โŒ

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

AI coding work is shifting fast, and your career path may split

23 January 2026 at 05:38

AI coding work is rising fast, but the biggest payoff isnโ€™t evenly shared. A Science analysis suggests seasoned developers get stronger gains than newcomers, which could reshape how you learn, interview, and prove value.

The post AI coding work is shifting fast, and your career path may split appeared first on Digital Trends.

Apple Joins the Wearable AI Race With a Pin-Like Device

22 January 2026 at 13:01

Apple is reportedly developing an AI-powered wearable pin with cameras and microphones, but its purpose, privacy impact, and launch remain uncertain.

The post Apple Joins the Wearable AI Race With a Pin-Like Device appeared first on TechRepublic.

Apple Joins the Wearable AI Race With a Pin-Like Device

22 January 2026 at 13:01

Apple is reportedly developing an AI-powered wearable pin with cameras and microphones, but its purpose, privacy impact, and launch remain uncertain.

The post Apple Joins the Wearable AI Race With a Pin-Like Device appeared first on TechRepublic.

Google adds your Gmail and Photos to AI Mode to enable "Personal Intelligence"

22 January 2026 at 11:35

Google believes AI is the future of search, and it's not shy about saying it. After adding account-level personalization to Gemini earlier this month, it's now updating AI Mode with so-called "Personal Intelligence." According to Google, this makes the bot's answers more useful because they are tailored to your personal context.

Starting today, the feature is rolling out to all users who subscribe to Google AI Pro or AI Ultra. However, it will be a Labs feature that needs to be explicitly enabled (subscribers will be prompted to do this). Google tends to expand access to new AI features to free accounts later on, so free users will most likely get access to Personal Intelligence in the future. Whenever this option does land on your account, it's entirely optional and can be disabled at any time.

If you decide to integrate your data with AI Mode, the search bot will be able to scan your Gmail and Google Photos. That's less extensive than the Gemini app version, which supports Gmail, Photos, Search, and YouTube history. Gmail will probably be the biggest contributor to AI Modeโ€”a great many life events involve confirmation emails. Traditional search results when you are logged in are adjusted based on your usage history, but this goes a step further.

Read full article

Comments

ยฉ Google

Wikipedia volunteers spent years cataloging AI tells. Now there's a plugin to avoid them.

21 January 2026 at 07:15

On Saturday, tech entrepreneur Siqi Chen released an open source plugin for Anthropic's Claude Code AI assistant that instructs the AI model to stop writing like an AI model. Called "Humanizer," the simple prompt plugin feeds Claude a list of 24 language and formatting patterns that Wikipedia editors have listed as chatbot giveaways. Chen published the plugin on GitHub, where it has picked up over 1,600 stars as of Monday.

"It's really handy that Wikipedia went and collated a detailed list of 'signs of AI writing,'" Chen wrote on X. "So much so that you can just tell your LLM to... not do that."

The source material is a guide from WikiProject AI Cleanup, a group of Wikipedia editors who have been hunting AI-generated articles since late 2023. French Wikipedia editor Ilyas Lebleu founded the project. The volunteers have tagged over 500 articles for review and, in August 2025, published a formal list of the patterns they kept seeing.

Read full article

Comments

ยฉ Getty Images

Federal CIOs want AI-improved CX; customers want assured security

ย 

Interview transcript:

Terry Gerton Gartnerโ€™s just done a new survey thatโ€™s very interesting around how citizens perceive how they should share data with the government. Give us a little bit of background on why you did the survey.

Mike Shevlin Weโ€™re always looking at, and talk to people about, doing some โ€œvoice of the customer,โ€ those kinds of things as [government agencies] do development. This was an opportunity for us to get a fairly large sample voice-of-the-customer response around some of the things we see driving digital services.

Terry Gerton Thereโ€™s some pretty interesting data that comes out of this. It says 61% of citizens rank secure data handling as extremely important, but only 41% trust the government to protect their personal information. Whatโ€™s driving that gap?

Mike Shevlin To some extent, we have to separate trust in government with the security pieces. You know, if we looked strictly at the, โ€œdo citizens expect us to secure their data?โ€ You know, thatโ€™s up in the 90% range. So weโ€™re really looking at something a little bit different with this. Weโ€™re looking at, and I think one of the big points that came out of the survey, is citizensโ€™ trust in how government is using their data. To think of this, you have to think about kind of the big data. So big data is all about taking a particular dataset and then enriching it with data from other datasets. And as a result, you can form some pretty interesting pictures about people. One of the things that jumps to mind for me, and again, more on the state and local level, is automated license plate readers. What can government learn about citizens through the use of automated license plates readers? Well, you know, it depends on how we use them, right? So if weโ€™re using it and weโ€™re keeping that data in perpetuity, we can probably get a pretty good track on where you are, where youโ€™ve been, the places that you visit. But thatโ€™s something that citizens are, of course, concerned about their privacy on. So I think that the drop is not between, are you doing the right things to secure my data while youโ€™re using it, but more about, okay, are you using it for the right purposes? How do I know that? How do you explain it to me?

Terry Gerton It seems to me like the average person probably trusts their search engine more than they trust the government to keep that kind of data separate and secure. But this is really important as the government tries to deliver easier front-facing interfaces for folks, especially consumers of human services programs like SNAP and homeless assistance and those kinds of things. So how important is transparency in this government use of data? And how can the government meet that expectation while still perhaps being able to enrich this data to make the consumer experience even easier?

Mike Shevlin When I come into a service, I want you to know who I am. I want to know that youโ€™re providing me a particular service, that itโ€™s customized. You know, you mentioned the search engine. Does Google or Amazon know you very well? Yeah, Iโ€™d say they probably know you better than the government knows you. So my expectation is partly driven out of my experience with the private sector. But at the same time, particularly since all the craze around generative AI, citizens are now much more aware of what else data can do, and as a result, theyโ€™re looking for much more control around their own privacy. If you look at, for example in Europe with the GDPR, theyโ€™ve got some semblance of control. I can opt out. I can have my data removed. The U.S. has an awful lot of privacy legislation, but nothing as overarching as that. Weโ€™ve got HIPAA. Weโ€™ve got protections around personally identifiable information. But we donโ€™t have something as overarching as that in Spain. In Spain, if I deal with the government, I can say yes, I only want this one agency to use my data and I donโ€™t want it going anywhere else. We donโ€™t have that in the U.S. I think itโ€™s something that is an opportunity for government digital services to begin to make some promises to citizens and then fulfill those promises or prove that theyโ€™re fulfilling those promises.

Terry Gerton Iโ€™m speaking with Mike Shevlin. Heโ€™s senior director analyst at Gartner Research. Well, Mike, you introduced AI to the conversation, so Iโ€™m going to grab that and privacy. How does AI complicate trust and what role does explainable AI play here, in terms of building citizen trust that their privacy will be protected?

Mike Shevlin I think AI complicates trust in part from generative AI and in part from our kind of mistrust in computers as a whole, as entities, as we start to see these things become more human-like. And thatโ€™s really, I think, the big thing that generative AI did to us โ€” now we can talk to a computer and get a result. The importance of the explainable AI is because what weโ€™ve seen is these answers arenโ€™t right from generative AI. But thatโ€™s not what itโ€™s built for. Itโ€™s built to make something that sounds like a human. I think the explainable AI part is particularly important for government because I want to know as a citizen, if youโ€™re using my data, if youโ€™re then running it through an AI model and coming back with a result that affects my life, my liberty, my prosperity, how do I know that that was the right answer? And thatโ€™s where the explainable AI pieces really come into play.ย  Generative AI is not going to do that, at least not right now, theyโ€™re working on it. But itโ€™s not, because it builds its decision tree as it evaluates the question, unlike some of the more traditional AI models, the machine learning or graph AI, where those decision trees are pre-built. So itโ€™s much easier to follow back through and say, this is why we got the answer we did. You canโ€™t really do that right now with gen AI.

Terry Gerton Weโ€™re talking to folks in federal agencies every day who are looking for ways to deploy AI, to streamline their backlogs, to integrate considerations, to flag applications where there may be actions that need to be taken, or pass through others that look like theyโ€™re clear. From the governmentโ€™s perspective, how much of that needs to be explained or disclosed to citizens?

Mike Shevlin Thatโ€™s one of the things I really like about the GDPR: It lays out some pretty simple rules around whatโ€™s the risk level associated with this. So for example, if the government is using AI to summarize a document, but then someone is reviewing that summary and making a decision on it, I have less concern than I have if that summary becomes the decision. So I think thatโ€™s the piece to really focus on as we look at this and some of the opportunities. Gartner recommends combining AI models, and this will become even more important as we move into the next era of agentic AI or AI agents, because now weโ€™re really going to start having the machines do things for us. And I think that explainability becomes really appropriate.

Terry Gerton What does this mean for contractors who are building these digital services? How can they think about security certifications or transparency features as theyโ€™re putting these new tools together?

Mike Shevlin The transparency features are incumbent upon government to ask for. The security pieces, you know, weโ€™ve got FedRAMP, we got some of the other pieces. But if you look at the executive orders on AI, transparency and explainability are one of the pillars that are in those executive orders. So, certainly, government entities should be asking for some of those things. Iโ€™m pulling from some law enforcement examples, because thatโ€™s usually my specific area of focus. But when I look at some of the Drone as a First Responder programs, and I think it was San Francisco that just released their โ€œhereโ€™s all the drone flights that we did, hereโ€™s why we did them,โ€ so that people can understand: Hey, yeah, this is some AI thatโ€™s involved in this, this is some remote gathering, but hereโ€™s what we did and why. And that kind of an audit into the system is huge for citizen confidence. I think those are the kinds of things that government should be thinking about and asking for in their solicitations. How do we prove to citizens that weโ€™re really doing the right thing? How can we show them that if we say weโ€™re going to delete this data after 30 days, weโ€™re actually doing that?

Terry Gerton So Mike, whatโ€™s your big takeaway from the survey results that you would want to make sure that federal agencies keep in mind as they go into 2026 and theyโ€™re really moving forward in these customer-facing services?

Mike Shevlin So my big takeaway is absolutely around transparency. Thereโ€™s a lot to be said for efficiency, thereโ€™s lot to be said for personalization. But I think the biggest thing that came from this survey for me was, we all know security is important. Weโ€™ve known that for a long time. Several administrations have talked about it as a big factor. And we have policies and standards around that. But the transparency pieces, I think, weโ€™re starting to get into that. We need to get in to that a little faster. I think thatโ€™s probably one of the quickest wins for government if we can do that.

The post Federal CIOs want AI-improved CX; customers want assured security first appeared on Federal News Network.

ยฉ Federal News Network

How to optimize LLMs for enterprise success

20 January 2026 at 06:15

Large language models (LLMs) have rapidly become a cornerstone of modern enterprise operations, powering everything from customer support chatbots to advanced analytics platforms. While these models offer unparalleled capabilities, they also pose significant challenges for organizationsโ€”mainly their size, resource demands and sometimes unpredictable behaviour. Enterprises often grapple with high operational costs, latency issues and the risk of generating inaccurate or irrelevant outputs (commonly referred to as hallucinations). To truly harness the potential of LLMs, businesses need practical strategies to optimise these models for efficiency, reliability and accuracy. One key technique that has gained traction is model distillation.

Understanding model distillation

Model distillation is a method used to transfer the knowledge and capabilities of a large, complex model (the teacher) into a smaller, more efficient model (the student). The goal is to retain the teacherโ€™s performance while making the student model lighter, faster and less resource-intensive. Distillation works by training the student to mimic the outputs or internal representations of the teacher, essentially โ€œdistillingโ€ the essence of the larger model into a compact form.

Why is this important for enterprises? Running massive LLMs can be costly and slow, especially in environments where quick responses and scalability are crucial. Model distillation provides a means to deploy powerful AI solutions without the heavy infrastructure burden, making it a practical choice for businesses seeking to strike a balance between performance and efficiency.

How model distillation works

  • Train the trainer/teacher model: Begin with a large, pre-trained language model that performs well on your target tasks.
  • Prepare the student model: Design a smaller, more efficient model architecture that will learn from the teacher.
How LLM model distillation works

Magesh Kasthuri

  • Distillation training: The student is trained using the teacherโ€™s outputs or โ€œsoft labels,โ€ learning to replicate its behaviour as closely as possible.
  • Evaluation and fine-tuning: Assess the studentโ€™s performance and, if necessary, fine-tune it to ensure it meets accuracy and reliability requirements.

Throughout this process, the student model becomes adept at handling enterprise tasks with far less computational overhead, making it ideal for real-time applications.

Model distillation in practice

Imagine a financial services company that uses an LLM to generate investment reports. The original model is highly accurate but slow and expensive to run. By applying model distillation, the company trains a smaller student model that produces nearly identical reports with a fraction of the resources. This distilled model can now deliver insights in real-time, enabling analysts to make faster decisions while cutting operational costs.

In another scenario, a healthcare provider deploys an LLM-based assistant to help doctors access patient information and medical guidelines. The full-scale model offers excellent recommendations but struggles with latency on edge devices. After distillation, the student model fits comfortably on hospital servers, providing instant responses and maintaining data privacy.

Industrial use cases: Real-time scenarios across sectors

  • Financial services: Distilled models power fraud detection systems, delivering rapid alerts without draining computational resources.
  • Healthcare: Hospitals use distilled LLMs for triaging patient queries and supporting clinical decisions at the point of care.
  • Customer service: Call centres deploy compact chatbots trained via distillation to handle large volumes of queries efficiently.
  • Retail: E-commerce platforms run product recommendation engines using distilled models to personalise shopping experiences in real time.

Framework for model distillation: Optimizing LLMs for enterprises

To systematically optimise LLMs for enterprise use, a robust framework for model distillation is essential. Hereโ€™s a stepwise approach designed for IT professionals:

  • Assessment: Identify the target tasks and performance benchmarks required for your business operations.
  • Teacher model selection: Choose a high-performing LLM as your teacher, ensuring it excels at your chosen tasks.
  • Student model design: Architect a smaller model that can be trained efficiently while retaining core capabilities.
  • Distillation training: Use the teacherโ€™s outputs to guide the student, focusing on both output accuracy and internal representations.
How LLM model distillation works

Magesh Kasthuri

  • Validation: Rigorously test the student model against real-world data to spot hallucinations and inaccuracies.
  • Iterative fine-tuning: Continuously improve the student model by refining its training data and adjusting its architecture as needed.
  • Deployment: Integrate the distilled model into your enterprise systems, monitoring performance and updating as required.

How the framework reduces hallucinations and improves accuracy

A key challenge with LLMs is their tendency to โ€œhallucinateโ€โ€”generating plausible-sounding but incorrect information. The distillation framework addresses this by incorporating validation steps that test the student model against curated datasets and real-world scenarios. By exposing the student to diverse data during training and fine-tuning, enterprises can reduce the risk of hallucinations and ensure outputs remain reliable. Furthermore, ongoing monitoring and iterative updates help maintain model accuracy as business needs evolve.

Practical considerations and implementation tips

  • Customise training data: Use enterprise-specific datasets during distillation to align the model with your organizational context.
  • Monitor model outputs: Regularly review the studentโ€™s responses to catch emerging issues early.
  • Plan for scale: Design the distilled model architecture to support future growth and integration with other systems.
  • Collaborate across teams: Involve domain experts during validation to ensure the model meets real-world requirements.

Benefits for large enterprises

For large organizations, model distillation offers several compelling advantages:

  • Cost savings: Reduced computational demands lead to lower infrastructure and energy costs.
  • Improved reliability: Streamlined models respond faster and are easier to maintain, ensuring consistent service.
  • Scalability: Lightweight models can be deployed across multiple platforms and locations, supporting enterprise expansion.
  • Enhanced accuracy: The frameworkโ€™s focus on validation and fine-tuning helps minimise errors and hallucinations.

Conclusion

Model distillation stands out as a key technique for making large language models fit for enterprise operations. By transferring knowledge from complex models to efficient students, businesses can enjoy the best of both worldsโ€”powerful AI capabilities without the heavy resource burden. As enterprises continue to adopt AI at scale, model distillation will play a pivotal role in ensuring solutions are cost-effective, reliable and tailored to real-world needs. IT professionals seeking to maximise the value of LLMs should consider integrating distillation frameworks into their optimization strategies, paving the way for smarter, more agile enterprise AI.

This article was made possible by our partnership with the IASAโ€ฏChief Architect Forum. The CAFโ€™s purpose is to test, challenge and support the art and science of Business Technology Architecture and its evolution over time as well as grow the influence and leadership of chief architects both inside and outside the profession. The CAF is a leadership community of theโ€ฏIASA, the leading non-profit professional association for business technology architects.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

AI resurrection can turn your grief into โ€œspectral laborโ€

20 January 2026 at 05:10

AI resurrection tools can make the dead โ€œtalk,โ€ but researchers argue that comfort isnโ€™t the point. Their โ€œspectral laborโ€ framework warns that voice, likeness, and emotion can be extracted and monetized without consent.

The post AI resurrection can turn your grief into โ€œspectral laborโ€ appeared first on Digital Trends.

๋กœ์ปฌ ์ปดํ“จํŒ…์œผ๋กœ ๋„˜์–ด๊ฐ€๋Š” AI ์ถ”๋ก ยทยทยทโ€˜์—ฃ์ง€ AIโ€™ ํŠธ๋ Œ๋“œ ํ•œ๋ˆˆ์— ๋ณด๊ธฐ

20 January 2026 at 03:02

์—ฃ์ง€ AI์™€ ๊ด€๋ จํ•ด ๋ ˆ๋“œํ–‡์˜ ์—ฃ์ง€ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ๋ถ€๋ฌธ ์‹œ๋‹ˆ์–ด ๋””๋ ‰ํ„ฐ ์กฐ์Šˆ์•„ ๋ฐ์ด๋น„๋“œ๋Š” โ€œ๊ธ€๋กœ๋ฒŒ ์‹œ์žฅ์€ ํ˜„์žฌ ๊ฐ€ํŒŒ๋ฅธ ์„ฑ์žฅ ๊ถค๋„์— ์˜ฌ๋ผ ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์‹ค์ œ๋กœ ์—ฃ์ง€ AI ์‹œ์žฅ ๊ทœ๋ชจ๋Š” 2034๋…„๊นŒ์ง€ 1,430์–ต ๋‹ฌ๋Ÿฌ์— ์ด๋ฅผ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๊ณ  ์žˆ๋‹ค.

์—ฃ์ง€ AI์˜ ์„ฑ์žฅ์„ธ๋Š” ์—…๊ณ„ ์ „๋ฐ˜์ด ๋จธ์‹ ๋Ÿฌ๋‹(ML) ๋ชจ๋ธ์— ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต์‹œํ‚ค๋Š” AI ํ•™์Šต ์ค‘์‹ฌ์—์„œ ๋ฒ—์–ด๋‚˜, ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋ชจ๋ธ์„ ์‹ค์ œ๋กœ ํ™œ์šฉํ•ด ์ง€์‹์„ ์ ์šฉํ•˜๊ฑฐ๋‚˜ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ถ”๋ก  ์ค‘์‹ฌ์œผ๋กœ ์ด๋™ํ•˜๋Š” ํ๋ฆ„๊ณผ ๋งž๋ฌผ๋ ค ์žˆ๋‹ค.

