ๋กœ ๋‘” ํšŒ์‚ฌ๋กœ, ์ด๊ณณ์—์„œ 4๋…„ ๋™์•ˆ ๊ฐœ๋ฐœ ์ฑ…์ž„์ž๋กœ ์‹œ์Šคํ…œ์„ ์ด๋Œ์—ˆ์„ ๋ฟ ์•„๋‹ˆ๋ผ ์˜์—… ์ฑ…์ž„์ž ์—ญํ• ๋„ ๊ฒฝํ—˜ํ–ˆ๋‹ค. ๊ธฐ์ˆ ๋ฟ ์•„๋‹ˆ๋ผ ๋น„์ฆˆ๋‹ˆ์Šค ํ˜„์žฅ์„ ์ง์ ‘ ์›€์ง์ด๋Š” ์–ด๋ ค์›€๊ณผ ์žฌ๋ฏธ๋ฅผ ์ฒด๊ฐํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ์ ์€ ํฐ ์ˆ˜ํ™•์ด์—ˆ๋‹ค.

์ดํ›„ ํˆฌ์žํšŒ์‚ฌ ์˜คํฌ์บํ”ผํƒˆ(ํ˜„ UNIVAยท์˜คํฌํ™€๋”ฉ์Šค)๋กœ ์ž๋ฆฌ๋ฅผ ์˜ฎ๊ฒจ ์•ฝ 8๋…„๊ฐ„ ํˆฌ์ž ๊ธฐ์—…์— ํ•ธ์ฆˆ์˜จ์œผ๋กœ ๊ด€์—ฌํ–ˆ๋‹ค. ๊ฒฝ์˜ ์žฌ๊ฑด๊ณผ ๊ธฐ์—… ๊ฐ€์น˜ ์ œ๊ณ ๋ฅผ ์ถ”์ง„ํ–ˆ๊ณ , ๊ฒฝ์šฐ์— ๋”ฐ๋ผ์„œ๋Š” ์ง์ ‘ ๋Œ€ํ‘œ์ด์‚ฌ๋ฅผ ๋งก๋Š” ๋“ฑ ๊ฒฝ์˜ ์ „๋ฐ˜์— ๊นŠ์ด ๊ด€์—ฌํ•˜๋Š” ๊ฒฝํ—˜์„ ์Œ“์•˜๋‹ค. ์ด ์‹œ๊ธฐ์— ํ˜•์„ฑ๋œ โ€˜์‚ฌ์—…์„ ์–ด๋–ป๊ฒŒ ์žฌ์ •๋น„ํ•˜๊ณ  ์„ฑ์žฅ์œผ๋กœ ์ด๋Œ ๊ฒƒ์ธ๊ฐ€โ€™๋ผ๋Š” ๊ด€์ ์€ ์ง€๊ธˆ์˜ ์ค‘์š”ํ•œ ์ž์‚ฐ์ด ๋˜๊ณ  ์žˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  2019๋…„ ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค CIO๋กœ ๋ถ€์ž„ํ–ˆ๋‹ค. ์–ด๋А๋ง 6๋…„์ด ์ง€๋‚œ ํ˜„์žฌ, ๋ฒค๋”๋กœ์„œ ์ถ•์ ํ•œ ์ง€์‹๊ณผ ์‚ฌ์—…ํšŒ์‚ฌ์—์„œ์˜ ๊ฒฝํ—˜, ๊ฒฝ์˜์ž๋กœ์„œ์˜ ์‹œ๊ฐ์„ ๋ชจ๋‘ ํ™œ์šฉํ•ด ์‚ฌ์—… ์„ฑ์žฅ์„ ๊ฒฌ์ธํ•˜๋Š” CIO๋กœ์„œ ๋„์ „์„ ์ด์–ด๊ฐ€๊ณ  ์žˆ๋‹ค.

Q : ์ง€๊ธˆ๊นŒ์ง€์˜ ๊ฒฝ๋ ฅ ๊ฐ€์šด๋ฐ ํŠนํžˆ ์ธ์ƒ์— ๋‚จ๋Š” ์ผ์€ ๋ฌด์—‡์ธ๊ฐ€.
A : ๋Œ์•„๋ณด๋ฉด ๊ฐ ์—…์ข…๊ณผ ์—ญํ• ๋งˆ๋‹ค ํฐ ๋„์ „์ด ์žˆ์—ˆ๋‹ค. ์ฒ˜์Œ SI ์—…๋ฌด๋ฅผ ๋งก์•˜์„ ๋•Œ๋Š” ์–ผ๋งˆ๋‚˜ ํฐ ๊ทœ๋ชจ์˜ ํ”„๋กœ์ ํŠธ๋ฅผ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๊ฐ€ ์„ฑ์žฅ์˜ ๊ธฐ์ค€์ด์—ˆ๋‹ค. ๋‹น์‹œ 20๋Œ€์— 800์ธ์›”(ไบบๆœˆ, ์—ฌ๋Ÿฌ ์ธ๋ ฅ์ด ์ˆ˜๊ฐœ์›” ์ด์ƒ ํˆฌ์ž…๋ผ, ์ธ๋ ฅ ์ˆ˜ร—ํˆฌ์ž… ๊ฐœ์›” ์ˆ˜๋ฅผ ํ•ฉ์‚ฐํ•˜๋ฉด 800์— ์ด๋ฅด๋Š”) ๊ทœ๋ชจ์˜ ํ”„๋กœ์ ํŠธ๋ฅผ ๋งก์•˜๋Š”๋ฐ, ์ง€๊ธˆ ์ƒ๊ฐํ•ด ๋ณด๋ฉด ์ Š์€ ์‹œ์ ˆ์— ์ƒ๋‹นํžˆ ํฐ ์ฑ…์ž„์„ ๋งก๊ธธ ๋งŒํผ ๊ธฐํšŒ๋ฅผ ์ฃผ๋˜ ํšŒ์‚ฌ์˜€๋‹ค๊ณ  ๋А๋‚€๋‹ค.

์†Œํ”„ํŠธ๋ฑ…ํฌ์—์„œ๋Š” ์ฒ˜์Œ์œผ๋กœ โ€˜๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ๋งŒ๋“ ๋‹คโ€™๋Š” ์ผ์— ๋„์ „ํ–ˆ๋‹ค. ๋‹ด๋‹นํ•œ ๊ฒƒ์€ ํ˜„์žฌ์˜ ์„ธ๋ธ๋„ท์‡ผํ•‘์œผ๋กœ ์ด์–ด์ง€๋Š” ์ „์ž์ƒ๊ฑฐ๋ž˜ ์‚ฌ์—…์ด๋‹ค. ๋งค์ถœ์ด ์ „ํ˜€ ์—†๋Š” ์ƒํƒœ์—์„œ ์ถœ๋ฐœํ•ด, ์‹œ์Šคํ…œ ์ฑ…์ž„์ž๋กœ์„œ ์‚ฌ์—…์ด ์•ฝ 200์–ต ์—” ๊ทœ๋ชจ๋กœ ์„ฑ์žฅํ•˜๋Š” ๊ณผ์ •์„ ๋’ท๋ฐ›์นจํ–ˆ๋‹ค. ๋‹จ์ˆœํ•œ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์ด ์•„๋‹ˆ๋ผ, ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ์žฅ๊ณผ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ๊ฒฝํ—˜์ด์—ˆ๋‹ค๋Š” ์ ์—์„œ ์ปค๋ฆฌ์–ด ์ „๋ฐ˜์— ๋งค์šฐ ํฐ ์˜๋ฏธ๋ฅผ ๋‚จ๊ฒผ๋‹ค.

ํ˜„์ง์ธ ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค CIO๋กœ์„œ ์ฒ˜์Œ ๋งก์€ ํฐ ๊ณผ์ œ๋Š” ์ „์‚ฌ ์‹œ์Šคํ…œ์˜ ์ „๋ฉด์ ์ธ ํ˜„๋Œ€ํ™”์˜€๋‹ค. ๋ถ€์ž„ ์ดํ›„ ์•ฝ 6๋…„์— ๊ฑธ์ณ ์ถ”์ง„ํ•ด ์™”๊ณ , ์ด์ œ ๋ชจ๋“  ๊ต์ฒด ์ž‘์—…์ด ๋งˆ๋ฌด๋ฆฌ ๋‹จ๊ณ„์— ์ด๋ฅด๊ณ  ์žˆ๋‹ค.

๋‹น์ดˆ์—๋Š” 3๋…„ ๋‚ด ์™„๋ฃŒ๋ฅผ ๋ชฉํ‘œ๋กœ ํ–ˆ์ง€๋งŒ, ์‚ฌ๋‚ด ์‚ฌ์ •๊ณผ ๊ธฐ์กด ๊ตฌ์กฐ๋ฅผ ์„ธ์‹ฌํ•˜๊ฒŒ ๊ณ ๋ คํ•˜๋ฉฐ ์ง„ํ–‰ํ•  ํ•„์š”๊ฐ€ ์žˆ์—ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์†๋„๋ณด๋‹ค ์™„์„ฑ๋„๋ฅผ ํƒํ•ด ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๋”๋ผ๋„ ํ™•์‹คํžˆ ๋๋‚ด๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ถ”์ง„ํ•˜๊ฒŒ ๋๋‹ค.

ํ”„๋กœ์ ํŠธ์˜ ์ถœ๋ฐœ์ ์€ โ€˜์‹œ์Šคํ…œ์ด ๋ช‡ ๊ฐœ๋‚˜ ์žˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒโ€™์ด์—ˆ๋‹ค. ์ฒ˜์Œ ์ ๊ฒ€ํ–ˆ์„ ๋•Œ ์•ฝ 180๊ฐœ์˜ ์‹œ์Šคํ…œ์ด ์กด์žฌํ–ˆ๊ณ , ์ดํ›„ ์—…๋ฌด ๋ชฉ์ ์— ๋”ฐ๋ผ ์žฌ์ •๋ฆฌํ•˜๋ฉฐ ํ†ตํ•ฉ์„ ์ง„ํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํ˜„์žฌ๋Š” ์•ฝ 40๊ฐœ ์ˆ˜์ค€๊นŒ์ง€ ๋Œ€ํญ ์ค„์ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

์ด ๊ณผ์ •์„ ๋Œ์•„๋ณด๋ฉด, ์‹œ์Šคํ…œ ์ž์‚ฐ ์ •๋ฆฌ๋ถ€ํ„ฐ ํ˜„๋Œ€ํ™”๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ์ง์ ‘ ์ด๋Œ์–ด ์˜จ ๊ฒฝํ—˜์€ CIO๋กœ์„œ ๊ฐ€์žฅ ์ฒ˜์Œ์— ๋„์ „ํ•˜๊ธฐ์— ๊ฑธ๋งž์€ ๊ณผ์ œ์˜€๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

Q : ๊ฐ€์žฅ ์–ด๋ ค์› ๋˜ ๊ฒฝํ—˜์€ ๋ฌด์—‡์ธ๊ฐ€.
A : ๊ฐ€์žฅ ์‹ ๊ฒฝ์„ ๋งŽ์ด ์“ด ์ผ์€ ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค์—์„œ ์ถ”์ง„ํ•œ ์—…๋ฌด ์กฐ์ง ๊ฐœํŽธ์ด์—ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์˜ ๋ณธ์‚ฌ ์—…๋ฌด๋ฅผ ์ง€์ฃผํšŒ์‚ฌ์™€ ์‰์–ด๋“œ์„œ๋น„์Šค ํšŒ์‚ฌ(๊ทธ๋ฃน ๊ณตํ†ต ๊ด€๋ฆฌยท์šด์˜ ์—…๋ฌด๋ฅผ ํ†ตํ•ฉ ์ˆ˜ํ–‰ํ•˜๋Š” ์กฐ์ง)๋กœ ์—ญํ• ์„ ๋‚˜๋ˆ  ์žฌ๊ตฌ์„ฑํ–ˆ๋‹ค. ์ดํ›„ ํšŒ๊ณ„ยท์ธ์‚ฌยทIT ์šด์˜ ๋“ฑ ๋ฐ˜๋ณต์ ์ธ ๊ด€๋ฆฌ ์—…๋ฌด๋ฅผ ๋‚ด๋ถ€ ์กฐ์ง์ด ์•„๋‹Œ ์™ธ๋ถ€ ์ „๋ฌธ ์œ„ํƒ์—…์ฒด(Business Process Outsourcing, BPO)์— ๋งก๊ธฐ๋Š” ๋ฐฉ์‹์œผ๋กœ ์šด์˜ ๊ตฌ์กฐ๋ฅผ ๋ฐ”๊ฟจ๋‹ค.

์‚ฌ๋‚ด์—์„œ ์ˆ˜ํ–‰ํ•˜๋˜ ์—…๋ฌด๋ฅผ ์™ธ๋ถ€๋กœ ์˜ฎ๊ธฐ๋Š” ๊ณผ์ •์€ ๋Œ€๋‹ดํ•˜๋ฉด์„œ๋„ ๋งค์šฐ ์„ฌ์„ธํ•œ ์กฐ์ •์ด ํ•„์š”ํ•œ ํ”„๋กœ์ ํŠธ์˜€๋‹ค. ์šฐ์„  IT ๋ถ€๋ฌธ๋ถ€ํ„ฐ ์ฐฉ์ˆ˜ํ–ˆ๋Š”๋ฐ, ์ด ๊ณผ์ •์ด ๊ฐ€์žฅ ์–ด๋ ค์› ๋‹ค.

๋‹น์‹œ ๋‚˜๋Š” ์‰์–ด๋“œ์„œ๋น„์Šค ํšŒ์‚ฌ์˜ ๋Œ€ํ‘œ๋ฅผ ๊ฒธ์ž„ํ•˜๋ฉฐ ์ตœ๋Œ€ ์•ฝ 180๋ช…์˜ ์ธ๋ ฅ์„ ์ด๋Œ๊ณ  ์žˆ์—ˆ๋‹ค. ์ด ์กฐ์ง์—๋Š” IT ์šด์˜ํŒ€๋ฟ ์•„๋‹ˆ๋ผ ํšŒ๊ณ„ ๊ธฐ์žฅ์„ ๋‹ด๋‹นํ•˜๋Š” ์žฌ๋ฌด ์กฐ์ง, ๊ธ‰์—ฌ ๊ณ„์‚ฐ์„ ๋งก์€ ์ธ์‚ฌ ์กฐ์ง ๋“ฑ ์ด๋ฅธ๋ฐ” ์˜คํผ๋ ˆ์ด์…˜ ๊ธฐ๋Šฅ์ด ์ง‘์•ฝ๋ผ ์žˆ์—ˆ๋‹ค. ์ „๋žต ์ˆ˜๋ฆฝ์€ ์ง€์ฃผํšŒ์‚ฌ๊ฐ€ ๋งก๊ณ , ์ผ์ƒ์ ์ธ ์˜คํผ๋ ˆ์ด์…˜์€ ํ•˜๋‚˜๋กœ ๋ฌถ์–ด ๊ด€๋ฆฌํ•˜๋Š” ์ฒด์ œ๋ฅผ ๊ฐ–์ถ”๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ, ์ด ๊ฐ€์šด๋ฐ ์ผ๋ถ€ ์—…๋ฌด๋ฅผ ๋‹จ๊ณ„์ ์œผ๋กœ ๋ถ„๋ฆฌํ•ด ์™ธ๋ถ€๋กœ ์ด์ „ํ•˜๋Š” ๊ฒƒ์ด ๋‹น์‹œ ๋งก์€ ์—ญํ• ์ด์—ˆ๋‹ค.

๋‹น์—ฐํžˆ ๊ธฐ์กด ์—…๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋˜ ์ธ๋ ฅ์˜ ๋‹ค์Œ ์ปค๋ฆฌ์–ด๋ฅผ ์–ด๋–ป๊ฒŒ ์„ค๊ณ„ํ• ์ง€๊ฐ€ ํฐ ๊ณผ์ œ๊ฐ€ ๋๋‹ค. ํŠธ๋ฆฌ๋„๋ฅด๋Š” ํšจ๊ณ ํ˜„ ๊ฐ€์ฝ”๊ฐ€์™€์‹œ์—์„œ ์ฐฝ์—…ํ•ด ์ดํ›„ ๊ณ ๋ฒ ์‹œ์— ๋ณธ์‚ฌ๋ฅผ ๋‘๊ณ  ์žˆ์—ˆ๊ณ , ๋‹น์‹œ ์‰์–ด๋“œ์„œ๋น„์Šค ํšŒ์‚ฌ์˜ ๊ฑฐ์  ์—ญ์‹œ ๊ณ ๋ฒ ์— ์žˆ์—ˆ๋‹ค.

์‹œ๋ถ€์•ผ ๋ณธ์‚ฌ๋กœ ์ด๋™์ด ๊ฐ€๋Šฅํ•œ ์ธ๋ ฅ์—๊ฒŒ๋Š” ์ง€์ฃผํšŒ์‚ฌ ์—…๋ฌด๋ฅผ ์ œ์•ˆํ–ˆ์ง€๋งŒ, ๊ฐ€์ • ์‚ฌ์ • ๋“ฑ์œผ๋กœ ์ „๊ทผ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๋„ ์ ์ง€ ์•Š์•˜๋‹ค. ์ด๋Ÿฐ ๊ฒฝ์šฐ์—๋Š” BPO ๋ฒค๋”๋กœ ์ „์ ํ•ด ๊ธฐ์กด๊ณผ ๊ฐ™์€ ์—…๋ฌด๋ฅผ ์ด์–ด๊ฐ€๋„๋ก ํ•˜๊ฑฐ๋‚˜, ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน ๋งค์žฅ์œผ๋กœ ํ™œ๋™ ๋ฌด๋Œ€๋ฅผ ์˜ฎ๊ธฐ๋Š” ๋ฐฉ์•ˆ์„ ์ œ์‹œํ–ˆ๋‹ค. ๋‚˜๋Š” ๊ตฌ์„ฑ์› ํ•œ ์‚ฌ๋žŒ ํ•œ ์‚ฌ๋žŒ๊ณผ ๋ฉด๋‹ด์„ ๊ฑฐ๋“ญํ•˜๋ฉฐ ๋‹ค์Œ ์ง„๋กœ๋ฅผ ํ•จ๊ป˜ ๊ฒฐ์ •ํ•ด ๋‚˜๊ฐ”๋‹ค.

๋ฌผ๋ก  ์ด ๊ณผ์ •์€ ํ˜ผ์ž์„œ ๊ฐ๋‹นํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์ด ์•„๋‹ˆ์—ˆ๋‹ค. ๋ถ€์žฅ๊ณผ ๊ด€๋ฆฌ์ง์˜ ํ˜‘์กฐ๋ฅผ ์–ป์–ด ์ง์›๋“ค๊ณผ ์ง„์ง€ํ•˜๊ฒŒ ๋Œ€ํ™”๋ฅผ ์ด์–ด๊ฐ€๋ฉฐ ์ถ”์ง„ํ–ˆ๋‹ค. ์ตœ์ข…์ ์ธ ๋ชฉํ‘œ๋Š” ๊ฐ์ž๊ฐ€ ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์—์„œ๋„ ์žฅ๊ธฐ๊ฐ„ ์—ญ๋Ÿ‰์„ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด์—ˆ๋‹ค. ํšŒ์‚ฌ ์ฐจ์›์˜ ๋ฐฉ์นจ์€ ๋ถ„๋ช…ํ–ˆ์ง€๋งŒ, ์ตœ๋Œ€ํ•œ ๊ตฌ์„ฑ์›๋“ค์ด ๋‚ฉ๋“ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๋ก ์— ์ด๋ฅด๋Š” ๊ฒƒ์ด ๋‹น์‹œ ์Šค์Šค๋กœ์—๊ฒŒ ์ฃผ์–ด์ง„ ๊ฐ€์žฅ ํฐ ์ฑ…์ž„์ด์—ˆ๋‹ค๊ณ  ๋ณธ๋‹ค.

Q : ํŠนํžˆ ๊ธฐ์–ต์— ๋‚จ๋Š” ๋ง์ด๋‚˜ ์‚ฌ๊ฑด์ด ์žˆ๋Š”๊ฐ€.
A : ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๊ฐ€ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์„ธ๋ธ๋„ท์‡ผํ•‘ ์ถœ๋ฒ”์— ๊ด€์—ฌํ•˜๋˜ ์‹œ๊ธฐ์˜ ๊ฒฝํ—˜์ด๋‹ค. ๋‹น์‹œ ์„ธ๋ธ&์•„์ดํ™€๋”ฉ์Šค ํšŒ์žฅ์ด์—ˆ๋˜ ์Šค์ฆˆํ‚ค ๋„์‹œํ›„๋ฏธ์˜ ๋ง์„, ๋‹น์‹œ ์ƒ์‚ฌ์ด์ž ํšŒ์žฅ์˜ ์•„๋“ค์ธ ์Šค์ฆˆํ‚ค ์•ผ์Šคํžˆ๋กœ๋กœ๋ถ€ํ„ฐ ์ „ํ•ด ๋“ค์€ ์ ์ด ์žˆ๋‹ค.

ํ•œ ๋ฒˆ์€ โ€œ์‚ฌ๋žŒ๋“ค ์•ž์—์„œ ์ด์•ผ๊ธฐํ•  ๋•Œ ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ๊ธด์žฅํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋А๋ƒโ€๊ณ  ๋ฌผ์—ˆ๋Š”๋ฐ, โ€œ๋ฌด๋ฆฌํ•ด์„œ ์ž˜๋‚œ ์ฒ™ํ•˜์ง€ ๋ง๊ณ , ๋ชจ๋ฅด๋Š” ๊ฒƒ์€ ์ด์•ผ๊ธฐํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ๋งŒ ๋งํ•˜๋ฉด ๊ธด์žฅํ•˜์ง€ ์•Š๋Š”๋‹คโ€๋Š” ๋‹ต์„ ๋“ค์—ˆ๋‹ค. ๋ชจ๋ฅด๋Š” ๊ฒƒ์€ ๋ชจ๋ฅธ๋‹ค๊ณ  ๋งํ•˜๋ฉด ๋œ๋‹ค๋Š” ์ด์•ผ๊ธฐ์˜€๋‹ค. ์žˆ๋Š” ๊ทธ๋Œ€๋กœ, ๊ณผ์žฅํ•˜์ง€ ์•Š๊ณ  ๋งํ•˜๋Š” ์‚ฌ๋žŒ์ด์•ผ๋ง๋กœ ๊ฒฐ๊ตญ ์„ฑ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด ๊ฐ„๋‹ค๋Š” ์ ์„ ๊ฐ•ํ•˜๊ฒŒ ๋А๊ผˆ๋‹ค.

๋‘ ๋ฒˆ์งธ๋Š” ๊ฐ™์€ ์‹œ๊ธฐ, ์„ธ๋ธ๋„ท์‡ผํ•‘์ด ์•ผํ›„์˜ ์žํšŒ์‚ฌ ์‚ฌ์—…์ด์—ˆ์„ ๋•Œ์˜ ๊ฒฝํ—˜์ด๋‹ค. ๋‹น์‹œ์—๋Š” ์ธํ„ฐ๋„ท์ด ์•„์ง ๋ณธ๊ฒฉ์ ์ธ ๋น„์ฆˆ๋‹ˆ์Šค๋กœ ์ž๋ฆฌ ์žก๊ธฐ ์ „์ด์—ˆ๊ณ , ์ผ๋ณธ์—์„œ๋Š” ์•ผํ›„๊ฐ€ ์•ž์„œ ์žˆ์—ˆ์œผ๋ฉฐ ๊ตฌ๊ธ€์ด ๋ง‰ ์ง„์ž…ํ•˜๋˜ ์‹œ๊ธฐ์˜€๋‹ค.

์ด์šฉ์ž๊ฐ€ ๊ธ‰์ฆํ•˜๋ฉด์„œ ์„œ๋ฒ„๊ฐ€ ํ˜ผ์žกํ•ด์ง€๊ณ  ์‹œ์Šคํ…œ์ด ํ•œ๊ณ„์— ๋ถ€๋”ชํžˆ๋Š” ์ƒํ™ฉ์ด ์ž์ฃผ ๋ฐœ์ƒํ–ˆ๋Š”๋ฐ, ๊ทธ๋•Œ ๋‹น์‹œ ์•ผํ›„ ๋Œ€ํ‘œ์˜€๋˜ ์ด๋…ธ์šฐ์— ๋งˆ์‚ฌํžˆ๋กœ๋กœ๋ถ€ํ„ฐ โ€œ์ธํ„ฐ๋„ท ๋น„์ฆˆ๋‹ˆ์Šค์—์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ๋Š˜์–ด๋‚˜๋ฉด ์„œ๋ฒ„๋ฅผ ์ฆ์„คํ•˜๋Š” ๊ฒƒ์ด ๊ธฐ๋ณธ ์›์น™โ€์ด๋ผ๋Š” ๋ง์„ ๋“ค์—ˆ๋‹ค. ๊ทธ ํ•œ๋งˆ๋””์— ํฐ ๊นจ๋‹ฌ์Œ์„ ์–ป์—ˆ๋‹ค.

๊ธฐ์กด ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ํ™˜๊ฒฝ์—์„œ๋Š” ๊ฐ’๋น„์‹ผ ์ž์›์„ ์–ด๋–ป๊ฒŒ ์ตœ์ ํ™”ํ•ด ๋๊นŒ์ง€ ํ™œ์šฉํ•  ๊ฒƒ์ธ๊ฐ€๊ฐ€ ๊ธฐ๋ณธ์ ์ธ ์‚ฌ๊ณ ๋ฐฉ์‹์ด์—ˆ๋‹ค. ๋‚˜๋Š” ์—ญ์‹œ ์ œํ•œ๋œ ์ž์›์„ ํšจ์œจ์ ์œผ๋กœ ์“ฐ๋Š” ๊ฒƒ์ด ๋‹น์—ฐํ•˜๋‹ค๊ณ  ์—ฌ๊ฒจ ์™”๋‹ค.

ํ•˜์ง€๋งŒ ์ธํ„ฐ๋„ท์˜ ์„ธ๊ณ„์—์„œ๋Š” ์ €๋ ดํ•œ ์„œ๋ฒ„๋ฅผ ์ถ”๊ฐ€ํ•ด ํ™•์žฅํ•˜๋Š” ๊ฒƒ์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์„ ํƒ์ด์—ˆ๋‹ค. ํˆฌ์ž๋ฅผ ์ „์ œ๋กœ ํ•œ ์Šค์ผ€์ผ์•„์›ƒ ๋ฌธํ™”๊ฐ€ ๋ฟŒ๋ฆฌ๋‚ด๋ ค ์žˆ์—ˆ๊ณ , ์ถ”๊ฐ€ ํˆฌ์ž๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ์ธํ„ฐ๋„ท ๋น„์ฆˆ๋‹ˆ์Šค ์ž์ฒด๊ฐ€ ์„ฑ๋ฆฝํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ธ์‹์ด ์ž๋ฆฌ ์žก๊ณ  ์žˆ์—ˆ๋‹ค.

์ด๋Ÿฌํ•œ ์‚ฌ๊ณ ๋ฐฉ์‹์˜ ์ฐจ์ด๋Š” ๋งค์šฐ ์ถฉ๊ฒฉ์ ์ด์—ˆ๋‹ค. ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ธฐ์ˆ ๊ณผ ์ธํ„ฐ๋„ท ๊ธฐ์ˆ  ์‚ฌ์ด์˜ ๋ณธ์งˆ์ ์ธ ์ฐจ์ด๋ฅผ ๋ถ„๋ช…ํ•˜๊ฒŒ ์ฒด๊ฐํ•œ ์ˆœ๊ฐ„์ด์—ˆ๊ณ , ๊ทธ ๊ฐ„๊ทน์€ ์ง€๊ธˆ๋„ ์™„์ „ํžˆ ๋ฉ”์›Œ์ง€์ง€ ์•Š์€ ์ฑ„ ๋‚จ์•„ ์žˆ๋‹ค๊ณ  ๋А๋ผ๊ณ  ์žˆ๋‹ค.

Q : CIO๋กœ์„œ ์–ด๋–จ ๋•Œ ๋ณด๋žŒ์„ ๋А๋ผ๋Š”๊ฐ€.
A: ํšŒ์‚ฌ์˜ ๋ฐฉํ–ฅ์„ฑ์„ ๋น ๋ฅด๊ฒŒ ์‹คํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•  ๋•Œ CIO๋กœ์„œ์˜ ๋ณด๋žŒ์„ ๋А๋‚€๋‹ค. ๊ทธ๋Ÿฐ ๋ฉด์—์„œ ํŠธ๋ฆฌ๋„๋ฅด์˜ ๋ชฉํ‘œ๋Š” ๊ณ ๊ฐ์—๊ฒŒ ๊ฐ๋™์ ์ธ ๊ฒฝํ—˜์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ ์ตœ์ „์„ ์—๋Š” ๋งค์žฅ์—์„œ ์ผํ•˜๋Š” ์ง์›๊ณผ ์ด๋ฅผ ๋’ท๋ฐ›์นจํ•˜๋Š” ๋งค๋‹ˆ์ง€๋จผํŠธ๊ฐ€ ์žˆ๋‹ค. ๋‹ค๋งŒ ์‚ฌ๋žŒ์˜ ํž˜์—๋งŒ ์˜์กดํ•˜๋Š” ๋ฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ด๋“ค์„ ๋’ค์—์„œ ์–ด๋–ป๊ฒŒ ์ง€์›ํ• ์ง€๊ฐ€ ์ค‘์š”ํ•˜๋‹ค. ๋ณ€ํ™”์— ์‹ ์†ํžˆ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๊ธฐ๋ฐ˜์„ ๊ฐ–์ถ”๋Š” ๊ฒƒ์ด์•ผ๋ง๋กœ CIO๋กœ์„œ์˜ ๊ฐ€์žฅ ํฐ ๋ณด๋žŒ์ด๋‹ค.

IT ๋ถ€์„œ๊ฐ€ ์ž์ฒด ๋…ผ๋ฆฌ๋งŒ์œผ๋กœ ์›€์ง์—ฌ์„œ๋Š” ์˜๋ฏธ๊ฐ€ ์—†๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ IT๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค์— ์–ผ๋งˆ๋‚˜ ๊ธฐ์—ฌํ•˜๊ณ  ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๋ณ€ํ™”์— ์–ผ๋งˆ๋‚˜ ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๊ตฌ์ถ•ํ–ˆ๋Š”์ง€๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฌ์—… ํ™•์žฅ์„ ๊ณ ๋ฏผํ•  ๋•Œ๋Š” ์—…ํƒœ๊ฐ€ ๋Š˜์–ด๋‚  ๊ฒฝ์šฐ ํ•˜๋‚˜์˜ ๊ตฌ์กฐ๋กœ ๋Œ€์‘ํ• ์ง€, ์—ฌ๋Ÿฌ ๊ตฌ์กฐ๋ฅผ ์กฐํ•ฉํ• ์ง€์— ๋Œ€ํ•œ ์„ค๊ณ„ ํŒ๋‹จ์ด ํ•„์š”ํ•˜๋‹ค. ์„œ๋ฒ„๋ฅผ ๋Š˜๋ฆด ๊ฒƒ์ธ์ง€, ํ•œ ๋Œ€๋ฅผ ๋Œ€ํ˜•ํ™”ํ•  ๊ฒƒ์ธ์ง€์™€ ๊ฐ™์€ ์Šค์ผ€์ผ์•„์›ƒ๊ณผ ์Šค์ผ€์ผ์—… ์„ ํƒ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋‹ค. ์ด๋Ÿฐ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฒ€ํ† ํ•˜๋Š” ๊ณผ์ • ์ž์ฒด๊ฐ€ ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ์˜์—ญ์ด๋‹ค.

