Chamelo Music Shield Review: These Sporty Speaker Glasses Have One Thing Meta Needs
Chamelo's audio glasses have an expensive magic trick, and I wish more smart glasses would follow suit.


The Soundcore Work taps into one of artificial intelligenceโs undeniable strengths: transcription. Instead of trying to write or type out notes, this device records audio and then turns it into useful information.

The Department of Veterans Affairs is moving toward a more operational approach to cybersecurity.
This means VA is applying a deeper focus on protecting the attack surfaces and closing off threat vectors that put veteransโ data at risk.
Eddie Pool, the acting principal assistant secretary for information and technology and acting principal deputy chief information officer at VA, said the agency is changing its cybersecurity posture to reflect a cyber dominance approach.

โThatโs a move away from the traditional and an exclusively compliance based approach to cybersecurity, where we put a lot of our time resources investments in compliance based activities,โ Pool said on Ask the CIO. โFor example, did someone check the box on a form? Did someone file something in the right place? Weโre really moving a lot of our focus over to the risk-based approach to security, pushing things like zero trust architecture, micro segmentation of our networks and really doing things that are more focused on the operational landscape. We are more focused on protecting those attack surfaces and closing off those threat vectors in the cyber space.โ
A big part of this move to cyber dominance is applying the concepts that make up a zero trust architecture like micro segmentation and identity and access management.
Pool said as VA modernizes its underlying technology infrastructure, it will โbake inโ these zero trust capabilities.
โOver the next several years, youโre going to see that naturally evolve in terms of where we are in the maturity model path. Our approach here is not necessarily to try to map to a model. Itโs really to rationalize what are the highest value opportunities that those models bring, and then we prioritize on those activities first,โ he said. โWeโre not pursuing it in a linear fashion. We are taking parts and pieces and what makes the most sense for the biggest thing for our buck right now, thatโs where weโre putting our energy and effort.โ
One of those areas that VA is focused on is rationalizing the number of tools and technologies itโs using across the department. Pool said the goal is to get down to a specific set instead of having the โ31 flavorsโ approach.
โWeโre going to try to make it where you can have any flavor you want so long as itโs chocolate. We are trying to get that standardized across the department,โ he said. โThat gives us the opportunity from a sustainment perspective that we can focus the majority of our resources on those enterprise standardized capabilities. From a security perspective, itโs a far less threat landscape to have to worry about having 100 things versus having two or three things.โ
Pool added that redundancy remains a key factor in the security and tool rationalization effort. He said VA will continue to have a diversity of products in its IT investment portfolios.
โWhere we are at is we are looking at how do we build that future state architecture, as elegantly and simplistically as possible so that we can manage it more effectively, they can protect it more securely,โ he said.
In addition to standardizing on technology and cyber tools and technologies, Pool said VA is bringing the same approach to business processes for enterprisewide services.
He said over the years, VA has built up a laundry list of legacy technology all with different versions and requirements to maintain.
โWeโve done a lot over the years in the Office of Information and Technology to really standardize on our technology platforms. Now itโs time to leverage that, to really bring standard processes to the business,โ he said. โWhat that does is that really does help us continue to put the veteran at the center of everything that we do, and it gives a very predictable, very repeatable process and expectation for veterans across the country, so that you donโt have different experiences based on where you live or where youโre getting your health care and from what part of the organization.โ
Part of the standardization effort is that VA will expand its use of automation, particularly in processing of veterans claims.
Pool said the goal is to take more advantage of the agencyโs data and use artificial intelligence to accelerate claims processing.
โThe richness of the data and the standardization of our data that weโre looking at and how we can eliminate as many steps in these processes as we can, where we have data to make decisions, or we can automate a lot of things that would completely eliminate what would be a paper process that is our focus,โ Pool said. โWeโre trying to streamline IT to the point that itโs as fast and as efficient, secure and accurate as possible from a VA processing perspective, and in turn, itโs going to bring a decision back to the veteran a lot faster, and a decision thatโs ready to go on to the next step in the process.โ
Many of these updates already are having an impact on VAโs business processes. The agency said that it set a new record for the number of disability and pension claims processed in a single year, more than 3 million. That beat its record set in 2024 by more than 500,000.
โWeโre driving benefit outcomes. Weโre driving technology outcomes. From my perspective, everything that we do here, every product, service capability that the department provides the veteran community, itโs all enabled through technology. So technology is the underpinning infrastructure, backbone to make all things happen, or where all things can fail,โ Pool said. โFirst, on the internal side, itโs about making sure that those infrastructure components are modernized. Everythingโs hardened. We have a reliable, highly available infrastructure to deliver those services. Then at the application level, at the actual point of delivery, IT is involved in every aspect of every challenge in the department, to again, bring the best technology experts to the table and look at how can we leverage the best technologies to simplify the business processes, whether thatโs claims automation, getting veterans their mileage reimbursement earlier or by automating processes to increase the efficacy of the outcomes that we deliver, and just simplify how the veterans consume the services of VA. Thatโs the only reason why we exist here, is to be that enabling partner to the business to make these things happen.โ
The post At VA, cyber dominance is in, cyber compliance is out first appeared on Federal News Network.

ยฉ Getty Images/ipopba
Ever recorded a college lecture and found the audio crystal clear, only to have your concert footage from that very day come out sounding like trash? This happened to me, and after some digging, I found the specific setting to blameโand why you shouldn't actually deactivate it completely.


Ethereum is approaching a critical moment as multiple bullish signals begin to align. A clear Inverse Head & Shoulders formation, combined with rising accumulation and weakening trend rejection, suggests that the market may be gearing up for a powerful upside move. With momentum tightening and key levels coming into focus, ETH now stands on the verge of a breakout that could set the stage for its next major rally.
According to a recent update shared by crypto analyst Donald Dean, Ethereum may be gearing up for a significant move. He highlighted the development of a potential inverse head and shoulders pattern, a classic bullish reversal formation that often precedes strong upward momentum. This emerging structure suggests that ETH could soon shift into a more aggressive bullish phase if confirmed.
Dean also pointed out that the weekly chart is showing solid support near the 50% Fibonacci retracement level, positioned around $2,750. Adding to the bullish signals, a hammer candle has appeared on the weekly timeframe, hinting at buying pressure stepping back in after recent downside movement.
If the pattern plays out, Dean noted that Ethereumโs first major target lies at $4,109, a level that would allow ETH to challenge previous resistance/support zones. Reclaiming this region would mark a meaningful shift in momentum and strengthen the bullish outlook for the asset.
Beyond that, the next upside target sits near $5,766, which aligns closely with the 1.618 Golden Ratio extension calculated at approximately $5,793.51. Dean described this confluence as particularly noteworthy, suggesting that if Ethereum breaks above its nearer targets, a larger rally toward this golden-ratio level becomes a realistic possibility.
In an earlier analysis, LSTRADER reminded followers of the impressive move from $1,600 to $4,800, noting that this surge had been identified in advance through both the ETH chart and the ETH/BTC setup. The analysis captured the momentum shift that preceded the rally, reinforcing the value of tracking key structural signals.
In the current market structure, LSTRADER noted that the chart clearly shows multiple instances where the trend faced rejection. Despite these rejections, the trend is steadily losing strength while accumulation continues to build, a combination that typically reflects growing bullish interest and the potential for an upward breakout.
However, LSTRADER stressed that no major move should be assumed until the trendline itself is broken, and confirmation is still required. For now, patience is key as traders continue monitoring the structure and waiting for a decisive shift in trend direction.


Cyber Week pricing is live โ score major savings on Windows, Office, and more through TechRepublic Academy.
The post Upgrade Your PC With These Microsoft Deals from TechRepublic Academy appeared first on TechRepublic.

Cyber Week pricing is live โ score major savings on Windows, Office, and more through TechRepublic Academy.
The post Upgrade Your PC With These Microsoft Deals from TechRepublic Academy appeared first on TechRepublic.

The XRP price action is now showing signs of resilience as it coils tightly around a key support level, fighting against further downside pressure. Despite recent pressure across the broader crypto landscape, XRP has repeatedly held this level. With bearish momentum fading and volatility compressing, it could be preparing for a potential reversal.
XRP is reaching a point where it refuses to go any lower. Crypto analyst Henry has noted on X that the token is whispering loudly right now, showing strength exactly where it matters, and rising clearly from its trendline support after days of bleeding.
This level has been tested, rejected, and respected with precision, but this bounce feels different as the structure looks cleaner, the moment feels calmer, and the overall price action seems controlled. Whether it breaks out this time or not, the setup is undeniably shifting fast.ย
Adding to the momentum narrative, Bloomberg reports that $11 trillion asset manager Vanguard will begin to allow clients to access their XRP ETFs starting from tomorrow. Meanwhile, the US spot crypto ETF flows on December 1st came in at a solid $90+ million. As a result of the setup, Henry has suggested that the next major target sits around $2.20 region if the market confirms the move.
An inverted look at the XRP chart over the last six weeks reveals a textbook 3-drive pattern, a formation that has constantly preceded major reversal events in crypto. According to Dom, the translation into a higher low has finally formed, which hints at the first sign that a trend change could be developing.
However, bulls need to regain the monthly RVWAP around the $2.22 region, and holding above this area would mark a significant shift in structure, opening the door for a continuation rally towards the $2.50 range. The order books are clear enough that, if momentum is going to flip, this is the time. If this price setup fails to hold this structure and slips back below $2.00, Don warns that the end of the year could turn less favorable.
The Co-founder of Tedlabsio, trader and investor Niels, pointed out that XRP has just flashed one of the strongest bullish signals seen in the current market cycle. Over the past two months, roughly 45% of the XRP supply held on exchanges has been withdrawn and moved off trading platforms.ย
A drop in exchange supply this sharp only happens when the smart money is accumulating heavily. When the supply available on the exchange reduces, the selling pressure reduces, and this is how big moves begin. Niels believes that XRP is entering that phase where most people havenโt noticed yet.