์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌยทํ†ตํ•ฉ ๊ธฐ์—… ์ธํฌ๋งคํ‹ฐ์นด์˜ ์ œํ’ˆ ๊ด€๋ฆฌ ๋ถ€๋ฌธ ๋ถ€์‚ฌ์žฅ ์ˆ˜๋ฐ‹ ์•„๊ทธ๋ผ์™ˆ์€ โ€œ๊ฐ•๋ ฅํ•˜๋ฉด์„œ๋„ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ AI ํ”„๋กœ์„ธ์„œ์˜ ๋ฐœ์ „๊ณผ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท(IoT) ๊ธฐ๊ธฐ์˜ ํ™•์‚ฐ์ด ์ด๋Ÿฌํ•œ ํ๋ฆ„์„ ๊ฐ€์†ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณต์žกํ•œ AI ๋ชจ๋ธ์„ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ ์ง์ ‘ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ด์™€ ๊ด€๋ จํ•ด ๋ชจ๊ฑด์Šคํƒ ๋ฆฌ ๋ธ”๋กœ๊ทธ๋Š” AI ์‚ฐ์—…์ด โ€œ์ƒˆ๋กญ๊ณ , ์ž ์žฌ์ ์œผ๋กœ ํ›จ์”ฌ ๋” ํฐ ๋‹จ๊ณ„์ธ AI ์ถ”๋ก ์œผ๋กœ ์ ‘์–ด๋“ค๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ•˜๋ฉฐ, ์ด ๋‹จ๊ณ„์˜ ํ•ต์‹ฌ ํŠน์ง•์œผ๋กœ ์†Œ๋น„์ž์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ๊ธฐ์—… ์ „๋ฐ˜์— ๊ฑธ์ณ AI ๋ชจ๋ธ์ด ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ฑ„ํƒ๋œ๋‹ค๋Š” ์ ์„ ์งš์—ˆ๋‹ค.

์—ฃ์ง€ ์ปดํ“จํŒ…์€ ํผ๋ธ”๋ฆญ ํด๋ผ์šฐ๋“œ์™€๋Š” ๋‹ค๋ฅธ ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํผ๋ธ”๋ฆญ ํด๋ผ์šฐ๋“œ๋Š” ํ™•์žฅ์„ฑ๊ณผ ์‚ฌ์šฉ ํŽธ์˜์„ฑ ์ธก๋ฉด์—์„œ ๊ฐ•์ ์ด ์žˆ์ง€๋งŒ, ์ถ”๋ก  ๊ด€์ ์—์„œ๋Š” ํ•œ๊ณ„๋„ ๋ถ„๋ช…ํ•˜๋‹ค. ์ง€์—ฐ ์‹œ๊ฐ„์ด ๋Š˜์–ด๋‚˜๊ณ  ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ์šฐ๋ ค๊ฐ€ ์ปค์ง€๋ฉฐ, ์—ฐ์‚ฐ ์ฒ˜๋ฆฌ์™€ ๋ฐ์ดํ„ฐ ์œ ์ž…ยท์œ ์ถœ ๊ณผ์ •์—์„œ ๋น„์šฉ ๋ถ€๋‹ด์ด ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ์ ์ด ๋Œ€ํ‘œ์ ์ด๋‹ค. ๋ฐ˜๋ฉด AI๋ฅผ ์—ฃ์ง€์—์„œ ์‹คํ–‰ํ•˜๋ฉด ์ด๋Ÿฌํ•œ ๋ฌธ์ œ ์ƒ๋‹น ๋ถ€๋ถ„์„ ํ•ด์†Œํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” โ€œ์—ฃ์ง€ AI๋Š” ์ง€์—ฐ ์‹œ๊ฐ„ ๊ฐ์†Œ, ๋น„์šฉ ์ ˆ๊ฐ, ๋ณด์•ˆ๊ณผ ํ”„๋ผ์ด๋ฒ„์‹œ ๊ฐ•ํ™” ๋“ฑ ์—ฌ๋Ÿฌ ํ•ต์‹ฌ์ ์ธ ์ด์ ์„ ์ œ๊ณตํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์•„๋งˆ์กด์ด ์ตœ๊ทผ ์ผ๋ถ€ ML ํ•™์Šต ์ž‘์—…์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” GPU ์ด์šฉ ์š”๊ธˆ์„ 15% ์ธ์ƒํ•œ ์‚ฌ๋ก€์ฒ˜๋Ÿผ, ์ค‘์•™ ์ง‘์ค‘ํ˜• ํ•™์Šต์„ ์ค‘์‹ฌ์œผ๋กœ ํ•œ ํด๋ผ์šฐ๋“œ AI ๋น„์šฉ์€ ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฐฉํ–ฅ์œผ๋กœ ํ˜๋Ÿฌ๊ฐ€๊ณ  ์žˆ๋‹ค. IDC๋Š” 2027๋…„๊นŒ์ง€ CIO์˜ 80%๊ฐ€ AI ์ถ”๋ก  ์ˆ˜์š”๋ฅผ ์ถฉ์กฑํ•˜๊ธฐ ์œ„ํ•ด ํด๋ผ์šฐ๋“œ ์—…์ฒด์˜ ์—ฃ์ง€ ์„œ๋น„์Šค๋ฅผ ํ™œ์šฉํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ–ˆ๋‹ค.

๋‹ค๋งŒ ์ด๋Ÿฌํ•œ ์ „ํ™˜์ด ์ˆœํƒ„ํ•˜๊ฒŒ ์ด๋ค„์ง€์ง€๋Š” ์•Š์„ ์ „๋ง์ด๋‹ค. ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ๋†’์€ ์š”๊ตฌ, AI ์Šคํƒ์ด ์ฐจ์ง€ํ•˜๋Š” ํฐ ์‹œ์Šคํ…œ ์ž์› ๋ถ€๋‹ด, ํŒŒํŽธํ™”๋œ ์—ฃ์ง€ ์ƒํƒœ๊ณ„๋Š” ์—ฌ์ „ํžˆ ์ฃผ์š” ๊ณผ์ œ๋กœ ๋‚จ์•„์žˆ๋‹ค.

์ด ๊ธ€์—์„œ๋Š” ์—ฃ์ง€ AI๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ ํ˜„ํ™ฉ์„ ์‚ดํŽด๋ณด๊ณ , ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ AI๋ฅผ ์‹คํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๊ณผ ์šด์˜ ๋ฐฉ์‹, ๊ทธ๋ฆฌ๊ณ  AI ์‹œ๋Œ€์— ์ปดํ“จํŒ…์˜ ๋ฏธ๋ž˜๊ฐ€ ์–ด๋–ป๊ฒŒ ์ง„ํ™”ํ• ์ง€ ์ „๋ฐ˜์ ์œผ๋กœ ์งš์–ด๋ณธ๋‹ค.

์—ฃ์ง€ AI ์„ฑ์žฅ์„ ์ด๋„๋Š” ์š”์ธ

๋ฐ์ด๋น„๋“œ๋Š” โ€œ์—ฃ์ง€ AI ํ™•์‚ฐ์˜ ๊ฐ€์žฅ ํฐ ๋™์ธ์€ ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ์š”๊ตฌโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ค‘์•™ํ™”๋œ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ AI ์›Œํฌ๋กœ๋“œ์— ์˜์กดํ•˜๋Š” ๋Œ€์‹ , ์—ฃ์ง€์—์„œ ์ง์ ‘ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๋ฉด ๋ฐ์ดํ„ฐ๊ฐ€ ์ƒ์„ฑ๋˜๋Š” ์ง€์ ์—์„œ ์ฆ‰๊ฐ์ ์ธ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ํ•ต์‹ฌ์ด๋ผ๋Š” ๋ถ„์„์ด๋‹ค.

์—ฌ๋Ÿฌ ์ „๋ฌธ๊ฐ€๋„ ๊ฐ™์€ ์˜๊ฒฌ์„ ๋‚ด๋†“๊ณ  ์žˆ๋‹ค. ์ธํฌ๋งคํ‹ฐ์นด์˜ ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์—ฃ์ง€ AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์ „ํ•˜๋ฉฐ, ํŠนํžˆ ์‚ฐ์—… ํ˜„์žฅ์ด๋‚˜ ์ž๋™์ฐจ ๋ถ„์•ผ์ฒ˜๋Ÿผ ์ฐฐ๋‚˜์˜ ํŒ๋‹จ์ด ์ค‘์š”ํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ง€์—ฐ ์‹œ๊ฐ„ ๊ฐ์†Œ๊ฐ€ ๊ฐ€์žฅ ํฐ ์žฅ์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

๋˜ํ•œ ํด๋ผ์šฐ๋“œ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๋‚ด์ง€ ์•Š๊ณ ๋„ ML ๋ชจ๋ธ์— ๊ฐœ์ธ์ ์ด๊ฑฐ๋‚˜ ๊ธฐ์—… ๊ณ ์œ ์˜ ๋งฅ๋ฝ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ ค๋Š” ์ˆ˜์š” ์—ญ์‹œ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ์˜คํ”ˆ์†Œ์Šค ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ํ”Œ๋žซํผ ์ œ๊ณต์‚ฌ ํ…œํฌ๋Ÿด ํ…Œํฌ๋†€๋กœ์ง€์˜ ์‹œ๋‹ˆ์–ด ์Šคํƒœํ”„ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด์ด์ž AI ๊ธฐ์ˆ  ์ฑ…์ž„์ž์ธ ์š”ํ•œ ์А๋ผ์ด์–ด-์Šค๋ฏธ์Šค๋Š” โ€œํ”„๋ผ์ด๋ฒ„์‹œ๋Š” ๋งค์šฐ ๊ฐ•๋ ฅํ•œ ๋™์ธโ€์ด๋ผ๋ฉด์„œ, ์˜๋ฃŒ๋‚˜ ๊ธˆ์œต์ฒ˜๋Ÿผ ๊ทœ์ œ๊ฐ€ ์—„๊ฒฉํ•œ ์‚ฐ์—…์—์„œ๋Š” ๋ฏผ๊ฐํ•œ ์ •๋ณด๋ฅผ ๋กœ์ปฌ์—์„œ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ฒƒ์ด ๊ทœ์ œ ์ค€์ˆ˜๋ฅผ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์ˆ˜์„ธ(SUSE)์˜ ์—ฃ์ง€ ์‚ฌ์—… ๋ถ€๋ฌธ ๋ถ€์‚ฌ์žฅ ๊ฒธ ์ด๊ด„ ์ฑ…์ž„์ž ํ‚ค์Šค ๋ฐ”์‹ค ์—ญ์‹œ โ€œ์—ฃ์ง€ AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์€ ๋ถ„๋ช…ํžˆ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค. ๊ทธ๋Š” ์ œ์กฐ ๋ถ„์•ผ๋ฅผ ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋กœ ๊ผฝ์œผ๋ฉฐ, ๊ธฐ์—…์ด ์ƒ์‚ฐ ๋ผ์ธ์„ ์šด์˜ํ•˜๋Š” ๋Œ€ํ˜• ์„œ๋ฒ„๋ถ€ํ„ฐ ์†Œํ˜• ์„ผ์„œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์˜์—ญ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์‚ฌ์šฉ๋ก€์— ์—ฃ์ง€ AI ๋„์ž…์„ ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋กœํฌ์›ฐ ์˜คํ† ๋ฉ”์ด์…˜์— ๋”ฐ๋ฅด๋ฉด ์ œ์กฐ ๊ธฐ์—…์˜ 95%๊ฐ€ ํ–ฅํ›„ 5๋…„ ๋‚ด์— AI/ML, ์ƒ์„ฑํ˜• AI, ์ธ๊ณผ ๊ธฐ๋ฐ˜ AI์— ์ด๋ฏธ ํˆฌ์žํ–ˆ๊ฑฐ๋‚˜ ํˆฌ์ž๋ฅผ ๊ณ„ํšํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ 2024๋…„ ์ธํ…”์˜ CIO ๋ณด๊ณ ์„œ์—์„œ๋Š” ์ œ์กฐ ๋ถ„์•ผ ๋ฆฌ๋”์˜ 74%๊ฐ€ AI๊ฐ€ ๋งค์ถœ ์„ฑ์žฅ์— ๊ธฐ์—ฌํ•  ์ž ์žฌ๋ ฅ์ด ์žˆ๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค.

๋กœ์ปฌ AI ์—ฐ์‚ฐ์˜ ๊ฐ€์žฅ ํฐ ํšจ๊ณผ๋Š” ๋น„์šฉ ์ ˆ๊ฐ์ด๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์ „์†กํ•ด์•ผ ํ•  ๋ฐ์ดํ„ฐ ์–‘์ด ์ค„์–ด๋“ค๋ฉด์„œ ๋น„์šฉ๊ณผ ๋Œ€์—ญํญ์„ ํฌ๊ฒŒ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํŠน์ • ์›Œํฌ๋กœ๋“œ๋ฅผ ์—ฃ์ง€์—์„œ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ์‹์€ ๋น„์šฉ ์ ˆ๊ฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์—๋„ˆ์ง€ ์†Œ๋น„ ๊ฐ์†Œ์™€๋„ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ฒฐ๋œ๋‹ค. 2025๋…„ 1์›” ์•„์นด์ด๋ธŒ(Arxiv)์— ๋ฐœํ‘œ๋œ ๋…ผ๋ฌธ โ€˜ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์—ฃ์ง€ ํด๋ผ์šฐ๋“œ์˜ ์—๋„ˆ์ง€ ๋ฐ ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ ์ •๋Ÿ‰ํ™”โ€™์—์„œ๋Š” ์ˆœ์ˆ˜ ํด๋ผ์šฐ๋“œ ์ฒ˜๋ฆฌ ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•ด, ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ AI ์›Œํฌ๋กœ๋“œ์— ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์—ฃ์ง€ ํด๋ผ์šฐ๋“œ๋ฅผ ์ ์šฉํ•  ๊ฒฝ์šฐ ์กฐ๊ฑด์— ๋”ฐ๋ผ ์ตœ๋Œ€ 75%์˜ ์—๋„ˆ์ง€ ์ ˆ๊ฐ๊ณผ 80%๋ฅผ ์›ƒ๋„๋Š” ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ๋ฅผ ๊ฑฐ๋‘˜ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

ํ•ด๋‹น ๋…ผ๋ฌธ์˜ ์ €์ž์ธ ์‹œ์•„๋ฐ”์‹œ ์•Œ๋ผ๋ฌดํ‹ฐ๋Š” โ€œ์—ฃ์ง€ ์ฒ˜๋ฆฌ๋Š” ๋กœ์ปฌ ์ปดํ“จํŒ…์˜ ๋งฅ๋ฝ์„ ์ง์ ‘ ํ™œ์šฉํ•ด ์—ฐ์‚ฐ ๋ณต์žก๋„๋ฅผ ๋‚ฎ์ถ”๊ณ , ํด๋ผ์šฐ๋“œ ๊ทœ๋ชจ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ง‰๋Œ€ํ•œ ์—๋„ˆ์ง€ ์ˆ˜์š”๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

๋กœ์ปฌ AI๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธฐ์ˆ 

์—ฃ์ง€ AI ์„ฑ์žฅ์„ ์ด๋„๋Š” ์š”์ธ์€ ๋ถ„๋ช…ํ•ด ๋ณด์ด์ง€๋งŒ, ์ด๋ฅผ ์‹ค์ œ๋กœ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–ด๋–ค ๊ธฐ์ˆ ์ด ํ•„์š”ํ• ๊นŒ? ์ž์›์ด ์ œํ•œ๋œ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ AI ์—ฐ์‚ฐ์„ ์‹คํ–‰ํ•˜๋ ค๋ฉด ์†Œ๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ, ๊ฒฝ๋Ÿ‰ ํ”„๋ ˆ์ž„์›Œํฌ, ์ตœ์ ํ™”๋œ ๋ฐฐํฌ ๋ฐฉ์‹์ด ๊ฒฐํ•ฉ๋ผ์•ผ ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค.

์†Œ๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(SLM)

์ง€๊ธˆ๊นŒ์ง€ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์—…์€ ์•คํŠธ๋กœํ”ฝ์˜ ํด๋กœ๋“œ, ๊ตฌ๊ธ€์˜ ์ œ๋ฏธ๋‚˜์ด, ์˜คํ”ˆAI์˜ GPT ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ๋ฒ”์šฉ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜์˜ LLM์„ ํ™œ์šฉํ•ด AI๋ฅผ ์ค‘์•™์—์„œ ์šด์˜ํ•ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ AI ๋ชจ๋ธ ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•˜๋ฉด์„œ ์ด๋Ÿฐ ๊ตฌ์กฐ์—๋„ ๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค.

ํŠนํžˆ ์ž์ฒด ๋ฐฐํฌ๊ฐ€ ๊ฐ€๋Šฅํ•œ SLM์€ ํŠน์ • ์‚ฌ์šฉ๋ก€์—์„œ ํด๋ผ์šฐ๋“œ AI ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ์˜์กด๋„๋ฅผ ๋‚ฎ์ถ”๊ณ  ์žˆ๋‹ค. ํ…œํฌ๋Ÿด ํ…Œํฌ๋†€๋กœ์ง€์˜ ์А๋ผ์ด์–ด-์Šค๋ฏธ์Šค๋Š” โ€œSLM์˜ ์„ฑ๋Šฅ์ด ๋น ๋ฅด๊ฒŒ ํ–ฅ์ƒ๋˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ, ์ตœ๊ทผ ๊ธฐ์ˆ  ์ง„์ „์˜ ์‚ฌ๋ก€๋กœ ์˜คํ”ˆAI์˜ GPT-OSS์™€ ๊ณ„์ธต์  ์ถ”๋ก  ๋ชจ๋ธ์„ ์–ธ๊ธ‰ํ–ˆ๋‹ค.

์ตœ์ ํ™” ์ „๋žต

๋กœ์ปฌ AI์˜ ์‹œ์Šคํ…œ ๋ถ€๋‹ด์„ ์ค„์ด๋Š” ๊ฒƒ์€ ์—ฐ์‚ฐ ๋Šฅ๋ ฅ๊ณผ ๋Œ€์—ญํญ์ด ์ œํ•œ๋œ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค ํ™˜๊ฒฝ์—์„œ ํŠนํžˆ ์ค‘์š”ํ•˜๋‹ค. ์ด์— ๋”ฐ๋ผ SLM์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ธฐ์ˆ ์ด ์—ฃ์ง€ AI ๊ตฌํ˜„์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ํ•ต์‹ฌ ์˜์—ญ์œผ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค.