๋˜ ์ง€๊ธˆ์ฒ˜๋Ÿผ ๋ณ€ํ™”๊ฐ€ ์žฆ์€ ์‹œ๋Œ€์—๋Š” ๊ฒฝ์˜์ง„์ด ๊ธฐ์กด ๋ฐฉ์นจ์„ ๋ฐ”๊พธ๋Š” ์ผ๋„ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋•Œ ๋Œ€๊ทœ๋ชจ ํˆฌ์ž๋ฅผ ์ด์œ ๋กœ ์‹œ์Šคํ…œ์„ ํฌ๊ธฐํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์€ ๋ฐ”๋žŒ์งํ•˜์ง€ ์•Š๋‹ค. ๊ทธ๋ž˜์„œ ๊ฐ€๋Šฅํ•œ ํ•œ ๊ตฌ๋…ํ˜• ์„œ๋น„์Šค, ์ฆ‰ SaaS๋ฅผ ์ ๊ทน ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์œ ์—ฐ์„ฑ์ด ์š”๊ตฌ๋˜๋Š” ๋ฐฑ์˜คํ”ผ์Šค ์˜์—ญ์€ SaaS๋ฅผ ์กฐํ•ฉํ•˜๋Š” ํŽธ์ด ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ํŒ๋‹จ์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ๊ฒƒ์€ ์—”์ง€๋‹ˆ์–ด๋กœ์„œ์˜ ๊ฒฝํ—˜๊ณผ ์‚ฌ์—… ๊ฒฝ์˜์— ์ง์ ‘ ๊ด€์—ฌํ–ˆ๋˜ ๊ฒฝํ—˜์ด๋‹ค. ๊ธฐ์ˆ ์„ ์ถฉ๋ถ„ํžˆ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋ฉด ์ตœ์ ์˜ ์„ ํƒ์„ ํ•  ์ˆ˜ ์—†๊ณ , ๊ฒฝ์˜ ๊ด€์ ์ด ์—†์œผ๋ฉด ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์–ด๋–ป๊ฒŒ ์ง€์›ํ• ์ง€์— ๋Œ€ํ•œ ๋‹ต๋„ ๋‚˜์˜ค์ง€ ์•Š๋Š”๋‹ค. ์ด ๋‘ ๊ฐ€์ง€๋ฅผ ํ•จ๊ป˜ ํ™œ์šฉํ•ด ์‚ฌ๊ณ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด CIO ์—ญํ• ์˜ ๊ฐ€์žฅ ํฐ ์ฆ๊ฑฐ์›€์ด๋‹ค.

์‚ฌ์‹ค IT ๋ฒค๋” ์‹œ์ ˆ๋ถ€ํ„ฐ ์•ž์œผ๋กœ๋Š” SaaS๊ฐ€ ํ•„์ˆ˜๊ฐ€ ๋  ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ด ์™”๋‹ค. ๋‹น์‹œ์—๋Š” ์ œ์•ˆํ•˜๋”๋ผ๋„ ์‚ฌ์šฉ์ž ๊ธฐ์—…์ด ์ฑ„ํƒํ•˜์ง€ ์•Š์œผ๋ฉด ์‹คํ–‰์œผ๋กœ ์ด์–ด์ง€์ง€ ์•Š์•˜์ง€๋งŒ, CIO๊ฐ€ ๋œ ์ดํ›„์—๋Š” ์Šค์Šค๋กœ ๊ฒฐ์ •ํ•ด ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ์‹ค๊ฐํ–ˆ๋‹ค. ์ด๋Š” ๋งค์šฐ ํฐ ์ฐจ์ด์ด๋ฉฐ, ์‚ฌ์—…ํšŒ์‚ฌ๋กœ ์ž๋ฆฌ๋ฅผ ์˜ฎ๊ฒผ๊ธฐ์— ๊ฐ€๋Šฅํ•ด์ง„ ๋„์ „์ด๋‹ค.

ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์€ ๋ณ€ํ™”๋ฅผ ๋‘๋ ค์›Œํ•˜์ง€ ์•Š๊ณ  ์ง„ํ™”๋ฅผ ๊ฑฐ๋“ญํ•ด ์˜จ ๊ธฐ์—…์ด๋‹ค. ๊ทธ ๋•๋ถ„์— ๊ธ‰์„ฑ์žฅ์„ ์ด๋ค˜๊ณ , ๊ฒฉ๋ณ€ํ•˜๋Š” ํ™˜๊ฒฝ ์†์—์„œ๋„ ๋Œ€์‘ํ•ด ์˜ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๊ฐ•์ ์€ ๋ฐ˜๋“œ์‹œ ์ง€์ผœ์•ผ ํ•œ๋‹ค๊ณ  ๋ณด๊ณ , ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์„ ์ „๋ฉด์ ์œผ๋กœ SaaS ์ค‘์‹ฌ์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ์ž‘์—…์„ ์ถ”์ง„ํ•ด ์™”๋‹ค.

SaaS ๋ฒค๋”์˜ ์ œํ’ˆ ๋’ค์—๋Š” ์ˆ˜๋งŽ์€ ๋›ฐ์–ด๋‚œ ์—”์ง€๋‹ˆ์–ด๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๊ด€์ ์— ๋”ฐ๋ผ์„œ๋Š” ์ด๋“ค์ด ๋ชจ๋‘ ํšŒ์‚ฌ๋ฅผ ๋’ท๋ฐ›์นจํ•˜๋Š” ์™ธ๋ถ€ ์ธ๋ ฅ์ด๋ผ๊ณ ๋„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ž์‚ฌ ์—ญ๋Ÿ‰์—๋งŒ ์˜์กดํ•˜์ง€ ์•Š๊ณ  ์™ธ๋ถ€์˜ ํž˜์„ ์–ด๋–ป๊ฒŒ ์กฐํ•ฉํ• ์ง€ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ, ๊ทธ๊ฒƒ์ด CIO์˜ ์—ญํ• ์ด๋ฉฐ ๋‚˜์—๊ฒŒ ๊ฐ€์žฅ ํฐ ๋ณด๋žŒ์ด๋‹ค.

Q : AI ํ™œ์šฉ์— ๋Œ€ํ•ด์„œ๋Š” ์–ด๋–ป๊ฒŒ ๋ณด๊ณ  ์žˆ๋Š”๊ฐ€.
A: ์ตœ๊ทผ ์ƒ์„ฑํ˜• AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๊ณ  ์žˆ์ง€๋งŒ, ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์ด ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ํ˜„์žฅ์˜ ์ƒ์‚ฐ์„ฑ์„ ๋†’์ด๋Š” AI ํ™œ์šฉ์ด๋‹ค. ์ƒ์„ฑํ˜• AI๋Š” ํ™”์ดํŠธ์นผ๋ผ ์—…๋ฌด์˜ ํšจ์œจํ™”์—๋Š” ํšจ๊ณผ์ ์ด๋‹ค. ๋‹ค๋งŒ ์‚ฌ์—…๊ณผ ์ง์ ‘ ๋งž๋‹ฟ์•„ ์žˆ๋Š” ํ˜„์žฅ ์—…๋ฌด์—์„œ๋Š” ์ฆ‰์‹œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๊ณ  ์‹คํšจ์„ฑ์ด ๋ถ„๋ช…ํ•œ AI ํ™œ์šฉ์ด ํ•„์š”ํ•œ ๊ฒƒ ๊ฐ™๋‹ค.

๊ทธ ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๊ฐ€ ์ˆ˜์š” ์˜ˆ์ธก์ด๋‹ค. ๋งค์ถœ๊ณผ ๋ฐฉ๋ฌธ๊ฐ ์ˆ˜๋ฅผ AI๋กœ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ ๋‹ค์Œ ๋‚  ํ•„์š”ํ•œ ์ธ๋ ฅ ๊ทœ๋ชจ๋‚˜ ์‹์ž์žฌ ๋ฐœ์ฃผ๋Ÿ‰์„ ๋ณด๋‹ค ํšจ์œจ์ ์œผ๋กœ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋งค์žฅ ์šด์˜ ๊ณ„ํš์ด ํ•œ์ธต ์ˆ˜์›”ํ•ด์กŒ๊ณ , ํ˜„์žฅ์˜ ๋ถ€๋‹ด๋„ ํฌ๊ฒŒ ์ค„์—ˆ๋‹ค.

๋˜ ํ•˜๋‚˜๋Š” ์–ผ๊ตด ์ธ์‹์„ ํ™œ์šฉํ•œ ๊ทผํƒœ ๊ด€๋ฆฌ๋‹ค. ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์—๋Š” ํŒŒํŠธํƒ€์ž„๊ณผ ์•„๋ฅด๋ฐ”์ดํŠธ ์ง์›์ด ๋งŽ์•„ ์ถœํ‡ด๊ทผ ๊ธฐ๋ก ๊ด€๋ฆฌ๊ฐ€ ์ค‘์š”ํ•œ ๊ณผ์ œ์˜€๋‹ค. ๊ธฐ์กด์˜ ์ง€๋ฌธ์ด๋‚˜ ์ •๋งฅ ์ธ์‹ ๋ฐฉ์‹์€ ๋ฌผ์„ ์ž์ฃผ ์‚ฌ์šฉํ•˜๋Š” ํ™˜๊ฒฝ์ด๋‚˜ ์ถ”์šด ๋‚ ์”จ๋กœ ์ธํ•ด ์˜ˆ์™ธ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜์ง€๋งŒ, ์–ผ๊ตด ์ธ์‹์œผ๋กœ ์ „ํ™˜ํ•œ ์ดํ›„์—๋Š” ์˜ˆ์™ธ๊ฐ€ ๊ฑฐ์˜ ๋ฐœ์ƒํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ์ธ์‹ ์†๋„๋„ ๋น ๋ฅด๊ณ  ๋งˆ์Šคํฌ๋ฅผ ์ฐฉ์šฉํ•œ ์ƒํƒœ์—์„œ๋„ ์ฆ‰์‹œ ์ธ์‹ํ•  ์ˆ˜ ์žˆ์–ด, ํ˜„์žฅ์—์„œ๋Š” ๊ทผํƒœ ๊ด€๋ฆฌ๊ฐ€ ํ›จ์”ฌ ์ˆ˜์›”ํ•ด์กŒ๋‹ค๋Š” ๋ฐ˜์‘์ด ๋‚˜์˜จ๋‹ค.

ํ™”๋ คํ•ด ๋ณด์ด๋Š” ๊ธฐ์ˆ ์€ ์•„๋‹์ง€ ๋ชจ๋ฅด์ง€๋งŒ, ์ด๋Ÿฐ ์ ‘๊ทผ์ด ํ˜„์žฅ์˜ ์ƒ์‚ฐ์„ฑ์„ ๊พธ์ค€ํžˆ ๋Œ์–ด์˜ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค. ์ด๊ฒƒ์ด ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์ด ์ง€ํ–ฅํ•˜๋Š” AI ํ™œ์šฉ์˜ ๋ณธ์งˆ์ด๋ผ๊ณ  ๋ณธ๋‹ค.

Q : CIO์—๊ฒŒ ํ•„์š”ํ•œ ์ž์งˆ์€ ๋ฌด์—‡์ด๋ผ๊ณ  ๋ณด๋Š”๊ฐ€.
A : ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์€ โ€˜๊ฐ์˜คโ€™๋‹ค. ๋ฌผ๋ก  ํ•œ ๋ฒˆ ์ •ํ•œ ์ผ์„ ๋๊นŒ์ง€ ํ•ด๋‚ด๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•˜์ง€๋งŒ, ๊ทธ์— ์•ž์„œ ๋ฌด์—‡์„ ๋ชฉํ‘œ๋กœ ํ•˜๋Š”์ง€ ๋ถ„๋ช…ํžˆ ์ œ์‹œํ•ด์•ผ ํ•œ๋‹ค. ๋ฏธ๋ž˜์˜ ๋ชจ์Šต์„ ๊ทธ๋ฆฐ ๋’ค โ€œ์ด ๋ฐฉํ–ฅ์œผ๋กœ ํšŒ์‚ฌ๋ฅผ ์ด๋Œ๊ฒ ๋‹คโ€๊ณ  ์„ ์–ธํ•˜๋Š” ๊ฒƒ ์ž์ฒด๊ฐ€ CIO์—๊ฒŒ๋Š” ๊ฐ์˜ค์˜ ํ‘œํ˜„์ด๋ผ๊ณ  ๋ณธ๋‹ค.

๋‚˜ ์—ญ์‹œ DX ๋น„์ „์„ ์™ธ๋ถ€์— ๊ณต๊ฐœํ•˜๋ฉด์„œ โ€œ์ด์ œ๋Š” ๋ฐ˜๋“œ์‹œ ํ•ด๋‚ด์•ผ ํ•œ๋‹คโ€๋Š” ๊ฒฐ์‹ฌ์ด ์„ฐ๋‹ค. ๊ทธ๋ ‡๊ฒŒ ํ•ด์•ผ ์ง์›๊ณผ ๋ฒค๋” ๋ชจ๋‘๊ฐ€ ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์ด ์–ด๋–ค ๋ชจ์Šต์„ ์ง€ํ–ฅํ•˜๋Š”์ง€ ์ดํ•ดํ•˜๊ณ , ๊ฐ™์€ ๋ฐฉํ–ฅ์„ ๋ฐ”๋ผ๋ณด๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ๋งค์šฐ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค.

CIO์—๊ฒŒ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋ชจ์Šต์„ ํ•˜๋‚˜์˜ ๊ทธ๋ฆผ์œผ๋กœ ์ œ์‹œํ•˜๊ณ , ๊ทธ ๋น„์ „์„ ํ–ฅํ•ด ํ”๋“ค๋ฆผ ์—†์ด ๋‚˜์•„๊ฐ€๋Š” ์ถ”์ง„๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋•Œ ์ค‘์š”ํ•œ ๊ฒƒ์ด ๋ฐฑ์บ์ŠคํŠธ(backcast) ์‚ฌ๊ณ , ์ฆ‰ ์ตœ์ข… ๋ชฉํ‘œ์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด ์ง€๊ธˆ ๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ๊ฑฐ๊พธ๋กœ ๊ณ„์‚ฐํ•ด ๋‚˜๊ฐ€๋Š” ๋ฐฉ์‹์ด๋‹ค. ํฌ์–ด์บ์ŠคํŠธ(forecast) ๋ฐฉ์‹, ๋‹ค์‹œ ๋งํ•ด ํ˜„์žฌ ์ƒํƒœ๋ฅผ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„ ๊ณผ์ œ๋ฅผ ํ•˜๋‚˜์”ฉ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ์‹๋งŒ์œผ๋กœ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ ์–ด๋ ต๋‹ค.

๋ฌผ๋ก  ์ผ์ • ์ˆ˜์ค€์˜ ์•ˆ์ •๊ธฐ์— ๋“ค์–ด์„œ๋ฉด ํฌ์–ด์บ์ŠคํŠธ ๋ฐฉ์‹์˜ ๊ฐœ์„ ์œผ๋กœ ์ถฉ๋ถ„ํ•œ ๊ฒฝ์šฐ๋„ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ํฐ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด์•ผ ํ•  ๋•Œ๋Š” ๋ฐฑ์บ์ŠคํŠธ ๊ด€์ ์—์„œ ๊ณผ๊ฐํ•˜๊ฒŒ ๋ฐฉํ–ฅ๊ณผ ๊ฒฝ๋กœ๋ฅผ ๊ทธ๋ ค์•ผ ํ•œ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ณผ์ •์—์„œ ์˜ˆ์ƒ๊ณผ ํ˜„์‹ค ์‚ฌ์ด์— ํฐ ๊ฐ„๊ทน์ด ์ƒ๊ธด๋‹ค๋ฉด, โ€œ์ด๊ฑด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ํŒ๋‹จํ•˜๊ณ  ๊ณผ๊ฐํ•˜๊ฒŒ ๋ฐฉํ–ฅ์„ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๋‹จ๋ ฅ๊นŒ์ง€ ๊ฐ–์ถ”๋Š” ๊ฒƒ, ์ด๊ฒƒ์ด CIO์—๊ฒŒ ์š”๊ตฌ๋˜๋Š” ํ•ต์‹ฌ ์ž์งˆ์ด๋ผ๊ณ  ๋ณธ๋‹ค.

Q : CIO๋ฅผ ๊ฟˆ๊พธ๋Š” ์ง์›์—๊ฒŒ ํ•„์š”ํ•œ ์—ญ๋Ÿ‰์€ ๋ฌด์—‡์ธ๊ฐ€.
A : ๋‚˜๋Š” ํŒ€์›๋“ค์—๊ฒŒ ๋Š˜ โ€œ์žฅ์ฐจ CIO๋‚˜ CTO, ํ˜น์€ CDO ๊ฐ™์€ ์—ญํ• ์„ ๋งก์„ ์ˆ˜ ์žˆ๋Š” ์ธ์žฌ๋กœ ์„ฑ์žฅํ•˜๊ธธ ๋ฐ”๋ž€๋‹คโ€๊ณ  ์ด์•ผ๊ธฐํ•˜๊ณ  ์žˆ๋‹ค. ์ผ๋ณธ์—๋Š” ์•„์ง ๊ทธ๋Ÿฐ ์ธ์žฌ๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋งŽ์ง€ ์•Š๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ๋””์ง€ํ„ธ์„ ๋น„์ฆˆ๋‹ˆ์Šค์™€ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฐ€๊ต ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌ๋žŒ์„ ๋” ๋Š˜๋ ค์•ผ ํ•œ๋‹ค๊ณ  ๋ณธ๋‹ค. ์ Š์€ ์‹œ์ ˆ๋ถ€ํ„ฐ ์ด ์—ญํ• ์„ ๋ชฉํ‘œ๋กœ ์ปค๋ฆฌ์–ด๋ฅผ ์Œ“์•„ ๊ฐ€๊ธธ ๋ฐ”๋ž€๋‹ค.

์ด๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ์—ญ๋Ÿ‰์€ ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๊ธฐ์ดˆ์ ์ธ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰์ด๋‹ค. ์ฝ”๋“œ๋ฅผ ์ง์ ‘ ์ž‘์„ฑํ•˜์ง€ ์•Š๋Š” IT ๋ฆฌ๋”๋„ ์žˆ์ง€๋งŒ, ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด ๊ทธ ํŽธ์ด ํ›จ์”ฌ ๋‚ซ๋‹ค. ๋‚˜ ์—ญ์‹œ ์ค‘ํ•™์ƒ ๋•Œ๋ถ€ํ„ฐ ์ฝ”๋“œ๋ฅผ ์จ ์™”๋‹ค. ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด๋„ ํ•˜๋‚˜๋งŒ ์•„๋Š” ๊ฒƒ๋ณด๋‹ค ๋‘ ๊ฐ€์ง€ ์ด์ƒ์„ ์ตํžˆ๋ฉด ๋น„๊ต๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง€๊ณ  ์ดํ•ด์˜ ๊นŠ์ด๋„ ๋‹ฌ๋ผ์ง„๋‹ค. ์ด๋Š” ์ด์ง์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ์‹œ์•ผ๊ฐ€ ์—ด๋ฆฌ๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•˜๋ฉฐ, ์—ฌ๋Ÿฌ ๊ด€์ ์„ ๊ฐ–๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

๋‘ ๋ฒˆ์งธ๋Š” ์•„ํ‚คํ…ํŠธ๋กœ์„œ์˜ ์—ญ๋Ÿ‰์ด๋‹ค. ์‚ฌ์šฉ์ž ๊ธฐ์—…์˜ CIO๋Š” ๊ธฐ์กด ๊ธฐ์ˆ ์„ ์–ด๋–ป๊ฒŒ ์กฐํ•ฉํ•ด ์ž์‚ฌ ๋น„์ฆˆ๋‹ˆ์Šค์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค ๊ฒƒ์ธ์ง€๋ฅผ ๋Š์ž„์—†์ด ๊ณ ๋ฏผํ•ด์•ผ ํ•œ๋‹ค. CTO์˜ ์—ญํ• ๊ณผ ๋งž๋‹ฟ์•„ ์žˆ๋Š” ๋ถ€๋ถ„๋„ ์žˆ์ง€๋งŒ, ๋„คํŠธ์›Œํฌ๋‚˜ ์ธํ”„๋ผ, ํด๋ผ์šฐ๋“œ ๊ฐ™์€ ๊ธฐ์ดˆ๋ฅผ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋ฉด ์ตœ์ ์˜ ์กฐํ•ฉ์„ ํŒ๋‹จํ•  ์ˆ˜ ์—†๋‹ค. ์‹œ์Šคํ…œ ์•„ํ‚คํ…ํŠธ๋กœ์„œ์˜ ์ง€์‹๊ณผ ์‚ฌ๊ณ ๋Š” ํ•„์ˆ˜์ ์ด๋‹ค.

๋งˆ์ง€๋ง‰์€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ญ๋Ÿ‰์ด๋‹ค. ํ”„๋กœ์ ํŠธ๊ฐ€ ์‹คํŒจํ•˜๋Š” ์ด์œ ๋Š” ๊ธฐ์ˆ  ๋ถ€์กฑ๋ณด๋‹ค ์†Œํ†ต ๋ถ€์กฑ์—์„œ ๋น„๋กฏ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ํ›จ์”ฌ ๋งŽ๋‹ค. ๋‚˜๋Š” ํ‰์†Œ ์ผ๋Œ€์ผ ๋Œ€ํ™”๋ฅผ ์ž์ฃผ ํ•˜๋Š”๋ฐ, ๋Œ€ํ™” ์ƒ๋Œ€๋Š” ๋Œ€ํ‘œ๋ถ€ํ„ฐ ๊ทธ๋ฃน์‚ฌ ์ž„์›, ์‚ฌ์—…ํšŒ์‚ฌ ๊ฒฝ์˜์ง„๊นŒ์ง€ ๋‹ค์–‘ํ•˜๋‹ค. ์ด๋“ค์ด ๋ฌด์—‡์„ ํ•˜๊ณ  ์‹ถ์€์ง€ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋ฉด ์žฅ๊ธฐ์ ์ธ ๊ด€์ ์˜ ์‹œ์Šคํ…œ ์„ค๊ณ„๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๊ณ , ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ์–ธ์ž๊ฐ€ ๋˜์ง€ ๋ชปํ•˜๋ฉด ์„ฑ๊ณผ๋„ ๋‚˜์˜ค๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋Ÿฐ ์—ญ๋Ÿ‰์€ ๋‚˜๋ฟ ์•„๋‹ˆ๋ผ ๋ถ€์žฅ๊ธ‰ ๊ตฌ์„ฑ์›์—๊ฒŒ๋„ ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค.

๊ธฐ์ดˆ์ ์ธ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰, ์•„ํ‚คํ…ํŠธ๋กœ์„œ์˜ ์„ค๊ณ„ ์—ญ๋Ÿ‰, ๊ทธ๋ฆฌ๊ณ  ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ญ๋Ÿ‰. ์ด ์„ธ ๊ฐ€์ง€๋Š” CIO๋ฅผ ๋ชฉํ‘œ๋กœ ํ•  ๋•Œ ๋ฐ˜๋“œ์‹œ ๊ฐ–์ถฐ์•ผ ํ•  ์ž์งˆ์ด๋‹ค. ํŠนํžˆ B2B ๊ธฐ์—…์ผ์ˆ˜๋ก ํŒŒํŠธ๋„ˆ ๊ธฐ์—…๊ณผ์˜ ๊ด€๊ณ„๊ฐ€ ์ค‘์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์ Š์€ ์‹œ์ ˆ๋ถ€ํ„ฐ ์ด๋ฅผ ๊ฐ•ํ•˜๊ฒŒ ์˜์‹ํ•˜๊ธธ ๊ถŒํ•˜๊ณ  ์‹ถ๋‹ค.

Q : ์•ž์œผ๋กœ์˜ ๋ชฉํ‘œ๋Š”?
A: ์šฐ๋ฆฌ๋Š” โ€˜๊ธ€๋กœ๋ฒŒ ํ‘ธ๋“œ ์ปดํผ๋‹ˆโ€™๋ฅผ ๊ธฐ์—… ๋น„์ „์œผ๋กœ ๋‚ด์„ธ์šฐ๊ณ  ์žˆ๋‹ค. ๋ชฉํ‘œ๋Š” ์œ ๋ช…ํ•œ ํ–„๋ฒ„๊ฑฐ ์ฒด์ธ์ด๋‚˜ ์ปคํ”ผ ์ฒด์ธ๊ณผ ์–ด๊นจ๋ฅผ ๋‚˜๋ž€ํžˆ ํ•˜๋Š”, ์ผ๋ณธ ์ตœ์ดˆ์˜ โ€˜์„ธ๊ณ„์—์„œ ํ†ตํ•˜๋Š” ์™ธ์‹ ๊ธฐ์—…โ€™์ด ๋˜๋Š” ๊ฒƒ์ด๋‹ค.

ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์€ ์ด๋ฏธ 30๊ฐœ๊ตญ ์ด์ƒ์— ์ง„์ถœํ•ด ์žˆ์ง€๋งŒ, ๋ชจ๋“  ๊ตญ๊ฐ€์—์„œ ์ผ๋ณธ๊ณผ ๋™์ผํ•œ ํ’ˆ์งˆ์„ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋А๋ƒ๊ณ  ํ•˜๋ฉด ์•„์ง ๊ณผ์ œ๊ฐ€ ๋‚จ์•„ ์žˆ๋‹ค. ์ด ์ˆ˜์ค€์„ ์–ด๋–ป๊ฒŒ ๋Œ์–ด์˜ฌ๋ฆด์ง€๊ฐ€ ์•ž์œผ๋กœ์˜ ํฐ ๊ณผ์ œ๋‹ค. ๋””์ง€ํ„ธ์˜ ํž˜์œผ๋กœ ๊ธฐ์ค€์„ ๋งž์ถ”๊ณ , ์ƒˆ๋กœ์šด ๊ตญ๊ฐ€๋กœ๋„ ๋ณด๋‹ค ์‰ฝ๊ฒŒ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์‚ฌ์—… ๊ฐ€์†์œผ๋กœ ์ด์–ด์ง„๋‹ค๊ณ  ๋ณธ๋‹ค.

์ง€๊ธˆ๊นŒ์ง€๋Š” ์ผ๋ณธ ์‹œ์žฅ์— ์ง‘์ค‘ํ•ด ์™”์ง€๋งŒ, ์•ž์œผ๋กœ๋Š” ๊ธ€๋กœ๋ฒŒ ์žํšŒ์‚ฌ์™€ ํ”„๋žœ์ฐจ์ด์ฆˆ ํŒŒํŠธ๋„ˆ์— ๋Œ€ํ•ด์„œ๋„ ๋ณด๋‹ค ์ ๊ทน์ ์œผ๋กœ ์ง€์›ํ•ด ๋‚˜๊ฐˆ ์ƒ๊ฐ์ด๋‹ค.

๋ฌผ๋ก  ๋ชจ๋“  ๊ฒƒ์„ ์ผ๋ฅ ์ ์ธ ๊ตฌ์กฐ๋กœ ์ ์šฉํ•˜๋Š” ๊ฒƒ์€ ํ˜„์‹ค์ ์ด์ง€ ์•Š๋‹ค. ์ œ์กฐ์—…์ฒ˜๋Ÿผ ์ „ ์„ธ๊ณ„์— ๋™์ผํ•œ ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜๋Š” ๋ฐฉ์‹๋„ ์žˆ์ง€๋งŒ, ์™ธ์‹ ์‚ฐ์—…์€ ํ˜„์ง€ ์†Œ๋น„์ž๊ฐ€ ์‹ค์ œ๋กœ ๋จน์–ด์•ผ ๊ฐ€์น˜๊ฐ€ ์ƒ๊ธด๋‹ค. ์ผ์ •ํ•œ ์ž์œจ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„, ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์œผ๋กœ์„œ ๋ฐ˜๋“œ์‹œ ์ง€์ผœ์•ผ ํ•  ๊ธฐ์ค€์„ ์–ด๋–ป๊ฒŒ ์ •์ฐฉ์‹œํ‚ฌ์ง€๊ฐ€ ์ค‘์š”ํ•˜๋‹ค.

์ด ๊ณผ์ •์—์„œ ํšจ๊ณผ์ ์ธ ์ˆ˜๋‹จ์ด ๋””์ง€ํ„ธ ๊ธฐ๋ฐ˜์ด๋‹ค. ๊ธฐ์ค€์„ ์‹œ์Šคํ…œ์— ๋…น์—ฌ ๋‘๋ฉด, ์˜์‹ํ•˜์ง€ ์•Š์•„๋„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ’ˆ์งˆ๊ณผ ์šด์˜ ๊ธฐ์ค€์ด ์œ ์ง€๋œ๋‹ค. ์ด๋Ÿฐ ๊ตฌ์กฐ๋ฅผ ์•ž์œผ๋กœ ๋” ๋Š˜๋ ค ๊ฐ€๊ณ ์ž ํ•œ๋‹ค.

๋‹ค๋งŒ ๊ณผ๋„ํ•˜๊ฒŒ ์ ์šฉํ•˜๋ฉด โ€˜์†์œผ๋กœ ๋งŒ๋“ค๊ณ  ๊ฐ“ ์กฐ๋ฆฌํ•œ๋‹คโ€™๋Š” ์šฐ๋ฆฌ์˜ ์šด์˜ ์ฒ ํ•™์ด ์•ฝํ•ด์งˆ ์œ„ํ—˜๋„ ์žˆ๋‹ค. ๊ทธ ๊ท ํ˜•์„ ์–ด๋””์— ๋‘˜ ๊ฒƒ์ธ์ง€๋Š” ์‰ฝ์ง€ ์•Š์€ ๊ณผ์ œ์ง€๋งŒ, ์˜คํžˆ๋ ค ๊ทธ ์ง€์ ์— ์žฌ๋ฏธ๊ฐ€ ์žˆ๋‹ค๊ณ  ๋А๋‚€๋‹ค.

๋ณธ์‚ฌ ๊ฒฝ์˜์ง„๊ณผ ๊ฐ ์‚ฌ์—… ์ฑ…์ž„์ž๋“ค๊ณผ ์ง€์†์ ์œผ๋กœ ๋…ผ์˜ํ•˜๋ฉฐ, ๊ฐ ์ง€์—ญ์— ๋งž๋Š” ์ตœ์ ์˜ ๊ท ํ˜•์ ์„ ์ฐพ์•„๊ฐ€๋Š” ์ž‘์—…์„ ์ „ ์„ธ๊ณ„๋กœ ํ™•๋Œ€ํ•ด ๋‚˜๊ฐ€๊ณ  ์‹ถ๋‹ค.
dl-ciokorea@foundryco.com

*์ด ๊ธฐ์‚ฌ๋Š” CIO ์žฌํŒฌ์— ๊ฒŒ์žฌ๋œ ์›๋ฌธ์„ ๋ฐ”ํƒ•์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์›๋ฌธ์€ ์—ฌ๊ธฐ์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

โ€œ๋ณด์•ˆยท๋ฐ์ดํ„ฐยท์กฐ์ง์ด ์Šน๋ถ€ ๊ฐ€๋ฅธ๋‹คโ€ 2026๋…„ CIO 10๋Œ€ ๊ณผ์ œ

20 January 2026 at 01:30

CIO์˜ โ€˜ํฌ๋ง ๋ชฉ๋กโ€™์€ ๋Š˜ ๊ธธ๊ณ  ๋น„์šฉ๋„ ๋งŽ์ด ๋“ ๋‹ค. ํ•˜์ง€๋งŒ ์šฐ์„ ์ˆœ์œ„๋ฅผ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ์„ธ์šฐ๋ฉด, ํŒ€๊ณผ ์˜ˆ์‚ฐ์„ ์†Œ์ง„ํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ธ‰๋ณ€ํ•˜๋Š” ์š”๊ตฌ์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹ค.

ํŠนํžˆ 2026๋…„์—๋Š” IT ์šด์˜์„ โ€˜๋น„์šฉ ์„ผํ„ฐโ€™๊ฐ€ ์•„๋‹ˆ๋ผ ์†์ต ๊ด€์ ์—์„œ ์žฌ์ •์˜ํ•˜๋ฉด์„œ, ๊ธฐ์ˆ ๋กœ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์žฌ์ฐฝ์กฐํ•˜๋Š” ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹ค. ์•ก์„ผ์ถ”์–ด(Accenture)์˜ ๊ธฐ์ˆ  ์ „๋žตยท์ž๋ฌธ ๊ธ€๋กœ๋ฒŒ ๋ฆฌ๋“œ ์ฝ”์—”๋ผํŠธ ์…ธํฌํŠธ๋Š” โ€œ์ตœ์†Œํ•œ์˜ ํˆฌ์ž๋กœ โ€˜๋ถˆ๋งŒ ๊บผ์ง€์ง€ ์•Š๊ฒŒ ์œ ์ง€โ€™ํ•˜๋Š” ๋ฐ์„œ ๋ฒ—์–ด๋‚˜, ๊ธฐ์ˆ ๋กœ ๋งค์ถœ ์„ฑ์žฅ์„ ๊ฒฌ์ธํ•˜๊ณ  ์ƒˆ๋กœ์šด ๋””์ง€ํ„ธ ์ œํ’ˆ์„ ๋งŒ๋“ค๋ฉฐ, ์ƒˆ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ์„ ๋” ๋น ๋ฅด๊ฒŒ ์‹œ์žฅ์— ๋‚ด๋†“๋Š” ์ชฝ์œผ๋กœ ์ดˆ์ ์„ ์˜ฎ๊ฒจ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ถŒ๊ณ ํ–ˆ๋‹ค.