For CIOs, the conversation around AI has moved from innovation to orchestration, and project management, long a domain of human coordination and control, is rapidly becoming the proving ground for how intelligent systems can reshape enterprise delivery and accelerate transformation.
In boardrooms across industries, CIOs face the same challenge of how to quantify AIโs promise in operational terms: shorter delivery cycles, reduced overhead, and greater portfolio transparency. A 2025 Georgia Institute of Technology-sponsored study of 217 project management professionals and C-level tech leaders revealed that 73% of organizations have adopted AI in some form of project management.
Yet amid the excitement, the question of how AI will redefine the role of the project manager (PM) remains, as does how will the future framework for the business transformation program be defined.
Across industries, project professionals are already seeing change. Early adopters in the study report project efficiency gains of up to 30%, but success depends less on tech and more on how leadership governs its use. The overwhelming majority found it highly effective in improving efficiency, predictive planning, and decision-making. But what does that mean for the associates running these projects?
Roughly one-third of respondents believed AI would allow PMs to focus more on strategic oversight, shifting from day-to-day coordination to guiding long-term outcomes. Another third predicted enhanced collaboration roles, where managers act as facilitators who interpret and integrate AI insights across teams. The rest envisioned PMs evolving into supervisors of AI systems themselves, ensuring that algorithms are ethical, accurate, and aligned with business goals.
These perspectives converge on a single point: AI will not replace PMs, but it will redefine their value. The PM of the next decade wonโt simply manage tasks, theyโll manage intelligence and translate AI-driven insights into business outcomes.
For project management offices (PMOs), the challenge is no longer whether to adopt AI but how. AI adoption is accelerating, with most large enterprises experimenting with predictive scheduling, automated risk reporting, and gen AI for documentation. But the integration is uneven.
Many PMOs still treat AI as an add-on, a set of tools rather than its strategic capability. This misses the point since AI is about augmenting judgment and automation. The organizations gaining a real competitive advantage are those embedding AI into their project methodologies, governance frameworks, and performance metrics with this five-point approach in mind.
Think small, scale fast. The most successful AI integrations begin with targeted use cases that automate project status reports, predict schedule slippage, or identify resource bottlenecks. These pilot projects create proof points, generate enthusiasm, and expose integration challenges early.
One common pitfall is adopting AI without clear performance metrics. PMOs should set tangible KPIs such as reduction in manual reporting time, improved accuracy in risk forecasts, shorter project cycle times, and higher stakeholder satisfaction. Communicating these outcomes across the organization is just as important as achieving them. Success stories build momentum, foster buy-in, and demystify AI for skeptical teams.
AI will only be as valuable as the people who use it. Nearly half of the surveyed professionals cited lack of a skilled workforce as a barrier to AI integration. Project managers donโt need to become data scientists, but they must understand AI fundamentals, how algorithms work, where biases emerge, and what data quality means. In this evolving landscape, the most effective PMs will combine data literacy with human-centered leadership, including critical thinking, emotional intelligence, and communication.
Increasing AI raises pressing ethical questions, especially when algorithms influence project decisions. PMOs must take the lead in establishing AI governance frameworks that emphasize transparency, fairness, and human oversight. Embedding these principles into the PMOโs charter doesnโt just mitigate risk, it builds trust.
The traditional PMO focuses on execution through scope, schedule, and cost. But AI-driven organizations are shifting toward business transformation offices (BTOs), which align projects directly with strategic value creation through process improvement in parallel. A PMO ensures projects are done right. A BTO ensures the right projects are done. A crucial element of this framework is the transition from a Waterfall to an Agile mindset. The evolution of project management has shifted from rigid plans to iterative, customer-centric, and collaborative methods, with hybrid methodologies becoming increasingly common. This Agile approach is vital for adapting to the rapid changes brought by AI and digital disruption.
By 2030, AI could manage most routine project tasks, such as status updates, scheduling, and risk flagging, while human leaders focus on vision, collaboration, and ethics. This shift mirrors past revolutions in project management from the rise of Agile to digital transformation, but at an even faster pace. But as organizations adopt AI, the risk of losing the human element persists. Project management has always been about people and aligning interests, resolving conflicts, and inspiring teams. However, while AI can predict a delay, it canโt motivate a team to overcome it. The PMโs human ability to interpret nuance, build trust, and foster collaboration remains irreplaceable.
AI represents the next frontier in enterprise project delivery, and the next decade will test how well PMOs, executives, and policymakers can navigate the evolution of transformation. To thrive, organizations must invest in people as much as in platforms, adopt ethical, transparent governance, foster continuous learning and experimentation, and measure success by outcomes rather than hype.
For CIOs, the mandate is clear: lead with vision, govern with integrity, and empower teams with intelligent tools. AI, after all, isnโt a threat to the project management profession. Itโs a catalyst for its reinvention, and when executed responsibly, AI-driven project management will not only deliver operational gains but also build more adaptive, human-centered organizations ready for the challenges ahead. By embracing it thoughtfully, PMs can elevate their roles from administrators to architects of change.