๋Œ€ํ‘œ์ ์ธ ์ „๋žต ๊ฐ€์šด๋ฐ ํ•˜๋‚˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์ธ ์–‘์žํ™”๋‹ค. ์–‘์žํ™”๋Š” ๋ชจ๋ธ ํฌ๊ธฐ์™€ ์—ฐ์‚ฐ ์š”๊ตฌ๋Ÿ‰์„ ์ค„์ด๋Š” ๋ฐฉ์‹์œผ๋กœ, ์—ฃ์ง€ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ ํ˜•ํƒœ๋กœ AI ๋ชจ๋ธ์„ ๊ฒฝ๋Ÿ‰ํ™”ํ•œ๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด NPU, ๊ตฌ๊ธ€์˜ ์—ฃ์ง€ TPU, ์• ํ”Œ์˜ ๋‰ด๋Ÿด ์—”์ง„, ์—”๋น„๋””์•„ ์ ฏ์Šจ ๋””๋ฐ”์ด์Šค์™€ ๊ฐ™์€ ํŠนํ™” ํ•˜๋“œ์›จ์–ด์—์„œ SLM์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ž์ฒด ์™„๊ฒฐํ˜• ํŒจํ‚ค์ง€ ์—ญ์‹œ ์—ฃ์ง€ AI๋ฅผ ๋Œ€๊ทœ๋ชจ๋กœ ์šด์˜ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” ์šด์˜์ฒด์ œ, ํ•˜๋“œ์›จ์–ด ๋“œ๋ผ์ด๋ฒ„, AI ๋ชจ๋ธ์„ ํ•˜๋‚˜๋กœ ๋ฌถ์€ ์ฆ‰์‹œ ๋ฐฐํฌ ๊ฐ€๋Šฅํ•œ ๋ฒ ์ด์Šค ์ด๋ฏธ์ง€๊ฐ€ ์—ฃ์ง€ AI ์ƒ์šฉํ™”๋ฅผ ํ˜„์‹คํ™”ํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—ฃ์ง€ ๋Ÿฐํƒ€์ž„ ๋ฐ ํ”„๋ ˆ์ž„์›Œํฌ

์ƒˆ๋กœ์šด ๋Ÿฐํƒ€์ž„ ๋ฐ ํ”„๋ ˆ์ž„์›Œํฌ ์—ญ์‹œ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ์˜ AI ์ถ”๋ก ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” ๊ฒฝ๋Ÿ‰ ์ƒ์„ฑํ˜• AI ๋Ÿฐํƒ€์ž„์ธ llama.cpp์™€ ํ•จ๊ป˜, ๋กœ์ปฌ ํ•˜๋“œ์›จ์–ด์—์„œ ๋ชจ๋ธ ์ถ”๋ก ์„ ์ง€์›ํ•˜๋Š” ์˜คํ”ˆ๋น„๋…ธ(OpenVINO)์™€ ๋ผ์ดํŠธRT(LiteRT, ์ด์ „ ํ…์„œํ”Œ๋กœ ๋ผ์ดํŠธ) ๊ฐ™์€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์–ธ๊ธ‰ํ–ˆ๋‹ค.

์•„๊ทธ๋ผ์™ˆ์€ โ€œllama.cpp์™€ GGUF ๋ชจ๋ธ ํฌ๋งท ๊ฐ™์€ ํ”„๋กœ์ ํŠธ๋Š” ๋‹ค์–‘ํ•œ ์†Œ๋น„์ž์šฉ ๋””๋ฐ”์ด์Šค์—์„œ ๊ณ ์„ฑ๋Šฅ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ณ  ์žˆ๋‹ค. MLC LLM๊ณผ ์›นLLM(WebLLM) ์—ญ์‹œ ์›น ๋ธŒ๋ผ์šฐ์ €์™€ ๋‹ค์–‘ํ•œ ๋„ค์ดํ‹ฐ๋ธŒ ํ”Œ๋žซํผ์—์„œ AI๋ฅผ ์ง์ ‘ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์žฅํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ํ˜ธํ™˜์„ฑ

์—ฃ์ง€ AI๊ฐ€ ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ์ƒํƒœ๊ณ„ ๋ฐ ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค์™€์˜ ํ˜ธํ™˜์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ ์—ญ์‹œ ์ค‘์š”ํ•œ ๊ณผ์ œ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค. ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค๊ฐ€ ์ด๋ฏธ ์—ฃ์ง€ ํ™˜๊ฒฝ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋กœ๋Š” โ€˜์ž์ฒด ํ˜ธ์ŠคํŒ… AI๋ฅผ ์œ„ํ•œ ์˜คํ”ˆ์†Œ์Šค ํ‘œ์ค€โ€™์œผ๋กœ ์†Œ๊ฐœ๋˜๋Š” ์ผ€์ด์„œ๋ธŒ(KServe)๊ฐ€ ์žˆ๋‹ค. ์ผ€์ด์„œ๋ธŒ๋Š” ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค ํ™˜๊ฒฝ์—์„œ ์—ฃ์ง€ ์ถ”๋ก ์„ ์ง€์›ํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋‹ค.

๋˜ ๋‹ค๋ฅธ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋กœ๋Š” ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ์ปดํ“จํŒ… ์žฌ๋‹จ(CNCF)์ด ์šด์˜ํ•˜๋Š” ์ƒŒ๋“œ๋ฐ•์Šค ํ”„๋กœ์ ํŠธ ์•„ํฌ๋ฆฌ(Akri)๊ฐ€ ๊ผฝํžŒ๋‹ค. ์ˆ˜์„ธ์˜ ๋ฐ”์‹ค์€ โ€œ์•„ํฌ๋ฆฌ๋Š” ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ ๋‹ค์–‘ํ•œ ๋™์  ๋””๋ฐ”์ด์Šค์™€ ๊ฐ„ํ—์ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜๋Š” ๋ฆฌํ”„ ๋””๋ฐ”์ด์Šค๋ฅผ ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค์—์„œ ์‰ฝ๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“ ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์•„ํฌ๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜๋ฉด IP ์นด๋ฉ”๋ผ, ์„ผ์„œ, USB ๋””๋ฐ”์ด์Šค ๋“ฑ ๋‹ค์–‘ํ•œ ์—”๋“œํฌ์ธํŠธ๋ฅผ ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค ๋ฆฌ์†Œ์Šค๋กœ ๋…ธ์ถœํ•  ์ˆ˜ ์žˆ์–ด, ํ•ด๋‹น ํ•˜๋“œ์›จ์–ด์— ์˜์กดํ•˜๋Š” ์—ฃ์ง€ AI ์›Œํฌ๋กœ๋“œ๋ฅผ ๋ณด๋‹ค ์†์‰ฝ๊ฒŒ ๋ฐฐํฌํ•˜๊ณ  ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค์—์„œ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ฐœ๋ฐฉํ˜• ํ‘œ์ค€

๋งˆ์ง€๋ง‰์œผ๋กœ ์—ฃ์ง€ AI ํ™•์‚ฐ ๊ณผ์ •์—์„œ ๊ฐœ๋ฐฉํ˜• ์‚ฐ์—… ํ‘œ์ค€์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋ฐ”์‹ค์€ โ€œ๋น ๋ฅด๊ฒŒ ํ™•์žฅ๋˜๊ณ  ์žˆ๋Š” ์—ฃ์ง€ AI ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด ํ™˜๊ฒฝ์€ ์‹ฌ๊ฐํ•œ ์ƒํ˜ธ์šด์šฉ์„ฑ ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ๋ฆฌ๋ˆ…์Šค ์žฌ๋‹จ์ด ์ฃผ๋„ํ•˜๋Š” ๋งˆ๊ณ (Margo)์™€ ๊ฐ™์€ ํ”„๋กœ์ ํŠธ๊ฐ€ ์‚ฐ์—…์šฉ ์—ฃ์ง€ ์ž๋™ํ™” ๋ถ„์•ผ์—์„œ ํ‘œ์ค€์„ ์ •๋ฆฝํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๋‚ด๋‹ค๋ดค๋‹ค.

์ด์™€ ํ•จ๊ป˜ ONNX๋„ ์˜จ๋””๋ฐ”์ด์Šค AI ์ถ”๋ก ์„ ์œ„ํ•œ ๊ฒฝ์Ÿ ํ”„๋ ˆ์ž„์›Œํฌ ๊ฐ„ ์ƒํ˜ธ์šด์šฉ์„ฑ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋„์›€์ด ๋  ํ‘œ์ค€์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค.

์—ฃ์ง€ AI์˜ ํ˜„์‹ค์  ์žฅ๋ฒฝ

๊ธฐ์ˆ  ์ž์ฒด๋Š” ์ด๋ฏธ ๋งˆ๋ จ๋ผ ์žˆ์ง€๋งŒ, ์—ฃ์ง€ AI๋ฅผ ์‹ค์ œ๋กœ ์šด์˜ํ•˜๋Š” ๋ฐฉ์‹์€ ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋‹ค. ๊ฐœ๋… ์ฆ๋ช… ์ˆ˜์ค€์—์„œ ๋ฒ—์–ด๋‚˜ ์—ฃ์ง€ AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋ณธ๊ฒฉ์ ์ธ ์šด์˜ ํ™˜๊ฒฝ์œผ๋กœ ์˜ฎ๊ธฐ๊ธฐ๊นŒ์ง€๋Š” ์—ฌ๋Ÿฌ ๊ณผ์ œ๋ฅผ ๊ทน๋ณตํ•ด์•ผ ํ•œ๋‹ค.

์•„๊ทธ๋ผ์™ˆ์€ โ€œ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋Š” ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค๊ฐ€ ์ง€๋‹Œ ์ž์› ์ œ์•ฝโ€์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ง‰๋Œ€ํ•œ ์—ฐ์‚ฐ ์ž์›์„ ์š”๊ตฌํ•˜๋Š” ํฌ๊ณ  ๋ณต์žกํ•œ AI ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ๋”ฐ๋ฅธ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ž์›์ด ์ œํ•œ๋œ ํ•˜๋“œ์›จ์–ด ํ™˜๊ฒฝ์— ๋งž๊ฒŒ ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ์ตœ์ ํ™”ํ•˜๋ฉด์„œ๋„, ์‚ฌ์šฉ์ž๊ฐ€ ๊ธฐ๋Œ€ํ•˜๋Š” ๊ณ ์„ฑ๋Šฅ ์ƒ์œ„ ๋ชจ๋ธ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋ฅผ ์œ ์ง€ํ•ด์•ผ ํ•œ๋‹ค๋Š” ์  ์—ญ์‹œ ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œ๋‹ค.

๋˜ํ•œ ์—ฃ์ง€ AI ์šด์˜์— ๋Œ€ํ•œ ์‹ค๋ฌด ๊ฒฝํ—˜๋„ ์•„์ง ์ถฉ๋ถ„ํžˆ ์ถ•์ ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” โ€œํŠนํ™”๋œ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค๋Š” ํ•˜๋“œ์›จ์–ด ๊ตฌ์„ฑ์ด ๋ณต์žกํ•˜๊ณ , ๋Œ€๋ถ€๋ถ„ ์ฆ‰์‹œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ƒํƒœ๋กœ ๋™์ž‘ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์ด ์ฃผ์š” ์žฅ์• ๋ฌผโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ์ตœ์ „๋ฐฉ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๊ณ  ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋ฉฐ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์—”๋“œํˆฌ์—”๋“œ ํ”Œ๋žซํผ์ด ๋ถ€์กฑํ•ด, ํ˜„์žฌ๋กœ์„œ๋Š” ๋ณต์žกํ•œ ์ˆ˜์ž‘์—… ๋ฐฉ์‹์— ์˜์กดํ•  ์ˆ˜๋ฐ–์— ์—†๋Š” ์ƒํ™ฉ์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๋ฐ”์‹ค์€ โ€œ์—ฃ์ง€ AI์˜ ์ฃผ์š” ๊ณผ์ œ๋Š” ํŒŒํŽธํ™”๋œ ์ƒํƒœ๊ณ„โ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค. ๊ทธ๋Š” โ€œํ‘œ์ค€ํ™”๋˜๊ณ  ์„ฑ์ˆ™ํ•œ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ๊ณผ ๋‹ฌ๋ฆฌ, ์—ฃ์ง€ AI๋Š” ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด, ํ†ต์‹  ํ”„๋กœํ† ์ฝœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๊ณตํ†ต๋œ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ๋ถ€์กฑํ•˜๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฐ์—… ์ „๋ฐ˜์˜ ํŒŒํŽธํ™”๋Š” ๋””๋ฐ”์ด์Šค๋ณ„๋กœ ๊ฒฝ์Ÿ์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด์™€ ๊ธฐ์ˆ ์„ ์–‘์‚ฐํ•˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ๋Š” ํ˜ธํ™˜์„ฑ ๋ฌธ์ œ์™€ ๊ฐœ๋ณ„ ๋งž์ถคํ˜• ํ•ด๊ฒฐ์ฑ…์ด ๋’ค๋”ฐ๋ฅด๊ฒŒ ๋œ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ ๋ถ„์‚ฐ๋œ AI ๋ชจ๋ธ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ๋ฌธ์ œ๋„ ๋ณต์žกํ•œ ์šด์˜ ๊ณผ์ œ๋กœ ๊ผฝํžŒ๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์ˆ˜๋งŽ์€ ๋””๋ฐ”์ด์Šค์— ๋ฐฐํฌ๋œ ๋ชจ๋ธ์„ ๋Œ€์ƒ์œผ๋กœ ๋ณด์•ˆ ์—…๋ฐ์ดํŠธ์™€ ๋ฒ„์ „ ๊ด€๋ฆฌ, ์„ฑ๋Šฅ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ์ž‘์—…โ€์ด๋ผ๋ฉฐ โ€œ์—ฃ์ง€ AI๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์—…์ด ๋ฐ˜๋“œ์‹œ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ด๋Ÿฌํ•œ ์žฅ๋ฒฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ „๋ฌธ๊ฐ€๋“ค์€ ๋ช‡ ๊ฐ€์ง€ ์‹ค์ฒœ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ–ˆ๋‹ค.

  • ์—ฐ๊ฒฐ์„ฑ์ด ๋‚ฎ์€ ํ™˜๊ฒฝ์—์„œ์˜ ์ถ”๋ก ๊ณผ ๊ฐ™์ด ์—ฃ์ง€ AI๊ฐ€ ์ ํ•ฉํ•œ ๊ฒฝ์šฐ์— ํ•œํ•ด ๋„์ž….
  • ๋น„๊ธฐ์ˆ  ๋ถ„์•ผ ๋ฆฌ๋”๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ง€์†์ ์œผ๋กœ ์ „๋‹ฌ.
  • ์ „๋ฉด์ ์ธ ์—ฃ์ง€ ๋˜๋Š” ํด๋ผ์šฐ๋“œ ๋ฐฐํฌ ๋Œ€์‹  ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ „๋žต์„ ๊ณ ๋ ค.
  • ์•„ํ‚คํ…์ฒ˜ ์ฐจ์›์—์„œ ์†Œํ”„ํŠธ์›จ์–ด ๊ณ„์ธต์„ ํŠน์ • ํ•˜๋“œ์›จ์–ด ์˜์กด์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ๋ถ„๋ฆฌ.
  • ์—ฃ์ง€ ํ™˜๊ฒฝ์˜ ์ œ์•ฝ์— ์ตœ์ ํ™”๋œ ๋ชจ๋ธ์„ ์„ ํƒ.
  • ์—…๋ฐ์ดํŠธ, ๋ชจ๋‹ˆํ„ฐ๋ง, ์œ ์ง€๋ณด์ˆ˜๋ฅผ ํฌํ•จํ•œ ์ „์ฒด ๋ชจ๋ธ ์ˆ˜๋ช… ์ฃผ๊ธฐ๋ฅผ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ๊ตฌ์ƒ.

์ค‘์•™ ์ง‘์ค‘ํ˜•์—์„œ ๋ถ„์‚ฐ ์ง€๋Šฅ์œผ๋กœ

์—ฃ์ง€ AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋น ๋ฅด๊ฒŒ ๋†’์•„์ง€๊ณ  ์žˆ์ง€๋งŒ, ๋Œ€์•ˆํ˜• ํด๋ผ์šฐ๋“œ๋กœ์˜ ์ „ํ™˜ ํ๋ฆ„๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ „๋ฌธ๊ฐ€๋“ค์€ ๋กœ์ปฌ ์ฒ˜๋ฆฌ๊ฐ€ ์ค‘์•™ ์ง‘์ค‘ํ˜• ํด๋ผ์šฐ๋“œ์— ๋Œ€ํ•œ ์˜์กด๋„๋ฅผ ์˜๋ฏธ ์žˆ๊ฒŒ ๋‚ฎ์ถ”์ง€๋Š” ์•Š์„ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ  ์žˆ๋‹ค. ์А๋ผ์ด์–ด-์Šค๋ฏธ์Šค๋Š” โ€œ์—ฃ์ง€ AI๊ฐ€ ๋ณธ๊ฒฉ์ ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๋Š” ์‹œ์ ์€ ์˜ค๊ฒ ์ง€๋งŒ, ๋„์ž… ์†๋„๋Š” ํด๋ผ์šฐ๋“œ์— ๋น„ํ•ด ๋’ค์ฒ˜์งˆ ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—ฃ์ง€ AI๋Š” ํผ๋ธ”๋ฆญ ํด๋ผ์šฐ๋“œ๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ๋ณด๋‹ค๋Š” ์ƒˆ๋กœ์šด ์—ญ๋Ÿ‰์„ ๋”ํ•ด ๋ณด์™„ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค. ๋ฐ”์‹ค์€ โ€œ๊ธฐ์กด ์ธํ”„๋ผ๋ฅผ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์—ฃ์ง€์— AI๋ฅผ ๋ฐฐ์น˜ํ•ด ๋” ๋˜‘๋˜‘ํ•˜๊ณ  ํšจ์œจ์ ์ด๋ฉฐ ๋ฐ˜์‘์„ฑ์ด ๋†’์€ ํ™˜๊ฒฝ์„ ๋งŒ๋“œ๋Š” ๋ฐฉ์‹์ด ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ์šด์˜์ฒด์ œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์—”๋“œํฌ์ธํŠธ๋ฅผ ๋ณด์™„ํ•˜๊ฑฐ๋‚˜, ์˜จํ”„๋ ˆ๋ฏธ์Šค ์„œ๋ฒ„ ์šด์˜์„ ์ตœ์ ํ™”ํ•˜๋Š” ํ˜•ํƒœ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค.