๋‹ค์Œ์€ CIO๊ฐ€ 2026๋…„์— ์šฐ์„ ์ˆœ์œ„ ์ƒ๋‹จ์— ์˜ฌ๋ ค์•ผ ํ•  10๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œ๋‹ค.

1. ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ๊ณผ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ๊ฐ•ํ™”

๊ธฐ์—…์ด ์ƒ์„ฑํ˜• AI์™€ ์—์ด์ „ํ‹ฑ AI๋ฅผ ํ•ต์‹ฌ ์›Œํฌํ”Œ๋กœ์šฐ ๊นŠ์ˆ™์ด ํ†ตํ•ฉํ•˜๋ฉด์„œ, ๊ณต๊ฒฉ์ž ์—ญ์‹œ ๊ฐ™์€ AI ๊ธฐ์ˆ ๋กœ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๊ต๋ž€ํ•˜๊ณ  ์ง€์‹์žฌ์‚ฐ(IP)๊ณผ ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋…ธ๋ฆด ๊ฐ€๋Šฅ์„ฑ์ด ์ปค์กŒ๋‹ค. ์†Œ๋น„์ž ์‹ ์šฉํ‰๊ฐ€ ๊ธฐ์—… ํŠธ๋žœ์Šค์œ ๋‹ˆ์–ธ(TransUnion)์˜ ๊ธ€๋กœ๋ฒŒ ์ œํ’ˆ ํ”Œ๋žซํผ ๋‹ด๋‹น ์ˆ˜์„๋ถ€์‚ฌ์žฅ ์š”๊ฒŒ์‹œ ์กฐ์‹œ๋Š” โ€œ๊ทธ ๊ฒฐ๊ณผ CIO์™€ CISO๋Š” ๋‚˜์œ ํ–‰์œ„์ž๋“ค์ด ๋™์ผํ•œ AI ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•ด ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๋ฐฉํ•ดํ•˜๊ณ , ๊ณ ๊ฐ ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ์™€ ๊ฒฝ์Ÿ์šฐ์œ„์— ํ•ด๋‹นํ•˜๋Š” ์ •๋ณดยท์ž์‚ฐ์„ ํฌํ•จํ•œ IP๋ฅผ ํƒˆ์ทจํ•˜๋ ค ํ•  ๊ฒƒ์ž„์„ ์˜ˆ์ƒํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์กฐ์‹œ๋Š” ๋””์ง€ํ„ธ ์ „ํ™˜ ๊ฐ€์†๊ณผ AI ํ†ตํ•ฉ ํ™•๋Œ€๋กœ ๋ฆฌ์Šคํฌ ํ™˜๊ฒฝ์ด ํฌ๊ฒŒ ๋„“์–ด์งˆ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ , 2026๋…„ ์ตœ์šฐ์„  ๊ณผ์ œ๋กœ โ€˜๋ณด์•ˆ ํšŒ๋ณตํƒ„๋ ฅ์„ฑโ€™๊ณผ โ€˜๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œโ€™๋ฅผ ๊ผฝ์•˜๋‹ค. ํŠนํžˆ, โ€œ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ์™€ ๊ธ€๋กœ๋ฒŒ ๊ทœ์ œ ์ค€์ˆ˜๋Š” ํ˜‘์ƒ ๋Œ€์ƒ์ด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

2. ๋ณด์•ˆ ๋„๊ตฌ ํ†ตํ•ฉ

AI์˜ ํšจ๊ณผ๋ฅผ ์ œ๋Œ€๋กœ ๋Œ์–ด๋‚ด๋ ค๋ฉด ๊ธฐ๋ฐ˜์„ ๋‹ค์‹œ ๋‹ค์ ธ์•ผ ํ•œ๋‹ค๋Š” ์ฃผ์žฅ๋„ ์žˆ๋‹ค. ๋”œ๋กœ์ดํŠธ์˜ ๋ฏธ๊ตญ ์‚ฌ์ด๋ฒ„ ํ”Œ๋žซํผ ๋ฐ ๊ธฐ์ˆ ยท๋ฏธ๋””์–ดยทํ†ต์‹ (TMT) ์‚ฐ์—… ๋ฆฌ๋” ์•„๋ฃฌ ํŽ˜๋ฆฐ์ฝœ๋žŒ์€ โ€œํ•„์ˆ˜ ์กฐ๊ฑด ์ค‘ ํ•˜๋‚˜๋Š” ํŒŒํŽธํ™”๋œ ๋ณด์•ˆ ๋„๊ตฌ๋ฅผ ํ†ตํ•ฉยท์—ฐ๋™๋œ ์‚ฌ์ด๋ฒ„ ๊ธฐ์ˆ  ํ”Œ๋žซํผ์œผ๋กœ ๋ฌถ๋Š” ๊ฒƒ์ธ๋ฐ, ์ด๋ฅผ โ€˜ํ”Œ๋žซํผํ™”(platformization)โ€™๋ผ๊ณ  ๋ถ€๋ฅธ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํŽ˜๋ฆฐ์ฝœ๋žŒ์€ ํ†ตํ•ฉ์€ ๋ณด์•ˆ์„ โ€˜์—ฌ๋Ÿฌ ํฌ์ธํŠธ ์†”๋ฃจ์…˜์˜ ๋ˆ„๋”๊ธฐโ€™์—์„œ ๋น ๋ฅธ ํ˜์‹ ๊ณผ ํ™•์žฅ ๊ฐ€๋Šฅํ•œ AI ์ค‘์‹ฌ ์šด์˜์„ ์œ„ํ•œ ๋ฏผ์ฒฉํ•˜๊ณ  ํ™•์žฅ๋œ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ”๊ฟ€ ๊ฒƒ์ด๋ผ๋ฉฐ, โ€œ์œ„ํ˜‘์ด ์ •๊ตํ•ด์งˆ์ˆ˜๋ก ํ†ตํ•ฉ ํ”Œ๋žซํผ์ด ์ค‘์š”ํ•ด์ง€๋ฉฐ, ๋„๊ตฌ ๋‚œ๋ฆฝ์„ ๋ฐฉ์น˜ํ•˜๋ฉด ์˜คํžˆ๋ ค ๋ถ„์ ˆ๋œ ๋ณด์•ˆ ํƒœ์„ธ๊ฐ€ ๊ณต๊ฒฉ์ž์—๊ฒŒ ์œ ๋ฆฌํ•˜๊ฒŒ ์ž‘๋™ํ•ด ์œ„ํ—˜์ด ์ปค์ง„๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋˜ โ€œ๊ธฐ์—…์€ ๋‚ ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ์œ„ํ˜‘์— ์ง๋ฉดํ•  ๊ฒƒ์ด๋ฉฐ, ์ด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋ณด์•ˆ ๋„๊ตฌ๊ฐ€ ๋ฌด๋ถ„๋ณ„ํ•˜๊ฒŒ ํ™•์‚ฐ๋  ๊ฒƒ์ด๋‹ค. ๊ณต๊ฒฉ์ž๊ฐ€ ์ด๋ ‡๊ฒŒ ํŒŒํŽธํ™”๋œ ๋ณด์•ˆ ํƒœ์„ธ๋ฅผ ์•…์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ํ”Œ๋žซํผํ™”๋ฅผ ๋Šฆ์ถ”๋ฉด ์œ„ํ—˜๋งŒ ์ฆํญ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

3. ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ โ€˜๊ธฐ๋ณธ๊ธฐโ€™ ์žฌ์ ๊ฒ€

์กฐ์ง์ด ํšจ์œจยท์†๋„ยทํ˜์‹ ์„ ์œ„ํ•ด ์ƒˆ๋กœ์šด AI ๋ชจ๋ธ ๋„์ž… ๊ฒฝ์Ÿ์— ๋‚˜์„œ๊ณ  ์žˆ์ง€๋งŒ, ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ๋ฅผ ์œ„ํ•œ ๊ธฐ๋ณธ ๋‹จ๊ณ„์กฐ์ฐจ ๋†“์น˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์ ์ง€ ์•Š๋‹ค๋Š” ๊ฒฝ๊ณ ๋„ ๋‚˜์˜จ๋‹ค. ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œยท๋ณด์กด ์ „๋ฌธ์—…์ฒด ๋„๋…ธ๋งˆ ์†Œํ”„ํŠธ์›จ์–ด(Donoma Software)์˜ ์ตœ๊ณ ์ „๋žต์ฑ…์ž„์ž ํŒŒ์ปค ํ”ผ์–ด์Šจ์€ โ€œ์ƒˆ AI ๊ธฐ์ˆ ์„ ํ’€๊ธฐ ์ „์— ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ณธ ์กฐ์น˜๋ฅผ ํ•˜์ง€ ์•Š๋Š” ์กฐ์ง์ด ๋งŽ๋‹คโ€๋ผ๋ฉฐ 2026๋…„์—๋Š” โ€œ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๊ธด๊ธ‰ ๊ณผ์ œ๋กœ ๋ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํ”ผ์–ด์Šจ์€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ยท์‚ฌ์šฉยท๋ณดํ˜ธ ์ด์Šˆ๊ฐ€ ์ดˆ๊ธฐ ํ•™์Šต๋ถ€ํ„ฐ ์šด์˜๊นŒ์ง€ AI ๋ผ์ดํ”„์‚ฌ์ดํด ์ „๋ฐ˜์—์„œ ๋ฐœ์ƒํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋˜ ๋งŽ์€ ๊ธฐ์—…์ด โ€œAI๋ฅผ ๋ฌด์‹œํ•ด ๊ฒฝ์Ÿ์—์„œ ๋’ค์ฒ˜์ง€๊ฑฐ๋‚˜ ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋…ธ์ถœํ•  ์ˆ˜ ์žˆ๋Š” LLM์„ ๋„์ž…ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๋‚˜์œ ์„ ํƒ์ง€ ์‚ฌ์ด์— ๋†“์—ฌ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

ํ•ต์‹ฌ์€ โ€˜AI๋ฅผ ํ•  ๊ฒƒ์ธ๊ฐ€โ€™๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ—˜์— ๋น ๋œจ๋ฆฌ์ง€ ์•Š์œผ๋ฉด์„œ AI ๊ฐ€์น˜๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•โ€™์ด๋‹ค. ํ”ผ์–ด์Šจ์€ ํŠนํžˆ โ€œ๋ฐ์ดํ„ฐ๊ฐ€ โ€˜์™„์ „ํžˆโ€™ ๋˜๋Š” โ€˜์—”๋“œ ํˆฌ ์—”๋“œโ€™๋กœ ์•”ํ˜ธํ™”๋ผ ์žˆ๋‹คโ€๋Š” ์กฐ์ง์˜ ์ž์‹ ๊ฐ๊ณผ ๋‹ฌ๋ฆฌ, ์‹ค์ œ๋กœ๋Š” ์‚ฌ์šฉ ์ค‘ ๋ฐ์ดํ„ฐ๊นŒ์ง€ ํฌํ•จํ•ด ๋ชจ๋“  ์ƒํƒœ์—์„œ ์—ฐ์†์ ์œผ๋กœ ๋ณดํ˜ธํ•˜๋Š” ์ฒด๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ๋‹ค. ํ”„๋ผ์ด๋ฒ„์‹œ ๊ฐ•ํ™” ๊ธฐ์ˆ ์„ ์ง€๊ธˆ ๋„์ž…ํ•˜๋ฉด ์ดํ›„ AI ๋ชจ๋ธ ์ ์šฉ์—์„œ๋„ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐํ™”ยท๋ณด์•ˆ์ด ์„ ํ–‰๋ผ ํ•™์Šต ํšจ์œจ์ด ์ข‹์•„์ง€๊ณ , ์žฌํ•™์Šต์— ๋”ฐ๋ฅธ ๋น„์šฉยท๋ฆฌ์Šคํฌ๋„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค.

4. ํŒ€ ์ •์ฒด์„ฑ๊ณผ ๊ฒฝํ—˜์— ์ง‘์ค‘

2026๋…„ CIO ๊ณผ์ œ๋กœ โ€˜๊ธฐ์—… ์ •์ฒด์„ฑโ€™๊ณผ ์ง์› ๊ฒฝํ—˜์„ ์žฌ์ •๋น„ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋ชฉ์†Œ๋ฆฌ๋„ ์žˆ๋‹ค. IT ๋ณด์•ˆ ์†Œํ”„ํŠธ์›จ์–ด ์—…์ฒด ๋„ท์œ„๋ฆญ์Šค(Netwrix)์˜ CIO ๋งˆ์ดํด ์›ป์ ค์€ โ€œ์ •์ฒด์„ฑ์€ ์‚ฌ๋žŒ๋“ค์ด ์กฐ์ง์— ํ•ฉ๋ฅ˜ํ•˜๊ณ  ํ˜‘์—…ํ•˜๊ณ  ๊ธฐ์—ฌํ•˜๋Š” ๊ธฐ๋ฐ˜โ€์ด๋ผ๋ฉฐ, โ€œ์ •์ฒด์„ฑ๊ณผ ์ง์› ๊ฒฝํ—˜์„ ์ œ๋Œ€๋กœ ์žก์œผ๋ฉด ๋ณด์•ˆ, ์ƒ์‚ฐ์„ฑ, ๋„์ž… ๋“ฑ ๋‹ค๋ฅธ ๋ชจ๋“  ๊ฒƒ์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋”ฐ๋ผ์˜จ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์›ป์ ค์€ ์ง์›๋“ค์ด ์ง์žฅ์—์„œ โ€˜์†Œ๋น„์ž๊ธ‰โ€™ ๊ฒฝํ—˜์„ ๊ธฐ๋Œ€ํ•œ๋‹ค๊ณ  ์ง„๋‹จํ–ˆ๋‹ค. ๋‚ด๋ถ€ ๊ธฐ์ˆ ์ด ๋ถˆํŽธํ•˜๋ฉด ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์šฐํšŒํ•˜๊ฒŒ ๋˜๋ฉฐ, ๊ทธ ์ˆœ๊ฐ„ ์กฐ์ง์€ ๋ณด์•ˆ๊ณผ ์†๋„๋ฅผ ๋™์‹œ์— ์žƒ๋Š”๋‹ค๋Š” ์ง€์ ์ด๋‹ค. ๋ฐ˜๋Œ€๋กœ โ€˜์ •์ฒด์„ฑ์— ๋ฟŒ๋ฆฌ๋ฅผ ๋‘” ๋งค๋„๋Ÿฌ์šด ๊ฒฝํ—˜โ€™์„ ๊ตฌ์ถ•ํ•œ ๊ธฐ์—…์ด ํ˜์‹  ์†๋„์—์„œ ์•ž์„œ๊ฐˆ ๊ฒƒ์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค.

5. ๊ฐ’๋น„์‹ผ ERP ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜ ๋Œ€์‘ ๋ฐฉ์•ˆ ๋งˆ๋ จ

ERP ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜์€ 2026๋…„์—๋„ CIO๋ฅผ ๊ฐ•ํ•˜๊ฒŒ ์••๋ฐ•ํ•  ์ „๋ง์ด๋‹ค. ์ธ๋ณด์ด์Šค ๋ผ์ดํ”„์‚ฌ์ดํด ๊ด€๋ฆฌ ์†Œํ”„ํŠธ์›จ์–ด ์—…์ฒด ๋ฐ”์Šค์›จ์–ด(Basware)์˜ CIO ๋ฐฐ๋Ÿฟ ์‰ฌ์œ„์ธ ๋Š” โ€œ์˜ˆ๋ฅผ ๋“ค์–ด SAP S/4HANA ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜์€ ๋ณต์žกํ•˜๊ณ , ๊ณ„ํš๋ณด๋‹ค ๊ธธ์–ด์ง€๋ฉด์„œ ๋น„์šฉ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์‰ฌ์œ„์ธ ๋Š” ์—…๊ทธ๋ ˆ์ด๋“œ ๋น„์šฉ์ด ๊ธฐ์—… ๊ทœ๋ชจ์™€ ๋ณต์žก๋„์— ๋”ฐ๋ผ 1์–ต ๋‹ฌ๋Ÿฌ ์ด์ƒ, ๋งŽ๊ฒŒ๋Š” 5์–ต ๋‹ฌ๋Ÿฌ๊นŒ์ง€ ๋›ธ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค.

๋˜ํ•œ, ERP๊ฐ€ โ€˜๋ชจ๋“  ๊ฒƒ์„ ํ•˜๋ ค๋Š”โ€™ ๊ตฌ์กฐ์ธ ๋งŒํผ, ์ธ๋ณด์ด์Šค ์ฒ˜๋ฆฌ์ฒ˜๋Ÿผ ํŠน์ • ์—…๋ฌด๋ฅผ ์•„์ฃผ ์ž˜ ํ•ด๋‚ด๋Š” ๋ฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ์—ฌ๊ธฐ์— ์ˆ˜๋งŽ์€ ์• ๋“œ์˜จ ์ปค์Šคํ„ฐ๋งˆ์ด์ง•์ด ๋”ํ•ด์ง€๋ฉด ๋ฆฌ์Šคํฌ๊ฐ€ ์ปค์ง„๋‹ค. ์‹œ์œ„์ธ ๋Š” ์ด์— ๋Œ€ํ•œ ๋Œ€์•ˆ์œผ๋กœ๋Š” SAP๊ฐ€ ๊ฐ•์ ์„ ๊ฐ–๋Š” ํ•ต์‹ฌ์€ ๊ทธ๋Œ€๋กœ ๋‘๊ณ , ์ฃผ๋ณ€ ๊ธฐ๋Šฅ์€ ๋ฒ ์ŠคํŠธ ์˜ค๋ธŒ ๋ธŒ๋ฆฌ๋“œ ๋„๊ตฌ๋กœ ๋ณด์™„ํ•˜๋Š” โ€˜ํด๋ฆฐ ์ฝ”์–ด(clean core)โ€™ ์ „๋žต์„ ์ œ์‹œํ–ˆ๋‹ค.

6. ํ˜์‹ ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค

2026๋…„ ํ˜์‹ ์„ ์ง€์† ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“ค๋ ค๋ฉด, ๋ชจ๋“ˆํ˜•ยทํ™•์žฅํ˜• ์•„ํ‚คํ…์ฒ˜์™€ ๋ฐ์ดํ„ฐ ์ „๋žต์ด ํ•ต์‹ฌ์ด๋ผ๋Š” ์˜๊ฒฌ๋„ ๋‚˜์™”๋‹ค. ์ปดํ”Œ๋ผ์ด์–ธ์Šค ํ”Œ๋žซํผ ์—…์ฒด ์‚ผ์‚ฌ๋ผ(Samsara)์˜ CIO ์Šคํ‹ฐ๋ธ ํ”„๋ž€์ฒดํ‹ฐ๋Š” โ€œํ˜์‹ ์ด ํ™•์žฅ ๊ฐ€๋Šฅํ•˜๊ณ  ์ง€์† ๊ฐ€๋Šฅํ•˜๋ฉฐ ์•ˆ์ „ํ•˜๊ฒŒ ์ด๋ค„์ง€๋„๋ก ํ•˜๋Š” ๊ธฐ๋ฐ˜์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ์šฐ์„ ์ˆœ์œ„ ์ค‘ ํ•˜๋‚˜โ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํ”„๋ž€์ฒดํ‹ฐ๋Š” ๋А์Šจํ•˜๊ฒŒ ๊ฒฐํ•ฉ๋œ API ์šฐ์„  ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ตฌ์ถ• ์ค‘์ด๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋” ๋น ๋ฅด๊ฒŒ ์›€์ง์ด๊ณ  ๋ณ€ํ™”์— ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์‘ํ•˜๋ฉด์„œ ์†”๋ฃจ์…˜ ์—…์ฒด์™€ ํ”Œ๋žซํผ ์ข…์†์„ ํ”ผํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์›Œํฌํ”Œ๋กœ์šฐยท๋„๊ตฌยทAI ์—์ด์ „ํŠธ๊นŒ์ง€ ๋” ์—ญ๋™์ ์œผ๋กœ ๋ฐ”๋€Œ๋Š” ํ™˜๊ฒฝ์—์„œ โ€˜๊ฐ•ํ•˜๊ฒŒ ๊ฒฐํ•ฉ๋œ ์Šคํƒโ€™์€ ํ™•์žฅ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค๋Š” ํŒ๋‹จ์ด๋‹ค. ๋˜ํ•œ ๋ฐ์ดํ„ฐ๋Š” AI๋ฟ ์•„๋‹ˆ๋ผ ๋น„์ฆˆ๋‹ˆ์Šค ์ธ์‚ฌ์ดํŠธ, ๊ทœ์ œ ๋Œ€์‘, ๊ณ ๊ฐ ์‹ ๋ขฐ๋ฅผ ์œ„ํ•œ ์žฅ๊ธฐ ์ „๋žต ์ž์‚ฐ์ด๋ผ๋ฉฐ, ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ๊ณผ ๊ฑฐ๋ฒ„๋„Œ์Šค, ์ ‘๊ทผ์„ฑ์„ ์ „์‚ฌ์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋ง๋ถ™์˜€๋‹ค.

7. ์ธ๋ ฅ ์ „ํ™˜ ๊ฐ€์†ํ™”

AI ์‹œ๋Œ€ ์ธ๋ ฅ ์ „๋žต์€ โ€˜์ฑ„์šฉโ€™๋งŒ์œผ๋กœ ํ•ด๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค. ์ž„์› ์„œ์น˜ยท๊ฒฝ์˜ ์ปจ์„คํŒ… ๊ธฐ์—… ํ•˜์ด๋“œ๋ฆญ ์•ค ์ŠคํŠธ๋Ÿฌ๊ธ€์Šค(Heidrick & Struggles)์˜ ํŒŒํŠธ๋„ˆ ์Šค์ฝง ํ†ฐ์Šจ์€ โ€œ์—…์Šคํ‚ฌ๋ง๊ณผ ๋ฆฌ์Šคํ‚ฌ๋ง์€ ์ฐจ์„ธ๋Œ€ ๋ฆฌ๋”๋ฅผ ํ‚ค์šฐ๋Š” ํ•ต์‹ฌโ€์ด๋ผ๋ฉฐ, โ€œ2026๋…„์˜ ๊ธฐ์ˆ  ๋ฆฌ๋”๋Š” ์ œํ’ˆ ์ค‘์‹ฌ์˜ ๊ธฐ์ˆ  ๋ฆฌ๋”๋กœ์„œ, ์ œํ’ˆยท๊ธฐ์ˆ ยท๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์‚ฌ์‹ค์ƒ ํ•˜๋‚˜๋กœ ๋ฌถ์–ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํ†ฐ์Šจ์€ โ€˜๋””์ง€ํ„ธ ์ธ์žฌ ๊ณต์žฅโ€™ ๋ชจ๋ธ์„ ์ œ์•ˆํ–ˆ๋‹ค. ์—ญ๋Ÿ‰ ๋ถ„๋ฅ˜ ์ฒด๊ณ„(๊ธฐ์ˆ  ์—ญ๋Ÿ‰ ๋ถ„๋ฅ˜), ์—ญํ•  ๊ธฐ๋ฐ˜ ํ•™์Šต ๊ฒฝ๋กœ, ์‹ค์ „ ํ”„๋กœ์ ํŠธ ์ˆœํ™˜์„ ๊ตฌ์กฐํ™”ํ•ด ๋‚ด๋ถ€์—์„œ ์ธ์žฌ๋ฅผ ํ‚ค์šฐ๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋˜ํ•œ AI๊ฐ€ ํ™œ์„ฑํ™”๋œ ํ™˜๊ฒฝ์— ๋งž์ถฐ ์ง๋ฌด๋ฅผ ์žฌ์„ค๊ณ„ํ•˜๊ณ  ์ž๋™ํ™”๋กœ ๊ณ ๋„์˜ ์ „๋ฌธ ๋…ธ๋™ ์˜์กด๋„๋ฅผ ์ค„์ด๋ฉฐ, โ€˜ํ“จ์ „ ํŒ€(fusion teams)โ€™์œผ๋กœ ํฌ์†Œ ์—ญ๋Ÿ‰์„ ์กฐ์ง ์ „๋ฐ˜์— ํ™•์‚ฐํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

8. ํŒ€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๊ณ ๋„ํ™”

๊ธฐ์ˆ  ์กฐ์ง์—์„œ ๋ถˆํ™•์‹ค์„ฑ์ด ์ปค์งˆ์ˆ˜๋ก ๋ถˆ์•ˆ์ด ํ™•์‚ฐ๋˜๊ณ , ๊ทธ ์–‘์ƒ์€ ๊ฐœ์ธ๋ณ„๋กœ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. CompTIA์˜ ์ตœ๊ณ  ๊ธฐ์ˆ  ์—๋ฐ˜์ ค๋ฆฌ์ŠคํŠธ ์ œ์ž„์Šค ์Šคํƒ ์ €๋Š” โ€œ๊ธฐ์ˆ  ๋ถ€์„œ์—์„œ ๋ถˆํ™•์‹ค์„ฑ์ด ๋ฏธ์น˜๋Š” 1์ฐจ ํšจ๊ณผ๋Š” ๋ถˆ์•ˆโ€์ด๋ผ๋ฉฐ, โ€œ๋ถˆ์•ˆ์€ ์‚ฌ๋žŒ๋งˆ๋‹ค ๋‹ค๋ฅธ ํ˜•ํƒœ๋กœ ๋“œ๋Ÿฌ๋‚œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์Šคํƒ ์ €๋Š” ํŒ€์›๊ณผ์˜ ๋ฐ€์ฐฉ ์†Œํ†ต์„ ๊ฐ•ํ™”ํ•˜๊ณ , ๋” ํšจ๊ณผ์ ์ด๊ณ  ๊ด€๋ จ์„ฑ ๋†’์€ ๊ต์œก์œผ๋กœ ๋ถˆ์•ˆ์„ ๊ด€๋ฆฌํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ œ์•ˆํ–ˆ๋‹ค.

9. ๋ฏผ์ฒฉ์„ฑยท์‹ ๋ขฐยทํ™•์žฅ์„ฑ์„ ์œ„ํ•œ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”

AI ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ์ด๋ฅผ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋Š” ์—ญ๋Ÿ‰๋„ 2026๋…„ ํ•ต์‹ฌ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜๋‹ค. ๋ณด์•ˆ ์†”๋ฃจ์…˜ ์—…์ฒด ๋„ท์Šค์ฝ”ํ”„(Netskope)์˜ CDIO ๋งˆ์ดํฌ ์•ค๋”์Šจ์€ โ€œAI๋ฅผ ๋„˜์–ด 2026๋…„ CIO ์šฐ์„ ์ˆœ์œ„๋Š” ๋ฏผ์ฒฉ์„ฑ, ์‹ ๋ขฐ, ํ™•์žฅ์„ฑ์„ ์ด๋„๋Š” ๊ธฐ๋ฐ˜ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•˜๋Š” ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์•ค๋”์Šจ์€ ์ œํ’ˆ ์šด์˜ ๋ชจ๋ธ(product operating model)์ด ์ „ํ†ต์  ์†Œํ”„ํŠธ์›จ์–ด ํŒ€์„ ๋„˜์–ด, IAM, ๋ฐ์ดํ„ฐ ํ”Œ๋žซํผ, ํ†ตํ•ฉ ์„œ๋น„์Šค ๊ฐ™์€ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ธฐ๋ฐ˜ ์—ญ๋Ÿ‰๊นŒ์ง€ ํฌํ•จํ•˜๋Š” ํ˜•ํƒœ๋กœ ํ™•์žฅ๋  ๊ฒƒ์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค. ์ด๋•Œ ์ง์›ยทํŒŒํŠธ๋„ˆยท๊ณ ๊ฐยท์„œ๋“œํŒŒํ‹ฐยทAI ์—์ด์ „ํŠธ ๋“ฑ โ€˜์ธ๊ฐ„/๋น„์ธ๊ฐ„ IDโ€™๋ฅผ ๋ชจ๋‘ ์ง€์›ํ•ด์•ผ ํ•˜๋ฉฐ, ์ตœ์†Œ ๊ถŒํ•œ๊ณผ ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ์›์น™์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ์•ˆ์ „ํ•˜๊ณ  ์ ์‘ํ˜• ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

10. ์ง„ํ™”ํ•˜๋Š” IT ์•„ํ‚คํ…์ฒ˜

2026๋…„์—๋Š” ํ˜„์žฌ์˜ IT ์•„ํ‚คํ…์ฒ˜๊ฐ€ AI ์—์ด์ „ํŠธ์˜ ์ž์œจ์„ฑ์„ ๊ฐ๋‹นํ•˜์ง€ ๋ชปํ•˜๋Š” โ€˜๋ ˆ๊ฑฐ์‹œ ๋ชจ๋ธโ€™์ด ๋  ์ˆ˜๋„ ์žˆ๋‹ค. ์„ธ์ผ์ฆˆํฌ์Šค์˜ ์ตœ๊ณ  ์•„ํ‚คํ…ํŠธ ์—๋ฏผ ๊ฒŒ๋ฅด๋ฐ”๋Š” โ€œํšจ๊ณผ์ ์œผ๋กœ ํ™•์žฅํ•˜๋ ค๋ฉด ๊ธฐ์—…์€ ์ƒˆ๋กœ์šด ์—์ด์ „ํ‹ฑ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ๋กœ ์ „ํ™˜ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ, ๋ฐ์ดํ„ฐ ์˜๋ฏธ๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๊ณต์œ  ์‹œ๋งจํ‹ฑ ๊ณ„์ธต, ์ค‘์•™ํ™”๋œ ์ง€๋Šฅ์„ ์œ„ํ•œ ํ†ตํ•ฉ AI/ML ๊ณ„์ธต, ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ์—์ด์ „ํŠธ ์ธ๋ ฅ์˜ ๋ผ์ดํ”„์‚ฌ์ดํด์„ ๊ด€๋ฆฌํ•˜๋Š” ์—์ด์ „ํ‹ฑ ๊ณ„์ธต, ๋ณต์žกํ•œ ํฌ๋กœ์Šค ์‚ฌ์ผ๋กœ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ๊ด€๋ฆฌํ•˜๋Š” ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ๊ณ„์ธต ๋“ฑ 4๊ฐœ ๊ณ„์ธต์„ ์ œ์‹œํ–ˆ๋‹ค.

๊ฒŒ๋ฅด๋ฐ”๋Š” ์ด ์ „ํ™˜์ด โ€œ์—”๋“œ ํˆฌ ์—”๋“œ ์ž๋™ํ™”๋ฅผ ๋‹ฌ์„ฑํ•œ ๊ธฐ์—…๊ณผ ์—์ด์ „ํŠธ๊ฐ€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‚ฌ์ผ๋กœ์— ๊ฐ‡ํžŒ ๊ธฐ์—…์„ ๊ฐ€๋ฅด๋Š” ๊ฒฐ์ •์  ๊ฒฝ์Ÿ๋ ฅโ€์ด ๋  ๊ฒƒ์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

โ€œ์˜ฌํ•ด ๋ณด์•ˆ, ์ด๊ฒƒ๋งŒ์€ ํ•„์ˆ˜โ€ ๊ธ€๋กœ๋ฒŒ ๋ฆฌ๋”๊ฐ€ ๊ผฝ์€ 2026๋…„ ๋ณด์•ˆ ์šฐ์„  ์ˆœ์œ„

20 January 2026 at 00:47

2026๋…„์„ ์•ž๋‘๊ณ  CISO์™€ ๋Š์ž„์—†์ด ์ง„ํ™”ํ•˜๋Š” ์‚ฌ์ด๋ฒ„ ๊ณต๊ฒฉ์ž ๊ฐ„์˜ ๋Œ€๊ฒฐ์ด ๋‹ค์‹œ ํ•œ ๋ฒˆ ๊ฒฉํ™”๋˜๋Š” ๊ฐ€์šด๋ฐ, ๊ณต๊ฒฉ์ž๋ณด๋‹ค ํ•œ๋ฐœ ์•ž์„œ ์ฃผ๋„๊ถŒ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์น˜๋ฐ€ํ•˜๊ฒŒ ๊ธฐํš๋œ ๊ฐ•๋ ฅํ•œ ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํ”„๋กœ์ ํŠธ๊ฐ€ ํšจ๊ณผ์ ์ธ ๋Œ€์‘์ฑ…์ผ ์ˆ˜ ์žˆ๋‹ค.

๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ถ€ํ„ฐ ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ๊นŒ์ง€, ํ–ฅํ›„ 1๋…„ ๋™์•ˆ ๋ชจ๋“  CISO๊ฐ€ ๋„์ž…์„ ๊ฒ€ํ† ํ•ด๋ณผ ๋งŒํ•œ ํ•ต์‹ฌ ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํ”„๋กœ์ ํŠธ 7๊ฐ€์ง€๋ฅผ ์ •๋ฆฌํ–ˆ๋‹ค.

