โŒ

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

US federal software reform bill aims to strengthen software management controls

4 December 2025 at 11:57

Software management struggles that have pained enterprises for decades cause the same anguish to government agencies, and a bill making its way through the US House of Representatives to strengthen controls around government software management holds lessons for enterprises too.

The Strengthening Agency Management and Oversight of Software Assets (SAMOSA) bill, H.R. 5457, received unanimous approval from a key US House of Representative committee, the Committee on Oversight and Government Reform, on Tuesday.

SAMOSA is mostly focused on trying to fix โ€œsoftware asset management deficienciesโ€ as well as requiring more โ€œautomation of software license management processes and incorporation of discovery tools,โ€ issues that enterprises also have to deal with.

In addition, it requires anyone involved in software acquisition and development to be trained in the agencyโ€™s policies and, more usefully, in negotiation of contract terms, especially those that put restrictions on software deployment and use.

This training could also be quite useful for enterprise IT operations. It would teach โ€œnegotiating optionsโ€ and specifically the โ€œdifferences between acquiring commercial software products and services and acquiring or building custom software and determining the costs of different types of licenses and options for adjusting licenses to meet increasing or decreasing demand.โ€

The mandated training would also include tactics for measuring โ€œactual software usage via analytics that can identify inefficiencies to assist in rationalizing software spendingโ€ along with methods to โ€œsupport interoperable capabilities between software.โ€

Outlawing shadow IT

The bill also attempts to rein in shadow IT by โ€œrestricting the ability of a bureau, program, component, or operational entity within the agency to acquire, use, develop, or otherwise leverage any software entitlement without the approval of the Chief Information Officer of the agency.โ€ But there are no details about how such a rule would be enforced.

It would require agencies โ€œto provide an estimate of the costs to move toward more enterprise, open-source, or other licenses that do not restrict the use of software by the agency, and the projected cost savings, efficiency measures, and improvements to agency performance throughout the total software lifecycle.โ€ But the hiccup is that benefits will only materialize if technology vendors change their ways, especially in terms of transparency.

However, analysts and consultants are skeptical that such changes are likely to happen.

CIOs could be punished

Yvette Schmitter, a former Price Waterhouse Coopers principal who is now CEO of IT consulting firm Fusion Collective, was especially pessimistic about what would happen if enterprises tried to follow the billโ€™s rules.

โ€œIf the bill were to become law, it would set enterprise CIOs up for failure,โ€ she said. โ€œThe bill doubles down on the permission theater model, requiring CIO approval for every software acquisition while providing zero framework for the thousands of generative AI tools employees are already using without permission.โ€

She noted that although the bill mandates comprehensive assessments of โ€œsoftware paid for, in use, or deployed,โ€ it neglects critical facets of todayโ€™s AI software landscape. โ€œIt never defines how you access an AI agent that writes its own code, a foundation model trained on proprietary data, or an API that charges per token instead of per seat,โ€ she said. โ€œInstead of oversight, the bill would unlock chaos, potentially creating a compliance framework where CIOs could be punished for buying too many seats for a software tool, but face zero accountability for safely, properly, and ethically deploying AI systems.โ€

Schmitter added: โ€œThe bill is currently written for the 2015 IT landscape and assumes that our current AI systems come with instruction manuals and compliance frameworks, which they obviously do not.โ€

She also pointed out that the government seems to be working at cross-purposes. โ€œThe H.R. 5457 bill is absurd,โ€ she said. โ€œCongress is essentially mandating 18-month software license inventories while the White House is simultaneously launching the Genesis Mission executive order for AI that will spin up foundation models across federal agencies in the next nine months. Both of these moves are treating software as a cost center and AI as a strategic weapon, without recognizing that AI systems are software.โ€

Scott Bickley, advisory fellow at Info-Tech Research Group, was also unimpressed with the bill. โ€œIt is a sad, sad day when the US Federal government requires a literal Act of Congress to mandate the Software Asset Management (SAM) behaviors that should be in place across every agency already,โ€ Bickley said. โ€œOne can go review the [Office of Inspector General] reports for various government agencies, and it is clear to see that the bureaucracy has stifled all attempts, assuming there were attempts, at reining in the beast of software sprawl that exists today.โ€