์ „๋ฌธ๊ฐ€๋“ค์€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์˜ ์—ญํ• ๊ณผ ์—ญ๋Ÿ‰์ด ๋‹จ๊ธฐ๊ฐ„ ๋‚ด ํฌ๊ฒŒ ๊ฐ•ํ™”๋  ๊ฒƒ์ด๋ผ๊ณ  ์˜๊ฒฌ์„ ๋ชจ์•˜๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œํ•˜๋“œ์›จ์–ด์™€ ์ตœ์ ํ™”๋œ ๋ชจ๋ธ, ๋ฐฐํฌ ํ”Œ๋žซํผ์ด ๋น ๋ฅด๊ฒŒ ๋ฐœ์ „ํ•˜๋ฉด์„œ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท, ๋ชจ๋ฐ”์ผ ๋””๋ฐ”์ด์Šค, ์ผ์ƒ์ ์ธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ „๋ฐ˜์— AI๊ฐ€ ๋”์šฑ ๊นŠ์ด ํ†ตํ•ฉ๋˜๋Š” ๋ชจ์Šต์„ ๋ณด๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์ด์–ด ๊ทธ๋Š” โ€œ์•ž์œผ๋กœ ์—ฃ์ง€ AI๋Š” ๋น ๋ฅธ ์„ฑ์žฅ์„ ์•ž๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ๋ถ„์‚ฐ๋˜๊ณ  ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์ ์ธ ์ง€๋Šฅ์œผ๋กœ์˜ ๊ทผ๋ณธ์ ์ธ ์ „ํ™˜์„ ์ด๋Œ ๊ฒƒโ€์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค.
dl-ciokorea@foundryco.com

์นผ๋Ÿผ | 2026๋…„ IT ์ „๋žต์— ์•ž์„œ โ€˜ํ‘œ์ค€ ์šด์˜์ ˆ์ฐจโ€™๋ฅผ ์†๋ด์•ผ ํ•  ์ด์œ 

20 January 2026 at 02:43

์ˆ˜์‹ญ ๋…„ ๋™์•ˆ IT ์šด์˜ ๋งค๋‰ด์–ผ์€ ๋Œ€๊ฐœ 50ํŽ˜์ด์ง€ ๋ถ„๋Ÿ‰์˜ ๋นฝ๋นฝํ•œ PDF ๋ฌธ์„œ์˜€๋‹ค. ์‚ฌ๋žŒ์ด ๋งŒ๋“ค๊ณ  ์‚ฌ๋žŒ์ด ์ฝ๋„๋ก ์„ค๊ณ„๋œ ๋ฌธ์„œ๋Š”, ๊ฐ์‚ฌ๊ฐ€ ํ•„์š”ํ•ด์งˆ ๋•Œ๊นŒ์ง€ ๋””์ง€ํ„ธ ์ €์žฅ์†Œ ์–ด๋”˜๊ฐ€์—์„œ ๋ฐฉ์น˜๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 2026๋…„์— ์ ‘์–ด๋“  ์ง€๊ธˆ, ์ „ํ†ต์ ์ธ SOP๋Š” ์‚ฌ์‹ค์ƒ ์ˆ˜๋ช…์„ ๋‹คํ•œ ์ƒํƒœ๋‹ค. ์ด์ œ ์ด ๋งค๋‰ด์–ผ์˜ ์ฃผ๋œ ์‚ฌ์šฉ์ž๊ฐ€ ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์‹œ์Šคํ…œ์€ ์ ์  ๋” ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜์œผ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ๋‹จ์ˆœํžˆ ๋Œ€์‹œ๋ณด๋“œ๋ฅผ ๊ฐ์‹œํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ์Šค์Šค๋กœ ์‚ฌ๊ณ ํ•˜๊ณ  ๊ณ„ํšํ•˜๋ฉฐ ์ธํ”„๋ผ ๋‚ด ๋ณ€๊ฒฝ์„ ์‹คํ–‰ํ•˜๋Š” ์ž์œจํ˜• ์—์ด์ „ํŠธ๊ฐ€ ๋ฐฐ์น˜๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค ์—์ด์ „ํŠธ๋Š” PDF ๋ฌธ์„œ๋ฅผ ์ฝ์„ ์ˆ˜ ์—†๊ณ , ๋ฒ•๋ฅ  ์šฉ์–ด๋กœ ์ž‘์„ฑ๋œ ๋ณด์•ˆ ์ •์ฑ…์˜ ์ทจ์ง€๋ฅผ ํ•ด์„ํ•˜์ง€๋„ ๋ชปํ•œ๋‹ค. ์ž์œจํ˜• IT ์‹œ๋Œ€์— ํ†ต์ œ๋ ฅ์„ ์œ ์ง€ํ•˜๋ ค๋ฉด ๊ณ ์ •๋œ ๊ทœ์น™์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ  โ€˜์—์ด์ „ํŠธ ํ—Œ๋ฒ•โ€™, ์ฆ‰ ์•คํŠธ๋กœํ”ฝ์ด ์ œ์‹œํ•œ โ€˜ํ—Œ๋ฒ• ์ค‘์‹ฌ AI(Constitutional AI)โ€™๋ฅผ ๊ธฐ์—… ํ™˜๊ฒฝ์— ์ ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” AI์˜ ๋ฌธ์ œ์ ์„ AI๊ฐ€ ์Šค์Šค๋กœ ๊ฒ€์ฆํ•˜๊ณ  ๊ณ ์น˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•œ๋‹ค.

๋ฌธ์„œ ์† ์ •์ฑ…์—์„œ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„๋œ ์ •์ฑ…์œผ๋กœ

๊ณผ๊ฑฐ IT ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ์‚ฌํ›„ ๋Œ€์‘๋งŒ ๊ฐ€๋Šฅํ•œ โ€˜์ฒดํฌ๋ฆฌ์ŠคํŠธโ€™ ๋ฐฉ์‹์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์˜ค๋Š˜๋‚  ๊ธฐ์—…์€ ์ •์ฑ…์„ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„ํ•˜๋Š” โ€˜PaC(Policy as Code)โ€™๋กœ์˜ ์ „ํ™˜์ด ํ•„์š”ํ•˜๋‹ค.

  • ์ „์ „๋‘์—ฝ ์—ญํ• : ์—์ด์ „ํŠธ ํ—Œ๋ฒ•์€ ์ž์œจ ์‹œ์Šคํ…œ ๊ธฐ๊ณ„๊ฐ€ ์ฝ์„ ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ณธ ์›์น™ ์ง‘ํ•ฉ์ด๋‹ค.
  • ์šด์˜ ๊ฒฝ๊ณ„: ์—์ด์ „ํŠธ๊ฐ€ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์—… ๋ฒ”์œ„์™€ ์ ˆ๋Œ€ ๋„˜์ง€ ๋ง์•„์•ผ ํ•  ์œค๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ๊ทœ์ •ํ•œ๋‹ค.
  • ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ๊ทœ์น™: ์ฝ”๋“œ๋กœ ๊ตฌํ˜„๋œ ๊ฐ•์ œ ๊ทœ์น™์˜ ์˜ˆ๋กœ๋Š” โ€˜ํ”ผํฌ ์‹œ๊ฐ„๋Œ€์—๋Š” ์ธ๊ฐ„ ๊ฐœ์ž… ํ† ํฐ ์—†์ด๋Š” ์šด์˜ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์ˆ˜์ •ํ•˜์ง€ ์•Š๋Š”๋‹คโ€™์™€ ๊ฐ™์€ ์›์น™์ด ์žˆ๋‹ค.
  • LLM ์ดํ•ด ๊ฐ€๋Šฅ์„ฑ: ์ด๋Ÿฌํ•œ ๊ทœ์น™์€ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜์„ ๋‹ด๋‹นํ•˜๋Š” LLM์ด ์ดํ•ดํ•˜๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฐ ์ „ํ™˜์€ ๊ทผ๋ณธ์ ์ธ ๋ณ€ํ™”๋ฅผ ์˜๋ฏธํ•œ๋‹ค. IT ์ „๋ฌธ๊ฐ€์˜ ์—ญํ• ์€ โ€˜์šด์˜์žโ€™์—์„œ โ€˜์˜๋„ ์„ค๊ณ„์žโ€™๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. IT ์ง์›์€ ๋” ์ด์ƒ ์‹œ์Šคํ…œ์„ ์ง์ ‘ ์กฐ์ž‘ํ•˜๋Š” ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๋ผ, ์ž์œจ ์‹œ์Šคํ…œ์ด ๋”ฐ๋ผ์•ผ ํ•  ํ–‰๋™ ๊ทœ์น™์„ ์„ค๊ณ„ํ•˜๋Š” ์ฃผ์ฒด๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค.

IT ์šด์˜์„ ์œ„ํ•œ ์ž์œจ์„ฑ ๊ณ„์ธต ๊ตฌ์กฐ

๊ธฐ์—…์ด โ€˜ํ‚ฌ ์Šค์œ„์น˜โ€™์— ๋Œ€ํ•œ ํ†ต์ œ๊ถŒ์„ ์œ ์ง€ํ•˜๋ฉด์„œ AI ์—ญ๋Ÿ‰์„ ํ™•์žฅํ•˜๋ ค๋ฉด, โ€˜์ž์œจ์„ฑ์˜ ๊ณ„์ธต ๊ตฌ์กฐโ€™์— ์ดˆ์ ์„ ๋งž์ถœ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋Š” 1978๋…„ ์—ฐ๊ตฌ์ž ํ† ๋จธ์Šค ์…ฐ๋ฆฌ๋˜์™€ ์œŒ๋ฆฌ์—„ ๋ฒ„ํ”Œ๋žญํฌ์˜ ๊ธฐ์ดˆ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐœ๋…์ด๋‹ค.

1๋‹จ๊ณ„: ์™„์ „ ์ž์œจํ™” ์˜์—ญ(๊ฐ€์žฅ ์‰ฝ๊ฒŒ ๋„์ž…ํ•  ์ˆ˜ ์žˆ๋Š” ์˜์—ญ)

  • ์ด๋Š” ์‚ฌ๋žŒ์ด ๊ฐœ์ž…ํ•˜๋Š” ๋น„์šฉ์ด ํ•ด๋‹น ์ž‘์—…์˜ ๊ฐ€์น˜๋ณด๋‹ค ๋” ํฐ ์—…๋ฌด๋ฅผ ์˜๋ฏธํ•œ๋‹ค.
  • ์‚ฌ๋ก€
    • ์ž๋™ ํ™•์žฅ
    • ๋กœ๊ทธ ๋กœํ…Œ์ด์…˜
    • ๊ธฐ๋ณธ ํ‹ฐ์ผ“ ๋ผ์šฐํŒ…
    • ์บ์‹œ ์ •๋ฆฌ
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ์‚ฌ์ „์— ์ •์˜๋œ ์ž„๊ณ„๊ฐ’ ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋™์ž‘ํ•˜๋Š” ํ†ต์ œ๋œ ์ž๋™ํ™” ์˜์—ญ(sandbox of trust)์—์„œ ๊ด€๋ฆฌ๋œ๋‹ค.

2๋‹จ๊ณ„: ๊ฐ๋…ํ˜• ์ž์œจํ™” ์˜์—ญ(์‚ฌ์ „ ํ™•์ธ ๊ตฌ๊ฐ„)

  • ์—์ด์ „ํŠธ๊ฐ€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘๊ณผ ๋ฌธ์ œ ์›์ธ ๋ถ„์„, ํ•ด๊ฒฐ ๋ฐฉ์•ˆ ๋„์ถœ ๋“ฑ ํ•ต์‹ฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ์ตœ์ข… ์‹คํ–‰ ๋‹จ๊ณ„์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ์Šน์ธ, ์ฆ‰ ํ™•์ธ ์ ˆ์ฐจ๊ฐ€ ํ•„์š”ํ•œ ๋‹จ๊ณ„๋‹ค.
  • ์‚ฌ๋ก€
    • ์‹œ์Šคํ…œ ํŒจ์น˜
    • ์‚ฌ์šฉ์ž ๊ณ„์ • ํ”„๋กœ๋น„์ €๋‹
    • ๋น„์ค‘์š” ์„ค์ • ๋ณ€๊ฒฝ
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ์—์ด์ „ํŠธ๋Š” ํ•ด๋‹น ์กฐ์น˜๋ฅผ ์™œ ์ˆ˜ํ–‰ํ•˜๋ ค๋Š”์ง€์— ๋Œ€ํ•œ ํŒ๋‹จ ๊ทผ๊ฑฐ, ์ฆ‰ ์ถ”๋ก  ๊ณผ์ •์„ ๊ด€๋ฆฌ์ž์—๊ฒŒ ์ œ์‹œํ•ด์•ผ ํ•œ๋‹ค.

3๋‹จ๊ณ„: ์‚ฌ๋žŒ ์ „์šฉ ์˜์—ญ

  • ์–ด๋–ค ์ƒํ™ฉ์—์„œ๋„ ์—์ด์ „ํŠธ๊ฐ€ ์ž์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•ด์„œ๋Š” ์•ˆ ๋˜๋Š”, ์‹œ์Šคํ…œ์˜ ์กด๋ฆฝ๊ณผ ์ง๊ฒฐ๋œ ํ•ต์‹ฌ ์ž‘์—…์„ ์˜๋ฏธํ•œ๋‹ค.
  • ์‚ฌ๋ก€
    • ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์‚ญ์ œ
    • ํ•ต์‹ฌ ๋ณด์•ˆ ์„ค์ • ์šฐํšŒ
    • ์—์ด์ „ํŠธ ํ—Œ๋ฒ• ์ž์ฒด์— ๋Œ€ํ•œ ์ˆ˜์ •
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ๋‹ค๋‹จ๊ณ„ ์ธ์ฆ(MFA) ๋˜๋Š” ๋ณต์ˆ˜ ์ธ์›์˜ ์ด์ค‘ ์Šน์ธ๊ณผ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ํ†ต์ œ ์ ˆ์ฐจ๋ฅผ ์ ์šฉํ•œ๋‹ค.

์ˆจ๊ฒจ์ง„ ๊ณต๊ฒฉ ํ‘œ๋ฉด ์ค„์ด๊ธฐ

์ค‘์•™ํ™”๋œ ํ—Œ๋ฒ• ์ฒด๊ณ„๋ฅผ ๊ตฌํ˜„ํ•˜๋ฉด, ์ค‘์•™ IT์˜ ๊ด€๋ฆฌ ๋ฐ ๊ฐ๋… ์—†์ด ๋ฐฐํฌ๋˜๋Š” ์„€๋„์šฐ AI ์—์ด์ „ํŠธ๋กœ ์ธํ•œ ๋ฆฌ์Šคํฌ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

  • ํ†ตํ•ฉ API: ๋ชจ๋“  ์—์ด์ „ํŠธ๋Š” ํ•ต์‹ฌ ์ธํ”„๋ผ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ธฐ ์ „์— ํ•ด๋‹น ์šด์˜ ์›์น™ ์ฒด๊ณ„์— ๋”ฐ๋ผ ์ธ์ฆ์„ ๊ฑฐ์ณ์•ผ ํ•œ๋‹ค.
  • ์ปดํ”Œ๋ผ์ด์–ธ์Šค ์ด๋ ฅ: ์ด๋ฅผ ํ†ตํ•ด SOC2๋‚˜ EU AI ๋ฒ•๊ณผ ๊ฐ™์€ ๊ทœ์ œ ๋Œ€์‘์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์•™ํ™”๋œ ๊ฐ์‚ฌ ์ด๋ ฅ์ด ์ƒ์„ฑ๋œ๋‹ค.
  • ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์˜์‚ฌ๊ฒฐ์ •: ์ž์œจ์ ์œผ๋กœ ๋‚ด๋ ค์ง„ ํŒ๋‹จ๊ณผ ์‹คํ–‰์— ๋Œ€ํ•œ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๊ธฐ๋ก์„ ์ถ•์ ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ธฐ๊ณ„ ์ค‘์‹ฌ ์„ธ๊ณ„ ์† ์‚ฌ๋žŒ์˜ ๋ชฉ์†Œ๋ฆฌ

์ด๋ฅธ๋ฐ” โ€˜ํ—Œ๋ฒ•โ€™์€ ์ฝ”๋“œ๊ฐ€ ์•„๋‹ˆ๋ผ, ์—”์ง€๋‹ˆ์–ด์˜ ๊ฒฝํ—˜๊ณผ ํŒ๋‹จ์ด ์ง‘์•ฝ๋œ ์‚ฌ๋žŒ์˜ ๋ฌธ์„œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ๋žŒ์˜ ์—ญํ• ์€ ์—ฌ์ „ํžˆ ์ค‘์š”ํ•˜๋‹ค.

  • ์˜๋„ ์„ค๊ณ„์ž: IT ์ „๋ฌธ๊ฐ€์˜ ์—ญํ• ์€ โ€˜์šด์˜์žโ€™์—์„œ โ€˜์˜๋„์˜ ์„ค๊ณ„์žโ€™๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค.
  • ๋ฌธํ™”์  ์ „ํ™˜: IT ํŒ€์€ ๊ฐœ์ธ์ด ๋‚˜์„œ์„œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์—์„œ ๋ฒ—์–ด๋‚˜, ์‹œ์Šคํ…œ ์ค‘์‹ฌ์˜ ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ฌธํ™”๋กœ ์ „ํ™˜ํ•ด์•ผ ํ•œ๋‹ค.

โ€˜ํ—Œ๋ฒ• ์ œ์ • ํšŒ์˜โ€™๋ฅผ ์‹œ์ž‘ํ•  ๋•Œ

2020๋…„๋Œ€ ํ›„๋ฐ˜์—๋„ PDF ํ˜•์‹์˜ ๊ธฐ์กด SOP์— ์˜์กดํ•œ๋‹ค๋ฉด, IT ์šด์˜์€ ๋น„์ฆˆ๋‹ˆ์Šค์˜ ๋ฐœ๋ชฉ์„ ์žก๋Š” ๋ณ‘๋ชฉ์œผ๋กœ ์ „๋ฝํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค.