Allโinizio di questโanno, il MIT ha fatto notizia perchรฉ, in unย rapporto [in inglese], ha rilevato che il 95% delle aziende non sta ottenendo alcun ritorno dallโintelligenza artificiale, nonostante investimenti sostanziosi. Ma perchรฉ cosรฌ tante iniziative di intelligenza artificiale non riescono a garantire un ROI positivo? Perchรฉ spesso mancano di un chiaro collegamento al valore aziendale, afferma Neal Ramasamy, CIO globale di Cognizant, una societร di consulenza IT.
โQuesto porta a progetti tecnicamente impressionanti, ma che non risolvono unโesigenza reale nรฉ creano un vantaggio tangibileโ, aggiunge. I tecnologi spesso seguono lโentusiasmo del momento, immergendosi a capofitto nei test sullโintelligenza artificiale senza considerare i risultati aziendali. โMolti iniziano con modelli e progetti pilota piuttosto che partire da ciรฒ che vogliono ottenereโ, osserva Saket Srivastava, CIO di Asana, unโapplicazione per il project management.ย
โI team eseguono demo in modo isolato, senza riprogettare il flusso di lavoro sottostante o assegnare un responsabile dei profitti e delle perditeโ.
La combinazione di una mancanza di pensiero iniziale sul prodotto, pratiche di dati sottostanti inadeguate, governance inesistente e incentivi culturali minimi allโadozione dellโAI puรฒ produrre risultati negativi. Quindi, per evitare esiti scadenti, molte delle tecniche si riducono a una migliore gestione del cambiamento. โSenza una revisione dei processi, lโintelligenza artificiale accelera le inefficienze odierneโ, aggiunge spiega.
Qui di seguito esaminiamo cinque modi per il change management allโinterno di unโazienda che i CIO possono mettere in pratica oggi stesso. Seguendo questa checklist, le imprese dovrebbero iniziare a invertire la tendenza del ROI negativo dellโAI, imparare dagli anti-modelli e scoprire quali tipi di metriche convalidano le iniziative di intelligenza artificiale di successo a livello aziendale.
Le iniziative di intelligenza artificiale richiedono il sostegno dei dirigenti e una visione chiara di come possono migliorare il business. โUna leadership forte รจ essenziale per tradurre gli investimenti nellโAI in risultatiโ, dichiara Adam Lopez, presidente e leadvCIO del managed IT support provider CMIT Solutions. โIl sostegno dei dirigenti e la supervisione dei programmi di intelligenza artificiale, idealmente a livello di CEO o di consiglio di amministrazione, sono correlati a un ROI piรน elevatoโ.
Per esempio, nella societร di servizi IT e consulenza Xebia, un sottogruppo di dirigenti guida le attivitร interne di AI. Presieduto dal CIO globale Smit Shanker, il team comprende il CFO globale e i responsabili dellโintelligenza artificiale, dellโautomazione, dellโinfrastruttura IT, della sicurezza e delle operation aziendali.
Una volta costituita la leadership di livello piรน alto, la responsabilitร diventa fondamentale. โIniziate assegnando la titolaritร dellโattivitร โ, consiglia Srivastava.ย
โOgni caso dโuso dellโAI necessita di un leader responsabile con un obiettivo legato a traguardi e risultati chiaveโ. Raccomanda, poi, di istituire unย PMO [in inglese]ย interfunzionale per definire casi dโuso di riferimento, fissare obiettivi di successo, applicare misure di sicurezza e comunicare regolarmente i progressi compiuti.
Tuttavia, anche con una leadership in atto, molti dipendenti avranno bisogno di una guida pratica per applicare lโintelligenza artificiale nel loro lavoro quotidiano. โPer la maggior parte delle persone, anche se si forniscono loro gli strumenti, non sanno da dove iniziareโ, commenta Orla Daly, CIO di Skillsoft, un sistema di gestione dellโapprendimento. Il manager raccomanda di identificare chi, in azienda, puรฒ far emergere casi dโuso significativi e condividere consigli pratici, come ottenere il massimo da strumenti come Copilot. Coloro che hanno curiositร e volontร di imparare faranno i progressi maggiori, sostiene.
Infine, i dirigenti devono investire in infrastrutture, talenti e formazione. โI leader devono promuovere una cultura basata sui dati e una visione chiara di come lโAI risolverร i problemi aziendaliโ, afferma Ramasamy di Cognizant. Ciรฒ richiede una stretta collaborazione tra la prima linea del management, i data scientist e lโIT per eseguire e misurare i progetti pilota prima di passare alla fase di scalabilitร .
Le imprese devono essere aperte a modificare il loro quadro dei talenti e a riprogettare i ruoli. โI CIO dovrebbero adattare le loro strategie di gestione dei talenti per garantire il successo dellโadozione dellโAI e del ROIโ, afferma Ramasamy. โCiรฒ potrebbe comportare la creazione di nuove figure e percorsi di carriera per i professionisti che si occupano di AI, come i data scientist e i prompt engineer, aggiornando, al contempo, le competenze dei dipendenti esistentiโ.
I CIO dovrebbero anche considerare il talento come una pietra miliare di qualsiasi strategia di AI, aggiunge Lopez di CMIT. โInvestendo nelle persone attraverso la formazione, la comunicazione e nuovi ruoli specialistici, i CIO possono essere certi che i dipendenti adotteranno gli strumenti di intelligenza artificiale e ne determineranno il successoโ. Aggiunge che gli hackathon interni e le sessioni di formazione spesso producono notevoli miglioramenti nelle competenze e nella fiducia.
Lโaggiornamento delle competenze, per esempio, dovrebbe soddisfare le esigenze dei dipendenti, quindi Srivastava di Asana raccomanda percorsi a piรน livelli: tutto il personale ha bisogno di una formazione di base sulla prompt literacy e sulla sicurezza, mentre gli utenti esperti richiedono una conoscenza piรน approfondita della progettazione del flusso di lavoro e della creazione di agenti. โAbbiamo adottato lโapproccio di sondare la forza lavoro, puntare sullโabilitazione e rimisurare per confermare che la maturitร si muovesse nella giusta direzioneโ, sottolinea.
Tuttavia, la valutazione dellโattuale struttura dei talenti va oltre le competenze umane. Significa anche rivalutare il lavoro da svolgere e i compiti di ciascuno al suo interno. โร essenziale rivedere i processi aziendali per individuare opportunitร di rifattorizzazione, date le nuove capacitร offerte dallโAIโ, dichiara Scott Wheeler, responsabile delle attivitร cloud della societร di consulenza Asperitas Consulting.
Per Daly di Skillsoft, lโera dellโAI odierna richiede un quadro di gestione dei talenti moderno che bilanci abilmente le quattro B:ย build, buy, borrow e bots [in inglese]. In altre parole, i leader dovrebbero considerare la loro azienda come un insieme di competenze e applicare il giusto mix di personale interno, software, partner o automazione in base alle necessitร . โCiรฒ richiede di suddividere le attivitร in lavori o compiti da svolgere e di considerare lโattivitร di tutti in modo piรน frammentatoโ, rileva Daly.
Per esempio, il suo team ha utilizzato GitHub Copilot per codificare rapidamente un portale di apprendimento per un determinato cliente. Il progetto ha evidenziato come lโabbinamento di sviluppatori umani con assistenti AI possa accelerare notevolmente la consegna, sollevando nuove domande sulle competenze necessarie agli altri sviluppatori per essere altrettanto produttivi ed efficienti.
Tuttavia, poichรฉ gliย agenti AIย assumono sempre piรน compiti di routine, i leader devono dissipare i timori che lโintelligenza artificiale sostituisca completamente i posti di lavoro. โComunicare il motivo alla base delle iniziative di AI puรฒ alleviare i timori e dimostrare come questi strumenti possano potenziare i ruoli umaniโ, fa notare Ramasamy. Srivastava รจ dโaccordo. โIl filo conduttore รจ la fiduciaโ, afferma, โMostrate alle persone come lโAI elimina la fatica e aumenta lโimpatto; mantenete gli esseri umani nel ciclo decisionale e lโadozione seguirร โ.
Cambiare lโorganico รจ solo lโinizio: le aziende devono anche riprogettare i processi fondamentali. โSfruttare appieno il valore dellโintelligenza artificiale richiede, spesso, una riprogettazione del funzionamento dellโaziendaโ, dichiara Lopez di CMIT, che esorta a integrare lโAI nelle operazioni quotidiane e a supportarla con una sperimentazione continua, piuttosto che trattarla come unโaggiunta statica.
A tal fine, un adattamento necessario รจ quello che consiste nel trattare i flussi di lavoro interni basati sullโintelligenza artificiale come prodotti e codificare i modelli in tutta lโazienda, afferma Srivastava. โStabilire un rigoroso sistema di gestione dei prodotti per lโacquisizione, la definizione delle prioritร e la pianificazione dei casi dโuso dellโAI, con responsabili chiari, descrizioni dei problemi e ipotesi di valoreโ, sottolinea.
In Xebia, un comitato di governance supervisiona questo rigore attraverso un processo in tre fasi che consiste nellโidentificare e misurare il valore, garantire lโaccettazione da parte dellโazienda e poi passare allโIT per il monitoraggio e il supporto. โUn gruppo centrale รจ responsabile della semplificazione organizzativa e funzionale di ogni caso dโusoโ, spiega Shanker. โCiรฒ incoraggia i processi interfunzionali e aiuta ad abbattere i silosโ.
Allo stesso modo, per Ramasamy, lโostacolo piรน grande รจ la resistenza organizzativa. โMolte aziende sottovalutano la gestione del cambiamento necessaria per unโadozione di successoโ, dice. โIl cambiamento piรน critico รจ il passaggio da un processo decisionale compartimentato a un approccio incentrato sui dati. I processi aziendali dovrebbero integrare perfettamente i risultati dellโAI, automatizzando le attivitร e fornendo ai dipendenti informazioni basate sui datiโ.
Identificare le aree giuste da automatizzare dipende anche dalla visibilitร . โร qui che la maggior parte delle aziende fallisce perchรฉ non dispone di processi validi e documentatiโ, afferma Daly di Skillsoft, che raccomanda di coinvolgere esperti in materia di tutte le linee di business per esaminare i flussi di lavoro e ottimizzarli. โร importante nominare persone allโinterno dellโazienda che si occupino di capire come integrare lโintelligenza artificiale nel flusso di lavoroโ, precisa.
Una volta identificate le unitร di lavoro comuni a tutte le funzioni che lโAI puรฒ semplificare, il passo successivo รจ renderle visibili e standardizzarne lโapplicazione. Skillsoft sta facendo questo attraverso un registro degli agenti che documenta le loro capacitร , le misure di sicurezza e i processi di gestione dei dati. โStiamo formalizzando un framework di AI aziendale in cui lโetica e la governance fanno parte del modo in cui gestiamo il portafoglio di casi dโusoโ, aggiunge.
Le imprese dovrebbero quindi anticipare gli ostacoli e creare strutture di supporto per aiutare gli utenti. โUna strategia per raggiungere questo obiettivo รจ quella di disporre di team SWAT di intelligenza artificiale, il cui scopo รจ facilitare lโadozione e rimuovere gli ostacoliโ, osserva Wheeler di Asperitas.
Per valutare il ROI, i CIO devono stabilire una linea di base pre-AI e fissare in anticipo dei parametri di riferimento. I leader raccomandano di assegnare la responsabilitร di metriche quali il time-to-value, i risparmi sui costi, i risparmi di tempo, il lavoro gestito dagli agenti umani e le nuove opportunitร di guadagno generate.
โLe misurazioni di riferimento dovrebbero essere stabilite prima di avviare i progetti di intelligenza artificialeโ, argomenta Wheeler, che consiglia di integrare gli indicatori predittivi delle singole unitร aziendali nelle regolari revisioni delle prestazioni da parte della leadership. Un errore comune, afferma, รจ quello di misurare solo i KPI tecnici come lโaccuratezza del modello, la latenza o la precisione, senza collegarli ai risultati aziendali, come i risparmi, i ricavi o la riduzione dei rischi.
Pertanto, il passo successivo รจ definire obiettivi chiari e misurabili che dimostrino un valore tangibile. โIncorporare la misurazione nei progetti fin dal primo giornoโ, dichiara Lopez di CMIT. โI CIO dovrebbero definire una serie di KPI rilevanti per ogni iniziativa di intelligenza artificiale. Per esempio, un tempo di elaborazione piรน veloce del 20% o un aumento del 15% della soddisfazione dei clientiโ. Iniziare con piccoli progetti pilota che producono risultati rapidi e quantificabili, aggiunge.
Una misura chiara รจ il risparmio di tempo.
Per esempio, Eamonn OโNeill, CTO di Lemongrass, un fornitore di servizi basati su software, racconta di aver visto clienti documentare manualmente lo sviluppo SAP, un processo che puรฒ richiedere molto tempo. โLโutilizzo dellโIA generativa per creare questa documentazione comporta una chiara riduzione dello sforzo umano, che puรฒ essere misurato e tradotto in un ROI in modo abbastanza sempliceโ, commenta. La riduzione del lavoro umano per attivitร รจ un altro segnale chiave.ย
โSe lโobiettivo รจ ridurre il numero di chiamate al servizio di assistenza gestite da operatori umani, i leader dovrebbero stabilire una metrica chiara e monitorarla in tempo realeโ, illustra Ram Palaniappan, CTO di TEKsystems, fornitore di servizi tecnologici full-stack. Aggiunge, inoltre, che lโadozione dellโAI puรฒ anche far emergere nuove opportunitร di guadagno.
Alcuni CIO monitorano piรน KPI granulari nei singoli casi dโuso e adeguano le strategie in base ai risultati. Srivastava di Asana, per esempio, monitora lโefficienza ingegneristica controllando i tempi di ciclo, la produttivitร , la qualitร , il costo per transazione e gli eventi di rischio. Misura anche la percentuale di esecuzioni assistite da agenti, gli utenti attivi, lโaccettazione da parte degli esseri umani e le escalation delle eccezioni. Lโanalisi di questi dati, spiega, aiuta a mettere a punto i prompt e le misure di sicurezza in tempo reale.
Il punto fondamentale รจ stabilire le metriche fin dallโinizio e non cadere nellโerrore di non monitorare i segnali o il valore ottenuto. โSpesso la misurazione viene aggiunta in un secondo momento, quindi i leader non sono in grado di dimostrare il valore o decidere cosa scalareโ, dichiara Srivastava. โLa soluzione รจ iniziare con una metrica di missione specifica, stabilirne la linea di base e integrare lโAI direttamente nel flusso di lavoro, in modo che le persone possano concentrarsi su giudizi di valore piรน elevatoโ.
Gli strumenti di AI generativa sono ormai comuni, ma molti dipendenti non hanno ancora ricevuto una formazione adeguata per utilizzarli in modo sicuro. Per esempio, secondo uno studio delย 2025 di SmallPDF [in inglese], quasi un dipendente su cinque negli Stati Uniti ha inserito le proprie credenziali di accesso in strumenti di AI. โUna buona leadership implica la creazione di governance e guardrailโ, afferma Lopez. Ciรฒ include la definizione di politiche per impedire che dati sensibili e riservati vengano inseriti in strumenti come ChatGPT.
Un uso intensivo dellโintelligenza artificiale amplia anche la superficie di attacco dellโazienda. La leadership deve ora considerare seriamente aspetti quali le vulnerabilitร di sicurezza nei browser basati sullโAI, lโAI shadow e le hallucination [in inglese]ย LLM. Man mano che lโAI agentica diventa sempre piรน coinvolta neiย processi critici per il business [in inglese], unโadeguata autorizzazione e controlli di accesso sono essenziali per prevenire lโesposizione di dati sensibili o lโingresso dannoso nei sistemi IT.
Dal punto di vista dello sviluppo software, il rischio di fuga di password, chiavi e token attraverso gli agenti di codifica AI รจ molto reale. Gli ingegneri hanno adottato iย server MCP [in inglese]ย per consentire agli agenti di codifica AI di accedere a dati, strumenti e API esterni, ma unaย ricerca di Wallarm [in inglese]ย ha rilevato un aumento del 270% delle vulnerabilitร legate agli MCP dal secondo al terzo trimestre del 2025, insieme a un aumento delle vulnerabilitร delle API.
Trascurare lโidentitร degli agenti, le autorizzazioni e le tracce di audit รจ una trappola comune in cui spesso cadono i CIO con lโAI aziendale, afferma Srivastava. โIntrodurre la gestione dellโidentitร e dellโaccesso degli agenti in modo che questi ultimi ereditino le stesse autorizzazioni e la stessa verificabilitร degli esseri umani, compresi la registrazione e le approvazioniโ, dice.
Nonostante i rischi, la supervisione rimane debole. Un rapporto di AuditBoard ha rilevato che, mentre lโ82% delle imprese sta implementando lโintelligenza artificiale, solo il 25% ha implementato programmi di governance completi. Con violazioni dei dati che ora costano in media quasi 4,5 milioni di dollari ciascuna, secondo IBM, eย IDC che riferisce [in inglese]ย che le organizzazioni che sviluppano unโintelligenza artificiale affidabile hanno il 60% di probabilitร in piรน di raddoppiare il ROI dei progetti basati su di essa, i vantaggi commerciali dellaย governance dellโintelligenza artificiale [in inglese]ย sono evidenti. โAbbinate lโambizione a solide misure di protezione: ciclo di vita dei dati e controlli di accesso chiari, valutazione e red teaming, e checkpoint con intervento umano nei casi in cui la posta in gioco รจ altaโ, afferma Srivastava.ย
โIntegrate la sicurezza, la privacy e la governance dei dati nellโSDLC in modo che la distribuzione e la sicurezza procedano di pari passo, senza scatole nere per la provenienza dei dati o il comportamento dei modelliโ.
Non รจ magia
Secondoย BCG [in inglese], solo il 22% delle aziende ha portato la propria AI oltre la fase di POC e solo il 4% sta creando un valore sostanziale. Tenendo presenti queste statistiche che fanno riflettere, i CIO non dovrebbero nutrire aspettative irrealistiche in termini di ritorno sullโinvestimento.
Ottenere un ROI dallโintelligenza artificiale richiederร uno sforzo iniziale significativo e necessiterร di cambiamenti fondamentali nei processi organizzativi. Come ha affermato George Maddaloni, CTO delle operazioni di Mastercard, in una recente intervista con Runtime, lโadozione delle app di GenAI riguarda, in gran parte, la gestione del cambiamento e lโadozione.
Le insidie dellโAI sono pressochรฉ infinite ed รจ comune che le imprese inseguano lโhype piuttosto che il valore, lancino prodotti senza una chiara strategia sui dati, scalino troppo rapidamente e implementino la sicurezza come un ripensamento. Molti programmi di intelligenza artificiale semplicemente non dispongono del sostegno esecutivo o della governance necessari per raggiungere gli obiettivi prefissati. In alternativa, รจ facile credere allโhype dei fornitori sui guadagni in termini di produttivitร e spendere troppo, oppure sottovalutare la difficoltร di integrare le piattaforme di intelligenza artificiale con lโinfrastruttura IT legacy.
Guardando al futuro, per massimizzare lโimpatto dellโAI sul business, i leader raccomandano di investire nellโinfrastruttura dati e nelle capacitร della piattaforma necessarie per scalare, e di concentrarsi su uno o due casi dโuso ad alto impatto che possano eliminare il lavoro umano e aumentare chiaramente i ricavi o lโefficienza.
ร necessario fondare lโentusiasmo per lโintelligenza artificiale su principi fondamentali e comprendere la strategia aziendale che si intende perseguire per avvicinarsi al ROI.ย
Senza una leadership solida e obiettivi chiari, infatti, lโAI รจ solo una tecnologia affascinante con un ritorno economico che rimane sempre fuori portata.