1. AI ์‹œ๋Œ€๋ฅผ ์œ„ํ•œ ์•„์ด๋ดํ‹ฐํ‹ฐ ๋ฐ ์ ‘๊ทผ ๊ด€๋ฆฌ ์ „ํ™˜

AI์™€ ์ž๋™ํ™” ๊ธฐ์ˆ ์ด ์ง„ํ™”ํ•˜๋ฉด์„œ ์ง์›์˜ ์ ‘๊ทผ ๊ถŒํ•œ๋ฟ ์•„๋‹ˆ๋ผ AI ์—์ด์ „ํŠธ์™€ ๋จธ์‹  ํ”„๋กœ์„ธ์Šค์˜ ์•„์ด๋ดํ‹ฐํ‹ฐ๊นŒ์ง€ ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์ด ์ด์ œ ํ•„์ˆ˜์ ์ธ ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ์š”์†Œ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค. ๋”œ๋กœ์ดํŠธ ๋ฏธ๊ตญ ์‚ฌ์ด๋ฒ„ ์•„์ด๋ดํ‹ฐํ‹ฐ ๋ถ€๋ฌธ ๋ฆฌ๋”์ธ ์•ค์„œ๋‹ˆ ๋ฒ„๊ทธ๋Š” ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋ฅผ ๋ณด์•ˆ์˜ ํ•ต์‹ฌ ๊ณผ์ œ๋กœ ์งš์—ˆ๋‹ค.

๋ฒ„๊ทธ๋Š” โ€œํŠนํžˆ ์—์ด์ „ํ‹ฑ AI๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•œ AI์˜ ๋น ๋ฅธ ๋ฐœ์ „์ด ๋งŽ์€ ๋ณด์•ˆ ๋ฆฌ๋”๋กœ ํ•˜์—ฌ๊ธˆ ์•„์ด๋ดํ‹ฐํ‹ฐ ๊ด€๋ฆฌ ์ „๋žต์„ ๋‹ค์‹œ ์ƒ๊ฐํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์‚ฌ๋žŒ๊ณผ ๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ๋ฅผ ๋ชจ๋‘ ์•„์šฐ๋ฅด๋Š” ๋ณด๋‹ค ์ •๊ตํ•œ ์•„์ด๋ดํ‹ฐํ‹ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ CISO์™€ CIO๋กœ ํ•˜์—ฌ๊ธˆ ์ฐจ์„ธ๋Œ€ ๋””์ง€ํ„ธ ์ „ํ™˜์„ ๋Œ€๋น„ํ•œ ๋ณด์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋„๋ก ์ด๋Œ๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ทธ๋Š” ์ƒ์„ฑํ˜• AI์™€ ์—์ด์ „ํ‹ฑ AI๊ฐ€ ์ƒˆ๋กœ์šด ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ๊ณผ ๋” ๋†’์€ ์ˆ˜์ค€์˜ ์ž์œจ์„ฑ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋งŒํผ, ์กฐ์ง์ด ์•„์ด๋ดํ‹ฐํ‹ฐ ๋ฐ ์ ‘๊ทผ ๊ด€๋ฆฌ(IAM) ํ”„๋กœ๊ทธ๋žจ์„ ์„ ์ œ์ ์œผ๋กœ ํ˜„๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค. ๋ชจ๋“  ๋””์ง€ํ„ธ ์•„์ด๋ดํ‹ฐํ‹ฐ ์ „๋ฐ˜์˜ ์ ‘๊ทผ์„ ๋ณดํ˜ธํ•˜๋Š” ๊ฒƒ์€ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ์™€ ๊ทœ์ œ ์ค€์ˆ˜, ์šด์˜ ํšจ์œจ์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋ผ๋Š” ์„ค๋ช…์ด๋‹ค.

๋ฒ„๊ทธ๋Š” ๋ผ์ดํ”„์‚ฌ์ดํด ๊ด€๋ฆฌ, ๊ฐ•๋ ฅํ•œ ์ธ์ฆ, ์ •๋ฐ€ํ•œ ์—ญํ•  ๋ฐ ์ •์ฑ… ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ์ œ์–ด์™€ ๊ฐ™์€ IAM ์—ญ๋Ÿ‰์„ ๊ณ ๋„ํ™”ํ•˜๋ฉด ๋น„์ธ๊ฐ€ ์ ‘๊ทผ์„ ์ฐจ๋‹จํ•˜๊ณ  ํƒˆ์ทจ๋œ ์ž๊ฒฉ ์ฆ๋ช…์œผ๋กœ ์ธํ•œ ์œ„ํ—˜์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

๋˜ํ•œ ์ด๋Ÿฌํ•œ ํ†ต์ œ๋ฅผ ๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ๊นŒ์ง€ ํ™•์žฅํ•˜๋ฉด ์‹œ์Šคํ…œ์ด๋‚˜ ๋ฐ์ดํ„ฐ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ชจ๋“  ์ฃผ์ฒด๋ฅผ ์ ์ ˆํžˆ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ •๊ธฐ์ ์ธ ์ ‘๊ทผ ๊ถŒํ•œ ๊ฒ€ํ† ์™€ ์ง€์†์ ์ธ ๊ต์œก์„ ๋ณ‘ํ–‰ํ•  ๊ฒฝ์šฐ ์ •๋ณด ๋ณดํ˜ธ ์ˆ˜์ค€์„ ๋†’์ด๊ณ  ๊ณ ๋„ํ™”๋œ AI ๊ธฐ์ˆ ์„ ๋ณด๋‹ค ์•ˆ์ „ํ•˜๊ฒŒ ๋„์ž…ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

2. ์ด๋ฉ”์ผ ๋ณด์•ˆ ๊ฐ•ํ™”

์นด๋„ค๊ธฐ๋ฉœ๋ก ๋Œ€ํ•™๊ต CISO์ธ ๋ฉ”๋ฆฌ ์•ค ๋ธ”๋ ˆ์–ด๋Š” ํ”ผ์‹ฑ์ด ์—ฌ์ „ํžˆ ์ž๊ฒฉ ์ฆ๋ช…์„ ํƒˆ์ทจํ•˜๊ณ  ํ”ผํ•ด์ž๋ฅผ ์†์ด๋Š” ์ฃผ์š” ๊ณต๊ฒฉ ๊ฒฝ๋กœ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ์œ„ํ˜‘ ํ–‰์œ„์ž๋“ค์ด ๋ฉ”์ผ ์„œ๋น„์Šค ์ œ๊ณต์—…์ฒด์˜ ํƒ์ง€ ๊ธฐ๋Šฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ์ ์  ๋” ์ •๊ตํ•œ ํ”ผ์‹ฑ ๊ณต๊ฒฉ์„ ๋งŒ๋“ค์–ด๋‚ด๊ณ  ์žˆ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๋ธ”๋ ˆ์–ด๋Š” โ€œ๊ธฐ์กด์˜ ๋‹ค์ค‘์š”์†Œ ์ธ์ฆ ๊ธฐ๋ฒ•์€ ์ด์ œ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋ฌด๋ ฅํ™”๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณต๊ฒฉ์ž๋“ค์€ ์นจํˆฌ์— ์„ฑ๊ณตํ•œ ์ดํ›„ ์ด๋ฅผ ๋น ๋ฅด๊ฒŒ ์ˆ˜์ตํ™”ํ•˜๋Š” ๋‹จ๊ณ„๋กœ ์ด๋™ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

์ด์ฒ˜๋Ÿผ ๊ฐˆ์ˆ˜๋ก ๋Œ€์‘์ด ์–ด๋ ค์›Œ์ง€๋Š” ์ด๋ฉ”์ผ ๋ณด์•ˆ ํ™˜๊ฒฝ ์†์—์„œ ๋ธ”๋ ˆ์–ด๋Š” CISO๊ฐ€ ๋ณด์•ˆ ํ”„๋กœ์ ํŠธ๋ฅผ ์ถ”์ง„ํ•˜๋Š” ๊ณผ์ •์—์„œ ์™ธ๋ถ€ ์ „๋ฌธ ์กฐ์ง์˜ ์ง€์›์„ ๊ฒ€ํ† ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ์‹ค์ œ๋กœ ๊ทธ๊ฐ€ ์ ‘์ด‰ํ•œ ์—ฌ๋Ÿฌ ๋ฒค๋”๋Š” ์ œ์•ˆ์š”์ฒญ์„œ(RFP)์— ์‘๋‹ตํ•˜๋Š” ํ•œํŽธ, ์ตœ์‹  ๋ณด์•ˆ ์—ญ๋Ÿ‰์„ ์‹œํ—˜ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ…Œ์ŠคํŠธ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ „ํ–ˆ๋‹ค.

3. AI๋ฅผ ํ™œ์šฉํ•œ ์ฝ”๋“œ ์ทจ์•ฝ์  ํƒ์ง€

์‹œ์Šค์ฝ” AI ์—ฐ๊ตฌ์› ์•„๋งŒ ํ”„๋ฆฌ์–€์Šˆ๋Š” ์ž์›์ด ์ œํ•œ๋œ ํ™˜๊ฒฝ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM)์„ ํ™œ์šฉํ•ด ์ž์œจ์ ์œผ๋กœ ์ทจ์•ฝ์ ์„ ํƒ์ƒ‰ํ•˜๋Š” ์—์ด์ „ํŠธ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ๋‹ค.

ํ”„๋ฆฌ์–€์Šˆ๋Š” ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ์ด ๋ณธ์งˆ์ ์œผ๋กœ ๊ธด ๋งฅ๋ฝ์„ ๋‹ค๋ค„์•ผ ํ•˜๋Š” ์˜์—ญ์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ตœ์‹  ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ๋น„์šฉ์ด๋‚˜ ์ง€์—ฐ ์‹œ๊ฐ„ ์ธก๋ฉด์—์„œ ์ƒ๋‹นํ•œ ๋ถ€๋‹ด์ด ๋”ฐ๋ฅธ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋Š” โ€œ์กฐ์ง์˜ ์ฝ”๋“œ๋ฒ ์ด์Šค๋Š” ๋ณดํ†ต ์ˆ˜์ฒœ ๊ฐœ ํŒŒ์ผ๊ณผ ์ˆ˜๋ฐฑ๋งŒ ์ค„์˜ ์ฝ”๋“œ๋กœ ๊ตฌ์„ฑ๋œ๋‹คโ€๋ผ๋ฉฐ โ€œํŠน์ • ์ทจ์•ฝ์ ์„ ์ฐพ์•„์•ผ ํ•  ๋•Œ ๋ชจ๋“  ์ฝ”๋“œ๋ฅผ ๋Œ€ํ˜• ๋ชจ๋ธ์— ์ž…๋ ฅํ•˜๋ฉด ๊ฐ๋‹นํ•˜๊ธฐ ์–ด๋ ค์šธ ์ •๋„๋กœ ๋น„์šฉ์ด ์ปค์ง€๊ฑฐ๋‚˜, ์•„์˜ˆ ๋งฅ๋ฝ ํ•œ๊ณ„๋ฅผ ์ดˆ๊ณผํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

ํ”„๋ฆฌ์–€์Šˆ๋Š” ์ด ํ”„๋กœ์ ํŠธ๊ฐ€ ๋Œ€๋ถ€๋ถ„์˜ ๋ณด์•ˆ ๋ถ„์„๊ฐ€๊ฐ€ ์ทจ์•ฝ์ ์„ ์ฐพ๋Š” ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•œ ์ ‘๊ทผ์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ž ์žฌ์ ์ธ ์ทจ์•ฝ ์ง€์ ์„ ์ถ”๋ก ํ•œ ๋’ค ํ•ด๋‹น ์˜์—ญ์„ ํƒ์ƒ‰ํ•˜๊ณ , ๊ด€๋ จ ์ฝ”๋“œ๋ฅผ ๊ฐ€์ ธ์™€ ๋ถ„์„ํ•˜๋Š” ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•ด ์•ฝ์ ์„ ์ฐพ์•„๋‚ด๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Š” โ€œ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ด ์ ‘๊ทผ๋ฒ•์ด ํšจ๊ณผ์ ์ด๋ผ๋Š” ์ ์€ ์ด๋ฏธ ํ™•์ธํ–ˆ๋‹คโ€๋ผ๋ฉฐ โ€œ2026๋…„์—๋Š” ์ด๋ฅผ ํ™•์žฅํ•ด ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์‹ค์งˆ์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•œ๋‹คโ€๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

์ด๋ฏธ ์นจํˆฌ ํ…Œ์Šคํ„ฐ์™€ ๋ณด์•ˆ ์—ฐ๊ตฌ์›๋“ค์€ ์ƒ์„ฑํ˜• AI๋ฅผ ์ทจ์•ฝ์  ํƒ์ƒ‰์— ํ™œ์šฉํ•ด ์™”์œผ๋ฉฐ, AI ๊ธฐ๋ฐ˜ ๋ฒ„๊ทธ ํ—ŒํŒ…์€ ์ทจ์•ฝ์  ๋ฐœ๊ฒฌ ์†๋„๋ฅผ ๋†’์ด๋Š” ๋™์‹œ์— ๊ทธ ์ ‘๊ทผ์„ฑ์„ ํ™•๋Œ€ํ•˜๋Š” ํ๋ฆ„์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ด๋Š” ํšจ๊ณผ์ ์ธ ๋ฒ„๊ทธ ๋ฐ”์šดํ‹ฐ ํ”„๋กœ๊ทธ๋žจ์„ ์„ค๊ณ„ํ•˜๋Š” ๊ธฐ์ค€์—๋„ ๋ณ€ํ™”๋ฅผ ์ฃผ๊ณ  ์žˆ๋‹ค.

4. ๊ธฐ์—… ์ „๋ฐ˜์˜ AI ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ฐ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ ๊ฐ•ํ™”

AI ๋ฆฌ์Šคํฌ์™€ ์ž์œจํ˜• ์œ„ํ˜‘์ด ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํ™˜๊ฒฝ์„ ์žฌํŽธํ•˜๋Š” ๊ฐ€์šด๋ฐ, AI ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฐ ํ˜‘์—… ์†”๋ฃจ์…˜ ๊ธฐ์—… ๊ณ ํˆฌ(GoTo)์˜ CISO์ธ ์•„ํ‹ธ๋ผ ํ‡ด๋ขฐํฌ๋Š” ์กฐ์ง ๋‚ด ๋ชจ๋“  AI ๋„๊ตฌ๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ๊ด€๋ฆฌยท๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ํ•œํŽธ, ์Šน์ธ๋˜์ง€ ์•Š์€ ํ”Œ๋žซํผ์„ ์ฐจ๋‹จํ•ด ๋ฐ์ดํ„ฐ ์œ ์ถœ์„ ๋ฐฉ์ง€ํ•˜๋Š” ๋ฐ ์ฃผ๋ ฅํ•˜๊ณ  ์žˆ๋‹ค.

ํ‡ด๋ขฐํฌ๋Š” โ€œ์„ค๊ณ„ ๋‹จ๊ณ„๋ถ€ํ„ฐ ๋ณด์•ˆ์„ ๋‚ด์žฌํ™”ํ•˜๋Š” ์›์น™์„ ์ ์šฉํ•˜๊ณ  ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ์„ ๋น„์ฆˆ๋‹ˆ์Šค ์ „๋žต๊ณผ ์ •๋ ฌํ•จ์œผ๋กœ์จ ํšŒ๋ณต๋ ฅ๊ณผ ์‹ ๋ขฐ, ๊ทœ์ œ ์ค€์ˆ˜๋ฅผ ๋™์‹œ์— ๊ตฌ์ถ•ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ด๋Ÿฌํ•œ ์š”์†Œ๋Š” AI ์‹œ๋Œ€์˜ ํ•ต์‹ฌ์ ์ธ ์ฐจ๋ณ„ํ™” ์š”์ธโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋‹ค๋งŒ ๊ทธ๋Š” ์—ฌ๋А ๋Œ€๊ทœ๋ชจ ๋ณด์•ˆ ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ํŠน์ • ์กฐ์ง์ด๋‚˜ ๋ถ€์„œ์— ๊ตญํ•œ๋œ ์ ‘๊ทผ์œผ๋กœ๋Š” ์„ฑ๊ณตํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๊ทธ๋Š” โ€œํ˜„์žฌ์™€ ๋ฏธ๋ž˜์˜ ์„ฑ๊ณต์„ ๋ณด์žฅํ•˜๋Š” ์‹คํ–‰ ๋ฐฉ์‹์„ ์ •๋ฆฝํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „์‚ฌ ๋ชจ๋“  ๋ถ€์„œ์™€์˜ ํ˜‘์—…์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

5. ๋ณด์•ˆ ์šด์˜ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•œ AI ์šฐ์„  ์ „๋žต

์„ธ์ผ์ฆˆ ์„ฑ๊ณผ ๊ด€๋ฆฌ ๊ธฐ์—… ์žญํ‹€๋ฆฌ(Xactly)์˜ CISO ๋งค์Šˆ ์ƒคํ”„๋Š” ์ˆ˜์น˜ ๋ถ„์„ ๊ฒฐ๊ณผ์™€ ์œ„ํ˜‘ ํ™˜๊ฒฝ ๋ณ€ํ™” ๋ชจ๋‘๊ฐ€ AI ์‹ ๋ขฐ๋ฅผ ์ตœ์šฐ์„  ๊ณผ์ œ๋กœ ์‚ผ์•„์•ผ ํ•จ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ์ž์‚ฌ ๋ณด์•ˆ ์šด์˜์„ ๋Œ€์ƒ์œผ๋กœ ํฌ๋ฆฌ์Šคํ…์Šจ์‹ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ, ์ฆ์  ์ˆ˜์ง‘๊ณผ ๊ฒฝ๋ณด ๊ฒ€์ฆ, ๊ทœ์ œ ์ค€์ˆ˜ ๋ณด๊ณ ์™€ ๊ฐ™์€ ์—…๋ฌด๋ฅผ ํฌํ•จํ•ด ์ „์ฒด ๊ธฐ๋Šฅ์  ์ž‘์—…์˜ ์•ฝ 67%๊ฐ€ ๊ธฐ๊ณ„์  ์„ฑ๊ฒฉ์„ ๋ ๋ฉฐ ์ž๋™ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ์„ ํ™•์ธํ–ˆ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

์ƒคํ”„๋Š” โ€œ๊ณต๊ฒฉ์ž๋“ค์€ ์ด๋ฏธ ๋จธ์‹  ์†๋„๋กœ AI๋ฅผ ํ™œ์šฉํ•ด ๊ณต๊ฒฉํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ธ๊ฐ„์˜ ์†๋„๋กœ ๋Œ€์‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ๋Š” AI ๊ธฐ๋ฐ˜ ๊ณต๊ฒฉ์„ ๋ฐฉ์–ดํ•  ์ˆ˜ ์—†๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์ด์–ด โ€œAI ์‹ ๋ขฐ๋ฅผ ๋ณด์•ˆ ์šด์˜์— ์ ์šฉํ•˜๋ฉด, ๊ธฐ๊ณ„๊ฐ€ ๋” ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์—…์„ ์ธ๊ฐ„ ๋ถ„์„๊ฐ€๊ฐ€ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ํ”ผํ•  ์ˆ˜ ์žˆ๊ณ , ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ ๋Œ€์‘ ์—ญ๋Ÿ‰์„ ๋Œ์–ด์˜ฌ๋ฆด ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

AI๊ฐ€ ๋ฐฉ์–ด ์ˆ˜๋‹จ์œผ๋กœ์„œ ์‹ค์งˆ์ ์ธ ๋„๊ตฌ๋กœ ์ž๋ฆฌ ์žก์œผ๋ฉด์„œ, CISO๋“ค์€ ์กฐ์ง ๋‚ด ๋ณด์•ˆ ํŒ€ ์šด์˜ ๋ฐฉ์‹ ์—ญ์‹œ AI์˜ ์ž ์žฌ๋ ฅ์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์žฌ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ๋‹ค.

6. ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ์„œ์˜ ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ๋ชจ๋ธ ์ „ํ™˜

์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๊ธฐ์—… ์œ ๋ฆฌ์Šคํ‹ฑ(Euristiq)์˜ CTO ํŒŒ๋ธ”๋กœ ํŠธํžˆ๋ฅด๋Š” 2026๋…„ ํ•ต์‹ฌ ํ”„๋กœ์ ํŠธ๋กœ ์ž์‚ฌ ๋‚ด๋ถ€ ๊ฐœ๋ฐœ๊ณผ ๊ณ ๊ฐ ๊ฐœ๋ฐœ ์ „๋ฐ˜์— ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์ž‘์—…์„ ๊ผฝ์•˜๋‹ค. ๊ทธ๋Š” โ€œ๋ณด์•ˆ์ด ์ค‘์š”ํ•œ ๊ธฐ์—…๊ณผ ์˜ค๋žซ๋™์•ˆ ํ˜‘๋ ฅํ•ด ์™”์ง€๋งŒ, 2026๋…„์—๋Š” ์‹œ์žฅ๊ณผ ๊ทœ์ œ ์š”๊ตฌ ์ˆ˜์ค€์ด ํฌ๊ฒŒ ๋†’์•„์ง€๋ฉด์„œ โ€˜์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ๊ธฐ๋ณธ๊ฐ’โ€™ ๋ชจ๋ธ๋กœ์˜ ์ „ํ™˜์ด ์ „๋žต์  ํ•„์ˆ˜ ๊ณผ์ œ๊ฐ€ ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํŠธํžˆ๋ฅด๋Š” ์ด ํ”„๋กœ์ ํŠธ๊ฐ€ ๋‹จ์ˆœํžˆ ์ž์‚ฌ ๋ณด์•ˆ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๊ทธ๋Š” โ€œ๊ณ ๋ถ€ํ•˜ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์‹œ์Šคํ…œ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ ๋ฌด๊ฒฐ์„ฑ์ด ์ค‘์š”ํ•œ AI ๊ธฐ๋ฐ˜ ์†”๋ฃจ์…˜์— ์ด๋ฅด๊ธฐ๊นŒ์ง€, ๊ณ ๊ฐ์„ ์œ„ํ•œ ๋ณด๋‹ค ์•ˆ์ „ํ•œ ํ”Œ๋žซํผ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œ์ธํ”„๋ผ์™€ ๊ฐœ๋ฐœ, CI/CD, ๋‚ด๋ถ€ ๋„๊ตฌ ์ „๋ฐ˜์— ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ๋ฅผ ์ ์šฉํ•จ์œผ๋กœ์จ ํ†ตํ•ฉ๋œ ๋ณด์•ˆ ๊ธฐ์ค€์„ ๋งˆ๋ จํ•˜๊ณ , ์ด๋ฅผ ๊ณ ๊ฐ ์•„ํ‚คํ…์ฒ˜์—๋„ ์ด์ „ํ•  ๊ณ„ํšโ€์ด๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

์ด ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋Š” ํŠน์ • ๋ณด์•ˆ ์‚ฌ๊ณ ๋ฅผ ๊ณ„๊ธฐ๋กœ ์‹œ์ž‘๋œ ๊ฒƒ์€ ์•„๋‹ˆ๋ผ๊ณ  ํŠธํžˆ๋ฅด๋Š” ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์œ„ํ˜‘ ๋ชจ๋ธ์ด ๊ทธ ์–ด๋А ๋•Œ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ํ™•์ธํ–ˆ๋‹คโ€๋ผ๋ฉฐ โ€œ๊ณต๊ฒฉ์€ ๋” ์ด์ƒ ๊ฒฝ๊ณ„์—์„œ๋งŒ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ทจ์•ฝ์ ์ด๋‚˜ API, ์ทจ์•ฝํ•œ ์ธ์ฆ ๋ฉ”์ปค๋‹ˆ์ฆ˜, ์ž˜๋ชป ์„ค์ •๋œ ๊ถŒํ•œ ๋“ฑ ๋‚ด๋ถ€ ์š”์†Œ๋ฅผ ํ†ตํ•ด ์ ์  ๋” ๋งŽ์ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๊ฐ€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ฒ€ํ† ํ•˜๊ฒŒ ๋งŒ๋“  ๊ณ„๊ธฐ๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

7. ์ „์‚ฌ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค ๊ฐ•ํ™”

์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๋ฐ์ดํ„ฐยทAIยท๋ฐ์ดํ„ฐ ํŒจ๋ธŒ๋ฆญ ์†”๋ฃจ์…˜ ๊ธฐ์—… ์†”๋ฆญ์Šค ํ…Œํฌ๋†€๋กœ์ง€์Šค(Solix Technologies)์˜ ์ด๊ด„ ๋ฐฐ๋ฆฌ ์ฟค์ŠคํŠธ๋Š” 2026๋…„ ์šฐ์„  ๊ณผ์ œ๋กœ ๋ชจ๋“  ์ „์‚ฌ ์‹œ์Šคํ…œ์— ๊ฑธ์นœ ํ†ตํ•ฉ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ฐ ๋ณด์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์ถ•์„ ์ œ์‹œํ–ˆ๋‹ค. ๊ทธ๋Š” ์ด ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ ๋งŽ์€ ์กฐ์ง์ด ์—ฌ์ „ํžˆ ๊ฒช๊ณ  ์žˆ๋Š” ์„€๋„ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ์™€ ์ผ๊ด€๋˜์ง€ ์•Š์€ ์ ‘๊ทผ ํ†ต์ œ, ๊ทœ์ œ ์ค€์ˆ˜ ๊ณต๋ฐฑ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ๋„ ํ•จ๊ป˜ ๋‹ด๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ฟค์ŠคํŠธ๋Š” โ€œ๋ชจ๋“  ํ™˜๊ฒฝ์—์„œ ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜์™€ ๋ณดํ˜ธ, ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ์‹์„ ํ‘œ์ค€ํ™”ํ•˜๋ฉด ์ถ”์ ๋˜์ง€ ์•Š๋Š” ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ผ๋Š” ๊ฐ€์žฅ ํฐ ๋ณด์•ˆ ํ—ˆ์ ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ด ํ”„๋กœ์ ํŠธ๋Š” ๊ฐ€์‹œ์„ฑ์„ ๋†’์ด๊ณ  ์ •์ฑ… ๊ธฐ๋ฐ˜ ํ†ต์ œ๋ฅผ ๊ฐ•ํ™”ํ•ด ๋ฉ€ํ‹ฐํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ์˜ ๋…ธ์ถœ์„ ์ค„์ด๋Š” ๋ฐฉ์‹์œผ๋กœ ๋ณด์•ˆ ์ˆ˜์ค€์„ ๋Œ์–ด์˜ฌ๋ฆด ๊ฒƒโ€์ด๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

๊ทธ๋Š” ๊ณ ๊ฐ๋“ค์ด ๊ธ‰๊ฒฉํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ€์™€ ์ƒˆ๋กœ์šด ๊ทœ์ œ ์š”๊ตฌ์— ์••๋„๋˜๋Š” ์ƒํ™ฉ์„ ๋ชฉ๊ฒฉํ•œ ์ดํ›„ ์ด๋ฒˆ ํ”„๋กœ์ ํŠธ๋ฅผ ์ถ”์ง„ํ•˜๊ฒŒ ๋๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ํ˜„์žฌ ๋ณด์•ˆ ๋ฐ ํด๋ผ์šฐ๋“œ ์—”์ง€๋‹ˆ์–ด๋ง ํŒ€์ด ์ฃผ์š” ๊ธฐ์ˆ  ํŒŒํŠธ๋„ˆ์™€ ํ˜‘๋ ฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, 2026๋…„ 3๋ถ„๊ธฐ ๋„์ž…์„ ๋ชฉํ‘œ๋กœ ์ค€๋น„๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

Why your 2026 IT strategy needs an agentic constitution

19 January 2026 at 06:30

For decades, the IT operations manual was a dense, 50-page PDF โ€” a document designed by humans, for humans, and usually destined to gather digital dust until an audit required its retrieval.ย But as we enter 2026, the traditional standard operating procedure (SOP) is officially on life support.ย Humans are no longer the primary users of their own manuals.

Our systems are becoming agentic, deploying autonomous agents that donโ€™t just monitor dashboards but actively โ€œthink,โ€ plan, and execute changes within our infrastructure.ย These agents cannot read a PDF, nor can they โ€œinterpret the spiritโ€ of a security policy written in legalese.ย If you want to maintain control in an era of autonomous IT, you must move beyond static guardrails and adopt anย Agentic Constitution, which is the enterprise application ofย Constitutional AI, a term pioneered byย Anthropic.

From policy on paper to policy as codeย 

In the past, IT governance was a reactive โ€œcheck-the-boxโ€ exercise.ย The modern enterprise must shift towardย Policy as Code (PaC).

  • The pre-frontal cortex: An Agentic Constitution is a machine-readable set of foundational principles for your autonomous systems.
  • Operational boundaries: They define what an agent can do and the ethical boundaries it must never cross.
  • Actionable rules: An example of an encoded hard rule is: โ€œNever modify production data during peak hours without a human-in-the-loop tokenโ€.
  • Understandable by LLMs: These rules are actionable and understandable by the models powering your orchestration.

This shift represents a fundamental transformation: the role of the IT professional is moving from โ€œOperatorโ€ to โ€œArchitect of Intentโ€.ย IT professionals are no longer the ones turning the wrenches; they are the ones writing the rules of engagement.

The hierarchy of autonomy: A framework for IT opsย 

To scale AI capabilities without ceding total control of the โ€œkill switchโ€, enterprises should adopt aย hierarchy of autonomy, a framework credited to the foundational work ofย Thomas Sheridan & William Verplank (1978).

Tier 1: Full autonomy (the low-hanging fruit)ย 

  • Description: Tasks where the cost of human intervention exceeds the value of the task.
  • Examples:ย 
    • Auto-scalingย 
    • Log rotationย 
    • Basic ticket routingย 
    • Cache clearingย 
  • Governance: Defined by threshold-based triggers within a โ€œsandbox of trustโ€.

Tier 2: Supervised autonomy (the โ€˜check-backโ€™ zone)ย 

  • Description: Agents perform heavy lifting โ€” gathering data and identifying fixes โ€” but require a โ€œhuman nodโ€ before final execution.
  • Examples:ย 
    • System patchingย 
    • User provisioningย 
    • Non-critical configuration changesย 
  • Governance: Agents must present a โ€œreasoning traceโ€ to the admin explaining why the action is being taken.

Tier 3: Human-only (the red line)ย 

  • Description: โ€œExistentialโ€ actions that no agent should ever perform autonomously.
  • Examples:ย 
    • Database deletionsย 
    • Critical security overridesย 
    • Modifications to the Agentic Constitution itselfย 
  • Governance: Multi-factor authentication (MFA) or multi-person โ€œdual-keyโ€ approvals.

Reducing the โ€˜hidden attack surfaceโ€™ย 

Implementing a centralized constitution helps mitigate the risks ofย shadow AI agents โ€” autonomous tools deployed without central IT oversight.

  • Unified API: Any agent must โ€œauthenticateโ€ against the constitution before it can interact with core infrastructure.
  • Compliance history: This creates a centralized audit trail invaluable forย compliance frameworks like SOC2 or the EU AI Act.
  • Verifiable decision-making: You are building a verifiable history of autonomous decision-making.

The human voice in a machine worldย 

The โ€œConstitutionโ€ is a human document representing the collective wisdom of your engineers.

  • Architects of intent: The role of the IT professional shifts from โ€œOperatorโ€ to โ€œArchitect of Intentโ€.
  • Cultural shift: IT teams must move away from โ€œhero cultureโ€ firefighting toward a culture of systemic governance.

Conclusion: Starting your constitutional conventionย 

If you rely on human-readable SOPs in the second half of the decade, your IT operations will become a bottleneck for the business.

Steps to take this quarter:

  • Identify red lines: Gather lead architects to define your Tier 3 boundaries.
  • Map automated wins: Identify Tier 1 tasks for immediate automation.
  • Focus on strategy: Ensure humans focus on strategy and innovation, not babysitting a bot.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

How adaptive infrastructure is evolving capabilities at the speed of business

19 January 2026 at 05:30

Iโ€™m not normally fond of year-end technology retrospectives, but 2025 was indeed a year of quantum leaps in the art of the possible and it has filled us all with measured optimism paired with some healthy and well-earned skepticism where AI is concerned. When I put architecture in perspective, Iโ€™m inclined to take a longer view of automation in all its variations over a decade. Thatโ€™s why 2025 feels more like a footnote in a long series of events culminating in the perfect storm of opportunities weโ€™ve been contemplating for some time now.

The composable infrastructure revolution

Weโ€™ve been moving toward self-aware, composable infrastructure in architecture for a while now and infrastructure-as-code was merely the first major inflection.

Letโ€™s be honest, the old way of building IT infrastructure is breaking down. As an enterprise architect, the vicious cycle is very familiar. Tying agentic architecture demand-patterns to legacy infrastructure without careful consideration is fraught with peril. The old pattern is really predictable now: You provision systems, maintain them reactively and eventually retire them. Rinse and repeat.