์ง€๊ธˆ ๋ฐ”๋กœ ์ทจํ•ด์•ผ ํ•  ๋‹จ๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ๋ ˆ๋“œ๋ผ์ธ ์ •์˜: ์ˆ˜์„ ์•„ํ‚คํ…ํŠธ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ 3๋‹จ๊ณ„ ์˜์—ญ์˜ ๊ฒฝ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์„ค์ •ํ•œ๋‹ค.
  • ์ž๋™ํ™” ์„ฑ๊ณผ ๋„์ถœ: ์ฆ‰์‹œ ์ž๋™ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•œ 1๋‹จ๊ณ„ ์—…๋ฌด๋ฅผ ์‹๋ณ„ํ•œ๋‹ค.
  • ์ „๋žต์— ์ง‘์ค‘: ์‚ฌ๋žŒ์€ ๋ด‡์„ ๊ฐ์‹œํ•˜๋Š” ๋ฐ ์‹œ๊ฐ„์„ ์“ฐ๋Š” ๋Œ€์‹ , ์ „๋žต๊ณผ ํ˜์‹ ์— ์ง‘์ค‘ํ•˜๋„๋ก ๋ฐฉํ–ฅ์„ ์ „ํ™˜ํ•œ๋‹ค.

dl-ciokorea@foundryco.com

ๅ‹•็”ป็”Ÿๆˆใฏโ€œไธ–็•Œโ€ใ‚’ๅญฆใ‚“ใงใ„ใ‚‹ใฎใ‹ใ€‚็”Ÿๆˆใƒขใƒ‡ใƒซใจไธ–็•Œใƒขใƒ‡ใƒซใฎ่ฟ‘ใ„ใ‘ใฉ้ ใ„้–ขไฟ‚

19 January 2026 at 10:02

โ€œใใ‚Œใฃใฝใ„ๆœชๆฅโ€ใจโ€œๆญฃใ—ใ„ๆœชๆฅโ€ใฏๅˆฅ็‰ฉ

ๅ‹•็”ป็”Ÿๆˆใฎใƒ‡ใƒขใ‚’่ฆ‹ใฆไบบใŒ้ฉšใใฎใฏใ€ๅ‹•ใใŒ่‡ช็„ถใงใ€ๆ™‚้–“ๆ–นๅ‘ใซ็ ด็ถปใŒๅฐ‘ใชใใ€็พๅฎŸใซใ‚ใ‚‹โ€œใฃใฝใ•โ€ใŒๆˆ็ซ‹ใ—ใฆใ„ใ‚‹ใ‹ใ‚‰ใ ใ€‚้€†ใซ่จ€ใˆใฐใ€็งใŸใกใฏใ€Œ่ฆ‹ใŸ็›ฎใŒใใ‚Œใฃใฝใ„ใ€ใ ใ‘ใงใ€ใ‹ใชใ‚Šใฎ้ƒจๅˆ†ใ‚’็†่งฃใจ้Œฏ่ฆšใ™ใ‚‹ใ€‚ๆ˜ ็”ปใฎVFXใŒ็‰ฉ็†็š„ใซๅŽณๅฏ†ใงใชใใฆใ‚‚ๆˆ็ซ‹ใ™ใ‚‹ใฎใจๅŒใ˜ใงใ€่ฆ–่ฆšใฏ็ดฐ้ƒจใฎๆ•ดๅˆๆ€งใ‚ˆใ‚Šใ‚‚ๅคงๅฑ€ใฎๆตใ‚Œใซๅผทใๅๅฟœใ™ใ‚‹ใ€‚ใ“ใ“ใซใ€็”Ÿๆˆใƒขใƒ‡ใƒซใจไธ–็•Œใƒขใƒ‡ใƒซใ‚’ๆททๅŒใ—ใ‚„ใ™ใ„่ฝใจใ—็ฉดใŒใ‚ใ‚‹ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใŒ็‹™ใ†โ€œๆญฃใ—ใ„ๆœชๆฅโ€ใฏใ€ๅ˜ใซ่‡ช็„ถใซ่ฆ‹ใˆใ‚‹ๆœชๆฅใงใฏใชใ„ใ€‚ไป‹ๅ…ฅใ—ใŸใจใใซ็ญ‹ใŒ้€šใ‚‹ๆœชๆฅใ ใ€‚ใŸใจใˆใฐใ€ๆœบใฎไธŠใฎใƒœใƒผใƒซใŒ่ปขใŒใ‚‹ๅ‹•็”ปใ‚’ไฝœใ‚‹ใจใ—ใฆใ€่ฆ‹ใŸ็›ฎใ ใ‘ใชใ‚‰ใ€Œใใ‚Œใฃใฝใ„่ปขใŒใ‚Šๆ–นใ€ใฏใ„ใใ‚‰ใงใ‚‚ไฝœใ‚Œใ‚‹ใ€‚ใงใ‚‚ใ€ใใ“ใซๆ‰‹ใ‚’ๅ…ฅใ‚Œใฆใƒœใƒผใƒซใ‚’ๆญขใ‚ใŸใ‚‰ใฉใ†ใชใ‚‹ใ‹ใ€ๅบŠใฎๆ่ณชใŒๅค‰ใ‚ใฃใŸใ‚‰ใฉใ†ใชใ‚‹ใ‹ใ€ๅˆฅใฎ่ง’ๅบฆใ‹ใ‚‰่ฆ‹ใŸใ‚‰ๅŒใ˜ๅ‡บๆฅไบ‹ใจใ—ใฆๆ•ดๅˆใ™ใ‚‹ใ‹ใ€‚ใ“ใ†ใ—ใŸๆกไปถใ‚’ๅค‰ใˆใŸใจใใซใ‚‚ไธ€่ฒซใ—ใฆไบˆๆธฌใงใใ‚‹ใชใ‚‰ใ€ๅˆใ‚ใฆโ€œไธ–็•Œใฎไป•็ต„ใฟโ€ใ‚’ๆŽดใ‚“ใงใ„ใ‚‹ใจ่จ€ใˆใ‚‹ใ€‚

ๅ‹•็”ป็”ŸๆˆใŒ้œฒๅ‘ˆใ—ใ‚„ใ™ใ„ๅผฑ็‚นใจใ—ใฆใ€็‰ฉไฝ“ๆ’ๅธธๆ€งใŒใ‚ใ‚‹ใ€‚็”ป้ขใฎๅค–ใซๅ‡บใŸ็‰ฉไฝ“ใŒใ€ๆˆปใฃใฆใใŸใจใใซๅˆฅ็‰ฉใซใชใฃใฆใ„ใŸใ‚Šใ€้ฎ่”ฝ็‰ฉใฎ่ฃใงๅญ˜ๅœจใŒๆ›–ๆ˜งใซใชใฃใŸใ‚Šใ™ใ‚‹ใ€‚ใ“ใ‚ŒใŒ่ตทใใ‚‹ใฎใฏใ€ใƒขใƒ‡ใƒซใŒใ€Œ็‰ฉไฝ“ใจใ„ใ†ๅ˜ไฝใงไธ–็•Œใ‚’่ฟฝ่ทกใ—ใฆใ„ใ‚‹ใ€ใ‚ˆใ‚Šใ€ใ€Œใ“ใฎ็”ป้ขใฎๆฌกใซๆฅใใ†ใช็”ป้ขใ€ใ‚’็ตฑ่จˆ็š„ใซๅˆๆˆใ—ใฆใ„ใ‚‹ๆฏ”้‡ใŒๅคงใใ„ใ‹ใ‚‰ใ ใ€‚ใ‚‚ใกใ‚ใ‚“่ฟ‘ๅนดใฏๆ”นๅ–„ใŒ้€ฒใ‚“ใงใ„ใ‚‹ใŒใ€ๅŽŸ็†็š„ใซโ€œ่ฆ‹ใˆใชใ„้–“ใ‚‚ๅŒใ˜็‰ฉไฝ“ใŒใใ“ใซใ‚ใ‚‹โ€ใจใ„ใ†ไฟกๅฟตใ‚’็ถญๆŒใ™ใ‚‹ใฎใฏใ€ๅ˜ใชใ‚‹ๆฌกใƒ•ใƒฌใƒผใƒ ไบˆๆธฌไปฅไธŠใฎๆง‹้€ ใ‚’่ฆๆฑ‚ใ™ใ‚‹ใ€‚

ใ‚‚ใ†ไธ€ใคใฏๆŽฅ่งฆใจๅ› ๆžœใ ใ€‚็‰ฉไฝ“ๅŒๅฃซใŒ่งฆใ‚ŒใŸ็žฌ้–“ใซๅŠ›ใŒไผใ‚ใ‚Šใ€้€ŸๅบฆใŒๅค‰ใ‚ใ‚Šใ€ๅ›ž่ปขใŒ่ตทใใ‚‹ใ€‚ใ“ใฎใ€Œ่งฆใ‚ŒใŸใ‹ใ‚‰ๅค‰ใ‚ใ‚‹ใ€ใจใ„ใ†ๅ› ๆžœใฏใ€ๆ˜ ๅƒใจใ—ใฆใฏ็Ÿญใ„ๅฑ€ๆ‰€็พ่ฑกใ ใŒใ€ไธ–็•Œ็†่งฃใฎไธญๆ ธใซ่ฟ‘ใ„ใ€‚็”Ÿๆˆใƒขใƒ‡ใƒซใฏ่ฆ‹ใŸ็›ฎใฎ้€ฃ็ถšๆ€งใ‚’ๅ„ชๅ…ˆใ—ใฆใ€ๆŽฅ่งฆใฎ็žฌ้–“ใ‚’โ€œใใ‚Œใฃใฝใไธธใ‚ใ‚‹โ€ใ“ใจใŒใ‚ใ‚‹ใ€‚ใ ใ‹ใ‚‰ใ€ๆŽฅ่งฆใ—ใฆใ„ใ‚‹ใฎใซใ™ใ‚ŠๆŠœใ‘ใŸใ‚Šใ€้€†ใซ่งฆใ‚Œใฆใ„ใชใ„ใฎใซๅฝฑ้ŸฟใŒๅ‡บใŸใ‚Šใ™ใ‚‹ใ€‚ไบบ้–“ใฎ็›ฎใฏๆ„ๅค–ใจใ“ใ‚Œใ‚’่ฆ‹้€ƒใ™ใ“ใจใ‚‚ใ‚ใ‚‹ใŒใ€ใƒญใƒœใƒƒใƒˆใ‚„ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณ็”จ้€”ใงใฏ่‡ดๅ‘ฝ็š„ใซใชใ‚‹ใ€‚

็ตๅฑ€ใฎใจใ“ใ‚ใ€โ€œใใ‚Œใฃใฝใ„ๆœชๆฅโ€ใฏใ€Œ่ฆณๅฎขใ‚’็ดๅพ—ใ•ใ›ใ‚‹ๆœชๆฅใ€ใ ใŒใ€โ€œๆญฃใ—ใ„ๆœชๆฅโ€ใฏใ€Œๆกไปถใ‚’ๅค‰ใˆใฆใ‚‚ไธ€่ฒซใ™ใ‚‹ๆœชๆฅใ€ใ ใ€‚ๅ‹•็”ป็”ŸๆˆใŒไธ–็•Œใƒขใƒ‡ใƒซใซ่ฆ‹ใˆใ‚‹็žฌ้–“ใฏๅข—ใˆใฆใ„ใ‚‹ใ€‚ใ—ใ‹ใ—ใ€ใใฎใพใพไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใซใฏใ€ไป‹ๅ…ฅใจไธ€่ฒซๆ€งใจใ„ใ†ใƒใƒผใƒ‰ใชๆกไปถใ‚’ใ‚ฏใƒชใ‚ขใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎ็”Ÿๆˆใƒขใƒ‡ใƒซใ€‚ใฉใ“ใพใงๆˆ็ซ‹ใ—ใฆใ„ใ‚‹ใฎใ‹

ใจใฏใ„ใˆใ€ๅ‹•็”ป็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซ่ฟ‘ใฅใ„ใฆใ„ใ‚‹ใฎใ‚‚ไบ‹ๅฎŸใ ใ€‚็†็”ฑใฏๅ˜็ด”ใงใ€ๅ‹•็”ปใฏๆ™‚้–“ๆ–นๅ‘ใฎๅ› ๆžœใ‚’ๅซใ‚€ใ‹ใ‚‰ใ ใ€‚็”ปๅƒ็”ŸๆˆใŒใ€Œไธ€ๆžšใฎไธ–็•Œใ€ใ‚’ไฝœใ‚‹ใฎใซๅฏพใ—ใฆใ€ๅ‹•็”ป็”Ÿๆˆใฏใ€Œไธ–็•ŒใŒใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ€ใ‚’ๆ‰ฑใ†ใ€‚ใใ“ใซใฏ่‡ช็„ถใซใ€็Šถๆ…‹ใจ้ท็งปใฎๅญฆ็ฟ’ใŒๅ…ฅใ‚Š่พผใ‚€ใ€‚ใ“ใ“ใง้‡่ฆใชใฎใฏใ€็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซๅฏ„ใ‚‹ใ‹ใฉใ†ใ‹ใฏใ€ใƒขใƒ‡ใƒซใฎๅญฆ็ฟ’็›ฎๆจ™ใจใ„ใ†ใ‚ˆใ‚Šใ€Œใฉใ†ไฝฟใ†ใ‹ใ€ใจใ€Œใฉใ‚“ใชๆกไปถใ‚’่ชฒใ™ใ‹ใ€ใงๆฑบใพใ‚‹็‚นใ ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆ่ชžใ‚Šใ‚„ใ™ใใชใ‚‹ใฎใฏใ€ๆฝœๅœจ็ฉบ้–“ใงใฎ็Šถๆ…‹้ท็งปใ‚’ๆ˜Ž็คบ็š„ใซๆŒใคใ‚ฟใ‚คใƒ—ใ ใ€‚่ฆณๆธฌใงใ‚ใ‚‹ๅ‹•็”ปใƒ•ใƒฌใƒผใƒ ใ‚’ใใฎใพใพๆ‰ฑใ†ใฎใงใฏใชใใ€ๅ†…้ƒจใงๅœง็ธฎใ—ใŸ็Šถๆ…‹่กจ็พใซ่ฝใจใ—ใ€ๆฌกใฎ็Šถๆ…‹ใ‚’ไบˆๆธฌใ—ใ€ๅฟ…่ฆใซๅฟœใ˜ใฆๆ˜ ๅƒใซๆˆปใ™ใ€‚ใ“ใ†ใ™ใ‚‹ใจใ€้•ทๆœŸไบˆๆธฌใฎ่จˆ็ฎ—ใŒ่ปฝใใชใ‚‹ใ ใ‘ใงใชใใ€ใ€ŒไปŠใฏใ“ใ†ใ„ใ†็Šถๆณใ ใ€ใจใ„ใ†ๅ†…้ƒจใฎใพใจใพใ‚ŠใŒไฝœใ‚Šใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฎ่จ€่‘‰ใง่จ€ใˆใฐใ€ๆฝœๅœจ็Šถๆ…‹ใŒโ€œไธ–็•Œใฎ่ฆ็ด„โ€ใจใ—ใฆๆฉŸ่ƒฝใ™ใ‚‹ใ€‚

ใ•ใ‚‰ใซไธ€ๆญฉ้€ฒใ‚€ใฎใŒใ€ใ‚ขใ‚ฏใ‚ทใƒงใƒณๆกไปถใฅใ‘ใ ใ€‚ใคใพใ‚Šใ€Œใ“ใ†ๅ‹•ใ‹ใ—ใŸใ‚‰ใฉใ†ใชใ‚‹ใ‹ใ€ใ‚’ๅญฆใถๅฝขใงใ€ๅ…ฅๅŠ›ใซ่กŒๅ‹•ใ‚’ๅ…ฅใ‚Œใฆๆœชๆฅใ‚’็”Ÿๆˆใ™ใ‚‹ใ€‚ใ‚ฒใƒผใƒ ใ‚„ใƒญใƒœใƒƒใƒˆใฎๆ–‡่„ˆใงใฏใ“ใ‚ŒใŒๆฑบๅฎš็š„ใงใ€่กŒๅ‹•ใŒใชใ‘ใ‚Œใฐไธ–็•Œใƒขใƒ‡ใƒซใฏ่จˆ็”ปใซไฝฟใ„ใซใใ„ใ€‚ๅ‹•็”ป็”Ÿๆˆใงใ‚‚ใ€ใ‚ซใƒกใƒฉใฎ็งปๅ‹•ใ€่ฆ–็‚นใฎๆŒ‡ๅฎšใ€็‰ฉไฝ“ใฎๆ“ไฝœใชใฉใ€ไฝ•ใ‚‰ใ‹ใฎโ€œไป‹ๅ…ฅโ€ใ‚’ๆกไปถใจใ—ใฆไธŽใˆใ‚‰ใ‚Œใ‚‹ใ‚ˆใ†ใซใชใ‚‹ใปใฉใ€ไธ–็•Œใƒขใƒ‡ใƒซใซ่ฟ‘ใ„ๆ€งๆ ผใ‚’ๅธฏใณใ‚‹ใ€‚็”ŸๆˆใŒโ€œ้‘‘่ณž็”จใฎๆ˜ ๅƒโ€ใ‹ใ‚‰ใ€โ€œ่ฉฆ่กŒ็”จใฎๆœชๆฅโ€ใธๅฝนๅ‰ฒใ‚’ๅค‰ใˆใ‚‹ใ‹ใ‚‰ใ ใ€‚

ใŸใ ใ—ใ€ใ“ใ“ใงๅฃใŒๅ‡บใ‚‹ใ€‚ๅ‹•็”ป็”Ÿๆˆใฎๅผทใฟใฏใ€็พๅฎŸใฎๅคšๆง˜ใช่ฆ‹ใŸ็›ฎใ‚’ๅ†็พใงใใ‚‹ใ“ใจใ ใŒใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฏใ€ใใฎๅคšๆง˜ใ•ใŒ้€†ใซ่ถณใ‚’ๅผ•ใฃๅผตใ‚‹ใ“ใจใŒใ‚ใ‚‹ใ€‚่ฆ‹ใŸ็›ฎใฎ่‡ช็”ฑๅบฆใŒ้ซ˜ใ„ใปใฉใ€ๆœชๆฅใฎไธ็ขบๅฎŸๆ€งใฏๅข—ใˆใ€ใƒขใƒ‡ใƒซใฏใ€Œใฉใฎๆœชๆฅใงใ‚‚ใ‚ใ‚Šๅพ—ใ‚‹ใ€ๆ–นๅ‘ใธ้€ƒใ’ใ‚„ใ™ใ„ใ€‚ใ™ใ‚‹ใจใ€ใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ„ใŒๆฑบใ‚ๆ‰‹ใซๆฌ ใ‘ใ‚‹ไบˆๆธฌใซใชใ‚‹ใ€‚่จˆ็”ปใซไฝฟใ†ใชใ‚‰ใ€ๆœชๆฅใŒๅคšๆง˜ใงใ‚ใ‚‹ใ“ใจ่‡ชไฝ“ใฏๆ‚ชใใชใ„ใŒใ€่กŒๅ‹•ใซใ‚ˆใฃใฆๅˆ†ๅฒใŒโ€œๅˆถๅพกๅฏ่ƒฝโ€ใซใชใฃใฆใ„ใชใ„ใจๆ„ๅ‘ณใŒ่–„ใ„ใ€‚ใฉใ‚“ใช่กŒๅ‹•ใ‚’ใ—ใฆใ‚‚ใ€ๆ˜ ๅƒใŒใชใ‚“ใจใชใๆตใ‚Œใฆใ„ใใ ใ‘ใชใ‚‰ใ€ๆ„ๆ€ๆฑบๅฎšใซใฏใคใชใŒใ‚‰ใชใ„ใ€‚

้•ทๆœŸไบˆๆธฌใฎ็ ด็ถปใ‚‚้ฟใ‘ใŒใŸใ„ใ€‚ๅ‹•็”ป็”Ÿๆˆใฏไธ€ๆญฉๅ…ˆใ‚’ๅฝ“ใฆใ‚‹ใฎใŒๅพ—ๆ„ใงใ‚‚ใ€ใใ‚Œใ‚’็ฉใฟ้‡ใญใ‚‹ใจ่ชคๅทฎใŒๅข—ใˆใ‚‹ใ€‚ๆœ€ๅˆใฏๅฐใ•ใชใ‚บใƒฌใงใ‚‚ใ€ๆ•ฐ็ง’ๅพŒใซใฏๅˆฅไธ–็•Œใซๆผ‚ๆตใ™ใ‚‹ใ€‚ใ“ใ‚Œใฏๆ˜ ๅƒใจใ—ใฆใฏใ€Œใชใ‚“ใ‹ๅค‰ใ ใ‘ใฉใ€้›ฐๅ›ฒๆฐ—ใฏใใ‚Œใฃใฝใ„ใ€ใงๆธˆใ‚€ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ€‚ใ—ใ‹ใ—ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆไฝฟใ†ใชใ‚‰ใ€ใปใ‚“ใฎๅฐ‘ใ—ใฎใ‚บใƒฌใŒ่‡ดๅ‘ฝๅ‚ทใซใชใ‚‹ใ€‚็‰นใซใ€่ก็ชใ‚„่ฝไธ‹ใฎใ‚ˆใ†ใซไธ€็žฌใฎใ‚คใƒ™ใƒณใƒˆใŒๅฐ†ๆฅใ‚’ๆฑบใ‚ใ‚‹ๅ ด้ขใงใฏใ€ใ‚คใƒ™ใƒณใƒˆใฎๆ‰ฑใ„ใŒๆ›–ๆ˜งใ ใจ่จˆ็”ปใŒๆˆ็ซ‹ใ—ใชใ„ใ€‚