ใญใฃใชใขใฎ็พ ้็คใๅคใใๅ ดๆ๏ผๆฐดๅณถใใใทใชใณใณใใฌใผใใใใฆ็ตๅถใฎๆๅ็ทใธ
1989ๅนดใ็งใฏไธ่ฑๅๆ๏ผ็พใปไธ่ฑใฑใใซใซ๏ผใซ็็ฃๆ่กใฎใจใณใธใใขใจใใฆๆฐๅๅ ฅ็คพใใพใใใ้ ๅฑๅ ใฏๅฒกๅฑฑ็ๅๆทๅธใฎๆฐดๅณถไบๆฅญๆโโ็ณๆฒนใณใณใใใผใใฎ็พๅ ดใงใใใฃใผใซใใจใณใธใใขใชใณใฐใซๅพไบใใๆฅใ ใๅงใพใใพใใใ
่ปขๆฉใ่จชใใใฎใฏ1996ๅนดใใขใกใชใซๆฑๆตทๅฒธใฎใในใใณใใใณ่ฅฟๆตทๅฒธใฎใตใณใใฉใณใทในใณใซๆฐใใชๆ ็นใ็ซใกไธใใใจใใ่ฉฑใใใใ็งใฏใใฎ่ฅฟๆตทๅฒธใฎ็ซใกไธใใกใณใใผใจใใฆใทใชใณใณใใฌใผใซ้งๅจใใใใจใซใชใใพใใใๅฝๆใฏWindows 95ใฎ็ปๅ ดใใคใณใฟใผใใใใฎๆฐไธปๅใใใใฆeใใธใในใฎ้ปๆๆใๅ จ็ฑณใฎๆ่ณใฎ็ด3ๅใฎ1ใ้ใพใใจใใใไธ็ๆๅ ็ซฏใฎๆ่กใจ่ณๆฌใไบคๅทฎใใๅ ดๆใซ่บซใ็ฝฎใใใจใซใชใฃใใฎใงใใ
3ๅนด้ใฎ้งๅจใ็ตใใฆๆฐดๅณถใซๆปใใๅใณ็็ฃๆ่กใฎๆฅญๅใซๅพไบใใพใใใใ็งใฏใใใใชใใใฎใ่ฆใฆใใพใฃใใใจใใๆ่ฆใซ่ฅฒใใใพใใใใทใชใณใณใใฌใผใงไฝ้จใใในใใผใๆใ้ฉๆฐๆงใใใใฆๆชๆฅใธใฎๆๆฆโโใใใใ็ฅใฃใฆใใพใฃใไปใๅพๆฅใฎไปไบใซๆปใใใจใฏใงใใพใใใงใใใ
ใใใง็งใฏ่ชใๅฟ้กใใๆ ๅ ฑใทในใใ ้จ้ใธ่ปขๅฑใใพใใใไปฅ้ใDXใๅซใๅคใใฎใใญใธใงใฏใใซ้ขใใใๆ่กใจ็ตๅถใฎๆฉๆธกใใๆ ใใใใซใชใใพใใใใใใฆ2021ๅนดใไธ่ฑใใใชใขใซใฎๅท่กๅฝนๅกCIOใจใใฆ่ปข่ทใ็พๅจใฏใไผๆฅญใฎใใธใฟใซๆฆ็ฅใ็ฝๅผใใ็ซๅ ดใงใๆชๆฅใ่ฆๆฎใใๆๆฆใ็ถใใฆใใพใใ
ใERPๅๅปบ่ซ่ฒ ไบบใ๏ผ3ๅบฆใฎ้่ปขๅใๆใใฆใใใใ้ใใใซๅใๅใๅ
็งใฎใญใฃใชใขใฎไธญใงๆใๅคงใใชๆๆฆใ ใฃใใฎใฏใใใฏใERPใฎๅฎ่ฃ ใใญใธใงใฏใใงใใๅฎใฏใใใพใงใซ3ๅใERPใใญใธใงใฏใใฎๅๅปบใ็ต้จใใฆใใพใใใ
ใใใใใๅไปป่ ใ่กใ่ฉฐใพใใใใญใธใงใฏใใ้ ๆซใใ็ถๆ ใใๅผใ็ถใใ็ซใฆ็ดใใฆใดใผใซใธๅฐใใจใใใใฎใงใใใ้้ก็ใซใ่ฆๆจก็ใซใ้ๅธธใซๅคงใใชใใญใธใงใฏใใงใใใ็งใฎCIOใจใใฆใฎ่ใๆนใ่กๅใฎ่ปธใๅฝขๆใใๆฅตใใฆ้่ฆใช็ต้จใจใชใใพใใใ
็งใฎใชใชใธใใชใใฃใใใใจใใใฐใใใใฏ็็ฃๆ่กใใITใธใจใญใฃใชใขใ่ปขๆใใใใจใใใใฆใทใชใณใณใใฌใผใฎใฉ็ใไธญใงๅใใ็ต้จใซใใใจ่ใใฆใใพใใใใใซใๅธฐๅฝๅพใฏไผๆฅญๅ ใฎๆฅญๅใซ็ใพใใใๆฅญ็ๆจชๆญใฎๆดปๅใซใ็ฉๆฅต็ใซ้ขใใฃใฆใใพใใใ
ไพใใฐใ็ณๆฒนๅๅญฆๅทฅๆฅญๅไผใงใฎITๆดปๅใใไผๆฅญ้ๅๅผใฎ้ปๅญๅ๏ผEDI๏ผใๅฝๅ ๅคใฎๅคงๆๅๆฅญไป็คพ22็คพใ้ใพใฃใใฐใญใผใใซใชๅๅญฆๅใคใผใณใใผในใตใคใใฎ็ซใกไธใใชใฉใๆฅญ็ๅ จไฝใๅทปใ่พผใใ ใใญใธใงใฏใใซใๆบใใใพใใใ
็พๅ ดใจใชใใฃในใๅฝๅ ใจๆตทๅคใๆฅญๅใจITโโใใฎๆงใชๅข็ใ่ถใใฆไปไบใใใฆใใ็ต้จใใ็พๅจใฎCIOใจใใฆใฎ่ฆ้ใจๅคๆญๅใซใคใชใใฃใฆใใพใใ
็งใๅคงๅใซใใฆใใใฎใฏใใ็ฎใฎๅใฎใใจใซ้ไธญใใฆใๅ จๅใๅฐฝใใใใจใใๅงฟๅขใงใใ่ชๅ่ช่บซใฎ็ฎๆจใ็ซใฆใใใใใจใงใๅฐๆฅใฎๅฏ่ฝๆงใ็ญใใฆใใพใใฎใงใฏใชใใใจใใ่ใใใใใใใฆๆ็ขบใช็ฎๆจใๅฎใใใไปใใฎ็ฌ้ใซๅ จๅใๆณจใใใจใๅฟใใใฆใใพใใ
ERPใฎใใใชๅคง่ฆๆจกใใญใธใงใฏใใงใฏใๅฐ้ฃใไบๆใใฌ่ชฒ้กใๆฌกใ ใจ็พใใพใใใใใใฃใ็ถๆณใงใใ้ใใชใใใใ่ฒฌไปปใๆใฃใฆๆๅพใพใงใใ้ใใใใจใใๅงฟๅขใ่ฒซใใฆใใพใใใ็ต้จใ็ฉใฟ้ใญใ่ชๅใง่ใใ่ชๅใฎ่ปธใๆใฃใฆๆฝ็ญใๆใคโโใใใใ็งใฎใชใผใใผใทใใใฎๆ นๅนนใงใใ
ใใใฆไฝใใใใๆตทๅคใ็ฅใใใจใงๆฅๆฌใ็ฅใใใใไป็คพใ็ฅใใใจใง่ช็คพใ็ฅใใใใไบบใ็ฅใใใจใง่ชๅใ็ฅใใโโใใฎๆฐใฅใใใใใ็งใซใจใฃใฆๆๅคงใฎ่ฒก็ฃใงใใใCIOใจใใฆใฎๅๅๅใซใชใฃใฆใใพใใ
ใใใใใฆใณใ ใใงใฏๅใใชใ๏ผ็พๅ ดใไธปๅฝนใซใชใใฌใใใณในใฎๅๅฎ็พฉ
57ๆญณใงใฎ่ปข่ทโโใใใฏๆฑบใใฆๆฉใใฟใคใใณใฐใงใฏใใใพใใใงใใใใใใใ่ปข่ทใใฆๅใใฆ่ฆใใฆใใใใจใๆฐๅคใใใใพใใใ็นใซๅฐ่ฑก็ใ ใฃใใฎใฏใITๆฆ็ฅใซใใใใใฌใใใณในใใจใใทใใธใผใใจใใ2ใคใฎใญใผใฏใผใใงใใ
ๅ่ทใงใฏใ่คๆฐใฎไธๅ ดๅญไผ็คพใๅซใๅคง่ฆๆจกใฐใซใผใใฎๆ ๅ ฑใทในใใ ใ็ตฑๆฌใใใจใใใใใทใงใณใๆ ใใพใใใ็ฌ็ซๆงใฎๅผทใๅ็คพใๆใญใใซใฏใๅใชใใฌใใใณในใฎๆผใไปใใงใฏใชใใใใใฎๆฝ็ญใ็พๅ ดใซใจใฃใฆใฉใใชใกใชใใใใใใใใฎใใใไธๅฏงใซไผใใๅฟ ่ฆใใใใพใใใ
ใฌใใใณในใฎๅ ใซใทใใธใผใ็ใพใใๅพๆฅญๅกไธไบบใฒใจใใ็ดๅพใใฆๅใๅบใโโใใฎไป็ตใฟใฅใใใใใใๆ็ถๅฏ่ฝใชITๆฆ็ฅใฎ้ตใ ใจๅฎๆใใพใใใ
ใพใใDXใฎๆจ้ฒใซใใใฆใใใใใใใฆใณใจใใใ ใขใใใฎไธกๆนใ้่ฆใงใใใใจใๅญฆใณใพใใใใใใใใฆใณใงใฏๅ จ็คพ็ใชใคใณใใฏใใ็ใฟๅบใไธๆนใใใใ ใขใใใงใฏ็พๅ ดใฎ่ฅๆใ่ชๅใใจใจใใฆๆๆฆใใ่ฒๆใซใใคใชใใใไธก่ ใ้ฃๅใใใใจใงใDXใฏ็ต็นๅ จไฝใซๅบใใฃใฆใใใฎใงใใ
CIOใฏใ็ตๅถ่ ใใซใชใใใ๏ผโโ37ๅนดใฎใญใฃใชใขใๅฐใใ2ใคใฎใฟใคใ่ซ
ใใใฆไปใCIOใจใใฆใฎๅฝนๅฒใๆฏใ่ฟใใจใ2ใคใฎใฟใคใใใใใจๆใใฆใใพใใไธใคใฏใๆ ๅ ฑใทในใใ ใ็ตฑๆฌใใCIOใใใใไธใคใฏใ็ตๅถใฎไธ็ฟผใๆ ใCIOใใงใใ
็งใฏๅพ่ ใ็ฎๆใใฆใใพใใใITใฎๅฐ้ๆงใซใจใฉใพใใใๅคใฎไธ็ใ็ฅใใๆฅญ็ใ่ถใใ็พๅ ดใจ็ตๅถใใคใชใโโใใใช่ฆ็นใใCIOใฎๅฏ่ฝๆงใๅบใใใจไฟกใใฆใใพใใ
ใใฎใใใซ็งใ้่ฆใใฆใใใฎใใใใชใใฉใซใขใผใ๏ผไบบ้กใ่็ฉใใๅกๆบใใงใใ
ๆฐใใใใฎใฏใผใญใใ็ใพใใใฎใงใฏใชใใๆงใ ใชๅกๆบใฎ็ตใฟๅใใใใๅต็บใใใใใฎใงใใ็ๆAIใฎ็ปๅ ดใซใใฃใฆใ็งใใกใฏใใใพใงไปฅไธใซๅต้ ็ใชไพกๅคใ็ใฟๅบใใใฃใณในใๆใซใใฆใใพใใ
ๆ ๅ ฑใทในใใ ้จ้ใฎ็ใใใซใฏใใใฒใใฎ่ฆ็นใๆใฃใฆใใใ ใใใใจๆใใพใใๆใซใฏๅฐ้้ ๅใใ่ถๅขใใ็พๅ ดใซๅฏใๆทปใใ็ตๅถใจๅฏพ่ฉฑใใโโใใฎๅ ใซใCIOใจใใฆใฎๆฐใใๅฏ่ฝๆงใๅบใใฃใฆใใใจใ็งใฏ็ขบไฟกใใฆใใพใใ
ใใๅ ทไฝ็ใชCIOใฎไปไบ่ฆณใใใใใใ้ญ ๅใซ็ฆ็นใๅฝใฆใใชใผใใผใทใใใITใชใผใใผใธใฎๅนๆ็ใชใขใใใคในใชใฉใๆฟ้ๆฐใซ่ฉฑใ่ใใพใใใ่ฉณ็ดฐใซใคใใฆใฏใใใกใใฎใใใชใใ่ฆงใใ ใใใ
็ตๅถใฎ่ปธใๆใคCIOใธ๏ผ้็จใปไฟๅฎใฎไพกๅคใจไบบใๅใใๅ