Right goal, but toothless

Bickley said that the US government is in dire need of better software management, but that this bill, even if it was eventually signed into law, would be unlikely to deliver any meaningful reforms.ย 

โ€œThis also presumes the federal government actually negotiates good deals for its software. It unequivocally does not. Never has there been a larger customer that gets worse pricing and commercial terms than the [US] federal government,โ€ Bickley said. โ€œAt best, in the short term, this bill will further enrich consultants, as the people running IT for these agencies do not have the expertise, tooling, or knowledge of software/subscription licensing and IP to make headway on their own.โ€

On the bright side, Bickley said the goal of the bill is the right one, but the fact that the legislation didnโ€™t deliver or even call for more funding makes it toothless. โ€œThe bill is noble in its intent. But the fact that it requires a host of mandatory reporting, [Government Accountability Office] oversight, and actions related to inventory and overall [software bill of materials] rationalization with no new budget authorization is a pipe dream at best,โ€ he said.ย 

Sanchit Vir Gogia, the chief analyst at Greyhound Research, was more optimistic, saying that the bill would change the law in a way that should have happened long ago.

โ€œ[It] corrects a long-standing oversight in federal technology management. Agencies are currently spending close to $33 billion every year on software. Yet most lack a basic understanding of what software they own, what is being used, or where overlap exists. This confusion has been confirmed by the Government Accountability Office, which reported that nine of the largest agencies cannot identify their most-used or highest-cost software,โ€ Gogia said. โ€œAudit reports from NASA and the Environmental Protection Agency found millions of dollars wasted on licenses that were never activated or tracked. This legislation is designed to stop such inefficiencies by requiring agencies to catalogue their software, review all contracts, and build plans to eliminate unused or duplicate tools.โ€

Lacks operational realism

Gogia also argued, โ€œthe added pressure of transparency may also lead software providers to rethink their pricing and make it easier for agencies to adjust contracts in response to actual usage.โ€ If that happens, it would likely trickle into greater transparency for enterprise IT operations.ย 

Zahra Timsah, co-founder and CEO of i-GENTIC AI, applauded the intent of the bill, while raising logistical concerns about whether much would ultimately change even if it ultimately became law.

โ€œThe language finally forces agencies to quantify waste and technical fragmentation instead of talking about it in generalities. The section restricting bureaus from buying software without CIO approval is also a smart, direct hit on shadow IT. Whatโ€™s missing is operational realism,โ€ Timsah said. โ€œThe bill gives agencies a huge mandate with no funding, no capacity planning, and no clear methodology. You canโ€™t ask for full-stack interoperability scoring and lifecycle TCO analysis without giving CIOs the tools or budget to produce it. My concern is that agencies default to oversized consulting reports that check the box without actually changing anything.โ€

Timsah said that the bill โ€œis going to be very difficult to implement and to measure. How do you measure it is being followed?โ€ She added that agencies will parrot the billโ€™s wording and then try to hire people to manage the process. โ€œItโ€™s just going to be for opticโ€™s sake.โ€

From oversight to intelligence: AIโ€™s impact on project management and business transformation

4 December 2025 at 05:00

For CIOs, the conversation around AI has moved from innovation to orchestration, and project management, long a domain of human coordination and control, is rapidly becoming the proving ground for how intelligent systems can reshape enterprise delivery and accelerate transformation.

In boardrooms across industries, CIOs face the same challenge of how to quantify AIโ€™s promise in operational terms: shorter delivery cycles, reduced overhead, and greater portfolio transparency. A 2025 Georgia Institute of Technology-sponsored study of 217 project management professionals and C-level tech leaders revealed that 73% of organizations have adopted AI in some form of project management.

Yet amid the excitement, the question of how AI will redefine the role of the project manager (PM) remains, as does how will the future framework for the business transformation program be defined.

A shift in the PMโ€™s role, not relevance

Across industries, project professionals are already seeing change. Early adopters in the study report project efficiency gains of up to 30%, but success depends less on tech and more on how leadership governs its use. The overwhelming majority found it highly effective in improving efficiency, predictive planning, and decision-making. But what does that mean for the associates running these projects?