ใ‚‚ใ†ไธ€็‚นใ€็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซใชใ‚Šใใ‚Œใชใ„ๅ…ธๅž‹ใฏใ€ๅŒใ˜ๅ‡บๆฅไบ‹ใ‚’ๅˆฅ่ฆ–็‚นใง่ฆ‹ใŸใจใใฎๆ•ดๅˆๆ€งใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏโ€œไธ–็•Œใใฎใ‚‚ใฎโ€ใ‚’ๅ†…้ƒจใซๆŒใคใฎใงใ€่ฆ–็‚นใŒๅค‰ใ‚ใฃใฆใ‚‚ๅŒใ˜ไธ–็•Œใจใ—ใฆๆ•ดๅˆใ™ใ‚‹ใฎใŒ็†ๆƒณใ ใ€‚ไธ€ๆ–นใ€ๅ‹•็”ป็”Ÿๆˆใฏใ—ใฐใ—ใฐใ€Œใ“ใฎ่ฆ–็‚นใฎๆ˜ ๅƒใ€ใ‚’็›ดๆŽฅ็”Ÿๆˆใ™ใ‚‹ใ€‚่ฆ–็‚นใ‚’ๅค‰ใˆใŸ็”Ÿๆˆใ‚’ๅˆฅ้€”่กŒใ†ใจใ€็‰ฉไฝ“ใฎไฝ็ฝฎ้–ขไฟ‚ใ‚„็ดฐ้ƒจใŒๅพฎๅฆ™ใซๅค‰ใ‚ใฃใฆใ—ใพใ†ใ“ใจใŒใ‚ใ‚‹ใ€‚ใ“ใ‚Œใฏใ€Œไธ–็•Œใฎใƒขใƒ‡ใƒซใ€ใงใฏใชใใ€Œๆ˜ ๅƒใฎใƒขใƒ‡ใƒซใ€ใซใชใฃใฆใ„ใ‚‹ๅ…†ๅ€™ใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใฎ่ท้›ขใ‚’็คบใ™ๅˆ†ใ‹ใ‚Šใ‚„ใ™ใ„ใ‚ตใ‚คใƒณใ ใ€‚

ใคใพใ‚Šใ€ๅ‹•็”ป็”Ÿๆˆใฏไธ–็•Œใƒขใƒ‡ใƒซใฎ็ด ๆใซใชใ‚Šๅพ—ใ‚‹ใŒใ€ใใฎใพใพใงใฏโ€œๆ˜ ๅƒใ‚‰ใ—ใ•โ€ใซๅผ•ใฃๅผตใ‚‰ใ‚Œใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆๆˆ็ซ‹ใ•ใ›ใ‚‹ใซใฏใ€่กŒๅ‹•ใซใ‚ˆใ‚‹ๅˆ†ๅฒใ€่ฆ–็‚นใ‚’่ถ…ใˆใŸไธ€่ฒซๆ€งใ€ใ‚คใƒ™ใƒณใƒˆใฎๅ› ๆžœใ€้•ทๆœŸๅฎ‰ๅฎšๆ€งใจใ„ใฃใŸๆกไปถใ‚’ใ€ใฉใ“ใพใง่จญ่จˆใซ็น”ใ‚Š่พผใ‚ใ‚‹ใ‹ใŒ้ตใซใชใ‚‹ใ€‚

่ฉ•ไพกใฎ้›ฃใ—ใ•ใจใ€ใ“ใ‚Œใ‹ใ‚‰ใฎ็ซถไบ‰่ปธ

็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซ่ฟ‘ใฅใ„ใฆใ„ใ‚‹ใ‹ใฉใ†ใ‹ใ‚’่ญฐ่ซ–ใ™ใ‚‹ใจใใ€ๆœ€ๅคงใฎๅ•้กŒใฏ่ฉ•ไพกใ ใ€‚็”ปๅƒใ‚„ๅ‹•็”ปใฎ็”Ÿๆˆใงใฏใ€่‡ช็„ถใ•ใ‚„้ซ˜็ฒพ็ดฐใ•ใŒ็›ฎ็ซ‹ใคใฎใงใ€่ฉ•ไพกใ‚‚ใใ“ใซๅฏ„ใ‚Šใ‚„ใ™ใ„ใ€‚ใ—ใ‹ใ—ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎไพกๅ€คใฏใ€็”ป่ณชใงใฏใชใใ€ŒไบˆๆธฌใŒๆ„ๆ€ๆฑบๅฎšใซไฝฟใˆใ‚‹ใ‹ใ€ใซใ‚ใ‚‹ใ€‚ใ“ใ“ใ‚’ๆธฌใ‚‰ใชใ„้™ใ‚Šใ€้€ฒๆญฉใ—ใฆใ„ใ‚‹ใฎใ‹ใ€่ฆ‹ใŸ็›ฎใŒใ†ใพใใชใฃใŸใ ใ‘ใชใฎใ‹ใŒๅˆ†ใ‹ใ‚‰ใชใ„ใ€‚

่ฉ•ไพกใŒ้›ฃใ—ใ„็†็”ฑใฎไธ€ใคใฏใ€ๆœชๆฅใŒไธ€ใคใซๆฑบใพใ‚‰ใชใ„ใ“ใจใ ใ€‚็พๅฎŸใฎๆ˜ ๅƒใงใ™ใ‚‰ใ€ๅฐ‘ใ—ๆกไปถใŒๅค‰ใ‚ใ‚Œใฐๅˆฅใฎๆœชๆฅใซใชใ‚‹ใ€‚ๆญฃ่งฃใฎๆœชๆฅใŒ่ค‡ๆ•ฐใ‚ใ‚‹ไปฅไธŠใ€ใ€Œใ“ใฎใƒ•ใƒฌใƒผใƒ ใŒๆญฃใ—ใ„ใ€ใจไธ€ๆ„ใซ่จ€ใˆใชใ„ใ€‚ใใ“ใงใ€็”Ÿๆˆใฎ่ฉ•ไพกใงใฏ็ตฑ่จˆ็š„ใชๆŒ‡ๆจ™ใ‚„ไบบ้–“ใฎไธป่ฆณใŒไฝฟใ‚ใ‚ŒใŒใกใ ใŒใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎ่ƒฝๅŠ›ใ‚’ๆธฌใ‚‹ใซใฏไธๅๅˆ†ใซใชใ‚Šใ‚„ใ™ใ„ใ€‚ๅฟ…่ฆใชใฎใฏใ€Œไป‹ๅ…ฅใซๅฏพใ—ใฆๆ•ดๅˆใ™ใ‚‹ใ‹ใ€ใ€Œๅˆถ็ด„ใ‚’ๅฎˆใ‚‹ใ‹ใ€ใ€Œ้•ทๆœŸ็š„ใซ็ ด็ถปใ—ใชใ„ใ‹ใ€ใจใ„ใฃใŸๆ€ง่ณชใ ใŒใ€ใ“ใ‚Œใ‚‰ใฏ็Ÿญใ„ใ‚ฏใƒชใƒƒใƒ—ใ‚’็œบใ‚ใ‚‹ใ ใ‘ใงใฏๅˆคๆ–ญใ—ใซใใ„ใ€‚

ใ‚‚ใ†ไธ€ใคใฏใ€ใƒขใƒ‡ใƒซใŒโ€œใ†ใพใ„ใ”ใพใ‹ใ—โ€ใ‚’่ฆšใˆใ‚‹ใ“ใจใ ใ€‚ไพ‹ใˆใฐใ€็‰ฉไฝ“ใŒ่ฆ‹ๅˆ‡ใ‚Œใใ†ใซใชใฃใŸใ‚‰ใ€้ƒฝๅˆใ‚ˆใใ‚ซใƒกใƒฉใ‚’ๆบใ‚‰ใ—ใฆ่ชค้ญ”ๅŒ–ใ™ใ‚ˆใ†ใช็”Ÿๆˆใฏใ€ๅ‹•็”ปใจใ—ใฆใฏ่‡ช็„ถใงใ‚‚ใ€ไธ–็•Œ็†่งฃใจใ—ใฆใฏๅพŒ้€€ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ€‚ใ‚ใ‚‹ใ„ใฏใ€ไบบ้–“ใŒๆฐ—ใฅใใซใใ„็Ÿ›็›พใ‚’ๆŠฑใˆใŸใพใพใ€่ณชๆ„Ÿใ‚„ใƒฉใ‚คใƒ†ใ‚ฃใƒณใ‚ฐใง่ชฌๅพ—ใ—ใฆใใ‚‹ใ€‚ๆ˜ ๅƒใฎ่ชฌๅพ—ๅŠ›ใฏๅผทๅŠ›ใงใ€่ฉ•ไพก่€…ใฎๆ„Ÿ่ฆšใ‚’็ฐกๅ˜ใซไน—ใฃๅ–ใ‚‹ใ€‚ใ ใ‹ใ‚‰ใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎ่ฉ•ไพกใฏใ€ไบบ้–“ใฎไธป่ฆณใซ้ ผใ‚Šใ™ใŽใชใ„ไป•็ต„ใฟใŒ่ฆใ‚‹ใ€‚

ไปŠๅพŒใฎ็ซถไบ‰่ปธใจใ—ใฆ่ฆ‹ใˆใฆใใ‚‹ใฎใฏใ€ใ„ใ‚ใฐโ€œไธ–็•Œใซๅฏพใ™ใ‚‹ใƒ†ใ‚นใƒˆโ€ใ ใ€‚ๆกไปถใ‚’ๅค‰ใˆใ‚‹ใƒ†ใ‚นใƒˆใ€่ฆ–็‚นใ‚’ๅค‰ใˆใ‚‹ใƒ†ใ‚นใƒˆใ€่กŒๅ‹•ใ‚’ๅ…ฅใ‚Œใ‚‹ใƒ†ใ‚นใƒˆใ‚’้€šใ˜ใฆใ€ใฉใ“ใพใงไธ€่ฒซๆ€งใ‚’ไฟใฆใ‚‹ใ‹ใŒๅ•ใ‚ใ‚Œใ‚‹ใ€‚ๅ˜ใซใ€Œๆฌกใƒ•ใƒฌใƒผใƒ ใฃใฝใ„ใ‚‚ใฎใ€ใŒๅ‡บใ‚‹ใ ใ‘ใงใฏใชใใ€ใ€Œใ“ใฎๆ“ไฝœใ‚’ใ—ใŸใ‚‰ใ“ใ†ใชใ‚‹ใ€ใจใ„ใ†ๅ› ๆžœใŒ็ถญๆŒใ•ใ‚Œใ‚‹ใ‹ใ€‚้ฎ่”ฝ็‰ฉใฎ่ฃใง็‰ฉไฝ“ใŒๅญ˜็ถšใ™ใ‚‹ใ‹ใ€‚ๆŽฅ่งฆใฎ็ตๆžœใŒ็‰ฉ็†ใจใ—ใฆๆˆ็ซ‹ใ™ใ‚‹ใ‹ใ€‚ใ“ใ†ใ—ใŸใƒใ‚งใƒƒใ‚ฏใฏใ€ๆ˜ ๅƒใฎ็พŽใ—ใ•ใจใฏๅˆฅใฎๆฌกๅ…ƒใงใƒขใƒ‡ใƒซใ‚’่ฉ•ไพกใ™ใ‚‹ใ€‚

ใƒ—ใƒญใƒ€ใ‚ฏใƒˆ่ฆ–็‚นใง่ฆ‹ใ‚‹ใจใ€ไธ–็•Œใƒขใƒ‡ใƒซ็š„ใชๅ‹•็”ป็”Ÿๆˆใฏโ€œ็”จ้€”โ€ใงไพกๅ€คใŒๆฑบใพใ‚‹ใ€‚ๆ˜ ็”ปๅˆถไฝœใ‚„ๅบƒๅ‘Šใ‚ฏใƒชใ‚จใ‚คใƒ†ใ‚ฃใƒ–ใงใฏใ€ๅคšๅฐ‘ใฎ็‰ฉ็†็Ÿ›็›พใ‚ˆใ‚Š่กจ็พๅŠ›ใŒ้‡่ฆใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ€‚ไธ€ๆ–นใ€ใƒญใƒœใƒƒใƒˆใฎ่จ“็ทดใ‚„ไฝœๆฅญ่จˆ็”ปใงใฏใ€่ฆ‹ใŸ็›ฎใŒๅคšๅฐ‘่’ใใฆใ‚‚ๅ› ๆžœใŒๆญฃใ—ใ„ใปใ†ใŒไพกๅ€คใŒ้ซ˜ใ„ใ€‚ใคใพใ‚Šใ€ๅŒใ˜ๅ‹•็”ป็”Ÿๆˆใงใ‚‚ใ€ไธ–็•Œใƒขใƒ‡ใƒซใซๅฏ„ใ›ใ‚‹ใปใฉใ€Œๆญฃใ—ใ•ใ€ใŒ่ฆๆฑ‚ใ•ใ‚Œใ€่กจ็พใฎ่‡ช็”ฑๅบฆใจใฎใƒˆใƒฌใƒผใƒ‰ใ‚ชใƒ•ใŒๅผทใใชใ‚‹ใ€‚ใ“ใ“ใ‚’็†่งฃใ›ใšใซใ€Œๅ‹•็”ป็”ŸๆˆใŒ้€ฒใ‚“ใ ใ‹ใ‚‰ไธ–็•Œใƒขใƒ‡ใƒซใ‚‚ๅฎŒๆˆใซ่ฟ‘ใ„ใ€ใจ็ต่ซ–ใฅใ‘ใ‚‹ใฎใฏๅฑ้™บใ ใ€‚

็ต่ซ–ใจใ—ใฆใ€ๅ‹•็”ป็”Ÿๆˆใฏไธ–็•Œใƒขใƒ‡ใƒซใฎๅ…ฅๅฃใซ็ซ‹ใฃใฆใ„ใ‚‹ใ€‚ๆ™‚้–“ใ‚’ๆ‰ฑใ†ไปฅไธŠใ€ๅ†…้ƒจใซ็Šถๆ…‹้ท็งปใŒ่Šฝ็”Ÿใˆใ‚‹ใ‹ใ‚‰ใ ใ€‚ใ—ใ‹ใ—ใ€ไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใŸใ‚ใซใฏใ€่ฆ‹ใŸ็›ฎใฎ้€ฃ็ถšๆ€งใงใฏใชใใ€ไป‹ๅ…ฅใจไธ€่ฒซๆ€งใซ่€ใˆใ‚‹ใ“ใจใŒๅฟ…่ฆใซใชใ‚‹ใ€‚็”Ÿๆˆใƒขใƒ‡ใƒซใŒๆฌกใซ็ซถใ†ใฎใฏใ€็”ป่ณชใ ใ‘ใงใฏใชใ„ใ€‚โ€œไธ–็•Œใจใ—ใฆ็ญ‹ใŒ้€šใ‚‹ๆœชๆฅโ€ใ‚’ใฉใ‚Œใ ใ‘ไฝœใ‚Œใ‚‹ใ‹ใ€‚ใใ“ใซใ€็”ŸๆˆAIใฎๆฌกใฎๆœฌๅฝ“ใฎไผธใณใ—ใ‚ใŒใ‚ใ‚‹ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใจใฏไฝ•ใ‹ใ€‚็”ŸๆˆAIๆ™‚ไปฃใซโ€œไบˆๆธฌใ™ใ‚‹็Ÿฅ่ƒฝโ€ใŒๅ†ๆณจ็›ฎใ•ใ‚Œใ‚‹็†็”ฑ

19 January 2026 at 09:59

ไธ–็•Œใƒขใƒ‡ใƒซใฎๅฎš็พฉใจใ€ใ‚ˆใใ‚ใ‚‹่ชค่งฃ

ไธ–็•Œใƒขใƒ‡ใƒซ๏ผˆWorld Model๏ผ‰ใจใ„ใ†่จ€่‘‰ใฏใ€ใ–ใฃใใ‚Š่จ€ใˆใฐใ€Œไธ–็•ŒใŒใฉใ†ๅ‹•ใใ‹ใ€ใ‚’ๅ†…้ƒจใซๆŒใคใŸใ‚ใฎ่กจ็พใ ใ€‚ใ“ใ“ใง่จ€ใ†ไธ–็•Œใฏใ€ๅฟ…ใšใ—ใ‚‚ๅœฐ็ƒๅ…จไฝ“ใ‚„็คพไผšๅ…จไฝ“ใฎใ“ใจใงใฏใชใ„ใ€‚ใƒญใƒœใƒƒใƒˆใŒๆœบใฎไธŠใง็‰ฉใ‚’ๆŠผใ—ใŸใจใใซไฝ•ใŒ่ตทใใ‚‹ใ‹ใ€ใ‚ฒใƒผใƒ ใฎไธญใงใ‚ญใƒฃใƒฉใ‚ฏใ‚ฟใƒผใŒๆ›ฒใŒใฃใŸใจใใซ่ฆ–็•ŒใŒใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ€ใ‚ใ‚‹ใ„ใฏไผš่ฉฑใง็›ธๆ‰‹ใฎๆ„Ÿๆƒ…ใŒใฉใ†ๆŽจ็งปใ—ใใ†ใ‹ใ€ใใ†ใ„ใ†โ€œ่‡ชๅˆ†ใŒ้–ขใ‚ใ‚‹็ฏ„ๅ›ฒใฎ็’ฐๅขƒโ€ใ‚’ๅซใ‚€ใ€‚้‡่ฆใชใฎใฏใ€ใใฎๅ†…้ƒจ่กจ็พใŒใ€Œๆฌกใซไฝ•ใŒ่ตทใใ‚‹ใ‹ใ€ใ‚’ไบˆๆธฌใ™ใ‚‹ใŸใ‚ใซไฝฟใˆใ‚‹ใ€ใจใ„ใ†็‚นใ ใ€‚

ใ“ใ“ใงๆœ€ๅˆใฎ่ชค่งฃใŒ็”Ÿใพใ‚Œใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏๅ˜ใชใ‚‹ใ€Œ็Ÿฅ่ญ˜ใฎ้›†ใพใ‚Šใ€ใงใฏใชใ„ใ€‚็™พ็ง‘ไบ‹ๅ…ธ็š„ใซไบ‹ๅฎŸใ‚’่ฉฐใ‚่พผใ‚“ใ ใ‚‚ใฎใ‚’ไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใชใ‚‰ใ€ๆคœ็ดขใ‚จใƒณใ‚ธใƒณใฎใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นใ‚‚ไธ–็•Œใƒขใƒ‡ใƒซใซใชใฃใฆใ—ใพใ†ใ€‚ใ—ใ‹ใ—ใ€ไธ–็•Œใƒขใƒ‡ใƒซใŒ็‹™ใ†ไธญๅฟƒใฏใ€Œ็Šถๆ…‹ใฎๆŠŠๆกใ€ใจใ€Œ็Šถๆ…‹ใฎ้ท็งปใ€ใ€ใคใพใ‚ŠไปŠใŒใฉใ†ใ„ใ†็Šถๆณใงใ€ใใ‚ŒใŒๆฌกใซใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใจใ„ใ†ๅ‹•ๅŠ›ๅญฆใฎๅดใซใ‚ใ‚‹ใ€‚ใ‚‚ใกใ‚ใ‚“็Ÿฅ่ญ˜ใฏไฝฟใ†ใฎใ ใŒใ€็Ÿฅ่ญ˜ใŒโ€œไบˆๆธฌใซๆŽฅ็ถšใ•ใ‚Œใฆใ„ใ‚‹โ€ใ‹ใฉใ†ใ‹ใŒๅขƒ็›ฎใซใชใ‚‹ใ€‚