57ๆญณใงใฎ่ปข่ทใใ4ๅนดโโ็งใฏ็พๅจใไธ่ฑใใใชใขใซใฎCIOใจใใฆใ็ตๅถ่ฆ็นใงITใจDXใๆใใ็คพๆฅญใซใฉใ่ฒข็ฎใใใใๆฅใ ่ใใๅฎ่กใใฆใใพใใ
CIOใฎๅฝนๅฒใฏใๆฐใใๆ่กใๅฐๅ ฅใใใใจใ ใใงใฏใใใพใใใ
ใใใใๅฐๅ ฅใใไป็ตใฟใๅฎๅฎใใฆ้็จใใใไฟๅฎใใใใปใญใฅใชใใฃใ็ขบไฟใใใ็ถๆ ใงๅใใฆไพกๅคใ็ใพใใใๅ จไฝใใๅฎ็ตใใใฆใใใ็ตๅถใซ่ฒข็ฎใงใใใฎใงใใ
ใใฎ4ๅนด้ใงใ็งใใกใฏใMMCใฐใซใผใ IT WAYใใจใใๅ จ็คพใปใฐใซใผใๆจชๆญใฎITๆฆ็ฅใๆฒใใใฌใใใณในใจใทใใธใผใ่ปธใซใ็ต็นใปไบบๆใปไบ็ฎใฎๆ้ฉๅใ้ฒใใฆใใพใใใๆ ๅ ฑใทในใใ ้จ้ใฏใใฆใผใถใผใซๅฏใๆทปใใชใใใใๆ ธใจใชใๆฉ่ฝใ้็ดใใๅ จไฝๆ้ฉใ็ฎๆใไฝๅถใธใจ้ฒๅใใฆใใพใใ
ERPๅฐๅ ฅใ้ไธญ่ณผ่ฒทใใปใญใฅใชใใฃใฎ็ตฑๅใใใใฆใฌใฌใทใผใทในใใ ใฎใขใใใคใผใผใทใงใณโโใใใใฎๆฝ็ญใฏใๅใชใๆ่กๆดๆฐใงใฏใชใใ็ตๅถใฎๆๆใจ็พๅ ดใฎๅฎ่กๅใใคใชใไป็ตใฟใจใใฆ่จญ่จใใใฆใใพใใ้ๅบฆใชๅทๆฐใงใฏใชใใๅฟ ่ฆใช้จๅใ่ฆๆฅตใใฆ้ฉๅใซ้ธใณใๅคใใใใใใใ็งใใกใฎใขใใใคใผใผใทใงใณใฎๅบๆฌๅงฟๅขใงใใ
ใใฎใใใช่ฒฌไปปใฎ้ใใฏใๅๆใซๅคงใใชใขใใใผใทใงใณใจใใใใใซใใคใชใใฃใฆใใพใใITใ็ตๅถใฎไธ็ฟผใๆ ใๆไปฃใซใใใฆใCIOใฏๅใชใๆ่ก็ตฑๆฌ่ ใงใฏใชใใ็ตๅถ่ ใจใใฆใฎ่ฆๅบงใๆใกใๅ จไฝใๅฎ็ตใใใๅญๅจใงใใในใใ ใจใ็งใฏๅผทใๆใใฆใใพใใ
ใฐใญใผใใซใ็ฅใใๆฅๆฌใ็ฅใ๏ผCIOใ่ชใใๆฌ่ณช็ใชใชใผใใผๅใ
37ๅนดใซใใใใใธใในไบบ็ใฎไธญใงใ็งใๆใๅผทใๆใใฆใใใฎใฏใใไบบใใฉใๅใใใใใจใใใใจใฎ้่ฆๆงใงใใใใญใธใงใฏใใ้จไธใๅๅใ้ขไฟ่ ใใใใฆไธๅธโโใใใใไบบใจใฎ้ขไฟใฎไธญใงใๆใ้ฃใใใๆใไพกๅคใใใใฎใฏใใ็ตๅถใใฉใๅใใใใใจใใใใจใงใใ
ใใฎใใใซใฏใพใใ่ชๅ่ช่บซใไฝใใใใใฎใใไฝใไผใใใใฎใใจใใ่ปธใๆใคใใจใไธๅฏๆฌ ใงใใ่ปธใใถใใฆใใพใใฐใไบบใฏใคใใฆใใพใใใใใใฆใใใฎ่ปธใ่จ่ชๅใใๅใๅฟ ่ฆใงใใ่จ่ใซใใชใใใฐใๆใใฏไผใใใพใใใ
่จ่ใไผใใใใใซใฏใไฟก้ ผ้ขไฟใๅๆใจใชใใพใใไฟก้ ผใใใใฐใ็ธๆใฏๅ ฑๆใใ่กๅๅคๅฎนใ่ตทใใใพใใใใฎไธ้ฃใฎใใญใปในโโ่ปธใๆใกใ่จ่ชๅใใไฟก้ ผใ็ฏใใๅ ฑๆใๅพใฆใ่กๅใไฟใโโใใใใใใซ็พใใๅใใใใใชใผใใผใจใใฆใฎๆๅคงใฎ่ชฒ้กใ ใจๆใใฆใใพใใ
ใใฎใใใซใฏใ่ชๅใ็ฅใใใจใ้่ฆใงใใ่ชๅใ็ฅใใจใฏใๅฒๅญฆ็ใงใใใ็ฐกๅใงใฏใใใพใใใใใใใใๆตทๅคใ็ฅใใใจใงๆฅๆฌใ็ฅใใๆฅๆฌใ็ฅใใใจใง่ช็คพใ็ฅใใ่ช็คพใ็ฅใใใจใง่ชๅใ็ฅใใโโใใฎๅพช็ฐใใใชใผใใผใจใใฆใฎ่ฆๅบงใ้ซใใฆใใใพใใ
ใพใใๆฅๆฌใฎITๆฅญ็ใฎๆง้ ็ใช็นๅพดใจใใฆใSEใฎ็ด7ๅฒใๅค้จใใผใใใผใซๆๅฑใใฆใใใจใใ็พๅฎใใใใพใใๅ ่ฃฝๅใๅซใฐใใไธญใงใ้็ใใใใใ ใใใใใใใณใใผใใณใณใตใซใฟใณใใจใๆฆๅใใจใใฆๅ ฑใซๆฆใ้ขไฟๆงใ็ฏใใใจใๅฟ ่ฆใงใใ
็บๆณจ่ ใจใใฆๆ็คบใใใ ใใงใฏใชใใ่ฌ่ใซๅญฆใณๅใใ็ฅๆตใๅบใๅใ้ขไฟๆงใ็ฏใใใจใใใใใใใใใใฎITใปDXใฎไธ็ใงใ็ใซไพกๅคใใๆๆใ็ใฟๅบใใใใฎ้ตใ ใจ่ใใฆใใพใใ
ITใฏไบบใๅนธใใซใใใใใซใใ๏ผCIOใ่ฆใคใใใไบบ้ไธญๅฟใใฎ็ตๅถๅฒๅญฆ
ๅไบบ็ใชใขใใใผใจใใฆใ21ไธ็ดใฎไบบ้กใ็ตถๅฏพใซๅคงไบใซใใชใใจใใใชใใจๆใ2ใคใฎใญใผใฏใผใใใใใพใใ
ใใขใฆใงใขใใน๏ผๆฐใฅใใปๆ่ญ๏ผใใจใใณใณใใใทใงใณ๏ผๅฉไปใปๆใใใ๏ผใใงใใ
ไบบ้กใใใใใใฎๆไปฃใซใใใฆๅคงๅใซใในใไพกๅค่ฆณใจใใฆใ็งใฏใใขใฆใงใขใในใใจใใณใณใใใทใงใณใใฎ2ใคใๅผทใๆ่ญใใฆใใพใใ
ใใฎ่ใๆนใฏใ็งใไธ่ฑใใใชใขใซใซCIOใจใใฆ่ฟใใใใ้ใไผ็คพใซๅฏพใใฆๆใใในใ่ฒฌๅใจใๆฅๆฌใฎ่ฃฝ้ ๆฅญๅ จไฝใๅผทใใใใใจใใๆณใใฎไธก้ขใซใใใฆใๅธธใซ่ปธใจใชใฃใฆใใพใใใ
ไธ่ฑใใใชใขใซใงใฏใไธ่ฑใใใชใขใซใฐใซใผใ IT Wayใใจใใๆ้ใ็ขบ็ซใใใใใๅบ็คใซITๆฝ็ญใๆจ้ฒใใฆใใพใใ
็พๅจใ็ๆAIใฏ้ฟใใฆ้ใใชใใใผใใจใชใฃใฆใใใใใใซไบบใใใใไฝฟใใใชใใใๅใใใฆใใพใใ้่ฆใชใฎใฏใ็ๆAIใไฝใใ็ใฟๅบใใฎใงใฏใชใใใไบบใ็ๆAIใไฝฟใฃใฆไฝใใ็ใฟๅบใใใจใใ้ขไฟๆงใงใใ
็ๆAIใฏใใใพใงITใใผใซใฎไธใคใงใใใไฝฟใไธปไฝใฏไบบ้ใงใใ็งใฏๅธธใซใไบบใไธญๅฟใซใใใใจใใ่ใๆนใ็คพๅ ๅคใซไผใ็ถใใฆใใใใใฎๆๆณใใใจใซๆงใ ใชๆฝ็ญใๅฑ้ใใฆใใพใใ
ๆฅๆฌใฎ่ฃฝ้ ๆฅญใๅผทใใใใซใฏใไผๆฅญใฎๆ ใ่ถ ใใ้ฃๆบใจๅฏพ่ฉฑใไธๅฏๆฌ ใงใใ็งใฏ่ปข่ทๅใใ็พๅจใพใงใฎ็ด5ๅนด้ใงใ็ด70็คพใป6,000ไบบไปฅไธใฎๆนใ ใจๅๅผทไผใ่ฌๆผไผใ้ใใฆๅฏพ่ฉฑใ้ใญใฆใใพใใใ
ใใฎไธญใงใ่ชๅใฎ่ใใซๅ ฑๆใใฆใใ ใใๆนใ ใจใฎๅบไผใใใใใใใใใๅพใใใๅญฆใณใซใใฃใฆใ็ง่ช่บซใๆ้ทใใฆใใใจๆใใฆใใพใใใใใใ็ฅใฎ้็ฉใใๆฐใใๆฝ็ญใๅใ็ตใฟใ็ใฟๅบใๅๅๅใซใชใใจไฟกใใฆใใพใใ
็งใ็ใใใซๆใไผใใใใกใใปใผใธใฏใใใในใฆใฎใใฏใใญใธใผใฏไบบใๅนธใใซใใใใฎใงใชใใใฐใชใใชใใใจใใใใจใงใใ100ๅนดๅพใ200ๅนดๅพใฎๆชๆฅใซใใใฆใ็งใใกใฎๅญๅญซใใใใฎๆไปฃใใไฝใใๅคใใฃใใใจ่ช่ญใใใจใใใฐใใใใฏใคใณใฟใผใใใใฎใใใชๅคงใใชๅค้ฉใงใใใไปใพใใซ้ฒ่กใใฆใใ็ๆAIใใใฎไธใคใงใใ
ใใใฆใใไธใคใ็งใใกใไปใใฃใฌใณใธใในใใใจใฏใใๅฐ็็ฐๅขใๅฎใใชใใใใธใในใใงใใใใใซใชใฃใใใจๆชๆฅใซ่ชใใใใใจใงใใไธ่ฑใใใชใขใซใฏ่ณๆบๅพช็ฐใๆจ้ฒใใไผๆฅญใงใใใใใฎๅงฟๅขใฏใพใใซใใฎๆชๆฅๅใๅ ท็พๅใใใใจใใฆใใพใใ
ใใธใในใฎไธ็ใงใฏใ็ใใใจใ่จใฃใฆใฏใใใชใใใจใใใใกใงใใใๅฐ็็ฐๅขใๅฎใใจใใ่ฆ็นใซใใใฆใฏใใณใณใใใทใงใณ๏ผๅฉไปใปๆใใใ๏ผใไธๅฏๆฌ ใงใใใใใฏไบบ้กๅ จไฝใใใฃใจๆ่ญใในใใญใผใฏใผใใ ใจ่ใใฆใใพใใ
CIOใซใฏๅฐ้้ ๅใซๅผทใๆนใๅคใใ็ตๅถๅฑคใจๅ็ญใฎใฌใใซใง่ญฐ่ซใงใใใใจใๆฑใใใใพใใ
ใใใใITใฎ้ ๅใ ใใงใฏ่ถณใใพใใใๆตทๅคใฎ็ฅ่ฆใๆฅญ็ใฎๅๅใใใใฆใชใใฉใซใขใผใใชใฉใITไปฅๅคใฎๅ้ใซใ็ฎใๅใใใใจใ้่ฆใงใใใใใใใฎไผๆฅญใๆฅญ็จฎใซใใฃใฆ็ถๆณใฏ็ฐใชใใพใใใITใ ใใ่ใใฆใใฆใฏๆฌ่ณช็ใช่ชฒ้ก่งฃๆฑบใซใฏ่ณใใพใใใใ ใใใใใ่ชๅใฎๅพๆ้ ๅใๆดปใใใชใใใ่คๅ็ใซๅใ็ตใใใจใใใใใใใฎCIOใซๆฑใใใใๅงฟๅขใ ใจ็งใฏ่ใใฆใใพใใ