Roughly one-third of respondents believed AI would allow PMs to focus more on strategic oversight, shifting from day-to-day coordination to guiding long-term outcomes. Another third predicted enhanced collaboration roles, where managers act as facilitators who interpret and integrate AI insights across teams. The rest envisioned PMs evolving into supervisors of AI systems themselves, ensuring that algorithms are ethical, accurate, and aligned with business goals.

These perspectives converge on a single point: AI will not replace PMs, but it will redefine their value. The PM of the next decade wonโ€™t simply manage tasks, theyโ€™ll manage intelligence and translate AI-driven insights into business outcomes.

Why PMOs canโ€™t wait

For project management offices (PMOs), the challenge is no longer whether to adopt AI but how. AI adoption is accelerating, with most large enterprises experimenting with predictive scheduling, automated risk reporting, and gen AI for documentation. But the integration is uneven.

Many PMOs still treat AI as an add-on, a set of tools rather than its strategic capability. This misses the point since AI is about augmenting judgment and automation. The organizations gaining a real competitive advantage are those embedding AI into their project methodologies, governance frameworks, and performance metrics with this five-point approach in mind.

1. Begin with pilot projects

Think small, scale fast. The most successful AI integrations begin with targeted use cases that automate project status reports, predict schedule slippage, or identify resource bottlenecks. These pilot projects create proof points, generate enthusiasm, and expose integration challenges early.

2. Measure value, not just activity

One common pitfall is adopting AI without clear performance metrics. PMOs should set tangible KPIs such as reduction in manual reporting time, improved accuracy in risk forecasts, shorter project cycle times, and higher stakeholder satisfaction. Communicating these outcomes across the organization is just as important as achieving them. Success stories build momentum, foster buy-in, and demystify AI for skeptical teams.

3. Upskill PMs

AI will only be as valuable as the people who use it. Nearly half of the surveyed professionals cited lack of a skilled workforce as a barrier to AI integration. Project managers donโ€™t need to become data scientists, but they must understand AI fundamentals, how algorithms work, where biases emerge, and what data quality means. In this evolving landscape, the most effective PMs will combine data literacy with human-centered leadership, including critical thinking, emotional intelligence, and communication.

4. Strengthen governance and ethics

Increasing AI raises pressing ethical questions, especially when algorithms influence project decisions. PMOs must take the lead in establishing AI governance frameworks that emphasize transparency, fairness, and human oversight. Embedding these principles into the PMOโ€™s charter doesnโ€™t just mitigate risk, it builds trust.

5. Evolve from PMO to BTO

The traditional PMO focuses on execution through scope, schedule, and cost. But AI-driven organizations are shifting toward business transformation offices (BTOs), which align projects directly with strategic value creation through process improvement in parallel. A PMO ensures projects are done right. A BTO ensures the right projects are done. A crucial element of this framework is the transition from a Waterfall to an Agile mindset. The evolution of project management has shifted from rigid plans to iterative, customer-centric, and collaborative methods, with hybrid methodologies becoming increasingly common. This Agile approach is vital for adapting to the rapid changes brought by AI and digital disruption.

The new PM career path

By 2030, AI could manage most routine project tasks, such as status updates, scheduling, and risk flagging, while human leaders focus on vision, collaboration, and ethics. This shift mirrors past revolutions in project management from the rise of Agile to digital transformation, but at an even faster pace. But as organizations adopt AI, the risk of losing the human element persists. Project management has always been about people and aligning interests, resolving conflicts, and inspiring teams. However, while AI can predict a delay, it canโ€™t motivate a team to overcome it. The PMโ€™s human ability to interpret nuance, build trust, and foster collaboration remains irreplaceable.

A call to action

AI represents the next frontier in enterprise project delivery, and the next decade will test how well PMOs, executives, and policymakers can navigate the evolution of transformation. To thrive, organizations must invest in people as much as in platforms, adopt ethical, transparent governance, foster continuous learning and experimentation, and measure success by outcomes rather than hype.

For CIOs, the mandate is clear: lead with vision, govern with integrity, and empower teams with intelligent tools. AI, after all, isnโ€™t a threat to the project management profession. Itโ€™s a catalyst for its reinvention, and when executed responsibly, AI-driven project management will not only deliver operational gains but also build more adaptive, human-centered organizations ready for the challenges ahead. By embracing it thoughtfully, PMs can elevate their roles from administrators to architects of change.