That model is now officially unsustainable in the age of AI. Whatโ€™s taking its place? Composable and intelligent infrastructure that can proactively self-assemble, reconfigure and optimize on the fly to match what the business needs.

For IT leaders, this shift from rigid systems to modular, agent-driven infrastructure is both a breakthrough opportunity and a serious transformation challenge. And the numbers back this up: the global composable infrastructure market sits at USD $8.3 billion in 2025 and is projected to grow at 24.9% annually through 2032.

Whatโ€™s driving this hyper-accelerated growth? Geopolitical disruptions, supply chain chaos and AI advances are reshaping how and where companies operate. Business environments are being driven by reactive and dynamic agentic experiences, transactions and digital partnerships everywhere, all the time. Static infrastructure just canโ€™t deliver that kind of flexibility based on marketing exercises that describe solution offerings as โ€œon-demand,โ€ โ€œutility-based,โ€ โ€œadaptiveโ€ and โ€œcomposable.โ€ These are little more than half-truths.

A 2025 Forrester study commissioned by Microsoft found that 84% of IT leaders want solutions that consolidate edge and cloud operations across systems, sites and teams. As an architect in the consumer goods space, I found that our IT team would produce endless slide decks about composable enterprises ad nauseam, but infrastructure-as-code was the level of actual capability for some time.

Leaders wanted composable architecture that can pull together diverse components without hyperextended interoperability efforts. IBMโ€™s research reinforces this, showing that companies with modular architectures are more agile, more resilient and faster to market โ€” while also reducing the technical debt that slows everyone down.

The problem has been one of capacity and fitness for purpose. Legacy infrastructure and the underlying systems of record simply werenโ€™t designed with agentic AI patterns in mind. My conversations with pan-industry architecture colleagues reflect the same crisis of expectation and resilience around agentic architectures.

Consider McKinseyโ€™s 2025 AI survey that demonstrated 88% of organizations now use AI regularly in at least one business function and 62% are experimenting with AI agents. But most are stuck in pilot mode because their infrastructure canโ€™t scale AI across the business.

If there are any winners in this race, theyโ€™ve broken apart their monolithic systems into modular pieces that AI agents can orchestrate based on whatโ€™s actually happening in real time.

AI agents: The new orchestration layer

So, whatโ€™s driving this shift? Agentic AI โ€” systems that understand business context, figure out optimal configurations and execute complex workflows by pulling together infrastructure components on demand. This isnโ€™t just standard automation following rigid, brittle scripts. Agents reason about what to assemble, how to configure it and when to reconfigure as conditions change.

The adoption curve is steep. BCG and MIT Sloan Management Review found that 35% of organizations already use agentic AI, with another 44% planning to jump in soon. The World Economic Forum reports 82% of executives plan to adopt AI agents within three years. McKinseyโ€™s abovementioned State of AI research further highlights agentic AI as an emerging focus area for enterprise investment and describes AI agents as systems that can plan, take actions and orchestrate multi-step workflows with less human intervention than traditional automation.

As McKinsey puts it: โ€œWeโ€™re entering an era where enterprise productivity is no longer just accelerated by AI โ€” itโ€™s orchestrated by it.โ€ Thatโ€™s a fundamental change in how infrastructure works.

IBM is betting big on this future, stating that โ€œthe future of IT operations is autonomous, policy-driven and hybrid by design.โ€ Theyโ€™re building environments where AI agents can orchestrate everything โ€” public cloud, private infrastructure, on-premises systems, edge deployments โ€” assembling optimal configurations for specific workloads and contexts. The scope of automation ranges from helpful recommendations to closed-loop fixes to fully autonomous optimization.

What composable architecture actually looks like

I recall no shortage of Lego-induced architecture references to composability over the last decade. Sadly, we conflated them with domain services and not how business capabilities and automation could and should inform how the Legos are pieced together to solve problems. Traditional infrastructure comes as tightly integrated stacks โ€” hard to decompose, inflexible and reactive. The new composable model flips this, offering modular building blocks that agents can intelligently assemble and reassemble dynamically based on whatโ€™s needed right now.

Composability demands modularity and responsive automation

The foundation is extreme modularity โ€” breaking monolithic systems into discrete, independently deployable pieces with clean interfaces. Composable infrastructure lets you dynamically assemble and disassemble resources based on application demands, optimizing how pooled resources get allocated and improving overall efficiency.

This goes far beyond physical infrastructure to include services, data pipelines, security policies and workflows. When everything is modular and API-accessible, agents can compose complex solutions from simple building blocks and adapt in real time.

Bringing cloud and edge together

Enterprise organizations are no longer treating cloud and edge as separate worlds requiring manual integration. The new approach treats all infrastructure โ€” from hyperscale data centers to network edge โ€” as a unified resource pool that agents can compose into optimal configurations.

McKinsey identifies edge-cloud convergence as essential for agentic AI: โ€œAgents need real-time data access and low-latency environments. Combining edge compute (for inference and responsiveness) with cloud-scale training and storage is essential.โ€ They further highlight how Hewlett Packard Enterprise (HPE) expanded its GreenLake platform in late 2024 with composable infrastructure hardware for hybrid and AI-driven workloads โ€” modular servers and storage that let enterprises dynamically allocate resources based on real-time demand.

Agents running the show

Even IBM with its storied fixed-infrastructure history is all-in on agentic AI infrastructure capabilities โ€” including agents and Model Context Protocol (MCP) servers โ€” across its portfolio, making infrastructure components discoverable and composable by AI agents. These agents donโ€™t just watch the infrastructure state; they actively orchestrate resources across enterprise data and applications, creating optimal configurations for specific workloads.

Management interfaces across IBM cloud, storage, power and Z platforms are becoming MCP-compatible services โ€” turning infrastructure into building blocks that agents can reason about and orchestrate. Vendor-native agentic management solutions introduced similar AI-driven orchestration enhancements in 2024, letting large enterprises dynamically allocate resources across compute, storage and networking.

Self-aware and self-correcting infrastructure

Instead of manually configuring every component, composable architectures enable intent-based interfaces. You specify business objectives โ€” support 10,000 concurrent users with sub-100ms latency at 99.99% availability โ€” and agents figure out the infrastructure composition to make it happen.

Emerging intelligent infrastructure player Quali describes this as โ€œinfrastructure that understands itselfโ€ โ€” systems where agentic AI doesnโ€™t just demand infrastructure that keeps up, but infrastructure built from composable components that agents can understand and orchestrate.

Getting scale and flexibility in real time

Traditional infrastructure forces a choice: optimize for scale or build for adaptability. As architects, there are clear opposing trade-offs we must navigate successfully: Scale relative to adaptability, investment versus sustaining operations, tight oversight versus autonomy and process refactoring versus process reinvention.

Composable architectures solve this by delivering both. The dual nature of agentic AI โ€” part tool, part human-like โ€” doesnโ€™t fit traditional management frameworks. People are flexible but donโ€™t scale. Tools scale but canโ€™t adapt. Agentic AI on composable infrastructure gives you scalable adaptability โ€” handling massive workloads while continuously reconfiguring for changing contexts.

Self-composability and evolved governance

Agent-orchestrated infrastructure demands governance that balances autonomy with control. The earlier-mentioned MIT Sloan Management Review and BCG study found that most agentic AI leaders anticipate significant changes to governance and decision rights as they adopt agentic AI. They recommend creating governance hubs with enterprise-wide guardrails and dynamic decision rights rather than approving individual AI decisions one by one.

The answer lies in policy-based composition, defining constraints that bound agent decisions without prescribing exact configurations. Within those boundaries, agents compose and recompose infrastructure autonomously.

When AI agents continuously compose and recompose resources, you need governance frameworks that look nothing like traditional change management. A model registry that includes MCP connects different large language models while implementing guardrails for analytics, security, privacy and compliance. This treats AI as an agent whose decisions must be understood, managed and learned from โ€” not as an infallible tool.

Making it happen in 2026

What should IT leaders do? Here are the most critical moves from my perspective.

Redesign work around agents first. Use agentic AIโ€™s capacity to implement scalability and adapt broadly within parameterized governance automation rather than automating isolated tasks. Almost two-thirds of agentic AI leaders expect operating model changes. Build workflows that shift smoothly between efficiency and problem-solving modes.

Rethink roles for human-agent collaboration. Agents are an architectโ€™s new partner. Reposition your role as an architect in the enterprise to adopt and embrace portfolios of AI agents to coordinate workflows, and traditional management layers change. Expect fewer middle management layers, with managers evolving to orchestrate hybrid human-AI teams. Consider dual career paths for generalist orchestrators and AI-augmented specialists.

Keep investments tied to value. Agentic AI leaders anchor investments to value โ€” whether efficiency, innovation, revenue growth or some combination. Agentic systems are evolving from finite function agents to multi-agent collaborators, from narrow to broadly orchestrated tasks and other ecosystems and agents, and from operational to strategic human-mediated partnership.

The bottom line

The companies that will win in the next decade will recognize composability as the foundation of adaptive infrastructure. When every part of the technology stack becomes a modular building block and intelligent agents compose those blocks into optimal configurations based on real-time context, infrastructure becomes a competitive advantage instead of a constraint.

Organizations that understand agentic AIโ€™s dual nature and align their processes, governance, talent and investments accordingly will realize its full business value. My architectโ€™s perspective is that agentic AI will challenge established management approaches and, yes, even convince many of its ability to defy gravity. But with the right strategy and execution, it wonโ€™t just offer empty promises โ€” it will deliver results. Further, our grounded expectations around the capacity of aging infrastructure and legacy demand patterns must guide us in ensuring we make intelligent decisions.

The question isnโ€™t whether to embrace composable, agent-orchestrated infrastructure. Itโ€™s how fast you can decompose monolithic systems, build orchestration capabilities and establish the governance to make it work.

This article was made possible by our partnership with the IASA Chief Architect Forum. The CAFโ€™s purpose is to test, challenge and support the art and science of Business Technology Architecture and its evolution over time, as well as grow the influence and leadership of chief architects both inside and outside the profession. The CAF is a leadership community of the IASA, the leading non-profit professional association for business technology architects.ย 

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

10 top priorities for CIOs in 2026

19 January 2026 at 05:01

A CIOโ€™s wish list is typically long and costly. Fortunately, by establishing reasonable priorities, itโ€™s possible to keep pace with emerging demands without draining your team or budget.

As 2026 arrives, CIOs need to take a step back and consider how they can use technology to help reinvent their wider business while running their IT capabilities with a profit and loss mindset, advises Koenraad Schelfaut, technology strategy and advisory global lead at business advisory firm Accenture. โ€œThe focus should shift from โ€˜keeping the lights onโ€™ at the lowest cost to using technology โ€ฆ to drive topline growth, create new digital products, and bring new business models faster to market.โ€

Hereโ€™s an overview of what should be at the top of your 2026 priorities list.

1. Strengthening cybersecurity resilience and data privacy

Enterprises are increasingly integrating generative and agentic AI deep into their business workflows, spanning all critical customer interactions and transactions, says Yogesh Joshi, senior vice president of global product platforms at consumer credit reporting firm TransUnion. โ€œAs a result, CIOs and CISOs must expect bad actors will use these same AI technologies to disrupt these workflows to compromise intellectual property, including customer sensitive data and competitively differentiated information and assets.โ€

Cybersecurity resilience and data privacy must be top priorities in 2026, Joshi says. He believes that as enterprises accelerate their digital transformation and increasingly integrate AI, the risk landscape will expand dramatically. โ€œProtecting sensitive data and ensuring compliance with global regulations is non-negotiable,โ€ Joshi states.

2. Consolidating security tools

CIOs should prioritize re-baselining their foundations to capitalize on the promise of AI, says Arun Perinkolam, Deloitteโ€™s US cyber platforms and technology, media, and telecommunications industry leader. โ€œOne of the prerequisites is consolidating fragmented security tools into unified, integrated, cyber technology platforms โ€” also known as platformization.โ€

Perinkolam says a consolidation shift will move security from a patchwork of isolated solutions to an agile, extensible foundation fit for rapid innovation and scalable AI-driven operations. โ€œAs cyber threats become increasingly sophisticated, and the technology landscape evolves, integrating cybersecurity solutions into unified platforms will be crucial,โ€ he says.

โ€œEnterprises now face a growing array of threats, resulting in a sprawling set of tools to manage them,โ€ Perinkolam notes. โ€œAs adversaries exploit fractured security postures, delaying platformization only amplifies these risks.โ€

3. Ensuring data protection

To take advantage of enhanced efficiency, speed, and innovation, organizations of all types and sizes are now racing to adopt new AI models, says Parker Pearson, chief strategy officer at data privacy and preservation firm Donoma Software.

โ€œUnfortunately, many organizations are failing to take the basic steps necessary to protect their sensitive data before unleashing new AI technologies that could potentially be left exposed,โ€ she warns, adding that in 2026 โ€œdata privacy should be viewed as an urgent priority.โ€

Implementing new AI models can raise significant concerns around how data is collected, used, and protected, Pearson notes. These issues arise across the entire AI lifecycle, from how the data used for initial training to ongoing interactions with the model. โ€œUntil now, the choices for most enterprises are between two bad options: either ignore AI and face the consequences in an increasingly competitive marketplace; or implement an LLM that could potentially expose sensitive data,โ€ she says. Both options, she adds, can result in an enormous amount of damage.

The question for CIOs is not whether to implement AI, but how to derive optimal value from AI without placing sensitive data at risk, Pearson says. โ€œMany CIOs confidently report that their organizationโ€™s data is either โ€˜fullyโ€™ or โ€˜end to endโ€™ encrypted.โ€ Yet Pearson believes that true data protection requires continuous encryption that keeps information secure during all states, including when itโ€™s being used. โ€œUntil organizations address this fundamental gap, they will continue to be blindsided by breaches that bypass all their traditional security measures.โ€

Organizations that implement privacy-enhancing technology today will have a distinct advantage in implementing future AI models, Pearson says. โ€œTheir data will be structured and secured correctly, and their AI training will be more efficient right from the start, rather than continually incurring the expense, and risk of retraining their models.โ€

4. Focusing on team identity and experience

A top priority for CIOs in 2026 should be resetting their enterprise identity and employee experience, says Michael Wetzel, CIO at IT security software company Netwrix. โ€œIdentity is the foundation of how people show up, collaborate, and contribute,โ€ he states. โ€œWhen you get identity and experience right, everything else, including security, productivity, and adoption, follows naturally.โ€

Employees expect a consumer-grade experience at work, Wetzel says. โ€œIf your internal technology is clunky, they simply wonโ€™t use it.โ€ When people work around IT, the organization loses both security and speed, he warns. โ€œEnterprises that build a seamless, identity-rooted experience will innovate faster while organizations that donโ€™t will fall behind.โ€

5. Navigating increasingly costly ERP migrations

Effectively navigating costly ERP migrations should be at the top of the CIO agenda in 2026, says Barrettโ€ฏSchiwitz, CIO atโ€ฏinvoice lifecycle management software firm Basware. โ€œSAP S/4HANA migrations, for instance, are complex and often take longer than planned, leading to rising costs.โ€ He notes that upgrades can cost enterprises upwards of $100 million, rising to as much as $500 million depending on the ERPโ€™s size and complexity.

The problem is that while ERPs try to do everything, they rarely perform specific tasks, such as invoice processing, really well, Schiwitz says. โ€œMany businesses overcomplicate their ERP systems, customizing them with lots of add-ons that further increase risk.โ€ The answer, he suggests, is adopting a โ€œclean coreโ€ strategy that lets SAP do what it does best and then supplement it with best-in-class tools to drive additional value.

6. Doubling-down on innovation โ€” and data governance

One of the most important priorities for CIOs in 2026 is architecting a foundation that makes innovation scalable, sustainable, and secure, says Stephen Franchetti, CIO at compliance platform provider Samsara.

Franchetti says heโ€™s currently building a loosely coupled, API-first architecture thatโ€™s designed to be modular, composable, and extensible. โ€œThis allows us to move faster, adapt to change more easily, and avoid vendor or platform lock-in.โ€ Franchetti adds that in an era where workflows, tools, and even AI agents are increasingly dynamic, a tightly bound stack simply wonโ€™t scale.

Franchetti is also continuing to evolve his enterprise data strategy. โ€œFor us, data is a long-term strategic asset โ€” not just for AI, but also for business insight, regulatory readiness, and customer trust,โ€ he says. โ€œThis means doubling down on data quality, lineage, governance, and accessibility across all functions.โ€

7. Facilitating workforce transformation

CIOs must prioritize workforce transformation in 2026, says Scott Thompson, a partner in executive search and management consulting company Heidrick & Struggles. โ€œUpskilling and reskilling teams will help develop the next generation of leaders,โ€ he predicts. โ€œThe technology leader of 2026 needs to be a product-centric tech leader, ensuring that product, technology, and the business are all one and the same.โ€

CIOs canโ€™t hire their way out of the talent gap, so they must build talent internally, not simply buy it on the market, Thompson says. โ€œThe most effective strategy is creating a digital talent factory with structured skills taxonomies, role-based learning paths, and hands-on project rotations.โ€

Thompson also believes that CIOs should redesign job roles for an AI-enabled environment and use automation to reduce the amount of specialized labor required. โ€œForming fusion teams will help spread scarce expertise across the organization, while strong career mobility and a modern engineering culture will improve retention,โ€ he states. โ€œTogether, these approaches will let CIOs grow, multiply, and retain the talent they need at scale.โ€

8. Improving team communication

A CIOโ€™s top priority should be developing sophisticated and nuanced approaches to communication, says James Stanger, chief technology evangelist at IT certification firm CompTIA. โ€œThe primary effect of uncertainty in tech departments is anxiety,โ€ he observes. โ€œAnxiety takes different forms, depending upon the individual worker.โ€

Stanger suggests working closer with team members as well as managing anxiety through more effective and relevant training.

9. Strengthening drive agility, trust, and scale

Beyond AI, the priority for CIOs in 2026 should be strengthening the enabling capabilities that drive agility, trust, and scale, says Mike Anderson, chief digital and information officer at security firm Netskope.

Anderson feels that the product operating model will be central to this shift, expanding beyond traditional software teams to include foundational enterprise capabilities, such as identity and access management, data platforms, and integration services.

โ€œThese capabilities must support both human and non-human identities โ€” employees, partners, customers, third parties, and AI agents โ€” through secure, adaptive frameworks built on least-privileged access and zero trust principles,โ€ he says, noting that CIOs who invest in these enabling capabilities now will be positioned to move faster and innovate more confidently throughout 2026 and beyond.

10. Addressing an evolving IT architecture

In 2026, todayโ€™s IT architecture will become a legacy model, unable to support the autonomous power of AI agents, predicts Emin Gerba, chief architect at Salesforce. He believes that in order to effectively scale, enterprises will have to pivot to a new agentic enterprise blueprint with four new architectural layers: a shared semantic layer to unify data meaning, an integrated AI/ML layer for centralized intelligence, an agentic layer to manage the full lifecycle of a scalable agent workforce, and an enterprise orchestration layer to securely manage complex, cross-silo agent workflows.

โ€œThis architectural shift will be the defining competitive wedge, separating companies that achieve end-to-end automation from those whose agents remain trapped in application silos,โ€ Gerba says.

The top 6 project management mistakes โ€” and what to do instead

19 January 2026 at 05:00

Project managers are doing exactly what they were taught to do. They build plans, chase team members for updates, and report status. Despite all the activity, your leadership team is wondering why projects take so long and cost so much.

When projects donโ€™t seem to move fast enough or deliver the ROI you expected, it usually has less to do with effort and more with a set of common mistakes your project managers make because of how they were trained, and what that training left out. Most project teams operate like order takers instead of the business-focused leaders you need to deliver your organizationโ€™s strategy.

To accelerate strategy delivery in your organization, something has to change. The way projects are led needs to shift, and traditional project management approaches and mindsets wonโ€™t get you there.

Here are the most common project management mistakes we see holding teams back, and what you can do to help your project leaders shift from being order takers to drivers of IMPACT: instilling focus, measuring outcomes, performing, adapting, communicating, and transforming.

Mistake #1: Solving project problems instead of business problems

Project managers are trained to solve project problems. Scope creep. Missed deadlines. Resource bottlenecks. They spend their days managing tasks and chasing status updates, but most of them have no idea whether the work they manage is solving a real business problem.

Thatโ€™s not their fault. Theyโ€™ve been taught to stay in their lane in formal training and by many executives. Keep the project moving. Donโ€™t ask questions. Focus on delivery.

But no one is talking to them about the purpose of these projects and what success looks like from a business perspective, so how can they help you achieve it?

You donโ€™t need another project checked off the list. You need the business problem solved.

IMPACT driver mindset: Instill focus

Start by helping your teams understand the business context behind the work. What problem are we trying to solve? Why does this project matter to the organization? What outcome are we aiming for?

Your teams canโ€™t answer those questions unless you bring them into the strategy conversation. When they understand the business goals, not just the project goals, they can start making decisions differently. Their conversations change to ensure everyone knows why their work matters. The entire team begins choosing priorities, tradeoffs, and solutions that are aligned with solving that business problem instead of just checking tasks off the list.

Mistake #2: Tracking progress instead of measuring business value

Your teams are taught to track progress toward delivering outputs. On time, on scope, and on budget are the metrics they hear repeatedly. But those metrics only tell you if deliverables will be created as planned, not if that work will deliver the results the business expects.

Most project managers are taught to measure how busy the team is. Everyone walks around wearing their busy badge of honor as if that proves value. They give updates about whatโ€™s done, whatโ€™s in progress, and whatโ€™s late. But the metrics they use show how busy everyone is at creating outputs, not how theyโ€™re tracking toward achieving outcomes.

All of that busyness can look impressive on paper, but itโ€™s not the same as being productive. In fact, busy gets in the way of being productive.

IMPACT driver mindset: Measure outcomes

Now that the team understands what theyโ€™re doing and why, the next question to answer is how will we know weโ€™re successful.

Right from the start of the project, you need to define not just the business goal but how youโ€™ll measure it was successful in business terms. Did the project reduce cost, increase revenue, improve the customer experience? Thatโ€™s what you and your peers care about, but often thatโ€™s not the focus you ask the project people to drive toward.

Think about a project thatโ€™s intended to drive revenue but ends up costing you twice as much to deliver. If the revenue target stays the same, the project may no longer make sense. Or they might come up with a way to drive even higher revenue because they understood the way you measure success.

Shift how you measure project success from outputs to outcomes and watch how quickly your projects start creating real business value.

Mistake #3: Perfecting process instead of streamlining it

If your teams spend more time tweaking templates, building frameworks, or debating methodology than actually delivering results, processes become inefficient.

Often project managers are hired for their certifications, which leads many of them to believe their value is tied to how much of and how perfectly they create and follow that process. They work hard to make sure every box is checked, every template is filled out, and every report is delivered on time. But if the process becomes the goal, theyโ€™re missing the point.

You invested in project management to get business results, not build a deliverable machine, and the faster you achieve those results, the higher your return on your project investments.

IMPACT driver mindset: Perform relentlessly

With a clear plan to drive business value, now we need to show them how to accelerate. That means relentlessly evaluating, streamlining, and optimizing the delivery process so it helps the team achieve the project goals faster.

Give them permission to simplify. When the process slows them down or adds work that doesnโ€™t add value, they should be able to call it out.

This isnโ€™t an excuse to have no process or claim youโ€™re being agile just to skip the necessary steps. Itโ€™s about right-sizing the process, simplifying where you can, and being thoughtful about whatโ€™s truly needed to deliver the outcome. Do you really need a 30-page document no one will read, or would two pages that people actually use be enough? You donโ€™t need perfection. You need progress.

Mistake #4: Blaming people instead of leading them through change

A lot of leaders start from the belief that people are naturally resistant to change. When projects stall or results fall short, itโ€™s easy to assume someone just didnโ€™t want to change. Project teams blame people, then layer on more governance, more process, and more pressure. Most of the time, itโ€™s not a people problem. Itโ€™s how the changes are being done to people instead of with them.

People donโ€™t resist because theyโ€™re lazy or difficult. They resist because they donโ€™t understand why itโ€™s happening or what it means for them. And no amount of process will fix that.

IMPACT driver mindset: Adapt to thrive

With an accelerated delivery plan designed to drive business value, your project teams can now turn their attention to bringing people with them through the change process.

Change management is everyoneโ€™s job, not something you outsource to HR or a change team. Projects fail without good change management and everyone needs to be involved. Your teams must understand that people arenโ€™t resistant to change. Theyโ€™re resistant to having change done to them. You have to teach them how to bring others through the change process instead of pushing change at them.

Teach your project teams how to engage stakeholders early and often so they feel part of the change journey. When people are included, feel heard, and involved in shaping the solution, resistance starts to fade and you create a united force that supports your accelerated delivery plan.

Mistake #5: Communicating for compliance instead of engagement

The reason most project communication fails is because itโ€™s treated like a one-way path. Status reports people donโ€™t understand. Steering committee slides read to a room full of executives who arenโ€™t engaged. Unread emails. The information goes out because itโ€™s required, not because itโ€™s helping people make better decisions or take the right action.

But that kind of communication doesnโ€™t create clarity, build engagement, or drive alignment. And it doesnโ€™t inspire anyone to lean in and help solve the real problems.

IMPACT driver mindset: Communicate with purpose

To keep people engaged in the project and help it keep accelerating toward business goals, you need purpose-driven communication designed to drive actions and decisions. Your teams shouldnโ€™t just push information but enable action. That means getting the right people and the right message at the right time, with a clear next step.

If you want your projects to move faster, communication canโ€™t be a formality. When teams, sponsors, and stakeholders know whatโ€™s happening and why it matters, they make decisions faster. You donโ€™t need more status reports. You need communication that drives actions and decisions.

Mistake #6: Driving project goals instead of business outcomes

Most organizations still define the project leadership role around task-focused delivery. Get the project done. Hit the date. Stay on budget. Project managers have been trained to believe that finishing the project as planned is the definition of success. But thatโ€™s not how you define project success.

If you keep project managers out of the conversations about strategy and business goals, theyโ€™ll naturally focus on project outputs instead of business outcomes. This leaves you in the same place you are today. Projects are completed, outputs are delivered, but the business doesnโ€™t always see the impact expected.

IMPACT driver mindset: Transform mindset

When you help your teams instill focus, measure outcomes, perform relentlessly, adapt to thrive, and communicate with purpose, you do more than improve project delivery. You build the foundation for a different kind of leadership.

Shift how you and your organization see the project leadership role. Your project managers are no longer just running projects. Youโ€™re developing strategy navigators who partner with you to guide how strategy gets delivered, and help you see around corners, connect initiatives, and decide where to invest next.

When project managers are trusted to think this way and given visibility into the strategy, they learn how the business really works. They stop chasing project success and start driving business success.

More on project management:

์นผ๋Ÿผ | ํ†ต์ œ์˜ ํ™˜์ƒ์— ๋น ์ง„ IT ์กฐ์งยทยทยท์™œ R&R์€ ๋” ์ด์ƒ ๋งŒ๋Šฅ ํ•ด๋ฒ•์ด ์•„๋‹Œ๊ฐ€

19 January 2026 at 03:07

์ธ๊ฐ„์€ ๋ณธ๋Šฅ์ ์œผ๋กœ ํ™•์‹ค์„ฑ์„ ๊ฐˆ๋งํ•œ๋‹ค. ํ™•์‹ค์„ฑ์€ ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ์„ ๋งŒ๋“ค์–ด์ฃผ๊ณ , ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์„ฑ๊ณตํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์•ˆ๋‹ค๋Š” ์ ์—์„œ ์•ˆ์ „๊ฐ๊ณผ ์•ˆ์ •๊ฐ์„ ์ œ๊ณตํ•œ๋‹ค.

์ด๋Ÿฌํ•œ ๋ณธ๋Šฅ์ด ์—…๋ฌด ํ™˜๊ฒฝ์œผ๋กœ ์ด์–ด์ง€๋Š” ๊ฒƒ์€ ์ „ํ˜€ ๋†€๋ผ์šด ์ผ์ด ์•„๋‹ˆ๋‹ค. ๊ธฐ์ˆ ๊ณผ ์‹œ์žฅ, ๋‚˜์•„๊ฐ€ ์ง๋ฌด ์ž์ฒด๊นŒ์ง€ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š” ์ƒํ™ฉ์—์„œ ์ง์›์ด ์ž์‹ ์˜ ์—ญํ• ๊ณผ ์ฑ…์ž„, ๊ธฐ๋Œ€์น˜์— ๋Œ€ํ•œ ๋ช…ํ™•ํ•œ ์„ค๋ช…์„ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ์€ ์ง€๊ทนํžˆ ํ•ฉ๋ฆฌ์ ์ด๋‹ค.

ํ™•์‹ค์„ฑ์„ ์ถ”๊ตฌํ•˜๋Š” ๊ฒƒ์ด ์ธ๊ฐ„์˜ ๋ณธ์„ฑ์ผ ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ๊ธฐ์ˆ  ๋ฆฌ๋”๋กœ์„œ ๋ถ„๋ช…ํžˆ ๊นจ๋‹ฌ์€ ์ ์€ ๋ช…ํ™•ํ•œ ์—ญํ•  ๊ตฌ๋ถ„์ด ํ•ด๋‹ต์ด ๋˜๋Š” ๊ฒฝ์šฐ๋Š” ๊ฑฐ์˜ ์—†๋‹ค๋Š” ์‚ฌ์‹ค์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ์ „๋ก€ ์—†๋Š” ์ˆ˜์ค€์˜ ๊ธฐ์ˆ ์  ๋ถˆํ™•์‹ค์„ฑ ์†์—์„œ ์ผํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์—…๋ฌด๋ฅผ ๋” ์„ธ๋ถ„ํ™”ํ•ด ๋ถˆํ™•์‹ค์„ฑ์„ ์ œ๊ฑฐํ•˜๋ ค ํ•˜๊ธฐ๋ณด๋‹ค ์ด๋ฅผ ๊ฐ๋‹นํ•  ์ˆ˜ ์žˆ๋„๋ก ์‚ฌ๋žŒ๊ณผ ์กฐ์ง์„ ์ค€๋น„์‹œํ‚ค๋Š” ๋ฐ ์ง‘์ค‘ํ•ด์•ผ ํ•œ๋‹ค.

๋ฆฌ๋”์˜ ๊ด€์ ์—์„œ ํŒ€์— ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๊ฐ€์น˜ ์žˆ๋Š” ์ž์‚ฐ์€ ๋ถˆํ™•์‹ค์„ฑ์—์„œ ์˜ค๋Š” ๋ถˆํŽธํ•จ์„ ๊ฒฌ๋ŽŒ๋‚ผ ์ˆ˜ ์žˆ๋Š” ํšŒ๋ณตํƒ„๋ ฅ์„ฑ๊ณผ, ์ƒํ™ฉ์ด ์–ผ๋งˆ๋‚˜ ๋ถˆํ™•์‹คํ•˜๋“  ์›ํ•˜๋Š” ๊ฒฐ๊ณผ์— ์ง‘์ค‘ํ•˜๋ฉด์„œ ์ฐฝ์˜์ ์œผ๋กœ ์‚ฌ๊ณ ํ•˜๊ณ  ๋น ๋ฅด๊ฒŒ ์ ์‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ถŒํ•œ ๋ถ€์—ฌ๋‹ค.

๋ถˆํ™•์‹ค์„ฑ์„ ์ดํ•ดํ•˜๋‹ค

๋ถˆํ™•์‹ค์„ฑ์€ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์—์„œ ๋‚˜ํƒ€๋‚œ๋‹ค. ํ•˜๋‚˜๋Š” ํ™˜๊ฒฝ์ด ์–ผ๋งˆ๋‚˜ ์•Œ ์ˆ˜ ์žˆ๋Š”์ง€, ์ฆ‰ ๋ฌด์—‡์„ ์•Œ๊ณ  ๋ฌด์—‡์„ ๋ชจ๋ฅด๋Š”์ง€์— ๊ด€ํ•œ ๋ฌธ์ œ์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ํ™˜๊ฒฝ์ด ์–ผ๋งˆ๋‚˜ ํ†ต์ œ ๊ฐ€๋Šฅํ•œ์ง€, ๋‹ค์‹œ ๋งํ•ด ๋ฌด์—‡์„ ํ•  ์ˆ˜ ์žˆ๊ณ  ๋ฌด์—‡์„ ํ•  ์ˆ˜ ์—†๋Š”์ง€์— ๋Œ€ํ•œ ๋ฌธ์ œ๋‹ค.