Itโs an incredible time to be a guitarist who doesnโt want to own a bunch of $2,000 amps and an expensive pedalboard of gear. Amp and pedal simulators, which have been around for decades, have in the last few years finally come into their own as nearly indistinguishable sonic replacements. Even John Mayer is now willing to ditch his beloved tube amps for digital models.
I certainly donโt have Mayerโs chops or gear budget, but I do love messing with this sort of tech and have purchased everything from NeuralDSPโs Archetypes series to Amplitube and Guitar Rig. Last week, as part of an early Black Friday sale, I picked up two amp/effects suites from British developer Polychrome DSPโNunchuck (Marshall amps) and Lumos (clean through mid-gain tones). They are both excellent.
Any reasonable person should be satisfied with this tech stack, which models gear that collectively costs as much as my house. After my Polychrome DSP purchases, I reminded myself that I am a reasonable person, and that I could therefore ignore any further amp sims that might tempt my wandering eye.


In a previous feature about enterprise architects, gen AI had emerged, but its impact on enterprise technology hadnโt been felt. Today, gen AI has spawned a plethora of agentic AI solutions from the major SaaS providers, and enterprise architecture and the role of enterprise architect is being redrawn. So what do CIOs and their architects need to know?
Organizations, especially their CEOs, have been vocal of the need for AI to improve productivity and bring back growth, and analysts have backed the trend. Gartner, for example, forecasts that 75% of IT work will be completed by human employees using AI over the next five years, which will demand, it says, a proactive approach to identifying new value-creating IT work, like expanding into new markets, creating additional products and services, or adding features that boost margins.
If this radical change in productivity takes place, organizations will need a new plan for business processes and the tech that operates those processes. Recent history shows if organizations donโt adopt new operating models, the benefits of tech investments canโt be achieved.
As a result of agentic AI, processes will change, as well as the software used by the enterprise, and the development and implementation of the technology. Enterprise architects, therefore, are at the forefront of planning and changing the way software is developed, customized, and implemented.
In some quarters of the tech industry, gen AI is seen as a radical change to enterprise software, and to its large, well-known vendors. โTo say AI unleashed will destroy the software industry is absurd, as it would require an AI perfection that even the most optimistic couldnโt agree to,โ says Diego Lo Giudice, principal analyst at Forrester. Speaking at the One Conference in the fall, Lo Giudice reminded 4,000 business technology leaders that change is taking place, but itโs built on the foundations of recent successes.
โAgile has given better alignment, and DevOps has torn down the wall between developers and operations,โ he said. โTheyโre all trying to do the same thing, reduce the gap between an idea and implementation.โ Heโs not denying AI will change the development of enterprise software, but like Agile and DevOps, AI will improve the lifecycle of software development and, therefore, the enterprise architecture. The difference is the speed of change. โIn the history of development, thereโs never been anything like this,โ adds Phil Whittaker, AI staff engineer at content management software provider Umbraco.
As the software development and customization cycle changes, and agentic applications become commonplace, enterprise architects will need to plan for increased complexity and new business processes. Existing business processes canโt continue if agentic AI is taking on tasks currently done manually by staff.
Again, Lo Giudice adds some levity to a debate that can often become heated, especially in the wake of major redundancies by AI leaders such as AWS. โThe view that everyone will get a bot that helps them do their job is naรฏve,โ he said at the One Conference. โOrganizations will need to carry out a thorough analysis of roles and business processes to ensure they spend money and resources on deploying the right agents to the right tasks. Failure to do so will lead to agentic technology being deployed thatโs not needed, canโt cope with complex tasks, and increases the cloud costs of the business.
โItโs easy to build an agent that has access to really important information,โ says Tiago Azevedo, CIO for AI-powered low-code platform provider OutSystems. โYou need segregation of data. When you publish an agent, you need to be able to control it, and thereโll be many agents, so costs will grow.โ
The big difference, though, is deterministic and non-deterministic, says Whittaker. So non-deterministic requires guardrails of deterministic agents that produce the same output every time over the more random outcomes of non-deterministic agents. Defining business outcomes by deterministic and non-deterministic is a clear role for enterprise architecture. He adds that this is where AI can help organizations fill in gaps. Whittaker, whoโs been an enterprise architect, says itโll be vital for organizations to experiment with AI to see how it can benefit their architecture and, ultimately, business outcomes.
โThe path to greatness lies not in chasing hype or dismissing AIโs potential, but in finding the golden middle ground where value is truly captured,โ write Gartner analysts Daryl Plummer and Alicia Mullery. โAIโs promise is undeniable, but realizing its full value is far from guaranteed. Our research reveals the sobering odds that only one in five AI initiatives achieve ROI, and just one in 50 deliver true transformation.โ Further research also finds just 32% of employees trust the organizationโs leadership to drive transformation. โAgents bring an additional component of complexity to architecture that makes the role so relevant,โ Azevedo adds.
In the past, enterprise architects were focused on frameworks. Whittaker points out that new technology models will need to be understood and deployed by architects to manage an enterprise that comprises employees, applications, databases, and agentic AI. He cites MCP as one as it provides a standard way to connect AI models to data sources, and simplifies the current tangle of bespoke integrations and RAG implementations. AI will also help architects with this new complexity. โThere are tools for planning, requirements, creating epics, user stories, code generation, documenting code, and translating it,โ added Lo Giudice.
Agentic AI is now a core feature of every major EA tool, says Stรฉphane Vanrechem, senior analyst at Forrester. โThese agents automate data validation, capability mapping, and artifact creation, freeing architects to focus on strategy and transformation.โ He cites the technology of Celonis, SAP Signavio, and ServiceNow for their agentic integrations. Whittaker adds that the enterprise architect has become an important human in the loop to protect the organization and be responsible for the decisions and outcomes that agentic AI delivers.
Although some enterprise architects will see this as a collapse of their specialization, Whittaker thinks it broadens the scope of the role and makes them more T-shaped. โI can go deep in different areas,โ he says. โPigeon-holing people is never a great thing to do.โ
Traditionally, architecture has suggested that something is planned, built, and then exists. The rise of agentic AI in the enterprise means the role of the enterprise architect is becoming more fluid as they continue to design and oversee construction. But the role will also involve continual monitoring and adjustment to the plan. Some call this orchestration, or perhaps itโs akin to map reading. An enterprise architect may plan a route, but other factors will alter the course. And just like weather or a fallen tree, which can lead to a route deviation, so too will enterprise architects plan and then lead when business conditions change.
Again, this new way of being an enterprise architect will be impacted by technology. Lo Guidice believes thereโll be increased automation, and Azevedo sides with the orchestration view, saying agents are built and a catalogue of them is created across the organization, which is an opportunity for enterprise architects and CIOs to be orchestrators.
Whatever the job title, Whittaker says enterprise architecture is more important than ever. โMore people will become enterprise architects as more software is written by AI,โ he says. โThen itโs an architectural role to coordinate and conduct the agents in front of you.โ He argues that as technologists allow agents and AI to do the development work for them, the responsibility of architecting how agents and processes function broadens and becomes the responsibility of many more technologists.
โAI can create code for you, but itโs your responsibility to make sure itโs secure,โ he adds. Rather than developing the code, technology teams will become architecture teams, checking and accepting the technology that AI has developed, and then managing its deployment into the business processes.
With shadow AI already embedded in organizations, Whittakerโs view shows the need for a team of enterprise architects that can help business align with the AI agents theyโve deployed, and at the same time protect customer data and cybersecurity posture.
AI agents are redrawing the enterprise, and at the same time replanning the role of enterprise architects.