The surprising places agentic AI is cutting the wait โ€” and the waste

3 December 2025 at 08:45

I have spent most of my career accountable for the parts of technology nobody thinks about until something breaks. Service delivery, back-office workflows, knowledge decay, compliance friction and the invisible handoffs that quietly drain budgets. For years, I invested in automation as the answer to operational drag. We built rules, mapped flows and tried to automate the edge cases. But whenever reality changed, those automations snapped. It took me longer to realize I was automating drift.

Agentic AI changes the equation by introducing autonomy, adaptability and multi-step reasoning based on a deep understanding of context. It can escalate when confidence falls and apply policy dynamically. Over the past two years, I have deployed agentic capabilities across IT operations and talent acquisition. The cost savings were real, but the reduction in operational risk mattered more.

What concerns me most is how quickly interest is outpacing understanding. A recent enterprise AI maturity study found that many organizations are considering adopting agentic AI in the next 12 months, yet far fewer report being deeply familiar with AI technology. There is widening daylight between investment and comprehension, and leaders can feel it.

The hidden economics of back-office drag

Service delivery is accounted for as a cost center, but in practice, it behaves like a risk center. When incidents spike, I burn labor hours and credibility. When change freezes, innovation slows. When knowledge walks out the door, complexity compounds. Research from McKinsey estimates that major incident outages can cost more than $300,000 per hour when accounting for downtime, lost productivity and recovery labor. Outages erode trust as quickly as they drain budgets, and the longer the system stays down, the more stakeholders begin to question leadershipโ€™s judgment rather than the failure itself.

Agentic AI gave me ways to address root causes rather than symptoms. It accelerated the pace at which risk surfaced and reduced the dependence on human memory to carry operational knowledge.

IT service automation that actually bends cost curves

The first breakthrough came from reducing low-value, high-volume work. Password resets, access requests, policy clarification and device troubleshooting represented a disproportionate share of tickets. Conversational agents served as the first point of contact, recognizing intent, authenticating users, enforcing policy and triggering workflows. The response someone received at 4 p.m. on a weekday became indistinguishable from the one they received at 2 a.m.

As these agents matured, they evolved beyond conversation. Diagnostic agents pulled logs and compared them to historical incident signatures. Identity agents validated entitlements through policy. Remediation agents performed corrective actions autonomously when confidence thresholds were high enough. The agents could reason, plan and act instead of merely responding.

I also deployed agents that assisted human analysts. They summarized lengthy ticket histories, suggested relevant knowledge articles and drafted follow-up communication. They even generated new content as knowledge articles from closed incidents to expand self-service coverage. This type of coexistence shifted work away from repetition and toward judgment.

In parallel, autonomous agents operated inside infrastructure operations. They validated alerts, correlated telemetry and occasionally took action before anyone knew an issue existed. It was not about removing humans. It was about removing hours of manual investigation that added no value.

These moves consistently reduced incident resolution times. Industry benchmarks already show double-digit percentage decreases in resolution duration when agentic orchestration is applied to major incidents. I saw similar patterns. The improvement compounds because every minute saved in response time reduces the blast radius downstream.

Strengthening compliance and finance through continuous automation

Compliance workflows suffer when human memory carries the load. Before AI, teams stored rules in shared folders and hallway conversations. Today, compliance agents reconcile invoices, validate contract terms and flag anomalies proactively. They create explainable audit trails continuously rather than quarterly. NISTโ€™s AI Risk Management Framework highlights traceability and explainability as foundational principles. Implementing those controls early reduced anxiety across audit teams and replaced after-the-fact cleanup with preventive action. This also reduced risk and elevated compliance reporting.

Finance experienced something similar. Reconciliation agents monitored variances and surfaced unusual patterns. What surprised me most was their reaction. They were not afraid of replacement. They were afraid of errors. When automation reduced manual variance, they became vocal advocates.