ๆฌกใฎ่ชค่งฃใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ใ€ŒๅฎŒ็’งใช็‰ฉ็†ใ‚จใƒณใ‚ธใƒณใ€ใ ใจๆ‰ใˆใฆใ—ใพใ†ใ“ใจใ ใ€‚็ขบใ‹ใซ็†ๆƒณๅฝขใจใ—ใฆใฏใ€ไธ–็•Œใ‚’ๆญฃ็ขบใซใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใงใใ‚Œใฐๅผทใ„ใ€‚ใ ใŒ็พๅฎŸใฎไธ–็•Œใฏใ€ๆœช็Ÿฅใฎ่ฆๅ› ใจใƒŽใ‚คใ‚บใ ใ‚‰ใ‘ใงใ€ๆญฃ็ขบใ•ใ ใ‘ใ‚’่ฟฝใ†ใจใ™ใใซ็ ด็ถปใ™ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ๆญฃ็ขบใ•ใ‚ˆใ‚Šใ‚‚ใพใšใ€Œๆ„ๆ€ๆฑบๅฎšใซไฝฟใˆใ‚‹็จ‹ๅบฆใซใ€ไธ–็•Œใ‚’ๅœง็ธฎใ—ใฆ่กจใ™ใ€ใ“ใจใŒๅคšใ„ใ€‚ใŸใจใˆใฐ่ปŠใฎ้‹่ปขใงใ€ไบบใฏใ‚ฟใ‚คใƒคใฎใ‚ดใƒ ๅˆ†ๅญใฎ้‹ๅ‹•ใ‚’่จˆ็ฎ—ใ—ใฆใ„ใชใ„ใ€‚่ฆ‹ใˆใ‚‹็ฏ„ๅ›ฒใฎ่ปŠ้–“่ท้›ขใ€็›ธๆ‰‹ใฎ้€Ÿๅบฆใ€ไฟกๅทใฎ็Šถๆ…‹ใ‚’้ ญใฎไธญใงใพใจใ‚ใฆใ€ŒไปŠใฏๆธ›้€Ÿใ ใชใ€ใจๅˆคๆ–ญใ™ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใจใฏใ€ใใ†ใ„ใ†โ€œๅฟ…่ฆใชใจใ“ใ‚ใ ใ‘ๆŽดใ‚€โ€่ƒฝๅŠ›ใฎๆฉŸๆขฐ็‰ˆใงใ‚‚ใ‚ใ‚‹ใ€‚

ใ•ใ‚‰ใซใ‚„ใ‚„ใ“ใ—ใ„ใฎใŒใ€่ฟ‘ๅนดใฎๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซ๏ผˆLLM๏ผ‰ใจใฎ้–ขไฟ‚ใ ใ€‚LLMใฏๅคง้‡ใฎๆ–‡็ซ ใ‹ใ‚‰ใ€ๆฌกใฎๅ˜่ชžใ‚’ไบˆๆธฌใ™ใ‚‹่จ“็ทดใ‚’ๅ—ใ‘ใฆใ„ใ‚‹ใ€‚ใใฎ็ตๆžœใ€ไธ–็•Œใฎ็Ÿฅ่ญ˜ใ‚„ๅ› ๆžœ้–ขไฟ‚ใฃใฝใ„ใ‚‚ใฎใŒๅ†…้ƒจใซ่กจ็พใ•ใ‚Œใ€ใ€Œใใ‚Œใฏไธ–็•Œใƒขใƒ‡ใƒซใงใฏ๏ผŸใ€ใจใ„ใ†่ญฐ่ซ–ใŒ่ตทใใ‚‹ใ€‚ใ“ใ“ใงใฎใƒใ‚คใƒณใƒˆใฏใ€่จ€่ชžใƒขใƒ‡ใƒซใŒๆŒใคๅ†…้ƒจ่กจ็พใŒไธ–็•Œใƒขใƒ‡ใƒซ็š„ใซๅƒใๅ ด้ขใฏ็ขบใ‹ใซใ‚ใ‚‹ไธ€ๆ–นใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ„ใ†ๆฆ‚ๅฟตใŒๆœฌๆฅ้‡่ฆ–ใ™ใ‚‹ใฎใฏใ€Œไธ–็•Œใจใฎ็›ธไบ’ไฝœ็”จใ€ใจใ€ŒไบˆๆธฌใŒ่กŒๅ‹•ใซใƒ•ใ‚ฃใƒผใƒ‰ใƒใƒƒใ‚ฏใ™ใ‚‹ใ€ๆง‹้€ ใ ใจใ„ใ†ใ“ใจใ ใ€‚ๆ–‡็ซ ไธŠใฎๆ•ดๅˆๆ€งใŒๅ–ใ‚Œใฆใ„ใฆใ‚‚ใ€็‰ฉ็†็š„ใชๅ› ๆžœใ‚„ใ€ไป‹ๅ…ฅใ—ใŸใจใใฎ็ตๆžœใŒๆ•ดๅˆใ—ใชใ„ใ“ใจใฏ่ตทใ“ใ‚Šใ†ใ‚‹ใ€‚่จ€ใ„ๆ›ใˆใ‚‹ใจใ€่จ€่ชžใจใ—ใฆใฎโ€œใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ•โ€ใจใ€ไธ–็•Œใจใ—ใฆใฎโ€œๆˆใ‚Š็ซ‹ใกโ€ใฏไธ€่‡ดใ™ใ‚‹ใจใฏ้™ใ‚‰ใชใ„ใ€‚

ใใ‚Œใงใ‚‚ไธ–็•Œใƒขใƒ‡ใƒซใŒ้‡่ฆใชใฎใฏใ€AIใŒๆฌกใซ้€ฒใ‚€ๆ–นๅ‘ใŒใ€Œ็”Ÿๆˆใ€ใ‹ใ‚‰ใ€Œ่จˆ็”ปใ€ใธๅฏ„ใ‚Šๅง‹ใ‚ใฆใ„ใ‚‹ใ‹ใ‚‰ใ ใ€‚ไฝ•ใ‹ใ‚’ๅ‡บๅŠ›ใงใใ‚‹ใ ใ‘ใงใฏใชใใ€ใใฎๅ‡บๅŠ›ใŒ็พๅฎŸใซใฉใ†ๅฝฑ้Ÿฟใ™ใ‚‹ใ‹ใ‚’่ฆ‹็ฉใ‚‚ใ‚Šใ€็›ฎๆจ™ใซๆฒฟใฃใฆๆ‰‹้ †ใ‚’็ต„ใฟ็ซ‹ใฆใ‚‹ใ€‚ใใ“ใซๅฟ…่ฆใชใฎใŒใ€ไธ–็•ŒใŒใฉใ†ๅ‹•ใใ‹ใ‚’ๅ†…้ƒจใซๆŒใคไป•็ต„ใฟใงใ‚ใ‚Šใ€ใใ‚Œใ‚’ไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใ€‚

ใฉใ†ใ‚„ใฃใฆไธ–็•Œใƒขใƒ‡ใƒซใฏๅญฆ็ฟ’ใ•ใ‚Œใ‚‹ใฎใ‹

ไธ–็•Œใƒขใƒ‡ใƒซใฎๅญฆ็ฟ’ใฏใ€ไธ€่จ€ใงใพใจใ‚ใ‚‹ใชใ‚‰ใ€Œ่ฆณๆธฌใ‚’ใ†ใพใใพใจใ‚ใฆใ€ๆฌกใ‚’ๅฝ“ใฆใ‚‹ใ€ใ ใ€‚ใŸใจใˆใฐใ€ใ‚ซใƒกใƒฉ็”ปๅƒใฎ้€ฃ็ถšใ€ใ‚ปใƒณใ‚ตใƒผใฎๆ™‚็ณปๅˆ—ใ€ใƒญใ‚ฐใƒ‡ใƒผใ‚ฟใ€ไผš่ฉฑใฎๅฑฅๆญดใชใฉใ€ไธ–็•Œใ‹ใ‚‰ๅพ—ใ‚‰ใ‚Œใ‚‹ๆƒ…ๅ ฑใฏใใฎใพใพใ ใจ่ค‡้›‘ใ™ใŽใ‚‹ใ€‚ใใ“ใงใพใšใ€่ฆณๆธฌใ‚’ๅœง็ธฎใ—ใฆโ€œ็Šถๆ…‹โ€ใจใ—ใฆ่กจใ™ใ€‚ๆฌกใซใ€ใใฎ็Šถๆ…‹ใŒๆ™‚้–“ใจใจใ‚‚ใซใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ€ใ‚ใ‚‹ใ„ใฏ่‡ชๅˆ†ใŒไฝ•ใ‹่กŒๅ‹•ใ—ใŸใจใใซใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ‚’ๅญฆใถใ€‚ใ“ใ“ใพใง่žใใจๅคๅ…ธ็š„ใชไบˆๆธฌใƒขใƒ‡ใƒซใจๅŒใ˜ใซ่ฆ‹ใˆใ‚‹ใŒใ€ไธ–็•Œใƒขใƒ‡ใƒซใฎๆ–‡่„ˆใงใฏใ€Œ็Šถๆ…‹ใŒ็›ดๆŽฅ่ฆ‹ใˆใชใ„ใ€ใ“ใจใ‚’ๅ‰ๆใซใ™ใ‚‹ใ“ใจใŒๅคšใ„ใ€‚

็พๅฎŸใฏใ€ๅฟ…่ฆใชๆƒ…ๅ ฑใŒใ„ใคใ‚‚่ฆณๆธฌใงใใ‚‹ใ‚ใ‘ใงใฏใชใ„ใ€‚ใŸใจใˆใฐใ€ๆœบใฎไธŠใซ็ฝฎใ„ใŸใ‚ณใƒƒใƒ—ใฏ่ฆ‹ใˆใฆใ„ใ‚‹ใŒใ€ใ‚ณใƒƒใƒ—ใฎๅบ•ใฎๆป‘ใ‚Šใ‚„ใ™ใ•ใฏ่ฆ‹ใˆใชใ„ใ€‚็›ธๆ‰‹ใŒๆ€’ใฃใฆใ„ใ‚‹ใ‹ใฉใ†ใ‹ใ‚‚ใ€ๅฟƒใฎไธญใฏ่ฆ‹ใˆใชใ„ใ€‚ใใ“ใงไธ–็•Œใƒขใƒ‡ใƒซใฏใ€่ฆ‹ใˆใชใ„่ฆๅ› ใ‚’ๅซใ‚ใŸโ€œๆฝœๅœจ็Šถๆ…‹โ€ใจใ„ใ†่€ƒใˆๆ–นใ‚’ไฝฟใ†ใ€‚่ฆณๆธฌใ‹ใ‚‰ๆฝœๅœจ็Šถๆ…‹ใ‚’ๆŽจๅฎšใ—ใ€ใใฎๆฝœๅœจ็Šถๆ…‹ใ‹ใ‚‰ๆฌกใฎๆฝœๅœจ็Šถๆ…‹ใ‚’ไบˆๆธฌใ—ใ€ๅฟ…่ฆใชใ‚‰ใใ“ใ‹ใ‚‰่ฆณๆธฌใ‚’ๅ†ๆง‹ๆˆใ™ใ‚‹ใ€‚ใ“ใฎๆง‹้€ ใŒใ‚ใ‚‹ใจใ€่ฆ‹ใˆใชใ„้ƒจๅˆ†ใ‚’ใ†ใพใๅธๅŽใ—ใชใŒใ‚‰ใ€้•ทๆœŸ็š„ใชไบˆๆธฌใ‚„่จˆ็”ปใซใคใชใ’ใ‚„ใ™ใใชใ‚‹ใ€‚

ๅญฆ็ฟ’ใฎๅŸบๆœฌใฎๅฝขใฏใ€Œ่‡ชๅทฑๆ•™ๅธซใ‚ใ‚Šใ€ใซใชใ‚Šใ‚„ใ™ใ„ใ€‚ใคใพใ‚Šใ€ๆ•™ๅธซใŒใ€Œๆญฃ่งฃใƒฉใƒ™ใƒซใ€ใ‚’็”จๆ„ใ—ใฆใใ‚Œใชใใฆใ‚‚ใ€ไธ–็•Œใฏๅ‹ๆ‰‹ใซๆฌกใฎ็žฌ้–“ใ‚’่ฆ‹ใ›ใฆใใ‚Œใ‚‹ใฎใงใ€ใใ‚Œใ‚’ๆญฃ่งฃใจใ—ใฆๅญฆในใ‚‹ใ€‚ๅ‹•็”ปใชใ‚‰ๆฌกใƒ•ใƒฌใƒผใƒ ใ€ๆ™‚็ณปๅˆ—ใชใ‚‰ๆฌกใฎๅ€คใ€ไผš่ฉฑใชใ‚‰ๆฌกใฎ็™บ่ฉฑใฎๆตใ‚ŒใŒใƒฉใƒ™ใƒซใซใชใ‚‹ใ€‚ใ“ใ†ใ„ใ†ๅญฆใณๆ–นใฏใ€ใƒ‡ใƒผใ‚ฟใฎ้‡ใ‚’็ขบไฟใ—ใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒไผธใณใ‚„ใ™ใ„่ƒŒๆ™ฏใซใฏใ€ใ‚ปใƒณใ‚ตใƒผใ‚„ใƒญใ‚ฐใŒๅคง้‡ใซๅ–ใ‚Œใ‚‹็’ฐๅขƒใŒๅข—ใˆใŸใ“ใจใ‚‚ใ‚ใ‚‹ใ€‚

ใ“ใ“ใงไธ€ๆฎตๆทฑใ„่ฉฑใจใ—ใฆใ€ใ€Œไบˆๆธฌใ™ในใใ‚‚ใฎใฏไฝ•ใ‹ใ€ใŒ้›ฃๆ‰€ใซใชใ‚‹ใ€‚ๆฌกใƒ•ใƒฌใƒผใƒ ใฎ็”ป็ด ใ‚’ๅ…จ้ƒจๅฝ“ใฆใซใ„ใใจใ€ไธ–็•Œใฏ็ดฐ้ƒจใพใง่ค‡้›‘ใ™ใŽใฆๅญฆ็ฟ’ใŒ้‡ใใชใ‚‹ใ€‚้€†ใซๆŠฝ่ฑกๅŒ–ใ—ใ™ใŽใ‚‹ใจใ€ๅคงไบ‹ใชๅ› ๆžœใŒๆŠœใ‘ใ‚‹ใ€‚ใ ใ‹ใ‚‰ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ใฉใฎใƒฌใƒ™ใƒซใงไธ–็•Œใ‚’่กจ็พใ™ใ‚‹ใ‹ใ€ใคใพใ‚Š่กจ็พใฎ็ฒ’ๅบฆใ‚’่จญ่จˆใ™ใ‚‹ใฎใŒๅ‹่ฒ ใซใชใ‚‹ใ€‚ไบบ้–“ใ‚‚ๅŒใ˜ใงใ€ใŸใจใˆใฐใ‚นใƒใƒผใƒ„่ฆณๆˆฆใงใƒœใƒผใƒซใฎๅ›ž่ปขๆ•ฐใฎๅพฎ็ดฐๅค‰ๅŒ–ใ‚’้€ไธ€่ฟฝใ‚ใชใ„ไปฃใ‚ใ‚Šใซใ€้ธๆ‰‹ใฎไฝ็ฝฎ้–ขไฟ‚ใ‚„ใƒชใ‚บใƒ ใงๅฑ•้–‹ใ‚’ไบˆๆธฌใ—ใฆใ„ใ‚‹ใ€‚AIใงใ‚‚ใ€ๆ„ๅ‘ณใฎใ‚ใ‚‹ๅ˜ไฝใงไธ–็•Œใ‚’ๅˆ‡ใ‚Šๅ‡บใ—ใ€ไบˆๆธฌใ‚’ๆˆ็ซ‹ใ•ใ›ใ‚‹ๅทฅๅคซใŒ่ฆใ‚‹ใ€‚

ใ‚‚ใ†ไธ€ใคใฎใ‚ญใƒขใฏใ€ไธ็ขบๅฎŸๆ€งใ‚’ใใกใ‚“ใจๆ‰ฑใ†ใ“ใจใ ใ€‚ไธ–็•Œใฏไธ€ใคใฎๆœชๆฅใ ใ‘ใ‚’ๆŒใŸใชใ„ใ€‚้›จใŒ้™ใ‚Šใใ†ใงใ‚‚้™ใ‚‰ใชใ„ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ—ใ€็›ธๆ‰‹ใŒ็ฌ‘ใ†ใ‹ๆ€’ใ‚‹ใ‹ใฏ็Šถๆณๆฌก็ฌฌใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๅ˜ไธ€ใฎๆœชๆฅใ‚’ๆ–ญๅฎšใ™ใ‚‹ใจใ€ๅค–ใ‚ŒใŸใจใใฎใƒ€ใƒกใƒผใ‚ธใŒๅคงใใ„ใ€‚ใ ใ‹ใ‚‰ใ€ๅคšๆง˜ใชๅฏ่ƒฝๆ€งใ‚’ๆŒใฃใŸๆœชๆฅใ‚’่กจ็พใงใใ‚‹ใƒขใƒ‡ใƒซใŒๅฅฝใพใ‚Œใ‚‹ใ€‚ใ“ใ‚ŒใŒใ€Œ็”Ÿๆˆใƒขใƒ‡ใƒซใ€ใจๆŽฅ็ถšใ™ใ‚‹ใƒใ‚คใƒณใƒˆใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏใ—ใฐใ—ใฐใ€Œๆœชๆฅใ‚’็”Ÿๆˆใ™ใ‚‹ใ€ๅฝขใง่จญ่จˆใ•ใ‚Œใ‚‹ใ€‚ๅ˜ใซๅนณๅ‡ใ‚’ๅ–ใ‚‹ไบˆๆธฌใงใฏใชใใ€่ค‡ๆ•ฐใฎ็ญ‹ใฎ้€šใฃใŸใ‚ทใƒŠใƒชใ‚ชใ‚’ๅ‡บใ—ใ€ใใฎไธญใ‹ใ‚‰็›ฎ็š„ใซๅˆใ†่กŒๅ‹•ใ‚’้ธใถใ€ใจใ„ใ†ๆตใ‚ŒใŒไฝœใ‚Šใ‚„ใ™ใ„ใ€‚

ใ“ใ†ใ—ใฆๅญฆ็ฟ’ใ•ใ‚ŒใŸไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ไฝฟใ„ๆ–นใซใ‚ˆใฃใฆๆ€งๆ ผใŒๅค‰ใ‚ใ‚‹ใ€‚็ŸญๆœŸใฎไบˆๆธฌใŒๅพ—ๆ„ใชใ‚‚ใฎใ€้•ทๆœŸใฎ่จˆ็”ปใซ่€ใˆใ‚‹ใ‚‚ใฎใ€่กŒๅ‹•ใ‚’ๅ…ฅใ‚Œใ‚‹ใจๅๅฟœใŒ่ฟ”ใ‚‹ใ‚‚ใฎใ€่ฆณๆธฌใฎๆฌ ่ฝใซๅผทใ„ใ‚‚ใฎใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏๅ˜ไฝ“ใฎๆŠ€่ก“ๅใจใ„ใ†ใ‚ˆใ‚Šใ€ใ€Œไบˆๆธฌใงใใ‚‹ๅ†…้ƒจ่กจ็พใ‚’ใฉใ†ไฝœใ‚Šใ€ใฉใ†ไฝฟใ†ใ‹ใ€ใจใ„ใ†่จญ่จˆๆ€ๆƒณใฎๆŸใจใ—ใฆ็†่งฃใ—ใŸใปใ†ใŒใ€ๅฎŸๆ…‹ใซ่ฟ‘ใ„ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใŒใ‚‚ใŸใ‚‰ใ™ไพกๅ€คใจใ€้™็•Œใฎๆญฃไฝ“