์ฌ๋ฌ ๋์งํธ ์ ํ ํ๋ก์ ํธ๋ฅผ ์ด๋๊ณ ์ฌ๋ฌด ์ฑ๊ณผ๋ฅผ ๋ง๋ค์ด๋๋ค. ๊ฒฝ์์ง์ ๊ณ ๊ฐ๊ณผ ์ง์ ๊ฒฝํ์ ๋ชจ๋ ๊ฐ์ ํ ๋ณํ ๋ฆฌ๋์ญ ์ญ๋์ ๋๊ฒ ํ๊ฐํ๊ณ ์๋ค. ์ฃผ๋์ ์ผ๋ก ๊ตฌํํ ์ํคํ ์ฒ๋ ์ด์ ํ๋ซํผ ํ์ค์ด ๋๊ณ , ์กฐ์ง์ ๋ฐ์ดํฐ์ AI ์ ๋ต์ ๋ ๋ฐ์น๋ ๊ธฐ๋ฐ์ด ๋๋ค.
์ด ๋จ๊ณ์์ ๋ง์ IT ์ฑ ์์๊ฐ ์ด์ CIO๋ ๋ฐ์ดํฐ, ๋์งํธ, ๋ณด์ ๋ถ์ผ์ ๋ค๋ฅธ C ๋ ๋ฒจ ์๋ฆฌ์ ๋์ ํ ์๊ฒฉ์ด ์๋์ง ์๋ฌธํ๋ค.
CIO.com์ ์ฐ๋ก CIO ํํฉ(State of the CIO) ๋ณด๊ณ ์์ ๋ฐ๋ฅด๋ฉด, CIO์ 80% ์ด์์ด ์ญํ ์ด ์ ์ ๋ ๋์งํธ๊ณผ ํ์ ์ค์ฌ์ผ๋ก ๋ฐ๋๊ณ ์๊ณ ๋์งํธ ์ ํ์ ์ด๋๋ ๋ฐ ๋ ๊น์ด ๊ด์ฌํ๊ณ ์์ผ๋ฉฐ, CIO๊ฐ ๋ณํ์ ์ด๋งค ์ญํ ์ ๋งก๊ณ ์๋ค๊ณ ๋ตํ๋ค. ์ด ์กฐ๊ฑด์ ์ถฉ์กฑํ๊ณ ์๋ค๋ฉด, C ๋ ๋ฒจ ์๋ฆฌ์ ์ด๋ป๊ฒ ์ฌ๋ผ์ค ์ ์์์ง ๊ณ ๋ฏผํด์ผ ํ๋ค.
๋์งํธ ํธ๋์คํฌ๋ฉ์ด์ ํ๋ก์ ํธ๋ฅผ ์ด๋๋ ๊ฒฝํ์ C ๋ ๋ฒจ ์๋ฆฌ์ ์ค๋ฅด๊ธฐ ์ํ ์ค์ํ ์ ์ ์กฐ๊ฑด์ด๋ค. ํ์ง๋ง C ๋ ๋ฒจ ์์์ด ๋๋ฉด, ๋ชจ๋ IT ํ๋ก์ ํธ๋ ๋ฌผ๋ก , ์ด์ ์ ๋ฐ์ ์ฑ๊ณผ์ ๋ฆฌ์คํฌ์ ๋ํด ์ฑ ์์ ์ง๋ฉด์ ์ญํ ๊ณผ ์ฑ ์์ด ํฌ๊ฒ ํ๋๋๋ค. C ๋ ๋ฒจ ๊ธฐ์ ์์์ CEO์ CFO๊ฐ ๊ณต๊ฐํ ์ ์๋ ์ ๋ต์ ์๋ฆฝํด์ผ ํ๊ณ , ๋์์์ด ์งํํ๋ ๋์งํธ ์ด์ ๋ชจ๋ธ์ ์ด๊ดํด์ผ ํ๋ค.
์ํฌ๋ฐ์ด(Workday)์ CIO ๋ผ๋ ์กด์จ์ โ๋ฆฌ๋๋ก ์ฑ์ฅํ๊ณ ์ ํ๋ ๊ธฐ์ ์ฑ ์์๋ ํ๋ก์ ํธ ๊ธฐ๋ฐ ๋ณํ ์คํ์ ๊ด๋ฆฌํ๋ ์์ค์ ๋์ด, ๊ธฐ์ ์ ์ฒด์ ๊ธฐ์ , ์ํคํ ์ฒ, IT ์ ๋ต์ ๋ํด ์์ ํ ์์ ๊ถ๊ณผ ์ฑ ์์ ์ ธ์ผ ํ๋คโ๋ผ๊ณ ๊ฐ์กฐํ๋ค.
์กด์จ์ โIT ์ธํ๋ผ, ์ฌ์ด๋ฒ ๋ณด์, AI ํ๋ซํผ, ํต์ฌ ์์คํ ์ด์, ๋ฐ์ดํฐ ๊ฑฐ๋ฒ๋์ค์ ๋ํด ๊น์ด ์๊ณ ์ค๋ฌด์ ์ธ ์ ๋ฌธ์ฑ์ ์์์ผ ํ๋ค. ๊ธฐ์ ์ ๋ต์ ์์ ์ ์ผ๋ก ์ด์ํ๋ฉด์๋ ์ง์์ ์ธ ๋น์ฆ๋์ค ๊ฐ์น๋ก ์ฐ๊ฒฐํ ์ ์๋ ์ญ๋์ ๋ณด์ฌ์ค์ผ ํ๋คโ๋ผ๊ณ ์ค๋ช ํ๋ค.
C ๋ ๋ฒจ ์ญํ ์ ์ค๋นํ๋ ค๋ IT ๋ฆฌ๋๋ ํ์ ํ์ต ํ๋ก๊ทธ๋จ์ ์ค๊ณํด ์ ๋ฌธ์ฑ์ ํค์ฐ๊ณ ์์ ๊ฐ์ ์์์ผ ํ๋ค. 70-20-10 ํ์ต ๋ชจ๋ธ์ ์ ๋ฌด ๊ฒฝํ 70%, ๋๋ฃ์์ ์์ ๋ฌ๋ 20%, ์ ๊ท ๊ต์ก 10%์ ์ด์ ์ ๋ง์ถ๋ ์ ๊ทผ๋ฒ์ด๋ค. ๋์งํธ ํ์ ์ ์ด๋๋ ๋ฆฌ๋๋ ์ด ๋ชจ๋ธ์ C ๋ ๋ฒจ ๊ธฐํ๋ฅผ ํฅํ ์ฌ์ ์ ์ด๋ป๊ฒ ์ ์ฉํ๋์ง ์์๋ณด์.
๋ง์ ๋์งํธ ํ์ ๋ฆฌ๋๊ฐ ์ฌ๋ฌ ํด์ ๊ฑธ์น ์ ์ฌ ์ฐจ์์ ์ ๋ต ํ๋ก์ ํธ๊น์ง ํฌํจํด ์์ ์ด ๋งก์ ํ๋ก๊ทธ๋จ ์ ๋ฐ์ ๋ํ ์ ๋ฌธ์ฑ์ ํ๋ณดํ๋ ค๊ณ ๋ ธ๋ ฅํ๋ค. ์ฐ์ ์์๋ฅผ ์กฐ์ ํ๊ณ ๋ฆฌ์คํฌ๋ฅผ ๋ฎ์ถ๊ธฐ ์ํด ์ ์์ผ ํ๋ก๊ทธ๋จ์ ๋ชจ๋ ์ํฉ์ ๋ค์ฌ๋ค๋ณด๋ ค๋ ๋ฆฌ๋๋ ๋ง๋ค.
ํ์ง๋ง C ๋ ๋ฒจ ๊ธฐ์ ์ฑ ์์๋ ๋ชจ๋ ์ ๋ต ํ๋ก์ ํธ์ ์ธ๋ถ ์ฌํญ๊น์ง ๊ด์ฌํ ์๊ฐ๋ ์๊ณ , ๊ธฐ์ ๊ตฌํ์ ์ธ๋ถ ์ฌํญ์ ๋ํด ์ต๊ณ ์ ์ ๋ฌธ๊ฐ๋ ์๋๋ค. C ๋ ๋ฒจ ์์์ด ๋๊ณ ์ ํ๋ IT ๋ฆฌ๋๊ฐ ์ฑ์์ผ ํ 70%์ ์ ๋ฌด ๊ฒฝํ์ ์ ๋ฌธ์ฑ๊ณผ ์ฑ ์ ๋ฒ์๋ฅผ ๋์ด์๋ ์์ญ์ ๊ณผ๊ฐํ๊ฒ ๋ฐ์ ๋ค์ฌ๋๋ ๋ฐ์ ๋์จ๋ค.
ํ๋ฆฐ์ํ(Principal)์ CIO ์บ์ ์ผ์ด๋ โC ๋ ๋ฒจ ๊ธฐ์ ์์ ์ญํ ๋ก ์ฌ๋ผ์๋ ๋ฐ ์ค์ํ ๊ฒ์ ๋ชจ๋ ๋ต์ ์๊ณ ์๋ ๊ฒ์ด ์๋๋ผ, ๋ชจํธํจ๊ณผ ๋ณต์ก์ฑ ์์์ ๋ฆฌ๋์ญ์ ๋ฐํํ๋ ๋ฒ์ ๋ฐฐ์ฐ๋ ๊ฒ์ด๋คโ๋ผ๊ณ ๋งํ๋ค. ์ผ์ด๋ โ๊ฐ์ฅ ๊ฐ์ง ์ฑ์ฅ์ ์คํธ๋ ์น ๊ณผ์ ๋ฅผ ๋งก๊ณ , ์ํฉํธ๊ฐ ํฐ ๋น์ฆ๋์ค ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๋ฉด์, IT ์กฐ์ง ๋ด๋ถ์๋ง ๋จธ๋ฌผ์ง ์๊ณ ์ ์ฌ ์ฐจ์์์ ์ํฅ๋ ฅ์ ๋ฐํํ๋ ๊ณผ์ ์ ํตํด ์ด๋ค์ง๋ค. ์ด๋ฐ ๊ฒฝํ์ด ๊ฐ๋ ฅํ ๋ฉํ ์ ๋๋ฃ์ ์กฐ์ธ๊ณผ ๊ฒฐํฉ๋๋ฉด ์ค๋ ๊ฐ๋ ๋ฆฌ๋์ญ ๊ธฐ๋ฐ์ด ๋ง๋ค์ด์ง๋คโ๋ผ๊ณ ์ค๋ช ํ๋ค.
๋ค์์ ์ ๋ฌด ํ์ฅ์์ ์ฐพ์์ผ ํ ๊ฒฝํ์ ๋ํ ๋ช ๊ฐ์ง ์กฐ์ธ์ด๋ค.
๋ ๋ฒ์งธ๋ก ํค์์ผ ํ ์ญ๋์ ๊ฒฝ์ฒญํ๊ณ ๋์ ํ๊ณ ์ ์ํ๊ณ , ๋ฐฉํฅ์ ์ ํํ๋ ๋ฅ๋ ฅ์ด๋ค. ์ฑ๊ณต์ ์ธ C ๋ ๋ฒจ ๋ฆฌ๋๋ ๋น์ ์ ์ ์ํ๊ณ ์ง์์ ์ผ๋ก ๊ณํ์ ์ธ์์ผ ํ์ง๋ง, ์์ฅ๊ณผ ๊ณ ๊ฐ, ํฌ์์, ์ดํด๊ด๊ณ์์ ์๊ตฌ๊ฐ ๋ฐ๋์ด ๋ชฉํ๋ฅผ ์ฌ์กฐ์ ํด์ผ ํ ๋๋ฅผ ๊ฐ์งํ ์ค๋ ์์์ผ ํ๋ค.
๋ฉ๊ฐํฌํธ(Megaport)์ CTO ์นด๋ฉ๋ก ๋ค๋์์ โ์๋ก์ด ๊ธฐ์ , ๋น์ฆ๋์ค ์ฐ์ ์์ ๋ณํ, ์์์น ๋ชปํ ๋ณ์๋ ์ ์ค๊ณ๋ ๊ณํ๋ ๋จ์จ์ ๋ฌด๋ ฅํํ ์ ์๋คโ๋ผ๊ณ ์ง์ ํ๋ค. ๋ค๋์์ โ์ฑ๊ณต์ ์ธ ๋ฆฌ๋๋ ๋ณํ๊ฐ ๋ฒ์ด์ก์ ๋ ๊ทธ๋๊ทธ๋ ๋์ํ๋ ์์ค์ ๋จธ๋ฌผ์ง ์๋๋ค. ๋ณํ๋ฅผ ๋ฏธ๋ฆฌ ์์ธกํ๊ณ , ์กฐ์ง์ด ๋ณํ์ ๋๋นํด ์ค๋น๋๊ณ ๋ฌด์ฅ๋ผ ์๋๋ก ๋ง๋ ๋ค. CTO๋ ์ด๋ฐ ์ ์๋ ฅ์ ์ด ์ค๊ณ์๋ก์, ์๋ฃจ์ ์ด ํ์ ์ ์๋๋ฅผ ๋ฐ๋ผ ๋ฐ์ ํ๋ฉด์๋ ๋น์ฆ๋์ค ์ํฅ๊ณผ ์ ๋ต์ ๋ชฉํ๋ฅผ ๊ณ์ ๋ฌ์ฑํ๋๋ก ์ฑ ์์ ธ์ผ ํ๋คโ๋ผ๊ณ ๊ฐ์กฐํ๋ค.
์์ฑํ AI์ ์ธ๊ณต ์ผ๋ฐ ์ง๋ฅ์ด ์ธ์ ๋ฑ์ฅํ ๊ฒ์ธ์ง์ ๋ํ ๊ณผ๋๊ด๊ณ ๊ฐ ๋์ณ๋๋ ์ํฉ์ด๋ค. ์ด์ฌํ์ ๊ฒฝ์์ง์ C ๋ ๋ฒจ ๊ธฐ์ ๋ฆฌ๋๊ฐ ์ด๋ฐ ์์์ ๊ฑธ๋ฌ๋ด๊ณ AI ์ ๋ต์ ์ด๋๊ณ , ๋ฐ์ดํฐ์ AI ๊ฑฐ๋ฒ๋์ค๋ฅผ ํ๋ฆฝํด ์ฃผ๊ธฐ๋ฅผ ๊ธฐ๋ํ๋ค.
๋ณด๋์๋ฃ์ ์๊ท๋ชจ PoC๋ง์ผ๋ก๋ ํ์ค์ ์ธ AI ๋น์ ๊ณผ ๋จ๊ธฐ์ ์ธ ํฌ์ ์์ต์ ๋ง๋ค ์ ์๋ค. C ๋ ๋ฒจ ๊ธฐ์ ๋ฆฌ๋๋ ๋๋ฃ์ ๋คํธ์ํฌ๋ฅผ ๋ํ๊ณ ์ปค๋ฎค๋ํฐ์ ์ฐธ์ฌํด ๋ค๋ฅธ ์กฐ์ง์ด ์ด๋์ ํฌ์ํ๊ณ AI ๊ธฐ๋ฐ ๋น์ฆ๋์ค ์ฑ๊ณผ๋ฅผ ์ด๋ป๊ฒ ๋ง๋ค๊ณ ์๋์ง ๋ฐฐ์ฐ๋ฉด์ ์ง์์ ํ์ฅํ๋ค.
์ต๊ทผ ์ด๋ฆฐ โ์ปคํผ ์๋ ๋์งํธ ํธ๋ ์ผ๋ธ๋ ์ด์ (Coffee With Digital Trailblazers)โ์์๋ ๋ณํ ๋ฆฌ๋๊ฐ C ๋ ๋ฒจ ๋ฆฌ๋์ญ์ ๋ฐํต์ ์ด๋ป๊ฒ ์ด์ด๋ฐ์ ์ ์๋์ง, ๊ทธ๋ฆฌ๊ณ ์์ ๋ฌ๋์ ์ฌ๋ด์์ ์ด๋ป๊ฒ ๊ตฌํํ ์ ์๋์ง ๋ ผ์ํ๋ค.
์๋ฅผ ๋ค์ด, ์ปจํฐ๋ด์ ์คํธ๋ํฐ์ง(Continuums Strategies)์ ์ค๋ฆฝ์์ด์ vCISO์ธ ๋ฐ๋ฆญ ๋ฒ์ธ ๋ AI ๊ธฐ๋ฐ ์ํ ํ์ง์ ๋ค์ํ ์ ํ์ AI ๊ธฐ๋ฐ ์๋ํ ๊ณต๊ฒฉ์ ๋ถ๋ฅํ๋ ํ์ ํฉ๋ฅํ ๊ฒ์ ์ ์ํ๋ค. ์ฑ์ฅ ์ ๋ต๊ฐ์ด์ ํ๋์ ๋ CIO์ธ ์กฐ ํธ๊ธ๋ฆฌ์๋ AI๋ฅผ ๊ธฐํ๋ก ์ผ๋ ์ด์ ๋ก ํธ๊ธฐ์ฌ๊ณผ ๋์์๋ ์ง๋ฌธ์ ๊ผฝ์๋ค.
ํธ๊ธ๋ฆฌ์๋ โํธ๊ธฐ์ฌ์ด ์๊ณ ์ผ์ด ์ ๊ทธ๋ ๊ฒ ์งํ๋๋์ง ๋ฟ๋ฆฌ๊น์ง ํ๊ณ ๋ค์ง ์์ผ๋ฉด, ๊ณ ๊ฐ ๋ง์กฑ๋๋ฅผ ์๋ก์ด ์์ค์ผ๋ก ๋์ด์ฌ๋ฆฌ๊ณ , ์๋ก์ด ์ ํ์ ๋ง๋ค๊ณ , ์๋ก์ด ๋งค์ถ์์ ์ด๊ณ , ๋น์ฉ์ ์ค์ด๋ ๋ ์๋กญ๊ณ , ๋ ๋น ๋ฅด๊ณ , ๋ ๋๋ํ๊ณ , ๋ ์ ๋ ดํ ๋ฐฉ๋ฒ์ ์ ๋ ๋ฐ๋ช ํ์ง ๋ชปํ๋คโ๋ผ๊ณ ๊ฐ์กฐํ๋ค.
์์ ๋ฌ๋์์ ๋ ํ๋ ์ง์คํด์ผ ํ ์์ญ์ ๋น์ฆ๋์ค ์ด์์ ๋ท๋ฐ์นจํ๋ ๋ฐ์ดํฐ๋ฅผ ๋๊น์ง ์ค๋ช ํ ์ ์๋ ํ์ ์ ๋ฌธ๊ฐ์์ ๋ง๋จ์ด๋ค. ํํ ์ฌ(Quantexa)์ CTO ์ ์ด๋ฏธ ํํผ์ โ์์ด์ ํฑ AI๊ฐ ํ์ค๋ก ๋ค๊ฐ์ค๋ฉด์ ๋ฐ์ดํฐ ๋ฆฌํฐ๋ฌ์๋ ํต์ฌ ๋ฆฌ๋์ญ ์ญ๋์ด ๋๊ณ ์๋ค. ๋ฐ์ดํฐ๊ฐ ์ด๋์์ ์๋์ง ์ค๋ช ํ ์ ์๋ค๋ฉด, ๊ทธ ์์ AI๋ฅผ ์ฑ ์๊ฐ ์๊ฒ ์ฌ๋ฆด ์ ์๋ค. ์ฌ๋๊ณผ AI ์์ด์ ํธ๊ฐ ๋๋ํ ์ผํ๋ ์๋๋ ๋ง์ ์ฌ๋์ด ์๊ฐํ๋ ๊ฒ๋ณด๋ค ํจ์ฌ ๋นจ๋ฆฌ ์จ๋คโ๋ผ๊ณ ์ง์ ํ๋ค.
โ์โ๋ผ๋ ์ง๋ฌธ์ ๋์ง๋ ์์ ๋ฌ๋, AI ๋ณด์ ์ด์์ ๋์ํ๋ ๋ณด์ํ๊ณผ์ ๋ฏธํ , ๋น์ฆ๋์ค ์ด์ ๋ฐ์ดํฐ ๊ฒํ ๋ AI๊ฐ ํฐ ๊ฐ์น๋ฅผ ๋ง๋ค ์ ์๋ ์์ญ์ ๋ํ ์์ด๋์ด๋ฅผ ์ ๋ฆฌํ๋ ๋ฐ ๋์์ ์ค๋ค. ์ธ์ฌ์ดํธ(Insight) ๊ณ์ด์ฌ SADA์ CTO ๋ง์ผ์ค ์๋๋ โC ๋ ๋ฒจ์ ๊ฐ์ฅ ๋นจ๋ฆฌ ๋ค๊ฐ๊ฐ๋ ๊ธธ์ ํ์ฌ์ ๋ช ์ด์ด ๊ฑธ๋ฆฐ ๋ฌธ์ ๋ฅผ ์ง์ ์ฐพ์ ๋์๋ ๊ฒ์ด๋คโ๋ผ๊ณ ๋งํ๋ค.
๋ง์ C ๋ ๋ฒจ ๋ฆฌ๋๋ ์ ๋ฌด๊ฐ ๋๋ฌด ๋ฒ ์ฐจ๊ณ ์๊ฐ์ด ๋ถ์กฑํ๋ค๋ ์ด์ ๋ก ์ ์ ํ์ต ํ๋์ โ์์ผ๋ฉด ์ข์ ๊ฒโ ์ ๋๋ก ์ทจ๊ธํ๋ค. ํ์ ํ์ต์๋ ๋ ์, ์ฒญ์ทจ, ์์ฒญ, ์จ๋ผ์ธ ๊ฐ์, ๊ธฐํ ํ์ต ๊ฒฝํ์ 10% ์ ๋ ์๊ฐ์ ํฌ์ํ๋ฉด ์ฌ๊ณ ์ ํญ์ด ๋์ด์ง๊ณ ์๋ก์ด ๊ฐ๋ ์ ์ ํ ์ ์๋ค๋ ์ฌ์ค์ ์ดํดํ๊ณ ์๋ค. ํ์ต์ ๋จ์ํ ๊ธฐ์ ์ญ๋ ๊ฐ๋ฐ์ ๊ทธ์น์ง ์๋๋ค.
์ํธ์คํ(ThoughtSpot)์ ์ต๊ณ ๋ฐ์ดํฐยทAI ์ ๋ต ์ฑ ์์์ธ ์ ๋ ํ์ฐ์จ์ โํ์ ์๋๊ฐ ๋น ๋ฅธ ์ง๊ธ์ 70-20-10 ๊ท์น์ด ์ถฉ๋ถํ์ง ์์ผ๋ฉฐ, ์ ์ ํ์ต ํ๋์ ํด๋นํ๋ 10%๋ ๋ ๋๋ ค์ผ ํ๋คโ๋ผ๊ณ ์ ์ํ๋ค. ๋, โ์ง์ค์ ์ธ ํธ์ฆ์จ ๋ฏธ๋ ํด๋์ค์ ์ต์ AI ํ์ ์ต์ ์ ์ ์๋ ๋ฆฌ๋์์ ํผ์ด ๋คํธ์ํฌ๊ฐ ๊ฒฐํฉ๋ ์์์ ์ ํ ์๋ฐ์ ํ์ฉํ๋ โ๋ฐ์ด๋ธ ๋ฌ๋(Vibe Learning)โ ๋ฐฉ์์ด ํจ๊ณผ์ ์ด๋คโ๋ผ๊ณ ๋ง๋ถ์๋ค.
ํ์ฉํ ์ ์๋ ๋ค๋ฅธ ํ์ต ๊ธฐํ๋ ๋ค์๊ณผ ๊ฐ๋ค.
๋ง์ง๋ง์ผ๋ก, C ๋ ๋ฒจ ์ญํ ์ด ๋ชจ๋ ์ฌ๋์๊ฒ ๋ง๋ ๊ฒ์ ์๋๋ค. CIO ํํฉ ์กฐ์ฌ์ ๋ฐ๋ฅด๋ฉด, CIO์ 43%๋ ์คํธ๋ ์ค ์์ค์ 1~10์ ์ผ๋ก ํ๊ฐํ ๋ 8์ ์ด์์ด๋ผ๊ณ ๋ตํ๋ค. ๋ฐ๋ผ์ C ๋ ๋ฒจ ์๋ฆฌ๋ฅผ ์ค๋ฅด๊ณ ์ ํ๋ค๋ฉด, ๊ฒฝ๋ ฅ ๋ชฉํ๋ฅผ ์ธ์ฐ๊ธฐ ์ ์ ์ญํ ์ ์ถฉ๋ถํ ์ดํดํด์ผ ํ๋ค.
dl-ciokorea@foundryco.com