Finding use cases through process mapping

One of the most practical methods for identifying where agentic AI can help is process mapping. When I began visualizing workflows end-to-end, bottlenecks became obvious. Process mining tools uncovered rework loops, approval delays and exception handling that never made it onto formal documentation. Seeing work as a series of minor frictions makes it easier to understand where agents can step in.

The most compelling results emerged when agents were orchestrated together. A conversational agent collected symptoms and authenticated the user. A diagnostic agent pulled logs. A knowledge agent suggested resolutions based on pattern similarity. A remediation agent executed the corrective action. An orchestration layer coordinated all of it. That is where the returns accelerate.

Organizations that have leaned into this approach have reported dramatic improvements in self-submitted HR requests, faster employee onboarding and higher satisfaction due to real-time knowledge enrichment. This reinforces a simple truth: removing friction creates participation.

Workflow orchestration reduces cross-function friction

Most operational drag does not come from incidents. It comes from handoffs. Procurement requests that are bounced between finance, IT and security. Access approvals that depend on availability rather than policy. Tickets that accumulate because approvers are out of office or lack clarity. These interactions create delay and noise that nobody can see on a dashboard.

Orchestration agents change that dynamic. They trigger conditional workflows, collect missing information, validate approvals against policy and route requests without human intervention. Approval agents enforce thresholds. Inventory agents check asset life cycle status. Risk agents flag questionable suppliers. Tasks that previously took days now close in hours. And reducing interruptions had the same effect on productivity as adding headcount.

Why I do not build foundation models from scratch

At one point, I considered building a model internally. The idea was tempting. Owning the entire stack felt like a strategic advantage. But foundation models require massive compute, specialized research talent and years of iteration. Instead, I licensed access to best-in-class models and built the agentic layer on top. We used retrieval-augmented generation to feed proprietary documents and policy rules into the model, then layered business logic that governed behavior in context. We designed this with a strong emphasis on data governance, access control and privacy protection to ensure data was handled responsibly and in compliance with regulations.

This hybrid buy-and-enhance approach delivered faster time-to-value, reduced technical risk and allowed us to retain control of proprietary data and logic.

When I would build instead of buy

There are scenarios where owning the full stack makes sense. If AI is central to strategic product differentiation, if data cannot leave owned infrastructure, if regulatory constraints demand full control or if internal AI engineering maturity is high, then building becomes rational rather than romantic. MIT Sloan has explored the productivity paradox of AI, noting that capability without maturity can increase cost rather than reduce it. That matched my experience.

It is also important to recognize that both data and process maturity must be at a high bar before considering custom agentic development. Automating a broken or incomplete process does not eliminate chaos; it multiplies it. Inadequate governance, missing metadata, inconsistent runbooks or contradictory policies will produce unpredictable outcomes at machine speed. AI does not fix drift. It amplifies whatever it touches. When the substrate is clean, autonomy accelerates value. When it is not, it collapses into noise.

Agentic AI in talent acquisition was the unexpected hero

The biggest lift I saw came from HR. Application backlogs caused candidates to drop off. Interview scheduling created friction across time zones. Compensation exceptions slowed approvals. Agentic AI addressed all three. Conversational agents guide candidates through application steps. Scheduling agents reconciled calendars, set up interviews and sent confirmations. Qualification agents screened resumes against policy. Sentiment agents summarized tone and engagement from written and verbal communication, providing summaries of conversations to all parties.

Time-to-fill decreased and candidate satisfaction improved simply by eliminating the waiting. The SHRM Candidate Application Abandonment Study notes that delayed response time is one of the top drivers of candidate abandonment. Agents save time. And when you compress cycle time in recruiting, you increase talent density, which later reduces operational drag across the enterprise.

Cost is shifting from labor to compute

When human workload decreases, inference cost rises. Finance teams are not yet fluent in ROC (return on compute), but this metric will become as common as ROI. Without guardrails, cloud cost drift can quietly consume the savings that automation promised. I track ROC as closely as I track cost per ticket because unmonitored inference is the new runaway labor. Compute cycles do not call in sick or take a vacation and they scale without asking permission.