๋ฆฌ๋”๊ฐ€ ๋Œ€๋ถ€๋ถ„์˜ ์ •๋ณด๊ฐ€ ์ด๋ฏธ ์•Œ๋ ค์ ธ ์žˆ๊ณ  ๊ฑฐ์˜ ๋ชจ๋“  ๊ฒƒ์ด ํ†ต์ œ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ „์ œ ์•„๋ž˜ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ์—ญํ• ์„ ์ง€์ •ํ•˜๋ฉฐ ์ฑ…์ž„์„ ์œ„์ž„ํ•œ๋‹ค๋ฉด, ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ •ํ™•ํ•œ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ธฐ๋Œ€๊ฐ€ ๋”ฐ๋ผ๋ถ™๋Š”๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ํ˜„์‹ค์€ ํ›จ์”ฌ ๋” ๋ณต์žกํ•˜๊ณ , ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ์€ ๊ฐˆ์ˆ˜๋ก ๋‚ฎ์•„์ง€๊ณ  ์žˆ๋‹ค. ๋น„์ฆˆ๋‹ˆ์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ์–ด๋–ค ๊ทœ์ œ๊ฐ€ ๊ณง ๋“ฑ์žฅํ• ์ง€, ์–ด๋–ค ๊ธฐ์ˆ  ๋ฐœ์ „์ด ์ž„๋ฐ•ํ•ด ์žˆ๋Š”์ง€ ์•Œ๊ธฐ ์–ด๋ ต๊ณ , ๊ฒฝ์Ÿ์‚ฌ์˜ ํ–‰๋™์€ ํ†ต์ œํ•  ์ˆ˜ ์žˆ๋Š” ์˜์—ญ์ด ์•„๋‹ˆ๋‹ค.

์šฐ๋ฆฌ๊ฐ€ ๊ฒฝํ—˜ํ•˜๋Š” ํ˜ผ๋ž€์˜ ์ƒ๋‹น ๋ถ€๋ถ„์€ ๋ช…ํ™•์„ฑ์— ๋Œ€ํ•œ ์š•๊ตฌ์™€ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ํ•„์š”๋ฅผ ๋™์‹œ์— ์ถฉ์กฑ์‹œํ‚ค๋ ค ํ•˜๋ฉด์„œ, ํ†ต์ œํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์— ์ง‘์ค‘ํ•˜๊ณ  ํ†ต์ œํ•  ์ˆ˜ ์—†๋Š” ๊ฒƒ์—๋Š” ์—๋„ˆ์ง€๋ฅผ ์“ฐ์ง€ ๋ง์•„์•ผ ํ•œ๋‹ค๋Š” ์›์น™์œผ๋กœ ์กฐ์ง์„ ์šด์˜ํ•˜๋ ค๋Š” ์‹œ๋„์—์„œ ๋น„๋กฏ๋œ๋‹ค.

ํ†ต์ œ ๊ฐ€๋Šฅํ•œ ํ™œ๋™์„ ๋ถ„๋ฆฌํ•˜๋Š” ๋ฐฉ์‹์€ ๋ชฉํ‘œ ์„ค์ •๊ณผ ์—ญํ•  ์ •์˜์—๋Š” ๋„์›€์ด ๋˜์ง€๋งŒ, ๋ถˆํ™•์‹ค์„ฑ ์ž์ฒด๋ฅผ ์ œ๊ฑฐํ•˜์ง€๋Š” ๋ชปํ•œ๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์˜ ์œ„์น˜๋ฅผ ์˜ฎ๊ธธ ๋ฟ์ด๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ํ†ต์ œํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฌผ์ด๋‚˜ ์‚ฐ์ถœ๋ฌผ์— ์ง‘์ค‘ํ• ์ˆ˜๋ก, ํ†ต์ œํ•  ์ˆ˜ ์—†๋Š” ์„ฑ๊ณผ๋‚˜ ๊ฒฐ๊ณผ์—๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋œ ์ง‘์ค‘ํ•˜๊ฒŒ ๋œ๋‹ค. ๊ธฐ์—… ๊ตฌ์กฐ๋‚˜ ํ”„๋กœ์ ํŠธ ํŒ€, ์„ธ๋ถ€์ ์ธ ์—ญํ•  ์„ค๋ช…์ฒ˜๋Ÿผ ๋ถˆํ™•์‹ค์„ฑ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํ™œ์šฉํ•˜๋Š” ๋งŽ์€ ์š”์†Œ๋Š” ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ์ด ๊ณง ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณต์œผ๋กœ ์ด์–ด์ง„๋‹ค๋Š” ํ™˜์ƒ์„ ์˜คํžˆ๋ ค ๊ฐ•ํ™”ํ•œ๋‹ค.

์ด ๊ฐ™์€ ํ˜„์ƒ์€ IT ๋ถ„์•ผ์—์„œ ํŠนํžˆ ๋‘๋“œ๋Ÿฌ์ง„๋‹ค. IT ํ”„๋กœ์ ํŠธ๋Š” ์ข…์ข… IT ์†”๋ฃจ์…˜์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์ผํšŒ์„ฑ์˜ ๋…๋ฆฝ์ ์ธ ๊ณผ์ œ๋กœ ์ทจ๊ธ‰๋œ๋‹ค. ์ด๋Š” ํ†ต์ œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๊ณ  ์„ฑ๊ณต๊ณผ ์‹คํŒจ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์—…์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋Š” ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ์ž๊ฐ€ ํ•ฉ์˜๋œ ๋ฒ”์œ„์™€ ์ผ์ •, ์˜ˆ์‚ฐ์— ๋งž์ถฐ ๋ชจ๋“  ์‚ฐ์ถœ๋ฌผ์„ ์™„๋ฒฝํ•˜๊ฒŒ ์ „๋‹ฌํ–ˆ๋”๋ผ๋„, ํ•ด๋‹น ์†”๋ฃจ์…˜์ด ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ฐฝ์ถœํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Š” โ€œ์ˆ˜์ˆ ์€ ์„ฑ๊ณตํ–ˆ์ง€๋งŒ ํ™˜์ž๋Š” ์‚ฌ๋งํ–ˆ๋‹คโ€๋Š” ํ‘œํ˜„๊ณผ ๋‹ค๋ฅด์ง€ ์•Š๋‹ค.

์ด์™€ ๋Œ€๋น„๋˜๋Š” ์‚ฌ๋ก€๊ฐ€ ์œ„๊ธฐ ๊ด€๋ฆฌ๋‹ค. ์ƒํ™ฉ์‹ค์ด๋‚˜ ํƒœ์Šคํฌํฌ์Šค๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋œ ๊ตฌ์กฐ๋‹ค. ์ด ํ™˜๊ฒฝ์—์„œ๋Š” ์‚ฌ์ „์— ์ •ํ•ด์ง„ ์—ญํ• ๋ณด๋‹ค ์ฃผ๋„์„ฑ๊ณผ ์†๋„๊ฐ€ ํ›จ์”ฌ ์ค‘์š”ํ•˜๋ฉฐ, ์‚ฐ์ถœ๋ฌผ์ด๋‚˜ ์ ˆ์ฐจ ์ค€์ˆ˜๋ณด๋‹ค ์„ฑ๊ณผ๊ฐ€ ๋” ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ–๋Š”๋‹ค. ์„ฑ๊ณต ์—ฌ๋ถ€๋Š” ํ˜‘์—…๊ณผ ์ •๋ณด ๊ณต์œ ์— ๋‹ฌ๋ ค ์žˆ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๊ณ , ์ด๋ฅผ ์œ„ํ•ด ์ฐธ์—ฌ์ž๋“ค์€ ๊ธฐ์กด์˜ ์—ญํ• ๊ณผ ์ฑ…์ž„ ๊ตฌ๋ถ„์„ ๋‚ด๋ ค๋†“๊ณ  ๋ถˆํ™•์‹ค์„ฑ์„ ๋ฐ›์•„๋“ค์—ฌ์•ผ ํ•œ๋‹ค.

์˜ค๋Š˜๋‚  ์กฐ์ง์ด ์ง๋ฉดํ•œ ๊ณผ์ œ, ํŠนํžˆ AI์™€ ๊ด€๋ จ๋œ ๋„์ „์„ ํ—ค์ณ ๋‚˜๊ฐ€๋Š” ๋ฐ์—๋Š” ์ „ํ†ต์ ์ธ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ๋„๊ตฌ๊ฐ€ ์ ์  ํ•œ๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๊ณ  ์žˆ๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์„ ๋‹ค๋ฃจ๋Š” ๋ฐ์—๋Š” ํ”„๋กœ์ ํŠธ๊ฐ€ ์•„๋‹Œ ์ œํ’ˆ์„ ๋ชจ๋ธ๋กœ ํ•œ ๊ด€๋ฆฌ ๋ฐฉ์‹์ด ๋” ํšจ๊ณผ์ ์ด๋‹ค. ๋ชฉํ‘œ์™€ ํŒ€์„ ์„ฑ๊ณผ์— ๋” ๊ฐ€๊น๊ฒŒ ์ •๋ ฌํ•˜๋Š” ์ ‘๊ทผ์œผ๋กœ, ํ†ต์ œ๋ ฅ๊ณผ ์ฑ…์ž„์˜ ๋ช…ํ™•์„ฑ์ด ์ค„์–ด๋“ค๊ณ  ๊ฐœ์ธ ์„ฑ๊ณผ ํ‰๊ฐ€๊ฐ€ ์–ด๋ ค์›Œ์ง€๋”๋ผ๋„ ๊ฐ์ˆ˜ํ•ด์•ผ ํ•  ์„ ํƒ์ด๋‹ค.

์ด๋Š” ์ƒˆ๋กœ์šด ๋ฌด์–ธ๊ฐ€๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋ ค๋Š” ์กฐ์ง์ผ์ˆ˜๋ก ๋”์šฑ ์ค‘์š”ํ•˜๋‹ค. ํ˜์‹ ์—๋Š” ๋‹ค์–‘ํ•œ ๊ด€์ ๊ณผ ์ผ์ • ์ˆ˜์ค€์˜ ์ƒ์‚ฐ์ ์ธ ๋งˆ์ฐฐ์ด ํ•„์š”ํ•˜๋‹ค. ๊ฒฝ์ง๋œ ์—ญํ•  ๊ตฌ์กฐ๋Š” ์ƒˆ๋กœ์šด ๊ฒฐ๊ณผ๋ฌผ์„ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์—, ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์€ ์กฐ์ง์ด ๋ฐ˜๋“œ์‹œ ๊ฐ–์ถฐ์•ผ ํ•  ํ•ต์‹ฌ ์—ญ๋Ÿ‰์œผ๋กœ ์ž๋ฆฌ ์žก์•„์•ผ ํ•œ๋‹ค.

๋ถˆํ™•์‹ค์„ฑ์„ ๊ด€๋ฆฌํ•˜๋‹ค

ํ•„์ž์˜ ์ด์ „ ์นผ๋Ÿผ์—์„œ ์–ธ๊ธ‰ํ–ˆ๋“ฏ, ์ตœ๊ทผ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”์™€ ๋‚˜๋ˆ„๋Š” ๋Œ€ํ™”์˜ 90%๋Š” AI ์†”๋ฃจ์…˜์„ ํ†ตํ•ด ์–ด๋–ป๊ฒŒ ๋งค์ถœ์„ ์ฐฝ์ถœํ•  ์ˆ˜ ์žˆ๋Š”์ง€์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ๋ชจ๋‘๊ฐ€ ํ™•์‹ค์„ฑ์„ ์›ํ•˜์ง€๋งŒ, AI๋Š” ์—…๋ฌด ํ™˜๊ฒฝ์— ๋ง‰๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ฐ€์ ธ์™”๋‹ค. ์ด๋Š” ์—ญํ• ์˜ ๋ช…ํ™•์„ฑ์„ ๋”์šฑ ๊ฐ•ํ™”ํ•˜๊ธฐ๋ณด๋‹ค ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์˜ ์ค‘์š”์„ฑ์— ์ฃผ๋ชฉํ•ด์•ผ ํ•จ์„ ๋‹ค์‹œ ํ•œ ๋ฒˆ ๋ณด์—ฌ์ค€๋‹ค.

ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ IT ํŒ€์ด ๊ฒฝํ—˜ํ•˜๊ณ  ์žˆ๋Š” AI ๋„์ž…๊ณผ ๋ณ€ํ™” ๊ด€๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š”, ๊ทธ ๊ทœ๋ชจ๊ฐ€ ์•„๋ฌด๋ฆฌ ํฌ๊ณ  ๋น„์ฆˆ๋‹ˆ์Šค์  ํšจ๊ณผ๊ฐ€ ํฌ๋”๋ผ๋„ ๋ณธ์งˆ์ ์œผ๋กœ ๋ถˆํ™•์‹คํ•˜๋‹ค. ๊ณ ๊ฐ ์„ ํ˜ธ์˜ ๋ณ€ํ™”, ์‹œ์žฅ์˜ ์ด๋™, ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์˜ ๋“ฑ์žฅ์€ ์•Œ ์ˆ˜ ์—†๊ณ  ํ†ต์ œํ•  ์ˆ˜ ์—†๋Š” ๋ณ€์ˆ˜๋ฅผ ๋Š์ž„์—†์ด ๋งŒ๋“ค์–ด๋‚ด๋ฉฐ, ๋ชฉํ‘œ ์ง€์ ์„ ๊ณ„์†ํ•ด์„œ ๋ฐ”๊พธ๊ณ  ์žˆ๋‹ค.

ํ•ต์‹ฌ์€ ๋ชจ๋“  ์ƒํ™ฉ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์žˆ์ง€ ์•Š๋‹ค. ์กฐ์ง์ด ํ”ผ๋“œ๋ฐฑ์„ ์ˆ˜์ง‘ํ•˜๊ณ  ๊ทธ์— ๋งž์ถฐ ๊ณ„ํš์„ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด๋Š” ๊ธธ์„ ์ž˜๋ชป ๋“ค์—ˆ์„ ๋•Œ ์ƒˆ๋กœ์šด ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฒฝ๋กœ๋ฅผ ์žฌ์„ค์ •ํ•˜๋Š” ๋‚ด๋น„๊ฒŒ์ด์…˜ ์‹œ์Šคํ…œ๊ณผ ๊ฐ™๋‹ค.

์ด๋Ÿฌํ•œ ์ ‘๊ทผ์ด ๋ฐ”๋กœ ์ œํ’ˆ ์ค‘์‹ฌ ์‚ฌ๊ณ ์˜ ๊ทผ๊ฐ„์ด๋‹ค. ์ตœ์ข… ์‚ฌ์šฉ์ž๋กœ๋ถ€ํ„ฐ์˜ ํ”ผ๋“œ๋ฐฑ, ๋ถ„์„ ๋ฐ์ดํ„ฐ, ์‹œ์žฅ ์‹ ํ˜ธ๋ฅผ ํ™œ์šฉํ•ด ์ง€์†์ ์œผ๋กœ ๋ฐฉํ–ฅ์„ ์กฐ์ •ํ•˜๋ฉฐ, ์ฒดํฌ๋ฆฌ์ŠคํŠธ๋ณด๋‹ค ์‹ค์ œ ์„ฑ๊ณผ๋ฅผ ์šฐ์„ ํ•œ๋‹ค. ์ด์— ๋”ฐ๋ผ ์„ฑ๊ณต์˜ ๊ธฐ์ค€๋„ ๊ณผ์—… ์™„๋ฃŒ์—์„œ ๊ฐ€์น˜ ์ฐฝ์ถœ๋กœ ์ด๋™ํ•œ๋‹ค.

์ด ๊ฐ™์€ ์‚ฌ๊ณ ๋ฐฉ์‹์€ ํŒ€์ด ๋ถˆํ™•์‹คํ•˜๊ณ  ํ†ต์ œ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ƒํ™ฉ์„ ์‚ฌ์ „์— ํšŒํ”ผํ•˜๊ฑฐ๋‚˜ ๊ณผ๋„ํ•˜๊ฒŒ ๊ณ„ํšํ•˜๋ ค ํ•˜๊ธฐ๋ณด๋‹ค, ์ƒํ™ฉ์ด ์ „๊ฐœ๋˜๋Š” ๊ณผ์ •์—์„œ ์ด๋ฅผ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด ์กฐ์ง ์ „๋ฐ˜์— ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์„ ๋‚ด์žฌํ™”ํ•œ๋‹ค.

๋‘๋ ค์›€์„ ์ œ๊ฑฐํ•˜๋‹ค

๋ถˆํ™•์‹ค์„ฑ์—์„œ ๋А๋ผ๋Š” ๋ถˆํŽธํ•จ์€ ์‹คํŒจ์— ๋Œ€ํ•œ ๋‘๋ ค์›€๊ณผ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ฒฐ๋ผ ์žˆ๋‹ค. โ€˜์ด๊ฒŒ ์ž˜ ์•ˆ ๋˜๋ฉด ์–ด๋–กํ•˜์ง€?โ€™๋ผ๋Š” ์งˆ๋ฌธ์€ ๊ณง โ€˜๋ˆ„๊ฐ€ ์ฑ…์ž„์„ ์งˆ ๊ฒƒ์ธ๊ฐ€?โ€™๋ผ๋Š” ์˜๋ฏธ๋กœ ๋ฐ›์•„๋“ค์—ฌ์ง€๊ธฐ ์‰ฝ๋‹ค.

์šฐ๋ฆฌ์˜ ๋‡Œ๋Š” ๋ถˆํ™•์‹ค์„ฑ์—์„œ ์˜ค๋Š” ๋ถˆํŽธํ•จ๊ณผ ์‹คํŒจ์— ๋Œ€ํ•œ ๋‘๋ ค์›€์„ ๋ชจ๋‘ ์œ„ํ˜‘์œผ๋กœ ์ธ์‹ํ•˜์ง€๋งŒ, ๋‘ ๊ฐ€์ง€๋Š” ๋™์ผํ•œ ๊ฐœ๋…์ด ์•„๋‹ˆ๋‹ค. ํ•˜๋ฒ„๋“œ๊ฒฝ์˜๋Œ€ํ•™์› ๋…ธ๋ฐ”ํ‹ฐ์Šค ๋ฆฌ๋”์‹ญยท๊ฒฝ์˜ํ•™ ๊ต์ˆ˜์ธ ์—์ด๋ฏธ ์—๋“œ๋จผ์Šจ์€ ์—๋จธ์ง„๊ณผ ๊ณต๋™ ์ง‘ํ•„ํ•œ ๋…ผ๋ฌธ์—์„œ โ€˜์‹คํŒจ๊ฐ€ ์•„๋‹ˆ๋ผ ๋‘๋ ค์›€์ด ๋ฌธ์ œโ€™๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—๋“œ๋จผ์Šจ์€ โ€œํ”„๋กœ์ ํŠธ ์ค‘์‹ฌ ๋ชจ๋ธ์—์„œ๋Š” ๋ชจ๋“  ๊ฒƒ์ด ๊ณ„ํš๋Œ€๋กœ ์ง„ํ–‰๋  ๊ฒƒ์ด๋ผ๋Š” ์ž˜๋ชป๋œ ๋ฏฟ์Œ์— ๊ธฐ๋ฐ˜ํ•ด ์‹คํŒจ๋ฅผ ํ”ผํ•ด์•ผ ํ•  ๋Œ€์ƒ์œผ๋กœ ์ธ์‹ํ•œ๋‹ค. ์ด๋Š” ์œ„ํ—˜ ํšŒํ”ผ๋กœ ์ด์–ด์ง„๋‹คโ€๋ผ๋ฉฐ โ€œ๊ทธ๋Ÿฌ๋‚˜ ์‹คํŒจ๋Š” ์ ์‘ํ•˜๊ณ  ํ•™์Šตํ•˜๋„๋ก ์„ค๊ณ„๋œ ์‹œ์Šคํ…œ ์•ˆ์—์„œ, ํ˜„๋ช…ํ•œ ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๋กœ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ๊ฐ•๋ ฅํ•œ ์ง„๋ณด์˜ ๋™๋ ฅ์ด ๋  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์•„์ด๋””์–ด๋ฅผ ๋” ์ž‘๊ณ  ํ†ต์ œ ๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์œผ๋กœ ์‹œํ—˜ํ•˜๋ฉด, ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์‹คํŒจ๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋™์‹œ์— ์ง€์†์ ์ธ ํ•™์Šต๊ณผ ๋ฐ˜๋ณต์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์„ ๊ฐ€์žฅ ์ž˜ ๊ด€๋ฆฌํ•˜๋Š” ์กฐ์ง์€ ์‹คํŒจ๋ฅผ ๋‹จ๋ฐœ์„ฑ์˜ ์ค‘๋Œ€ํ•œ ์‚ฌ๊ฑด์œผ๋กœ ๋ณด์ง€ ์•Š๊ณ , ๋ณ€ํ™”์˜ ์ผ๋ถ€๋กœ ๋ฐ›์•„๋“ค์ธ๋‹ค.

๋ถˆํ™•์‹ค์„ฑ์€ ๋ณธ์งˆ์ ์œผ๋กœ ๋ถ€์ •์ ์ธ ๊ฒƒ์ด ์•„๋‹ˆ๋‹ค. ๋‹ค๋งŒ ํ†ต์ œํ•˜๋ ค๋Š” ์ธ๊ฐ„์˜ ๋ณธ๋Šฅ์— ๋„์ „ํ•  ๋ฟ์ด๋‹ค. IT ๋ฆฌ๋”๊ฐ€ ํŒ€์ด ๋ถˆํ™•์‹ค์„ฑ์„ ์ €ํ•ญ์˜ ๋Œ€์ƒ์ด ์•„๋‹ˆ๋ผ ํ•˜๋‚˜์˜ ์ž…๋ ฅ๊ฐ’์œผ๋กœ ๋ฐ›์•„๋“ค์ด๋„๋ก ๊ถŒํ•œ์„ ๋ถ€์—ฌํ• ์ˆ˜๋ก, ์กฐ์ง์€ ๋” ๋น ๋ฅด๊ฒŒ ์‚ฌ๊ณ ํ•˜๊ณ  ์‹ ์†ํ•˜๊ฒŒ ํ–‰๋™ํ•˜๋ฉฐ ์ถ”์ง„๋ ฅ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ถˆํ™•์‹ค์„ฑ์ด ์ผ์ƒ์ด ๋œ ์˜ค๋Š˜๋‚ , CIO์˜ ์ง„์ •ํ•œ ์—ญํ• ์€ ๋ถˆํ™•์‹ค์„ฑ์„ ์ œ๊ฑฐํ•˜๋Š” ๋ฐ ์žˆ์ง€ ์•Š๋‹ค. ์˜คํžˆ๋ ค ๊ทธ ์•ˆ์—์„œ ํŒ€์ด ์„ฑ์žฅํ•˜๊ณ  ์„ฑ๊ณผ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ๋•๋Š” ๋ฐ ์žˆ๋‹ค.
dl-ciokorea@foundryco.com

์‚ฌ๋ก€ | ์—๋„ˆ์ง€ ์ „ํ™˜ ์‹œ๋Œ€์˜ ์ƒ์กด ์ „๋žตยทยทยท์—ฐ๋ฃŒ ์šด์†ก ๊ธฐ์—… ์—‘์†”๋ฃธ์˜ DX ์—ฌ์ •

19 January 2026 at 02:40

์—๋„ˆ์ง€ ์ „ํ™˜ ๊ฐ€์†, ๊ทœ์ œ ์••๋ฐ• ํ™•๋Œ€, ๊ธ€๋กœ๋ฒŒ ์ฐจ์›์˜ ์šด์˜ ํšจ์œจ์„ฑ ์ œ๊ณ  ๋“ฑ ์—ฌ๋Ÿฌ ์š”๊ตฌ ์‚ฌํ•ญ์ด ๋งž๋ฌผ๋ฆฌ๋Š” ํ™˜๊ฒฝ์—์„œ ๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜์€ ์—‘์†”๋ฃธ๊ณผ ๊ฐ™์€ ์‚ฐ์—…ยท๋ฌผ๋ฅ˜ ๊ธฐ์—…์—๊ฒŒ ์ „๋žต์  ํ•ต์‹ฌ ์ถ•์ด ๋˜๊ณ  ์žˆ๋‹ค. ํ˜„์žฌ 11๊ฐœ๊ตญ์—์„œ ์—ฐ ๋งค์ถœ 10์–ต ๋‹ฌ๋Ÿฌ๋ฅผ ๊ธฐ๋กํ•˜๋Š” ์—‘์†”๋ฃธ์€ ๊ฒฝ์Ÿ๋ ฅ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์‚ฌ์—… ์ „๋žต์„ ๋ชจ์ƒ‰ํ•˜๊ณ  ์žˆ๋‹ค.

์—‘์†”๋ฃธ์€ ์ง€๊ธˆ๊นŒ์ง€ ํœ˜๋ฐœ์œ ์™€ ๋””์ ค ์šด์†ก, ํƒ„ํ™”์ˆ˜์†Œ์™€ ๊ฐ์ข… ํ™”ํ•™๋ฌผ์งˆ ์ €์žฅ, ํ•ญ๊ณต์œ  ๊ณต๊ธ‰์— ์ง‘์ค‘ํ•ด ์™”์ง€๋งŒ, ์ฒญ์ • ์—ฐ๋ฃŒ๋กœ์˜ ์ „ํ™˜์ด ๋ณธ๊ฒฉํ™”๋˜๋Š” ํ๋ฆ„ ์†์—์„œ ์ค‘๋Œ€ํ•œ ์ „ํ™˜์ ์„ ๋งž์ดํ•˜๊ณ  ์žˆ๋‹ค. ์—‘์†”๋ฃธ IT ๋””๋ ‰ํ„ฐ ์•Œํฐ์†Œ ์•Œ๋ฐ”๋ ˆ์Šค๋Š” โ€œ์•ž์œผ๋กœ ๋“ฑ์žฅํ•  ์ƒˆ๋กœ์šด ์—๋„ˆ์ง€์›์— ๋งž์ถฐ ๊ธฐ์กด ์ธํ”„๋ผ๋ฅผ ์žฌํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›Œ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์˜ค๋žœ ์‹œ๊ฐ„์— ๊ฑธ์ณ ์ง„ํ–‰๋ผ ์˜จ ๋””์ง€ํ„ธํ™”

๊ณผ์ œ์˜ ๊ทœ๋ชจ๋Š” ํฌ์ง€๋งŒ, ์—‘์†”๋ฃธ์˜ ๋””์ง€ํ„ธํ™”๋Š” ์ƒˆ๋กœ์šด ์ „๋žต์ด ์•„๋‹ˆ๋‹ค. ํšŒ์‚ฌ๋Š” 2000๋…„๋Œ€ ์ดˆ๋ฐ˜๋ถ€ํ„ฐ ํ”Œ๋žœํŠธ์™€ ํŒŒ์ดํ”„๋ผ์ธ์— ์šด์˜ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•˜๋ฉฐ ๊ธฐ์ˆ  ํ™œ์šฉ ๋น„์ค‘์„ ๋ณธ๊ฒฉ์ ์œผ๋กœ ๋†’์˜€๋‹ค. ์ดํ›„์—๋„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ์ˆ˜๋ฆฝ๋œ ์ „๋žต ๊ณ„ํš์„ ํ†ตํ•ด ํ”Œ๋žซํผ์„ ๊ต์ฒดํ•˜๊ณ  ์‹œ์Šคํ…œ์„ ํ˜„๋Œ€ํ™”ํ•ด ์™”๋‹ค. ์•Œ๋ฐ”๋ ˆ์Šค๋Š” โ€œ์„ธ๊ธฐ๊ฐ€ ๋ฐ”๋€ ์ดํ›„ ์ง€๊ธˆ๊นŒ์ง€ ์ง€์†์ ์œผ๋กœ ์ด์–ด์ ธ์˜จ ๊ณผ์ •โ€์ด๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

ํ˜„์žฌ ์—‘์†”๋ฃธ์€ ์ผ์ƒ์ ์ธ ์šด์˜์˜ ์ƒ๋‹น ๋ถ€๋ถ„์„ ์ค‘์•™์—์„œ ์ž๋™์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ์žˆ๋‹ค. ์ œํ’ˆ ์šด์†ก ๋„คํŠธ์›Œํฌ์™€ ํŠธ๋Ÿญ ์ ์žฌ ํ„ฐ๋ฏธ๋„์€ ์ฒจ๋‹จ ๊ธฐ์ˆ  ์‹œ์Šคํ…œ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์†Œ์ˆ˜ ์ธ๋ ฅ๋งŒ์œผ๋กœ ์šด์˜๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํŠธ๋Ÿญ ์ถœ์ž…์€ ์ž๋™ ๋ฒˆํ˜ธํŒ ์ธ์‹ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ๊ด€๋ฆฌ๋˜๋ฉฐ, ์šด์ „์ž๋Š” ๋ณ„๋„์˜ ์ธ์  ๊ฐœ์ž… ์—†์ด ์‹œ์Šคํ…œ ์•ˆ๋‚ด์— ๋”ฐ๋ผ ์‚ฌ์šฉํ•  ํ˜ธ์Šค๋ฅผ ์ „๋‹ฌ๋ฐ›๊ณ  ์ ์žฌ ์™„๋ฃŒ ์‹œ์ ์„ ํ™•์ธํ•œ๋‹ค. ์•Œ๋ฐ”๋ ˆ์Šค๋Š” โ€œ๊ธฐ์ˆ ์€ ์—‘์†”๋ฃธ์—์„œ ํŠนํžˆ ์‚ฌ์—… ์‹คํ–‰ ์ธก๋ฉด์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์•Œ๋ฐ”๋ ˆ์Šค์— ๋”ฐ๋ฅด๋ฉด ์—‘์†”๋ฃธ์—์„œ ํ™œ์šฉ ์ค‘์ธ ๊ธฐ์ˆ ์ด ์ง๋ฉดํ•œ ๋‹ค์Œ ๊ณผ์ œ๋Š” ์„ฑ์žฅ์ด๋‹ค. ๊ณ„์†ํ•ด์„œ ์‚ฌ์—…์„ ํ™•์žฅํ•˜๊ณ  ์žˆ๋Š” ์—‘์†”๋ฃธ์—์„œ๋Š” ๊ธฐ์ˆ ์ด ๋‹จ์ˆœํžˆ ์„ฑ์žฅ์„ ๋”ฐ๋ผ๊ฐ€๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ์ด๋ฅผ ๋’ท๋ฐ›์นจํ•ด์•ผ ํ•œ๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค. ๊ทธ๋Š” โ€œ์ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๊ณ  ๊ด€๋ จ ํ”„๋กœ์ ํŠธ๋ฅผ ์‹คํ–‰ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

๊ธฐ์—… ์„ฑ์žฅ์˜ ํ•ต์‹ฌ์ธ ๊ธ€๋กœ๋ฒŒ IT ์ฒด๊ณ„

๊ฐ€์žฅ ์ตœ๊ทผ์˜ ์ „ํ™˜์ ์€ 2020๋…„ ํŒฌ๋ฐ๋ฏน ์ดํ›„์˜€๋‹ค. ์˜๊ตญ๊ณผ ๋ฏธ๊ตญ์„ ๋น„๋กฏํ•œ ์ฃผ์š” ์‹œ์žฅ์—์„œ์˜ ์ธ์ˆ˜ํ•ฉ๋ณ‘์„ ๊ณ„๊ธฐ๋กœ ์—‘์†”๋ฃธ์˜ ๊ตญ์ œ ์‚ฌ์—…์ด ํ™•๋Œ€๋˜๋ฉด์„œ, ํšŒ์‚ฌ๋Š” ๊ธ€๋กœ๋ฒŒ IT ์กฐ์ง์„ ์‹ ์„คํ•˜๊ฒŒ ๋๋‹ค. ์•ฝ 4๋…„ ์ „ ์—‘์†”๋ฃธ์— ํ•ฉ๋ฅ˜ํ•œ ์•Œ๋ฐ”๋ ˆ์Šค๋Š” โ€œ๋ชจ๋“  ์ง€์—ญ, ๋ชจ๋“  ์‚ฌ์—…์„ ํฌ๊ด„ํ•  ์ˆ˜ ์žˆ๋„๋ก IT ์ ‘๊ทผ ๋ฐฉ์‹ ์—ญ์‹œ ๊ธ€๋กœ๋ฒŒ ์ˆ˜์ค€์œผ๋กœ ํ™•์žฅ๋ผ์•ผ ํ•œ๋‹ค๋Š” ์ธ์‹์ด ๊ณต์œ ๋๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํ˜„์žฌ ์—‘์†”๋ฃธ์˜ IT ์šด์˜ ๋ชจ๋ธ์€ ๊ธ€๋กœ๋ฒŒ ๊ณ„์ธต๊ณผ ๋กœ์ปฌ ๊ณ„์ธต์ด ๋ณ‘ํ–‰๋˜๋Š” ์ด์ค‘ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์žฌ๋ฌด, ๊ด€๋ฆฌ, ์ธ์‚ฌ, ์ž์‚ฐ ์œ ์ง€๋ณด์ˆ˜์™€ ๊ฐ™์€ ๊ธฐ์—… ๊ณตํ†ต ์‹œ์Šคํ…œ์€ ๊ธ€๋กœ๋ฒŒ ์ฐจ์›์—์„œ ํ†ตํ•ฉ ์šด์˜ํ•˜๊ณ , ๋ฌผ๋ฆฌ์  ์šด์˜๊ณผ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋œ ์‹œ์Šคํ…œ์€ ํ˜„์ง€์— ์œ ์ง€ํ•ด ์œ ์—ฐ์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์•Œ๋ฐ”๋ ˆ์Šค๋Š” ์ด๋Ÿฐ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•ด ์—‘์†”๋ฃธ์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์†Œ๊ทœ๋ชจ ํ˜„์ง€ ์กฐ์ง์ด ์•„๋‹Œ ํ•˜๋‚˜์˜ ํ†ตํ•ฉ๋œ ๊ธฐ์—…์œผ๋กœ ๋ฐ”๋ผ๋ณผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

IT ์กฐ์ง์€ ๊ธ€๋กœ๋ฒŒยท๋กœ์ปฌ ํŒ€์„ ํฌํ•จํ•ด ์•ฝ 70๋ช… ๊ทœ๋ชจ๋กœ ๊ตฌ์„ฑ๋ผ ์žˆ์œผ๋ฉฐ, ์ƒ์‹œ์ ์œผ๋กœ ์ตœ๋Œ€ 150๋ช…์˜ ์™ธ๋ถ€ ์ „๋ฌธ ์ธ๋ ฅ์ด ์ด๋ฅผ ์ง€์›ํ•˜๊ณ  ์žˆ๋‹ค. ์ŠคํŽ˜์ธ์—์„œ ์ž์ฒด ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์ง์ ‘ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘๊ธฐ๋ณด๋‹ค๋Š”, ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ์™€ ๊ธฐ์ˆ  ํŒŒํŠธ๋„ˆ๊ฐ€ ์š”๊ตฌ๋˜๋Š” ํ’ˆ์งˆ๊ณผ ๊ธฐ๋Šฅ์„ ์ถฉ์กฑํ•˜๋Š”์ง€ ๊ด€๋ฆฌํ•˜๋Š” ์—ญํ• ์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹ค.