ไธ–็•Œใƒขใƒ‡ใƒซใฎไพกๅ€คใฏใ€็ซฏ็š„ใซ่จ€ใˆใฐใ€Œใ‚„ใ‚‹ๅ‰ใซ่ฉฆใ›ใ‚‹ใ€ใ“ใจใซใ‚ใ‚‹ใ€‚็พๅฎŸไธ–็•Œใงใฎ่ฉฆ่กŒ้Œฏ่ชคใฏใ‚ณใ‚นใƒˆใŒ้ซ˜ใ„ใ€‚ใƒญใƒœใƒƒใƒˆใŒ่ปขๅ€’ใ™ใ‚ŒใฐๅฃŠใ‚Œใ‚‹ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ—ใ€่ฃฝ้€ ใƒฉใ‚คใƒณใฎๅฎŸ้จ“ใฏๆญขใ‚ใ‚‰ใ‚Œใชใ„ใ—ใ€ใƒ“ใ‚ธใƒใ‚นๆ–ฝ็ญ–ใฎๅคฑๆ•—ใฏๆๅคฑใซใชใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒใ‚ใ‚Œใฐใ€ๅ†…้ƒจใงใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใ—ใฆๅฑใชใ„ๆ‰‹ใ‚’้ฟใ‘ใŸใ‚Šใ€ๆˆๅŠŸ็ขบ็އใฎ้ซ˜ใ„ๆ‰‹ใ‚’ๅ„ชๅ…ˆใ—ใŸใ‚Šใงใใ‚‹ใ€‚ๅผทๅŒ–ๅญฆ็ฟ’ใฎๆ–‡่„ˆใงใฏใ€็’ฐๅขƒใจใฎใ‚„ใ‚Šใจใ‚Šใ‚’็ฏ€็ด„ใงใใ‚‹ใ“ใจใŒๅผทใฟใจใ—ใฆ่ชžใ‚‰ใ‚Œใ‚‹ใŒใ€็พๅฎŸใฎ็พๅ ดใงใฏใ€Œๅฎ‰ๅ…จใ€ใจใ€Œ่ฒป็”จใ€ใฎๅ•้กŒใจใ—ใฆใ€ใ‚ˆใ‚Šๅˆ‡ๅฎŸใซๅŠนใ„ใฆใใ‚‹ใ€‚

ใพใŸใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ŒๆฑŽๅŒ–ใ€ใซ้–ขไฟ‚ใ™ใ‚‹ใ€‚ๆฑŽๅŒ–ใจใฏใ€่ฆ‹ใŸใ“ใจใฎใชใ„็Šถๆณใงใ‚‚ใ†ใพใใ‚„ใ‚‹่ƒฝๅŠ›ใ ใ€‚ๅ˜ใชใ‚‹ใƒ‘ใ‚ฟใƒผใƒณๆš—่จ˜ใฏใ€็’ฐๅขƒใŒๅฐ‘ใ—ๅค‰ใ‚ใ‚‹ใจๅดฉใ‚Œใ‚‹ใ€‚ใ ใŒใ€ๅ› ๆžœใ‚„ๆง‹้€ ใ‚’ๅ†…้ƒจใซๆŒใฆใ‚Œใฐใ€่กจ้ขใŒ้•ใฃใฆใ‚‚ๆœฌ่ณชใŒๅŒใ˜ใชใ‚‰ๅฏพๅฟœใงใใ‚‹ๅฏ่ƒฝๆ€งใŒไธŠใŒใ‚‹ใ€‚ใŸใจใˆใฐใ€ๆœบใŒๆœจ่ฃฝใ‹ใ‚‰้‡‘ๅฑžใซใชใฃใฆใ‚‚ใ€Œๆป‘ใ‚Šใ‚„ใ™ใ•ใŒๅค‰ใ‚ใ‚‹ใ€็จ‹ๅบฆใฎๅทฎใจใ—ใฆๆ‰ฑใˆใ‚Œใฐใ€ๆŠผใ™ๅŠ›ใ‚„้€Ÿๅบฆใ‚’่ชฟๆ•ดใ—ใฆ็›ฎ็š„ใ‚’้”ๆˆใงใใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฎ็›ฎๆจ™ใฏใ€ไธ–็•Œใฎ็ดฐ้ƒจใ‚’ไธธๆš—่จ˜ใ™ใ‚‹ใ“ใจใงใฏใชใใ€ๅค‰ๅŒ–ใฎไป•ๆ–นใ‚’ๆŽดใ‚€ใ“ใจใซใ‚ใ‚‹ใ€‚

ใŸใ ใ—ใ€ใ“ใ“ใ‹ใ‚‰ใŒๅคงไบ‹ใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใฎ้™็•Œใ‚‚ใ“ใฎไพกๅ€คใจๅŒใ˜ๅ ดๆ‰€ใ‹ใ‚‰็”Ÿใพใ‚Œใ‚‹ใ€‚ๅ†…้ƒจใง่ฉฆใ™ใจใ„ใ†ใ“ใจใฏใ€ๅ†…้ƒจใฎไธ–็•ŒใŒ้–“้•ใฃใฆใ„ใŸใ‚‰ใ€้–“้•ใฃใŸใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใงๆ„ๆ€ๆฑบๅฎšใ—ใฆใ—ใพใ†ใจใ„ใ†ใ“ใจใ ใ€‚ใ—ใ‹ใ‚‚ๆ€–ใ„ใฎใฏใ€ไบˆๆธฌใŒๅฐ‘ใ—ใ ใ‘ๅค–ใ‚Œใ‚‹ใจใใปใฉใ€้•ทๆœŸ็š„ใซใฏๅคงๅค–ใ‚Œใซใชใ‚‹ใ“ใจใŒใ‚ใ‚‹็‚นใ ใ€‚ๆœชๆฅใ‚’ไธ€ๆญฉใšใคไบˆๆธฌใ—ใฆใ„ใใจใ€่ชคๅทฎใŒ็ฉใฟไธŠใŒใ‚Šใ€้€”ไธญใ‹ใ‚‰็พๅฎŸใจๅˆฅไธ–็•Œใซ่ฟทใ„่พผใ‚€ใ€‚ใ“ใ‚Œใฏใ€Œใƒญใƒผใƒซใ‚ขใ‚ฆใƒˆใฎ็ ด็ถปใ€ใจๅ‘ผใฐใ‚Œใ‚‹ใ“ใจใŒใ‚ใ‚‹ใŒใ€่ฆใ™ใ‚‹ใซ้•ทๆœŸใฎใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใปใฉไฟก็”จใŒ้›ฃใ—ใ„ใ€‚

ใ•ใ‚‰ใซใ€ใƒ‡ใƒผใ‚ฟใŒๅญ˜ๅœจใ—ใชใ„้ ˜ๅŸŸใ€ใ„ใ‚ใ‚†ใ‚‹ๅˆ†ๅธƒๅค–ใซๅ‡บใŸ็žฌ้–“ใซๅฃŠใ‚Œใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏ่ฆณๆธฌใ‹ใ‚‰ๅญฆใถไปฅไธŠใ€่ฆณๆธฌใ•ใ‚Œใชใ„ใ‚‚ใฎใ‚’ๆญฃใ—ใใฏๅญฆในใชใ„ใ€‚่ฆ‹ใŸใ“ใจใฎใชใ„้“ๅ…ทใ€ๆœช็Ÿฅใฎใƒซใƒผใƒซใ€ๆฅต็ซฏใช็Šถๆณใซๅผฑใ„ใฎใฏ่‡ช็„ถใ ใ€‚ใ“ใ“ใงใ€่จ€่ชžใƒขใƒ‡ใƒซใฎใƒใƒซใ‚ทใƒใƒผใ‚ทใƒงใƒณใจไผผใŸๆง‹ๅ›ณใŒๅ‡บใ‚‹ใ€‚ใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ„ไบˆๆธฌใ‚’็”Ÿๆˆใงใใ‚‹ใŒใ€ใใ‚ŒใŒ็พๅฎŸใฎๆ‹˜ๆŸๆกไปถใ‚’ๆบ€ใŸใ™ใจใฏ้™ใ‚‰ใชใ„ใ€‚่ฆ‹ใŸ็›ฎใ‚„ๆ–‡็ซ ใฎๆ•ดๅˆๆ€งใŒ้ซ˜ใ„ใปใฉใ€้–“้•ใ„ใซๆฐ—ใฅใใซใใใชใ‚‹ใฎใŒๅŽ„ไป‹ใ ใ€‚

ใ ใ‹ใ‚‰ๅฎŸๅ‹™ใงใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ใ€Œไธ‡่ƒฝใช้ ญ่„ณใ€ใจใ—ใฆ็ฝฎใใ‚ˆใ‚Šใ€ใ€Œไธ็ขบๅฎŸๆ€งใ‚’ๅซใ‚€ไปฎ่ชฌ็”Ÿๆˆ่ฃ…็ฝฎใ€ใจใ—ใฆๆ‰ฑใ†ใฎใŒๅฎ‰ๅ…จใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๅ‡บใ—ใŸๆœชๆฅไบˆๆธฌใ‚’ใ€ๅˆฅใฎใƒใ‚งใƒƒใ‚ฏๆฉŸๆง‹ใงๆคœ่จผใ™ใ‚‹ใ€‚ไฟๅฎˆ็š„ใชๅˆถ็ด„ใ‚’ใ‹ใ‘ใฆๅฑ้™บใช่กŒๅ‹•ใ‚’็ฆๆญขใ™ใ‚‹ใ€‚่ฆณๆธฌใŒๅ…ฅใฃใŸใ‚‰ใ™ใใซ็Šถๆ…‹ๆŽจๅฎšใ‚’ๆ›ดๆ–ฐใ—ใ€ๅ†…้ƒจไธ–็•Œใ‚’ๅผ•ใๆˆปใ™ใ€‚ใ“ใ†ใ„ใ†่จญ่จˆใŒใ‚ปใƒƒใƒˆใซใชใฃใฆๅˆใ‚ใฆใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏๅผทใฟใจใ—ใฆๅƒใใ€‚

ใ‚‚ใ†ไธ€ใคใ€่ชฌๆ˜Žๅฏ่ƒฝๆ€งใฎๅ•้กŒใ‚‚ใ‚ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๆฝœๅœจ็Šถๆ…‹ใซไธ–็•Œใ‚’ๅœง็ธฎใ™ใ‚‹ใจใ€ใใฎๆฝœๅœจ็Šถๆ…‹ใฏไบบ้–“ใฎ่จ€่‘‰ใง่ชฌๆ˜Žใ—ใซใใ„ใ“ใจใŒๅคšใ„ใ€‚ใ€Œใชใœใใ†ๅˆคๆ–ญใ—ใŸใฎใ‹ใ€ใ‚’ๅ•ใ‚ใ‚ŒใŸใจใใ€ใƒขใƒ‡ใƒซๅ†…้ƒจใฎ็Šถๆ…‹้ท็งปใฏใƒ–ใƒฉใƒƒใ‚ฏใƒœใƒƒใ‚ฏใ‚นใซใชใ‚ŠใŒใกใ ใ€‚ใ“ใ‚Œใฏ็คพไผšๅฎŸ่ฃ…ใงๅฟ…ใš็ชใฃ่พผใพใ‚Œใ‚‹ใƒใ‚คใƒณใƒˆใงใ€ๅŒป็™‚ใ€้‡‘่žใ€่ฃฝ้€ ใ€ๅฎ‰ๅ…จ้ ˜ๅŸŸใงใฏ็‰นใซ็„ก่ฆ–ใงใใชใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ๅฐŽๅ…ฅใ™ใ‚‹ใชใ‚‰ใ€่ชฌๆ˜ŽใฎใŸใ‚ใฎๅฏ่ฆ–ๅŒ–ใ‚„็›ฃๆŸปใ€ใ‚ใ‚‹ใ„ใฏ่ชฌๆ˜Žๅฏ่ƒฝๆ€งใ‚’ไธ€ๅฎšๆ‹…ไฟใ™ใ‚‹ใƒขใƒ‡ใƒซ่จญ่จˆใŒๅฟ…่ฆใซใชใ‚‹ใ€‚

ใใ‚Œใงใ‚‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๅ†ๆณจ็›ฎใ•ใ‚Œใ‚‹ใฎใฏใ€AIใŒโ€œๆ–‡็ซ ใ‚’ๅ‡บใ™ๆฉŸๆขฐโ€ใ‹ใ‚‰โ€œไธ–็•Œใงๅ‹•ใๆ„ๆ€ๆฑบๅฎš่€…โ€ใธ่ฟ‘ใฅใใปใฉใ€้ฟใ‘ใฆ้€šใ‚Œใชใ„ๆฆ‚ๅฟตใ ใ‹ใ‚‰ใ ใ€‚ๆœชๆฅใ‚’ๆƒณๅƒใงใใชใ‘ใ‚Œใฐใ€่จˆ็”ปใ‚‚ใ€ๆŽข็ดขใ‚‚ใ€ๅฎ‰ๅ…จใ‚‚ไฝœใ‚Œใชใ„ใ€‚้€†ใซ่จ€ใˆใฐใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’่ชžใ‚‹ใ“ใจใฏใ€AIใฎ่ƒฝๅŠ›ใ‚’่ชžใ‚‹ใ“ใจใจๅŒๆ™‚ใซใ€AIใฎๅฑใ†ใ•ใ‚’่ชžใ‚‹ใ“ใจใงใ‚‚ใ‚ใ‚‹ใ€‚ไบˆๆธฌใฏๅŠ›ใ ใŒใ€ไบˆๆธฌใ‚’ไฟกใ˜ใ™ใŽใ‚‹ใฎใ‚‚ๅฑ้™บใ ใ€‚ใ“ใฎ็ทŠๅผตๆ„Ÿใ”ใจๆŠฑใˆใชใŒใ‚‰ใ€ใ€Œใฉใฎไธ–็•Œใ‚’ใ€ใฉใฎ็ฒ’ๅบฆใงใ€ใฉใฎ็›ฎ็š„ใฎใŸใ‚ใซใƒขใƒ‡ใƒซๅŒ–ใ™ใ‚‹ใฎใ‹ใ€ใ‚’่จญ่จˆใงใใ‚‹ใ‹ใฉใ†ใ‹ใŒใ€็”ŸๆˆAIๆ™‚ไปฃใฎๆฌกใฎๅˆ†ๆฐดๅถบใซใชใ‚‹ใ€‚

Why your 2026 IT strategy needs an agentic constitution

19 January 2026 at 06:30

For decades, the IT operations manual was a dense, 50-page PDF โ€” a document designed by humans, for humans, and usually destined to gather digital dust until an audit required its retrieval.ย But as we enter 2026, the traditional standard operating procedure (SOP) is officially on life support.ย Humans are no longer the primary users of their own manuals.

Our systems are becoming agentic, deploying autonomous agents that donโ€™t just monitor dashboards but actively โ€œthink,โ€ plan, and execute changes within our infrastructure.ย These agents cannot read a PDF, nor can they โ€œinterpret the spiritโ€ of a security policy written in legalese.ย If you want to maintain control in an era of autonomous IT, you must move beyond static guardrails and adopt anย Agentic Constitution, which is the enterprise application ofย Constitutional AI, a term pioneered byย Anthropic.

From policy on paper to policy as codeย 

In the past, IT governance was a reactive โ€œcheck-the-boxโ€ exercise.ย The modern enterprise must shift towardย Policy as Code (PaC).

  • The pre-frontal cortex: An Agentic Constitution is a machine-readable set of foundational principles for your autonomous systems.
  • Operational boundaries: They define what an agent can do and the ethical boundaries it must never cross.
  • Actionable rules: An example of an encoded hard rule is: โ€œNever modify production data during peak hours without a human-in-the-loop tokenโ€.
  • Understandable by LLMs: These rules are actionable and understandable by the models powering your orchestration.

This shift represents a fundamental transformation: the role of the IT professional is moving from โ€œOperatorโ€ to โ€œArchitect of Intentโ€.ย IT professionals are no longer the ones turning the wrenches; they are the ones writing the rules of engagement.

The hierarchy of autonomy: A framework for IT opsย 

To scale AI capabilities without ceding total control of the โ€œkill switchโ€, enterprises should adopt aย hierarchy of autonomy, a framework credited to the foundational work ofย Thomas Sheridan & William Verplank (1978).

Tier 1: Full autonomy (the low-hanging fruit)ย 

  • Description: Tasks where the cost of human intervention exceeds the value of the task.
  • Examples:ย 
    • Auto-scalingย 
    • Log rotationย 
    • Basic ticket routingย 
    • Cache clearingย 
  • Governance: Defined by threshold-based triggers within a โ€œsandbox of trustโ€.

Tier 2: Supervised autonomy (the โ€˜check-backโ€™ zone)ย 

  • Description: Agents perform heavy lifting โ€” gathering data and identifying fixes โ€” but require a โ€œhuman nodโ€ before final execution.
  • Examples:ย 
    • System patchingย 
    • User provisioningย 
    • Non-critical configuration changesย 
  • Governance: Agents must present a โ€œreasoning traceโ€ to the admin explaining why the action is being taken.

Tier 3: Human-only (the red line)ย 

  • Description: โ€œExistentialโ€ actions that no agent should ever perform autonomously.
  • Examples:ย 
    • Database deletionsย 
    • Critical security overridesย 
    • Modifications to the Agentic Constitution itselfย 
  • Governance: Multi-factor authentication (MFA) or multi-person โ€œdual-keyโ€ approvals.

Reducing the โ€˜hidden attack surfaceโ€™ย 

Implementing a centralized constitution helps mitigate the risks ofย shadow AI agents โ€” autonomous tools deployed without central IT oversight.

  • Unified API: Any agent must โ€œauthenticateโ€ against the constitution before it can interact with core infrastructure.
  • Compliance history: This creates a centralized audit trail invaluable forย compliance frameworks like SOC2 or the EU AI Act.
  • Verifiable decision-making: You are building a verifiable history of autonomous decision-making.

The human voice in a machine worldย 

The โ€œConstitutionโ€ is a human document representing the collective wisdom of your engineers.

  • Architects of intent: The role of the IT professional shifts from โ€œOperatorโ€ to โ€œArchitect of Intentโ€.
  • Cultural shift: IT teams must move away from โ€œhero cultureโ€ firefighting toward a culture of systemic governance.

Conclusion: Starting your constitutional conventionย 

If you rely on human-readable SOPs in the second half of the decade, your IT operations will become a bottleneck for the business.

Steps to take this quarter:

  • Identify red lines: Gather lead architects to define your Tier 3 boundaries.
  • Map automated wins: Identify Tier 1 tasks for immediate automation.
  • Focus on strategy: Ensure humans focus on strategy and innovation, not babysitting a bot.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

โŒ
โŒ