My Raspberry Pi 500+ has finally been delivered, but I kept the order brief so I could keep the cost down. In spite of my attempts at being frugal, Iโd be lying if I said I hadnโt toyed with the idea of throwing a few more items on the order.


Seattle biotech startup Curi Bio, which enables the screening of new drugs using cells and 3D tissue models derived from human cells, announced $10 million in new funding.
Curi Bioโs customers include large biopharmaceutical and biotech companies such Novo Nordisk, Eli Lilly, Astrazeneca, Pfizer, Boehringer Ingelheim, UCB, Novartis and others. Its Series B round was led by Seoul-based DreamCIS, which supports biopharma R&D through extensive research services.
โWe are thrilled to partner with DreamCIS, who shares our conviction that drug discovery urgently needs more human-relevant data at the preclinical stage,โ said Michael Cho, Curi Bioโs chief strategy officer, in a statement. โThe vast majority of new drugs fail in human clinical trials because preclinical animal and 2D cell models have failed to be good predictors of human outcomes.โ
Curi Bioโs platform integrates bioengineered tissues created from induced pluripotent stem cells (iPSCs) with data collection and analysis. The additional funding will expedite its development of new platforms for cardiac, skeletal muscle, metabolic, smooth muscle and neuromuscular diseases, the company said.
The Seattle area is a hub of life science and biotech companies, including numerous efforts focused on AI-assisted research. Researchers have emphasized the need to test computer-generated drug candidates in the lab to verify their capabilities and impacts.
โCuri Bioโs unique integration of cells, systems, and data is a paradigm shift for preclinical drug discovery,โ said Jeounghee Yoo, CEO of DreamCIS. โWe were incredibly impressed by the companyโs innovative platforms and their ability to generate functional data from 3D human tissues at scale.โ
Curi Bio has raised $20 million from investors and $12 million from federal grants.
The company spun out of the University of Washington a decade ago as NanoSurface Biomedical. In April, Curi Bio celebrated the opening of its new 13,942-square-foot headquarters and research facility on the Seattle waterfront.