์‚ฌ์—…์„ ๋’ท๋ฐ›์นจํ•˜๋Š” AI์™€ ๋ฐ์ดํ„ฐ ํ™œ์šฉ

์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ์—‘์†”๋ฃธ์€ ์ฒจ๋‹จ ๊ธฐ์ˆ , ํŠนํžˆ AI ํ™œ์šฉ์„ ํ•œ์ธต ๊ฐ•ํ™”ํ•ด ์™”๋‹ค. ํ˜„์žฌ ์‚ฌ๋‚ด ์—…๋ฌด ํ™˜๊ฒฝ๊ณผ SAP ๋‚ด์— ์ฝ”ํŒŒ์ผ๋Ÿฟ(Copilot)์„ ์ ์šฉํ•ด ํŒ€ ์ƒ์‚ฐ์„ฑ์„ ๋†’์ด๊ณ  ์žˆ๋‹ค. ์•Œ๋ฐ”๋ ˆ์Šค๋Š” โ€œ์‚ฌ๋žŒ๋“ค์ด ๋” ๋†’์€ ๋ถ€๊ฐ€๊ฐ€์น˜ ์—…๋ฌด์— ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ์‹œ๊ฐ„์„ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์•„์šธ๋Ÿฌ AI๋Š” ํŒŒ์ดํ”„๋ผ์ธ ๋„คํŠธ์›Œํฌ ๋‚ด ์ œํ’ˆ ์ด๋™ ๊ณ„ํš๊ณผ ๊ฐ™์€ ํ•ต์‹ฌ ์‚ฌ์—… ํ”„๋กœ์„ธ์Šค์—๋„ ์ง์ ‘ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๊ณ ๋„์˜ ์ˆ˜ํ•™์  ๋ถ„์„์ด ์š”๊ตฌ๋˜๋Š” ๋งค์šฐ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์ด๋‹ค. ๋˜ํ•œ ์—‘์†”๋ฃธ์€ ์ž์ฒด AI ๊ฑฐ๋ฒ„๋„Œ์Šค ์ฒด๊ณ„์™€ AI์˜ต์Šค(AIOps) ์†”๋ฃจ์…˜, ์ฝ”ํŒŒ์ผ๋Ÿฟ๋„ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ๋‹ค.

์ „ํ†ต์ ์ธ ์‚ฐ์—… ๋ถ„์•ผ์— ์†ํ•ด ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์—‘์†”๋ฃธ ๋‚ด๋ถ€์—์„œ๋Š” ๊ธฐ์ˆ  ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋šœ๋ ทํ•œ ์ €ํ•ญ์ด ํฌ์ง€ ์•Š๋‹ค๋Š” ํ‰๊ฐ€๋‹ค. ์—”์ง€๋‹ˆ์–ด ์ถœ์‹  ์ธ๋ ฅ์ด ์กฐ์ง ์ „๋ฐ˜์— ๋‘ํ…๊ฒŒ ํฌ์ง„ํ•ด ์žˆ๊ณ , ์‚ฌ์—… ๋ถ€๋ฌธ ๋‚ด๋ถ€์—์„œ ์ž๋ฐœ์ ์œผ๋กœ ์ถ”์ง„๋˜๋Š” ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ ๊ธฐ์ˆ  ๋„์ž…์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ด๋Œ์–ด์™”๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์—ฌ๊ธฐ์— ๊ธฐ์กด IT ์กฐ์ง๊ณผ๋Š” ๋ณ„๋„๋กœ ๋””์ง€ํ„ธํ™”๋ฅผ ์ „๋‹ดํ•˜๋Š” ์กฐ์ง์„ ์šด์˜ํ•˜๋ฉฐ, ํ•ด์ปคํ†ค๊ณผ ๋‚ด๋ถ€ ๊ต์œก ํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ์‚ฌ์šฉ๋ก€๋ฅผ ๋ฐœ๊ตดํ•˜๊ณ  ํ˜์‹ ์„ ํ™•์‚ฐํ•˜๊ณ  ์žˆ๋‹ค.

์žฌ๋ฌด ๊ด€๋ฆฌ ํ˜„๋Œ€ํ™”

์—‘์†”๋ฃธ์€ ๊ธ€๋กœ๋ฒŒ ์ „๋žต์˜ ์ผํ™˜์œผ๋กœ ์žฌ๋ฌด ๊ด€๋ฆฌ ์ฒด๊ณ„ ๊ณ ๋„ํ™”์—๋„ ๋‚˜์„ฐ๋‹ค. ํšŒ์‚ฌ๋Š” ์ปจ์„คํŒ… ๊ธฐ์—… ์˜ฌCMS(All CMS)์˜ ์ง€์›์„ ๋ฐ›์•„ ํ‚ค๋ฆฌ๋ฐ”(Kyriba) ์ž๊ธˆ ๊ด€๋ฆฌ ํ”Œ๋žซํผ์„ ๋„์ž…ํ•˜๋ฉฐ ๊ด€๋ จ ์‹œ์Šคํ…œ์„ ์ „๋ฉด์ ์œผ๋กœ ์—…๋ฐ์ดํŠธํ–ˆ๋‹ค. ์ด๋ฒˆ ํ”„๋กœ์ ํŠธ๋Š” SAP R/3์—์„œ S/4HANA๋กœ ์ „ํ™˜ํ•˜๋Š” ๊ณผ์ •์˜ ์ผ๋ถ€๋กœ, ์‚ฌ์—…์˜ ๊ตญ์ œํ™”๊ฐ€ ์ง„์ „๋˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ž๊ธˆ ์šด์˜์„ ๋ณด๋‹ค ํ†ตํ•ฉ์ ์ด๊ณ  ์ค‘์•™์—์„œ ๊ด€๋ฆฌํ•  ํ•„์š”์„ฑ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ์กฐ์น˜๋‹ค.

S/4HANA ๋„์ž… ์ดํ›„์—๋„ ์•Œ๋ฐ”๋ ˆ์Šค์™€ IT ํŒ€์€ ์š”๊ตฌ๋˜๋Š” ์ˆ˜์ค€์˜ ํ†ต์ œ์™€ ๊ฐ€์‹œ์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค๊ณ  ํŒ๋‹จํ–ˆ๊ณ , ์ด์— ๋”ฐ๋ผ ๋ณด๋‹ค ์ „๋ฌธ์ ์ธ ์†”๋ฃจ์…˜์„ ๊ฒ€ํ† ํ•˜๊ฒŒ ๋๋‹ค. ํ‚ค๋ฆฌ๋ฐ”๋ฅผ ๋„์ž…ํ•œ ์ดํ›„์—๋Š” ์ž๊ธˆ ํฌ์ง€์…˜ ๊ด€๋ฆฌ๊ฐ€ ๊ฐœ์„ ๋˜๊ณ  ํ”„๋กœ์„ธ์Šค ์ž๋™ํ™”๊ฐ€ ํ™•๋Œ€๋˜๋ฉด์„œ ์ˆ˜์ž‘์—…์— ๋Œ€ํ•œ ์˜์กด๋„๋„ ์ค„์–ด๋“ค์—ˆ๋‹ค.

์žฌ๋ฌด ๋ถ€์„œ๋Š” ํ•ด๋‹น ๋„๊ตฌ๊ฐ€ ํ˜„๊ธˆ ํ๋ฆ„์— ๋Œ€ํ•œ ๊ฐ€์‹œ์„ฑ์„ ๋†’์ด๊ณ  ๋ณด์•ˆ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋™์‹œ์—, ๊ทธ๋ฃน์˜ ํ–ฅํ›„ ์„ฑ์žฅ์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ์—ญํ• ๋„ ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ์•Œ๋ฐ”๋ ˆ์Šค๋Š” โ€œ์žฌ๋ฌด ๋ถ€์„œ ์ž…์žฅ์—์„œ ๊ฐœ์„  ํšจ๊ณผ๊ฐ€ ๋ถ„๋ช…ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ์–ด, ์•ž์œผ๋กœ๋„ ์†”๋ฃจ์…˜์„ ๊ณ„์† ๋ฐœ์ „์‹œํ‚ค๊ณ  ๋” ๋งŽ์€ ํ”„๋กœ์„ธ์Šค๋ฅผ ํ†ตํ•ฉํ•ด ๋‚˜๊ฐˆ ๊ณ„ํšโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—‘์†”๋ฃธ์ด ์•ž์œผ๋กœ ์ตœ์šฐ์„ ์œผ๋กœ ์‚ผ๊ณ  ์žˆ๋Š” ๊ณผ์ œ๋Š” ์ž์ฒด ๋ฐ์ดํ„ฐ์„ผํ„ฐ๋ฅผ ๋‹จ๊ณ„์ ์œผ๋กœ ์ข…๋ฃŒํ•˜๋Š” ์ž‘์—…์ด๋‹ค. ํšŒ์‚ฌ๋Š” 2026๋…„ ๋ง๊นŒ์ง€ ๋ชจ๋“  IT ํ™˜๊ฒฝ์„ ๋ฉ€ํ‹ฐํด๋ผ์šฐ๋“œ ๋ชจ๋ธ๋กœ ์šด์˜ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ๋‹ค.

์•Œ๋ฐ”๋ ˆ์Šค๋Š” โ€œ๋‹ค๊ตญ์  ์„ฑ์žฅ์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋Š” ํ™•์žฅ์„ฑ๊ณผ ์‹ ์†ํ•œ ๋ฐฐํฌ๊ฐ€ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๋ฉฐ, ์ด๋ฒˆ ์ „ํ™˜์ด ๊ทธ๋ฃน์˜ ๋ฏธ๋ž˜ ์„ฑ์žฅ์„ ์ง€์†ํ•˜๊ธฐ ์œ„ํ•œ ๋˜ ํ•˜๋‚˜์˜ ์ค‘์š”ํ•œ ๋‹จ๊ณ„๊ฐ€ ๋  ๊ฒƒ์ด๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

Corver avanza hacia un modelo digital integrado y estandarizado

19 January 2026 at 01:00

La distribuciรณn multimarca lleva aรฑos viviendo una profunda transformaciรณn marcada por la digitalizaciรณn, la automatizaciรณn de procesos y la necesidad de dar una respuesta mรกs eficiente a los clientes. En este contexto opera Corver, compaรฑรญa espaรฑola con mรกs de 30 aรฑos dedicada a la importaciรณn y distribuciรณn en exclusiva de productos, accesorios y recambios para motocicletas y motoristas de las principales marcas del mercado.

Al igual que muchas compaรฑรญas del sector, el grupo, que opera a travรฉs de diversas empresas en Espaรฑa y Portugal, se enfrenta a un reto doble: mejorar su eficiencia interna y sostener un negocio cada vez mรกs dinรกmico, apoyado en el comercio electrรณnico, la gestiรณn inteligente del catรกlogo y la toma de decisiones basada en datos. Para ello, la organizaciรณn ha emprendido un proyecto de transformaciรณn digital profundo y progresivo que estรก redefiniendo la manera en la que trabaja.

Segรบn Marc Codina, IT project manager y CTO del grupo Corver, la compaรฑรญa โ€œse encuentra en una fase de consolidaciรณn y escaladoโ€. Durante 2025 han iniciado la unificaciรณn del ERP a nivel de grupo, han puesto en marcha un PIM corporativo como fuente รบnica de datos de producto y trabajan en la convergencia del SGA. โ€œEl foco ahora estรก en estabilizar, extraer eficiencias y extender estรกndares al resto de compaรฑรญas del grupoโ€, apunta.

El proceso de transformaciรณn digital arrancรณ formalmente en el aรฑo 2023, con una hoja de ruta que fue activรกndose por fases entre 2024 y 2025. Codina recuerda que el programa naciรณ con cuatro objetivos principales: โ€œDisponer de un dato maestro รบnico en clientes, precios y producto; homogeneizar procesos en toda la organizaciรณn, desde order-to-cash hasta procure-to-pay; asegurar la escalabilidad del comercio electrรณnico; y facilitar un reporting directivo en tiempo casi realโ€. Este enfoque busca eliminar silos y crear un modelo operativo mรกs coherente y medible.

Uno de los proyectos estrella acometidos por la compaรฑรญa dentro de ese proceso de transformaciรณn digital es la estandarizaciรณn del ERP a nivel de grupo, una iniciativa que ha permitido unificar procedimientos y mejorar el control operativo en distintas รกreas, aprovechando todas las capacidades de la soluciรณn SAGE X3. En este despliegue, Corver ha colaborado con el integrador Aitana, cuya participaciรณn ha sido clave para acompaรฑar el cambio cultural asociado al proyecto. โ€œSu equipo nos ha acompaรฑado con una alta profesionalidad y experiencia, ayudรกndonos a superar la resistencia natural al cambio que conlleva una transformaciรณn tecnolรณgica de este alcanceโ€, explica Codina. ย 

Mรกs del 95% de los pedidos ya se integran automรกticamente en el ERP sin intervenciรณn manual, lo que ha permitido optimizar el proceso de compra, reducir errores y duplicidades, disminuir incidencias por recepciones incorrectas y aumentar la visibilidad en la trazabilidad de pedidos e informaciรณn. Aunque la compaรฑรญa no aporta cifras exactas de la inversiรณn en este proyecto, segรบn Marc Codina, โ€œse sitรบa en seis cifras, con un retorno estimado de entre 18 y 24 meses gracias a la eficiencia y el incremento de conversiรณn en ventasโ€.

Marc Codina, IT Project Manager y CTO del grupo Corver

Marc Codina, IT Project Manager y CTO del grupo Corver.

Corver

Corver ha tenido que afrontar desafรญos como la gobernanza del dato, la normalizaciรณn de catรกlogos heredados, la gestiรณn del cambio y la formaciรณn de usuarios

Bases sรณlidas de TI

Todo ese proceso de transformaciรณn ha llevado a que, en la actualidad, la base tecnolรณgica de la compaรฑรญa se sustente en un ERP estandarizado que centraliza procesos financieros y operativos, en un PIM corporativo que actรบa como repositorio รบnico de informaciรณn de producto en varios idiomas y en una plataforma eCommerce B2C y B2B integrada directamente con ambos sistemas. Todo ello se complementa con un sistema de BI que da soporte a modelos semรกnticos y cuadros de mando corporativos y con soluciones de ITSM para soporte, trazabilidad y gobierno de cambios. Ademรกs, segรบn el CTO, la seguridad se ha convertido en un aspecto crรญtico, donde la organizaciรณn ha reforzado capacidades con tecnologรญas como SSO, MFA, hardening y monitorizaciรณn activa.

Sin embargo, el camino no ha sido sencillo. Corver ha tenido que afrontar una serie de desafรญos que han acompaรฑado a la implantaciรณn tecnolรณgica, entre ellos la gobernanza del dato, la normalizaciรณn de catรกlogos heredados, la gestiรณn del cambio y la formaciรณn de usuarios. A esto se suman condicionantes propios del negocio, como la necesidad de ajustar los despliegues a perรญodos de alta actividad comercial, especialmente durante Black Month (extensiรณn de las ofertas del Black Friday) y Navidad, y la integraciรณn con sistemas legacy, donde el SGA ha sido uno de los puntos mรกs exigentes. Codina tambiรฉn subraya la importancia de una disciplina estricta en integraciรณn continua y aseguramiento de calidad para evitar retrabajos y mantener la estabilidad operativa.

Un horizonte marcado por la transformaciรณn

De cara al futuro, el grupo espaรฑol se ha fijado nuevos objetivos que consolidan y amplรญan la transformaciรณn ya iniciada. Entre ellos se encuentran la unificaciรณn del SGA/WMS, el desarrollo de una experiencia omnicanal real con stock unificado y reglas de precios coherentes, la automatizaciรณn del ciclo de vida del producto de extremo a extremo, la mejora de las integraciones con herramientas mรกs avanzadas y el refuerzo de la ciberseguridad y la gestiรณn de identidades. En paralelo, Corver continรบa incorporando tecnologรญas avanzadas allรญ donde tienen impacto directo, desde BI y analรญtica predictiva hasta IA y machine learning para enriquecimiento de atributos o traducciones asistidas, asรญ como RPA en operaciones de back-office y traducciรณn automรกtica para acelerar la publicaciรณn de contenido multilingรผe.

En definitiva, Codina define la visiรณn del grupo como โ€œpragmรกtica y sostenidaโ€, basada en seguir midiendo el valor de cada lanzamiento y extender herramientas y estรกndares a todas las empresas que forman parte del grupo. Todo ello con un objetivo claro: avanzar hacia una estandarizaciรณn global que combine eficiencia operativa y la flexibilidad que exige el negocio.

โ€œIT ์ž์‚ฐ๋„ ํˆฌ์ž ํฌํŠธํด๋ฆฌ์˜ค์ฒ˜๋Ÿผโ€ ์„ฑ๊ณผ๋ฅผ ๋†’์ด๋Š” IT ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ ์ „๋žต

18 January 2026 at 21:30

๊ธˆ์œต์—์„œ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ๋Š” ํˆฌ์ž์ž์˜ ์žฌ๋ฌด ๋ชฉํ‘œ์™€ ๋ฆฌ์Šคํฌ ๊ฐ๋‚ด ์ˆ˜์ค€์— ๋งž์ถ˜ ํˆฌ์ž ๋ฌถ์Œ์„ ์ „๋žต์ ์œผ๋กœ ์„ ์ •ํ•˜๋Š” ์ผ์„ ๋œปํ•œ๋‹ค.

์ด๋Ÿฐ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ ์ ‘๊ทผ๋ฒ•์€ IT๊ฐ€ ๋ณด์œ ํ•œ ์‹œ์Šคํ…œ ํฌํŠธํด๋ฆฌ์˜ค์—๋„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์—ฌ๊ธฐ์— ํ•œ ๊ฐ€์ง€๊ฐ€ ์ถ”๊ฐ€๋ผ์•ผ ํ•œ๋‹ค. IT๋Š” ํฌํŠธํด๋ฆฌ์˜ค์— ํฌํ•จ๋œ ๊ฐ ์ž์‚ฐ์˜ ์šด์˜ ์„ฑ๋Šฅ๋„ ํ•จ๊ป˜ ํ‰๊ฐ€ํ•ด์•ผ ํ•œ๋‹ค.

์˜ค๋Š˜๋‚  ๊ธฐ์—… IT๋Š” ๋ ˆ๊ฑฐ์‹œ, ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜, AI ๊ฐ™์€ ์‹ ํฅ ๋˜๋Š” ์ตœ์ฒจ๋‹จ ์‹œ์Šคํ…œ์ด ๋’ค์„ž์—ฌ ์žˆ๋‹ค. ๊ฐ ๋ฒ”์ฃผ์—๋Š” ๋ฏธ์…˜ ํฌ๋ฆฌํ‹ฐ์ปฌ ์ž์‚ฐ์ด ํฌํ•จ๋ผ ์žˆ์ง€๋งŒ, ๋ชจ๋“  ์‹œ์Šคํ…œ์ด ๊ธฐ์—…์— ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜, ์žฌ๋ฌด ๊ฐ€์น˜, ๋ฆฌ์Šคํฌ ํšŒํ”ผ ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•˜๋Š” ์„ฑ๋Šฅ์ด ๋™์ผํ•˜์ง€๋Š” ์•Š๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด, CIO๋Š” IT ํฌํŠธํด๋ฆฌ์˜ค์˜ ์„ฑ๊ณผ๋ฅผ ์–ด๋–ป๊ฒŒ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์„๊นŒ?

IT ํฌํŠธํด๋ฆฌ์˜ค ๊ฐ€์น˜๋ฅผ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•œ 5๊ฐ€์ง€ ํ‰๊ฐ€ ํ•ญ๋ชฉ์„ ์‚ดํŽด๋ณธ๋‹ค.

๋ฏธ์…˜ ํฌ๋ฆฌํ‹ฐ์ปฌ ์ž์‚ฐ

๊ธฐ์—…์ด ์ผ์ƒ ์—…๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์‹œ์Šคํ…œ์€ ๋ณ„๋„ ๋ฒ”์ฃผ๋กœ ๋ด์•ผ ํ•œ๋‹ค. ์ค‘์š” ์‹œ์Šคํ…œ์€ ์‰ฝ๊ฒŒ ๋“œ๋Ÿฌ๋‚  ์ˆ˜๋„ ์žˆ๊ณ , ๊ธฐ์ˆ  ์Šคํƒ ๊นŠ์ˆ™ํ•œ ๊ณณ์— ์ˆจ์–ด ์žˆ์„ ์ˆ˜๋„ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋“  ์ž์‚ฐ์€ ์–ผ๋งˆ๋‚˜ โ€˜๋ฏธ์…˜ ํฌ๋ฆฌํ‹ฐ์ปฌํ•œ๊ฐ€โ€™๋ฅผ ํ‰๊ฐ€ํ•ด์•ผ ํ•œ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด ERP ์†”๋ฃจ์…˜์€ 24์‹œ๊ฐ„ ์šด์˜๋˜๋Š” ๊ธ€๋กœ๋ฒŒ ๊ณต๊ธ‰๋ง๊ณผ ์—ฐ๋™๋ผ ๊ธฐ์—… ๋น„์ฆˆ๋‹ˆ์Šค ๋Œ€๋ถ€๋ถ„์„ ์ขŒ์šฐํ•˜๊ธฐ ๋•Œ๋ฌธ์— 24์‹œ๊ฐ„ 365์ผ โ€˜๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•œโ€™ ์‹œ์Šคํ…œ์ด๋‹ค. ๋ฐ˜๋Œ€๋กœ HR ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด๋‚˜ ๋งˆ์ผ€ํŒ… ๋ถ„์„ ์‹œ์Šคํ…œ์€ ์ง์›์ด ์šฐํšŒ ์ ˆ์ฐจ๋กœ ๋Œ€์‘ํ•˜๋ฉด ํ•˜๋ฃจ ์ •๋„ ์ค‘๋‹จ๋ผ๋„ ํฐ ๋ฌธ์ œ๊ฐ€ ์—†์„ ์ˆ˜ ์žˆ๋‹ค.

๋” ์„ธ๋ฐ€ํ•˜๊ฒŒ๋Š” IT ์„œ๋ฒ„, ๋„คํŠธ์›Œํฌ, ์Šคํ† ๋ฆฌ์ง€์—๋„ ๊ฐ™์€ ์œ ํ˜•์˜ ๋ถ„์„์ด ํ•„์š”ํ•˜๋‹ค. IT๊ฐ€ ๋ฐ˜๋“œ์‹œ ํ™•๋ณดํ•ด์•ผ ํ•˜๋Š” ๋ฆฌ์†Œ์Šค๋Š” ๋ฌด์—‡์ด๋ฉฐ, ์ž ๊น์€ ์—†์–ด๋„ ๋˜๋Š” ๋ฆฌ์†Œ์Šค๋Š” ๋ฌด์—‡์ธ๊ฐ€? IT๊ฐ€ ์ด๋Ÿฐ ๋ฏธ์…˜ ํฌ๋ฆฌํ‹ฐ์ปฌ ์ž์‚ฐ์„ ์‹๋ณ„ํ•˜๋Š” ๊ณผ์ •์—์„œ ์ตœ์ข… ์‚ฌ์šฉ์ž ๋ฐ ๊ฒฝ์˜์ง„๊ณผ ํ•จ๊ป˜ ๋ชฉ๋ก์„ ์žฌ๊ฒ€ํ† ํ•ด ์ƒํ˜ธ ํ•ฉ์˜๋ฅผ ํ™•์ธํ•ด์•ผ ํ•œ๋‹ค.

์ž์‚ฐ ํ™œ์šฉ๋ฅ 

SaaS ์ธ๋ฒคํ† ๋ฆฌ, ๋ผ์ด์„ ์Šค, ๊ฐฑ์‹ ์„ ๊ด€๋ฆฌํ•˜๋Š” SaaS ๊ด€๋ฆฌ ํ”Œ๋žซํผ ์ „๋ฌธ์—…์ฒด ์ž์ผ๋กœ(Zylo)๋Š” โ€œSaaS ๋ผ์ด์„ ์Šค์˜ 53%๊ฐ€ ํ‰๊ท ์ ์œผ๋กœ ๋ฏธ์‚ฌ์šฉ ๋˜๋Š” ์ €ํ™œ์šฉ ์ƒํƒœโ€๋ผ๊ณ  ์ถ”์ •ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ํœด๋ฉด ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์ฐพ๋Š” ์ผ์ด ์šฐ์„  ๊ณผ์ œ์—ฌ์•ผ ํ•œ๋‹ค. ์ด๋ฅธ๋ฐ” โ€˜์…ธํ”„์›จ์–ด(Shelfware)โ€™ ๋ฌธ์ œ๋Š” SaaS์—๋งŒ ๊ตญํ•œ๋˜์ง€ ์•Š์œผ๋ฉฐ, ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์ด๋‚˜ ๊ตฌํ˜• ์„œ๋ฒ„์™€ ๋””์Šคํฌ ๋“œ๋ผ์ด๋ธŒ, ์‚ฌ์šฉํ•˜์ง€ ์•Š์ง€๋งŒ ๋น„์šฉ์„ ๊ณ„์† ์ง€๋ถˆํ•˜๋Š” ๋„คํŠธ์›Œํฌ ๊ธฐ์ˆ ์—์„œ๋„ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค.

์…ธํ”„์›จ์–ด๋Š” ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๋กœ ์ƒ๊ธฐ๋Š”๋ฐ, IT๊ฐ€ ํ”„๋กœ์ ํŠธ์— ์ซ“๊ฒจ ์ธ๋ฒคํ† ๋ฆฌ ์ ๊ฒ€๊ณผ ๋…ธํ›„ํ™” ์ ๊ฒ€์„ ์ œ๋Œ€๋กœ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์˜ค๋ž˜๋œ ์ž์‚ฐ์€ ์„ ๋ฐ˜์— ์˜ฌ๋ ค์ง„ ์ฑ„ ์ž๋™ ๊ฐฑ์‹ ๋œ๋‹ค.

IT ํฌํŠธํด๋ฆฌ์˜ค ์„ฑ๊ณผ์™€ ์ˆ˜์ต์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋ ค๋ฉด ์…ธํ”„์›จ์–ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค. IT๊ฐ€ ์…ธํ”„์›จ์–ด ํ‰๊ฐ€์— ์‹œ๊ฐ„์„ ๋‚ด๊ธฐ ์–ด๋ ต๋‹ค๋ฉด, ์ปจ์„คํ„ดํŠธ๋ฅผ ํˆฌ์ž…ํ•ด ์ž์‚ฐ ์‚ฌ์šฉ ํ˜„ํ™ฉ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ „ํ˜€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๊ฑฐ์˜ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ์ž์‚ฐ์„ ์žฌ๋ฐฐ์น˜ ๋˜๋Š” ์ œ๊ฑฐ ๋Œ€์ƒ์œผ๋กœ ํ‘œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค.

์ž์‚ฐ ๋ฆฌ์Šคํฌ

IT ํฌํŠธํด๋ฆฌ์˜ค์˜ ๋ชฉํ‘œ๋Š” ํ˜„์žฌ๋„ ์œ ํšจํ•˜๊ณ  ์•ž์œผ๋กœ๋„ ์˜ค๋žซ๋™์•ˆ ์œ ํšจํ•  ์ž์‚ฐ์„ ๋‹ด๋Š” ์ผ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ž์‚ฐ ๋ฆฌ์Šคํฌ๋Š” ๊ฐ IT ๋ฆฌ์†Œ์Šค๋ณ„๋กœ ํ‰๊ฐ€ํ•ด์•ผ ํ•œ๋‹ค.

์†”๋ฃจ์…˜ ์—…์ฒด์˜ ์„œ๋น„์Šค ์ข…๋ฃŒ๋‚˜ ๋…ธํ›„ํ™” ์œ„ํ—˜์ด ์žˆ๋Š”๊ฐ€? ์†”๋ฃจ์…˜ ์—…์ฒด ์ž์ฒด๊ฐ€ ๋ถˆ์•ˆ์ •ํ•œ๊ฐ€? IT ๋ถ€์„œ๋Š” ํŠน์ • ์‹œ์Šคํ…œ์„ ๊ณ„์† ์šด์˜ํ•  ๋‚ด๋ถ€ ์ธ๋ ฅ์„ ํ™•๋ณดํ•˜๊ณ  ์žˆ๋Š”๊ฐ€? ์˜ˆ๋ฅผ ๋“ค์–ด COBOL๊ณผ ์–ด์…ˆ๋ธ”๋Ÿฌ๋กœ ์ž‘์„ฑํ•œ ์ปค์Šคํ…€ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์€ ์•„๋ฌด๋ฆฌ ์„ฑ๋Šฅ์ด ์ข‹์•„๋„ ๋‚ด๋ถ€ ์ธ๋ ฅ ์ง€์† ์—ฌ๋ถ€๊ฐ€ ํ•ต์‹ฌ ๋ณ€์ˆ˜์ผ ์ˆ˜ ์žˆ๋‹ค. ํŠน์ • ์‹œ์Šคํ…œ์ด๋‚˜ ํ•˜๋“œ์›จ์–ด๊ฐ€ ์šด์˜ ๋น„์šฉ ์ธก๋ฉด์—์„œ ์ง€๋‚˜์น˜๊ฒŒ ๋น„์‹ธ์ง€๊ณ  ์žˆ๋Š”๊ฐ€? ๊ธฐ์กด IT ๋ฆฌ์†Œ์Šค๋Š” ๋ฏธ๋ž˜ IT๋ฅผ ์ฑ„์šธ ์ƒˆ ๊ธฐ์ˆ ๊ณผ ํ†ตํ•ฉ๋  ๋ช…ํ™•ํ•œ ๊ฒฝ๋กœ๊ฐ€ ์žˆ๋Š”๊ฐ€?

๋ฆฌ์Šคํฌ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋œ IT ์ž์‚ฐ์— ๋Œ€ํ•ด์„œ๋Š” โ€˜๋ฆฌ์Šคํฌโ€™ ์ƒํƒœ๋ฅผ ํ•ด์†Œํ•˜๊ฑฐ๋‚˜ ์ž์‚ฐ์„ ๊ต์ฒดํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์„ ์‹คํ–‰ํ•ด์•ผ ํ•œ๋‹ค.

์ž์‚ฐ IP ๊ฐ€์น˜

ํ™˜๋Œ€ ์‚ฐ์—…์—์„œ ์ผํ•˜๋Š” ํ•œ CIO๋Š” ํ˜ธํ…” ์˜ˆ์•ฝ ํ”„๋กœ๊ทธ๋žจ๊ณผ ํ•ด๋‹น ํ”„๋กœ๊ทธ๋žจ์ด ๊ตฌ๋™๋˜๋Š” ๋ฉ”์ธํ”„๋ ˆ์ž„์ด 30๋…„ ๋™์•ˆ ํ•œ ๋ฒˆ๋„ ๋ฉˆ์ถ˜ ์ ์ด ์—†๋‹ค๊ณ  ์ž๋ž‘ํ–ˆ๋‹ค. ์ด CIO๋Š” ํšŒ์‚ฌ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” ์ปค์Šคํ…€ ์ฝ”๋“œ์™€ ์ „์šฉ ์šด์˜์ฒด์ œ๋ฅผ ์„ฑ๊ณต ์š”์ธ์œผ๋กœ ๊ผฝ์•˜๊ณ , ๊ฒฝ์˜์ง„๋„ ๊ฒฝ์Ÿ์‚ฌ ๋Œ€๋น„ ์ „๋žต์  ์šฐ์œ„๋กœ ํ‰๊ฐ€ํ–ˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค.

์ด๋ ‡๊ฒŒ ์ƒ๊ฐํ•˜๋Š” CIO๋Š” ์ ์ง€ ์•Š๋‹ค. ์ž์‚ฌ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ๋” ๋‚ซ๊ฒŒ ๋งŒ๋“œ๋Š” โ€˜์ž์ฒด ํŠน์ œ ์†Œ์Šคโ€™๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์šด์˜ํ•˜๋Š” ๊ธฐ์—…์ด ๋งŽ๋‹ค. IT ํŠน์ œ ์†Œ์Šค๋Š” ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์ผ ์ˆ˜๋„ ์žˆ๊ณ  AI ์•Œ๊ณ ๋ฆฌ์ฆ˜์ผ ์ˆ˜๋„ ์žˆ๋‹ค. ์ด์ฒ˜๋Ÿผ IT ์ง€์‹์žฌ์‚ฐ(IP)์œผ๋กœ ์ž๋ฆฌ ์žก์€ ์ž์‚ฐ์€ IT ํฌํŠธํด๋ฆฌ์˜ค์—์„œ ๋ณด์กดํ•  ๊ทผ๊ฑฐ๊ฐ€ ๋œ๋‹ค.

์ž์‚ฐ TCO์™€ ROI

๋ชจ๋“  IT ์ž์‚ฐ์ด ์ œ ๋ชซ์„ ํ•˜๊ณ  ์žˆ๋Š”๊ฐ€? ํ˜„๊ธˆ์ด๋‚˜ ์ฃผ์‹ ํˆฌ์ž์ฒ˜๋Ÿผ, ๊ด€๋ฆฌ ๋Œ€์ƒ ๊ธฐ์ˆ ์€ ์ธก์ • ๊ฐ€๋Šฅํ•˜๊ณ  ์ง€์† ๊ฐ€๋Šฅํ•œ ๊ฐ€์น˜๋ฅผ ๊ณ„์† ๋งŒ๋“ค์–ด๋‚ด๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ค˜์•ผ ํ•œ๋‹ค. IT๊ฐ€ ์ž์‚ฐ ๊ฐ€์น˜๋ฅผ ํŒ๋‹จํ•  ๋•Œ ์ฃผ๋กœ ์“ฐ๋Š” ์ง€ํ‘œ๋Š” TCO์™€ ROI์ด๋‹ค.

TCO๋Š” ์‹œ๊ฐ„์ด ์ง€๋‚˜๋ฉด์„œ ์ž์‚ฐ ๊ฐ€์น˜๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€ ๊ฐ€๋Š ํ•˜๋Š” ์ง€ํ‘œ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฐ์ดํ„ฐ์„ผํ„ฐ ์‹ ๊ทœ ์„œ๋ฒ„ ํˆฌ์ž๋Š” 4๋…„ ์ „์— ์„ฑ๊ณผ๋ฅผ ๋ƒˆ์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด์ œ ๋ฐ์ดํ„ฐ์„ผํ„ฐ์—๋Š” ๊ตฌํ˜• ๊ธฐ์ˆ ์˜ ๋…ธํ›„ ์„œ๋ฒ„ ๊ตฌ์—ญ์ด ์ƒ๊ฒผ๊ณ  ์ปดํ“จํŒ…์„ ํด๋ผ์šฐ๋“œ๋กœ ์˜ฎ๊ธฐ๋Š” ํŽธ์ด ๋” ์ €๋ ดํ•  ์ˆ˜ ์žˆ๋‹ค.

ROI๋Š” ์ƒˆ ๊ธฐ์ˆ ์„ ๋„์ž…ํ•  ๋•Œ ์‚ฌ์šฉํ•œ๋‹ค. ์ง€ํ‘œ๋ฅผ ์„ค์ •ํ•ด ๊ธฐ์ˆ ์— ํˆฌ์ž…ํ•œ ์ดˆ๊ธฐ ํˆฌ์ž๊ฐ€ ์–ธ์ œ ํšŒ์ˆ˜๋˜๋Š”์ง€ ๊ธฐ์ค€ ์‹œ์ ์„ ์ •ํ•œ๋‹ค. ์†์ต๋ถ„๊ธฐ์ ์— ๋„๋‹ฌํ•œ ๋’ค์—๋„ ROI๋Š” ๊ณ„์† ์ธก์ •๋˜๋ฉฐ, ๊ธฐ์—…์€ ํˆฌ์ž์—์„œ ์ƒˆ๋กœ์šด ์ˆ˜์ต์„ฑ์ด๋‚˜ ๋น„์šฉ ์ ˆ๊ฐ์ด ์‹ค์ œ๋กœ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ํ™•์ธํ•˜๋ ค ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋ชจ๋“  ๊ธฐ์ˆ  ํˆฌ์ž๊ฐ€ ๊ณ„ํš๋Œ€๋กœ ํ˜๋Ÿฌ๊ฐ€์ง€๋Š” ์•Š๋Š”๋‹ค. ๊ธฐ์ˆ  ๋„์ž…์„ ์ •๋‹นํ™”ํ–ˆ๋˜ ์ดˆ๊ธฐ ๋น„์ฆˆ๋‹ˆ์Šค ์ผ€์ด์Šค๊ฐ€ ๋ฐ”๋€Œ๊ฑฐ๋‚˜, ์˜ˆ๊ธฐ์น˜ ๋ชปํ•œ ๋ณต์žก์„ฑ์ด ๋ฐœ์ƒํ•ด ํˆฌ์ž๊ฐ€ ์†์‹ค์„ ๊ฐ์ˆ˜ํ•ด์•ผ ํ•˜๋Š” ์‚ฌ์—…์œผ๋กœ ์ „๋ฝํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค.

TCO๋“  ROI๋“  ์–ด๋–ค ์ง€ํ‘œ์—์„œ ๋ฌธ์ œ๊ฐ€ ๋“œ๋Ÿฌ๋‚˜๋ฉด, IT ํฌํŠธํด๋ฆฌ์˜ค๋Š” ์†์‹ค ์ž์‚ฐ์ด๋‚˜ ๋‚ญ๋น„ ์ž์‚ฐ์„ ์ œ๊ฑฐํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์œ ์ง€๋ผ์•ผ ํ•œ๋‹ค.

IT ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ์˜ ๋Œ€์›์น™ โ€œ์ƒ์‹œ ๊ด€๋ฆฌโ€

IT ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ๋Š” CIO๊ฐ€ ์ƒ์‹œ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•  ์ค‘์š”ํ•œ ์—…๋ฌด์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ ๋Œ€์‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋„ˆ๋ฌด ๋งŽ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฌ์šฉ์ž ์š”์ฒญ์ด ์žˆ์„ ๋•Œ๋งŒ ์‹œ์Šคํ…œ์„ ๊ต์ฒดํ•˜๊ฑฐ๋‚˜, ์„œ๋ฒ„๊ฐ€ ๊ณ ์žฅ ๋‚˜ ๋ฐ์ดํ„ฐ์„ผํ„ฐ์—์„œ ์ œ๊ฑฐํ•ด์•ผ ํ•  ๋•Œ ๋Œ€์‘ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค.

CIO๊ฐ€ ์˜ˆ์‚ฐ ํŽธ์„ฑ ์‹œ๊ธฐ์— ์ƒ๋Œ€ํ•˜๋Š” CEO, CFO ๊ฐ™์€ ํ•ต์‹ฌ ์ดํ•ด๊ด€๊ณ„์ž๋„ ๋„์›€์ด ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค. CEO์™€ CFO๋Š” ์ƒˆ ๊ธฐ์ˆ  ๋„์ž…์ด ์–ผ๋งˆ๋‚˜ ๋นจ๋ฆฌ โ€˜๋ณธ์ „์„ ์ฐพ๋Š”์ง€โ€™์—๋Š” ๊ด€์‹ฌ์„ ๋ณด์ด์ง€๋งŒ, IT ํฌํŠธํด๋ฆฌ์˜ค ์ „์ฒด ์ž์‚ฐ์˜ ์„ฑ๊ณผ๊ฐ€ ์–ด๋–ค์ง€, ๊ฐ€์น˜๋ฅผ ์œ ์ง€ํ•˜๊ฑฐ๋‚˜ ๋†’์ด๊ธฐ ์œ„ํ•ด ์–ด๋–ค ์ž์‚ฐ์„ ๊ต์ฒดํ•ด์•ผ ํ•˜๋Š”์ง€ ๊ฐ™์€ ํฐ ๊ทธ๋ฆผ์„ CIO์—๊ฒŒ ๋ฌป๋Š” ๊ฒฝ์šฐ๋Š” ๊ฑฐ์˜ ์—†๋‹ค๊ณ  ๋ด์•ผ ํ•œ๋‹ค.

IT ๊ด€๋ฆฌ ์—ญ๋Ÿ‰์„ ๋†’์ด๋ ค๋ฉด CIO๋Š” ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ ๊ธฐํšŒ๋ฅผ ์ ๊ทน ํ™œ์šฉํ•ด์•ผ ํ•œ๋‹ค. CIO๋Š” ํšŒ์‚ฌ IT ์ž์‚ฐ ํฌํŠธํด๋ฆฌ์˜ค๋ฅผ ์ˆ˜๋ฆฝํ•˜๊ณ , IT ์˜ˆ์‚ฐ์— ์ง์ ‘ ์˜ํ–ฅ๋ ฅ์„ ๊ฐ€์ง„ ์กฐ์ง ๊ตฌ์„ฑ์›๊ณผ ์ •๊ธฐ์ ์œผ๋กœ ์ž์‚ฐ์„ ์ ๊ฒ€ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ์— ์ฐฉ์ˆ˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

IT ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ๋Š” CFO์™€ CEO์—๊ฒŒ๋„ ๊ณต๊ฐ๋Œ€๋ฅผ ํ˜•์„ฑํ•˜๊ธฐ ์‰ฌ์šด๋ฐ, CFO์™€ CEO๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๊ด€์ ์—์„œ ์žฌ๋ฌด ํฌํŠธํด๋ฆฌ์˜ค์™€ ๋ฆฌ์Šคํฌ ํฌํŠธํด๋ฆฌ์˜ค๋ฅผ ์ƒ์‹œ ๋‹ค๋ฃจ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. IT ํฌํŠธํด๋ฆฌ์˜ค์˜ ๊ฐ€์‹œ์„ฑ์ด ๋†’์•„์ง€๋ฉด CIO๊ฐ€ ์ƒˆ ๊ธฐ์ˆ ์„ ์ถ”์ฒœํ•˜๊ณ , ํ•„์š” ์‹œ ๊ธฐ์กด ์ž์‚ฐ ๊ต์ฒด๋‚˜ ์—…๊ทธ๋ ˆ์ด๋“œ ์Šน์ธ์„ ๋ฐ›์•„๋‚ด๋Š” ์ผ๋„ ๋” ์ˆ˜์›”ํ•ด์งˆ ๊ฒƒ์ด๋‹ค.
dl-ciokorea@foundryco.com

IT portfolio management: Optimizing IT assets for business value

16 January 2026 at 05:01

In finance, portfolio management involves the strategic selection of a collection of investments that align with an investorโ€™s financial goals and risk tolerance.ย 

This approach can also apply to ITโ€™s portfolio of systems, with one addition: IT must also assess each asset in that portfolio for operational performance.

Todayโ€™s IT is a mix of legacy, cloud-based, and emerging or leading-edge systems, such as AI. Each category contains mission-critical assets, but not every system performs equally well when it comes to delivering business, financial, and risk avoidance value to the enterprise. How can CIOs optimize their IT portfolio performance?

Here are five evaluative criteria for maximizing the value of your IT portfolio.

Mission-critical assets

The enterpriseโ€™s most critical systems for conducting day-to-day business are a category unto themselves. These systems may be readily apparent, or hidden deep in a technical stack. So all assets should be evaluated as to how mission-critical they are.

For example, it might be that your ERP solution is a 24/7 โ€œmust haveโ€ system because it interfaces with a global supply chain that operates around the clock and drives most company business. On the other hand, an HR application or a marketing analytics system could probably be down for a day with work-arounds by staff.

More granularly, the same type of analysis needs to be performed on IT servers, networks and storage. Which resources do you absolutely have to have, and which can you do without, if only temporarily?

As IT identifies these mission-critical assets, it should also review the list with end-users and management to assure mutual agreement.

Asset utilization

Zylo, which manages SaaS inventory, licenses, and renewals, estimates that โ€œ53% of SaaS licenses go unused or underused on average, so finding dormant software should be a priority.โ€ This โ€œshelfwareโ€ problem isnโ€™t only with SaaS; it can be found in underutilized legacy and modern systems, in obsolete servers and disk drives, and in network technologies that arenโ€™t being used but are still being paid for.

Shelfware in all forms exists because IT is too busy with projects to stop for inventory and obsolescence checks. Consequently, old stuff gets set on the shelf and auto-renews.

The shelfware issue should be solved if IT portfolios are to be maximized for performance and profitability. If IT canโ€™t spare the time for a shelfware evaluation, it can bring in a consultant to perform an assessment of asset use and to flag never-used or seldom-used assets for repurposing or elimination.

Asset risk

The goal of an IT portfolio is to contain assets that are presently relevant and will continue to be relevant well into the future. Consequently, asset risk should be evaluated for each IT resource.

Is the resource at risk for vendor sunsetting or obsolescence? Is the vendor itself unstable? Does IT have the on-staff resources to continue running a given system, no matter how good it is (a custom legacy system written in COBOL and Assembler, for example)? Is a particular system or piece of hardware becoming too expense to run? Do existing IT resources have a clear path to integration with the new technologies that will populate IT in the future?

For IT assets that are found to be at risk, strategies should be enacted to either get them out of โ€œriskโ€ mode, or to replace them.

Asset IP value

There is a CIO I know in the hospitality industry who boasts that his hotel reservation program, and the mainframe it runs on, have not gone down in 30 years. He attributes much of this success to custom code and a specialized operating system that the company uses, and he and his management view it as a strategic advantage over the competition.

He is not the only CIO who feels this way. There are many companies that operate with their โ€œown IT special sauceโ€ that makes their businesses better. This special sauce could be a legacy system or an AI algorithm. Assets like these that become IT intellectual property (IP) present a case for preservation in the IT portfolio.

Asset TCO and ROI

Is every IT asset pulling its weight? Like monetary and stock investments, technologies under management must show they are continuing to produce measurable and sustainable value. The primary indicators of asset value that IT uses are total cost of ownership (TCO) and return on investment (ROI).

TCO is what gauges the value of an asset over time. For instance, investments in new servers for the data center might have paid off four years ago, but now the data center has an aging bay of servers with obsolete technology and it is cheaper to relocate compute to the cloud.

ROI is used when new technology is acquired. Metrics are set that define at what point the initial investment into the technology will be recouped. Once the breakeven point has been reached, ROI continues to be measured because the company wants to see new profitability and/or savings materialize from the investment. Unfortunately, not all technology investments go as planned. Sometimes the initial business case that called for the technology changes or unforeseen complications arise that turn the investment into a loss leader.

In both cases, whether the issue is TCO or ROI, the IT portfolio must be maintained in a way such that losing or wasted assets are removed.

Summing it up

IT portfolio management is an important part of what CIOs should be doing on an ongoing basis, but all too often, it is approached in a reactionary mode โ€” for example, with a system being replaced only when users ask for it to be replaced, or a server needing to be removed from the data center because it fails.

The CEO, the CFO, and other key stakeholders whom the CIO deals with during technology budgeting time donโ€™t help, either. While they will be interested in how long it will take for a new technology acquisition to โ€œpay for itself,โ€ no one ever asks the CIO about the big picture of IT portfolio management: how the overall assets in the IT portfolio are performing, and which assets will require replacement for the portfolio to sustain or improve company value.

To improve their own IT management, CIOs should seize the portfolio management opportunity. They can do this by establishing a portfolio for their companyโ€™s IT assets and reviewing these assets periodically with those in the enterprise who have direct say over IT budgets.

IT portfolio management will resonate with the CFO and CEO because both continually work with financial and risk portfolios for the business. Broader visibility of the IT portfolio will also make it easier for CIOs to present new technology recommendations and to obtain approvals for replacing or upgrading existing assets when these actions are called for.

See also:

Exolum steps on the gas of its transformation

16 January 2026 at 05:00

In a context marked by energy transition, regulatory pressure, and the need to operate with increasing efficiency on a global scale, digital transformation has become a strategic pillar for industrial and logistics companies likeย Exolum. Now present in 11 countries, with an annual turnover of over $1 billion, the company faces tough decisions on how to remain competitive.

Focusing on transporting gasoline and diesel, storing liquids like hydrocarbons and other chemicals, and supplying aviation fuel, the company is at a crucial juncture as the global push to cleaner sources of fuel gathers steam. โ€œWe have to learn to repurpose our infrastructure for the new energy sources that will emerge,โ€ saysย Alfonso รlvarez, Exolumโ€™s IT director.

Digitization thatโ€™s been a long time coming

Despite the substantial challenge, digitalization isnโ€™t a new process for the company. Exolum began relying heavily on tech in the early 2000s, with implementation of operational systems in plants and pipelines. Since then, various strategic plans have been renewing platforms and modernizing systems. โ€œItโ€™s a process thatโ€™s been carried out throughout since the turn of the century,โ€ รlvarez adds.

Today, much of the companyโ€™s daily operations are managed centrally and automatically. The product network and truck loading terminals operate with very small teams thanks to advanced technological systems. Truck access, for example, is managed through automatic license plate recognition, and the systems tell the driver which hose to use and when loading is complete, without direct human intervention. โ€œTechnology has a fundamental role at Exolum, especially in business execution,โ€ says รlvarez.

According to รlvarez, the next big challenge for technology is growth since Exolum is an expanding company. โ€œTechnology must not only accompany that growth but support it from the beginning,โ€ he says. โ€œSo weโ€™re making decisions and executing projects that will allow us to do that.โ€

Global IT for a growing company

The most recent turning point came after the pandemic in 2020. Exolumโ€™s international growth, driven by acquisitions in the UK, US, and other markets, led the company to create a global IT division. โ€œIt was understood that the approach had to be global, to provide coverage for all businesses across all geographies,โ€ says รlvarez, who joined the company nearly four years ago with that objective.

The current model relies on a dual structure with a global layer and a local one. Corporate systems such as finance, control, HR, and asset maintenance are concentrated at the global level, while systems more closely tied to physical operations are maintained locally to preserve flexibility. According to รlvarez, this architecture allows the company to be viewed as a single entity, rather than as a series of small, local businesses.

The tech department itself currently has around 70 people, including global and local teams, and is supported on an ongoing basis by up to 150 external professionals. The focus isnโ€™t on developing proprietary software in Spain, but rather on project management, and ensuring that tech partners meet quality and functionality requirements.

AI and data at the service of business

In recent years, Exolum has intensified its use of advanced technologies, especially AI, and already employs tools like Copilot in corporate environments and within SAP to improve team productivity. โ€œThe goal is to free up time so people can dedicate themselves to higher value-added tasks,โ€ รlvarez says.

AI is also being applied directly to critical business processes, such as planning movement of products within the pipeline network, a highly complex system requiring advanced mathematical analysis. Plus, Exolum is developing its own AI governance framework, AIOps solutions, and specialized copilots.

Despite operating in a traditional sector, the company doesnโ€™t perceive significant resistance to technological change. The strong presence of engineering professionals and the drive for initiatives from within the business have facilitated adoption. In addition, a dedicated digitalization area, separate from traditional IT, explores new use cases and promotes innovation throughย hackathonsย and internal training programs.

Modernizing financial management

As part of this global strategy, Exolum has taken a big step to update its financial management by implementing the Kyriba treasury platform, supported by consulting firm All CMS. The project is part of the migration from SAP R/3 to S/4HANA, and addresses the need for a comprehensive and centralized view of treasury operations in an increasingly international environment.

After implementing S/4HANA, รlvarez and his team still identified limitations that prevented them from working with the level of control they needed, which led to seek a specific solution. So adopting Kyriba has improved treasury position control, automated processes, and reduced reliance on manual tasks.

The finance department emphasizes that the tool also offers greater visibility into cash flows, strengthens security, and supports the groupโ€™s future growth. โ€œThe improvement for the department is so clear that we want to continue evolving the solution and incorporating more processes,โ€ says รlvarez.

Looking ahead still, one of the most important projects is the gradual phase-out of its ownย data centers. The goal is for Exolum to operate with a multicloud model for all its IT by the end of 2026.

โ€œWe need scalable and easily deployable systems that can support multinational growth,โ€ รlvarez says. This change represents another key step to sustain the groupโ€™s future development.

El FEM alerta de que tener arquitecturas de datos obsoletas frena el impacto de la IA en sanidad

16 January 2026 at 04:22

Aunque la IA tiene el potencial de transformar la atenciรณn mรฉdica en todo el mundo, el progreso se estรก topando actualmente con un muro invisible. Los obstรกculos son los sistemas de datos obsoletos. A esta conclusiรณn llega el Foro Econรณmico Mundial (FEM) en el informe publicado en vรญsperas de su reuniรณn anual en Davos, llamado โ€˜La IA puede transformar la asistencia sanitaria si transformamos nuestra arquitectura de datosโ€™.

Segรบn el estudio, dรฉcadas de registros aislados, formatos incompatibles e infraestructuras rรญgidas frenan el progreso. Para que la IA no siga siendo solo una herramienta para tareas especรญficas, sino que se convierta en un sistema autรณnomo y capaz de aprender, el FEM considera que el sector sanitario debe replantearse desde cero su arquitectura de datos.

Urge salir de la trampa del silo

Hasta ahora, las estructuras se basaban a menudo en entradas manuales y actualizaciones diferidas. Sin embargo, el futuro pertenecerรก a un canal de datos inteligente y unificado que limpie la informaciรณn de los sensores y las fuentes automatizadas en tiempo real y la haga directamente legible para la IA. En lugar de almacenarse en rรญgidas bases de datos relacionales, la informaciรณn se almacena cada vez mรกs en bases de datos grรกficas multidimensionales que permiten comprender inmediatamente el contexto y el significado.

El FEM considera que otro gran problema es la investigaciรณn mรฉdica. En este รกmbito, muchos conocimientos valiosos permanecen ocultos en notas o imรกgenes complejas, ya que son difรญciles de encontrar con una bรบsqueda convencional. Aquรญ es donde entra en juego la denominada vectorizaciรณn: los datos multimodales, desde textos hasta secuencias genรณmicas y seรฑales clรญnicas, se convierten en incrustaciones numรฉricas. Esto permite a la IA reconocer relaciones profundas, como comparar sรญntomas con casos anteriores o recuperar resultados de investigaciรณn relevantes con la mรกxima precisiรณn.

Seguridad y confianza

En definitiva, segรบn el FEM, un sistema sanitario moderno necesita un data lakehouse. Es decir, un lugar de almacenamiento centralizado en el que los datos de los laboratorios, los wearables y las aplicaciones de los pacientes confluyan de forma segura y estรฉn disponibles para su anรกlisis. Para que la protecciรณn de datos no se quede en el camino, una fรกbrica de datos inteligente debe garantizar que solo los usuarios autorizados tengan acceso y que la informaciรณn sea coherente.

Para garantizar que las recomendaciones de IA para los mรฉdicos sean comprensibles y fiables, รฉstas deben basarse en conocimientos clรญnicos validados. Los denominados grรกficos del conocimiento podrรญan servir como guรญas para garantizar que los resultados de la IA se ajusten a las directrices mรฉdicas.

Esta transformaciรณn de la IA es mรกs que una simple renovaciรณn tecnolรณgica. Segรบn la valoraciรณn del FEM, para las naciones soberanas, la creaciรณn de una arquitectura de datos preparada para la IA significa considerar la sanidad como un recurso nacional. Y, desde el punto de vista del foro, esta transformaciรณn radical es indispensable. Solo asรญ los paรญses podrรกn garantizar una atenciรณn mejor y personalizada y aprovechar al mรกximo el potencial de una IA con capacidad de autoaprendizaje.

GPT ๋ชจ๋ธ ์•ˆ์ „ ์ •์ฑ… ์ด๋Œ๋˜ ์•ˆ๋“œ๋ ˆ์•„ ๋ฐœ๋กœ๋„ค, ์•คํŠธ๋กœํ”ฝ ์ •๋ ฌ ํŒ€์œผ๋กœ

16 January 2026 at 04:05

๋ฐœ๋กœ๋„ค๋Š” ์ž์‹ ์˜ ๋งํฌ๋“œ์ธ ๊ณ„์ •์„ ํ†ตํ•ด โ€œ์•คํŠธ๋กœํ”ฝ์— ํ•ฉ๋ฅ˜ํ•ด ์ •๋ ฌ(alignment) ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ณ , ํด๋กœ๋“œ์˜ ์บ๋ฆญํ„ฐ ๊ธฐ๋ฐ˜์„ ๋”์šฑ ๋ฐœ์ „์‹œํ‚ค๋Š” ์—ญํ• ์„ ๋งก๊ฒŒ ๋๋‹คโ€๋ผ๋ฉฐ โ€œ์•ž์œผ๋กœ๋Š” ์ •๋ ฌ๊ณผ ํŒŒ์ธํŠœ๋‹์— ์ง‘์ค‘ํ•ด ์ƒˆ๋กœ์šด ๋งฅ๋ฝ์—์„œ ํด๋กœ๋“œ์˜ ํ–‰๋™์„ ํ˜•์„ฑํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ด์–ด๊ฐˆ ๊ณ„ํšโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—ฌ๊ธฐ์„œ ๋งํ•˜๋Š” ์ •๋ ฌํŒ€์€ ๊ณ ๋„ํ™”๋œ AI ๋ชจ๋ธ์„ ์•ˆ์ „ํ•˜๊ฒŒ ํ•™์Šตยทํ‰๊ฐ€ยท๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋กœํ† ์ฝœ์„ ์„ค๊ณ„ํ•˜๋Š” ์กฐ์ง์ด๋‹ค. ๋‹ค์‹œ ๋งํ•ด, AI ๋ชจ๋ธ์˜ ํŒ๋‹จ๊ณผ ํ–‰๋™์ด ์ธ๊ฐ„์˜ ๊ฐ€์น˜์™€ ์˜๋„, ์‚ฌํšŒ์  ๊ทœ๋ฒ”์— ๋ถ€ํ•ฉํ•˜๋„๋ก ์„ค๊ณ„ยท์กฐ์ •ํ•˜๋Š” ์—ฐ๊ตฌ ๋ถ„์•ผ๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

๋ฐœ๋กœ๋„ค๋Š” ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„๋Œ€ํ•™๊ต ์‚ฐํƒ€๋ฐ”๋ฐ”๋ผ(UCSB)์—์„œ ์˜๋ฌธํ•™๊ณผ ์‹ฌ๋ฆฌํ•™์„ ๋ณต์ˆ˜ ์ „๊ณตํ–ˆ๋‹ค. ์ดํ›„ ์ง€๋‚œ 3๋…„๊ฐ„ ์˜คํ”ˆAI์—์„œ โ€˜๋ชจ๋ธ ์ •์ฑ…(Model Policy)โ€™ ๋ถ„์•ผ๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ–ˆ์œผ๋ฉฐ, ๊ด€๋ จ ์—ฐ๊ตฌํŒ€์˜ ์šด์˜๊ณผ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ ์„ค์ •์— ์ฐธ์—ฌํ–ˆ๋‹ค. ๊ทธ๋…€๋Š” GPT-4, GPT-4V, o-์‹œ๋ฆฌ์ฆˆ ์ถ”๋ก  ๋ชจ๋ธ, ๋”ฅ ๋ฆฌ์„œ์น˜, ์ฑ—GPT ์—์ด์ „ํŠธ, GPT-5์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์ฃผ์š” ๋ชจ๋ธ๋“ค์˜ ๋ฐฐํฌ ์ „๋žต๊ณผ ์•ˆ์ „ ์ •์ฑ… ์ˆ˜๋ฆฝ์— ๊ด€์—ฌํ–ˆ์œผ๋ฉฐ, ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๋ณด์ƒ(rule-based rewards) ๋“ฑ AI ์•ˆ์ „ ๊ธฐ์ˆ ์˜ ํ•™์Šต ํ”„๋กœ์„ธ์Šค ๊ฐœ๋ฐœ์—๋„ ์ฐธ์—ฌํ–ˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ์ •์„œ์  ๊ณผ์˜์กด์˜ ์ง•ํ›„๋‚˜ ์ดˆ๊ธฐ ์ •์‹ ์  ๊ณ ํ†ต์˜ ์‹ ํ˜ธ์— ์ง๋ฉดํ–ˆ์„ ๋•Œ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์—๋„ ์ง‘์ค‘ํ•ด ์™”๋‹ค.

์˜คํ”ˆAI ํ•ฉ๋ฅ˜ ์ด์ „์—๋Š” ๋ฉ”ํƒ€(๊ตฌ ํŽ˜์ด์Šค๋ถ)์—์„œ ๊ทผ๋ฌดํ•˜๋ฉฐ ์ฝ˜ํ…์ธ  ๋ฐฐํฌ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํˆฌ๋ช…์„ฑ, ๊ฑด๊ฐ•ยท๊ธฐํ›„ ๋ถ„์•ผ์˜ ์ œํ’ˆ ๋ฌด๊ฒฐ์„ฑ(product integrity), ์ถ”์ฒœ ์‹œ์Šคํ…œ์˜ ์‹ ๋ขฐ์„ฑ์„ ๋‹ด๋‹นํ–ˆ๋‹ค. ๋˜ํ•œ 2018๋…„๋ถ€ํ„ฐ 2020๋…„๊นŒ์ง€ ํ—ˆ์œ„์ •๋ณด, ์‚ฌํšŒ์  ์–‘๊ทนํ™”, ์„ ๊ฑฐ ๊ด€๋ จ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃจ๋Š” ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋งค๋‹ˆ์ €๋กœ ํ™œ๋™ํ•œ ๋ฐ” ์žˆ๋‹ค.

ํ•œํŽธ ๋ฐœ๋กœ๋„ค๋Š” โ€œAI ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์ค‘๋Œ€ํ•˜๊ณ  ์˜ํ–ฅ๋ ฅ ์žˆ๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋Š” ๋‘ ๊ธฐ์—…์˜ ์ตœ์ „์„ ์—์„œ ๋ฐฐ์šฐ๊ณ  ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ๋งค์šฐ ๋œป๊นŠ๊ฒŒ ์ƒ๊ฐํ•œ๋‹คโ€๋ฉฐ ์•คํŠธ๋กœํ”ฝ ํ•ฉ๋ฅ˜ ์†Œ๊ฐ์„ ๋ฐํ˜”๋‹ค.
jihyun.lee@foundryco.com

McKinsey comienza a evaluar a los candidatos a puestos de trabajo con un asistente de IA

16 January 2026 at 03:56

McKinsey estรก probando un nuevo enfoque de contrataciรณn en el que los reciรฉn graduados pueden utilizar el asistente de IA de la consultora, Lilli, durante las entrevistas de trabajo. El objetivo es reflejar cรณmo se espera que los consultores trabajen en el futuro con herramientas de IA, segรบn informa el Financial Times.

En el programa piloto, los candidatos analizaron un caso con la ayuda de Lilli y fueron evaluados en funciรณn de su capacidad para formular preguntas, interpretar las respuestas y situarlas en el contexto del cliente. La prueba no es esencial para la contrataciรณn, sino que tiene por objeto medir la curiosidad y la capacidad de juicio.

Si la prueba tiene รฉxito, el elemento de IA se introducirรก en todos los procesos de selecciรณn. La propia McKinsey se ha negado a comentar la informaciรณn publicada por el Financial Times.

โŒ
โŒ