This is where leaders can get fooled. If compute spend rises faster than human workload declines, autonomy without financial guardrails can turn cloud cost into the new labor balloon โ€” just harder to see, harder to attribute and harder to challenge. The danger is that it hides in budgets where executives are not trained to look. Leaders know how to question headcount, overtime and contractor spend, but they rarely scrutinize the compute charges buried in cloud bills. AI costs grow in technical corners of the budget, where they can expand quietly and avoid the financial scrutiny applied to labor.

In the same way cloud transformed capital expense into operating expense overnight, agentic AI will force us to treat compute as a strategic cost center rather than a utility. If we do not build that discipline now, autonomy will become the most elegant form of overspending we have ever engineered.

What success looks like

In mature environments, I saw fewer escalations, shorter outages, improved hiring velocity and predictable change cycles. Operational friction decreased and innovation increased. Teams felt less interrupted and more trusted. That cultural shift was as valuable as the financial one.

Predictability is the real outcome. When service delivery becomes stable and repeatable, IT stops acting like an internal repair shop and starts behaving like an engine of growth. Reliable delivery creates the headroom to build new products, partner with the business on revenue initiatives and invest in automations that compound value instead of compensating for failure. As the operational noise floor drops, capacity shifts from firefighting to forward motion.

Agentic AI is not just about doing the same work cheaper. It is about creating the conditions where IT can participate in strategy, influence the customer experience and build digital capabilities that generate revenue rather than support it. When systems stop surprising us, we can finally focus on the work that moves the company forward.

Final thought

Agentic AI is not about replacing judgment. It is about protecting it. When machines remove drag, humans spend more time on the decisions that matter. The organizations that treat back-office operations as a resilience discipline, not a cost bucket, will bend cost curves and compress risk where it quietly accumulates.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

ใƒญใƒœใ‚ฟใ‚ฏใ‚ทใƒผใฎๅคขใฎๅ…ˆใธโ€•โ€•ใ‚ขใƒกใƒชใ‚ซใฎใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฏใ„ใพไฝ•ใ‚’็›ฎๆŒ‡ใ—ใฆใ„ใ‚‹ใฎใ‹

29 November 2025 at 10:24

ใƒ‘ใƒณใƒ‡ใƒŸใƒƒใ‚ฏๅพŒใฎใƒขใƒ“ใƒชใƒ†ใ‚ฃๅธ‚ๅ ดใจๆŠ•่ณ‡็’ฐๅขƒใฎๅค‰ๅŒ–

ใพใšๆŠผใ•ใˆใฆใŠใใŸใ„ใฎใฏใ€ใ€Œใƒขใƒ“ใƒชใƒ†ใ‚ฃใใฎใ‚‚ใฎใฎๅธ‚ๅ ดใฏๆ‹กๅคงใ‚’็ถšใ‘ใฆใ„ใ‚‹ใ€ใŒใ€ใ€Œใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใธใฎใƒžใƒใƒผใฎไป˜ใๆ–นใฏใŒใ‚‰ใ‚Šใจๅค‰ใ‚ใฃใŸใ€ใจใ„ใ†็‚นใงใ‚ใ‚‹ใ€‚

ใƒขใƒ“ใƒชใƒ†ใ‚ฃใƒปใ‚ขใ‚บใƒปใ‚ขใƒปใ‚ตใƒผใƒ“ใ‚น๏ผˆMaaS๏ผ‰ๅธ‚ๅ ดใฏใ€ไธ–็•Œใƒฌใƒ™ใƒซใง่ฆ‹ใ‚‹ใจ2024ๅนดๆ™‚็‚นใง็ด„2,000ๅ„„ใƒ‰ใƒซ่ฆๆจกใจๆŽจ่จˆใ•ใ‚ŒใฆใŠใ‚Šใ€2030ๅนดไปฃๅ‰ๅŠใซใ‹ใ‘ใฆๆ•ฐๅ€่ฆๆจกใธใฎๆˆ้•ทใŒไบˆๆธฌใ•ใ‚Œใฆใ„ใ‚‹ใ€‚้ƒฝๅธ‚ๅŒ–ใ€ใ‚นใƒžใƒผใƒˆใƒ•ใ‚ฉใƒณๆ™ฎๅŠใ€่„ฑ็‚ญ็ด ๅœงๅŠ›ใจใ„ใฃใŸ่ฟฝใ„้ขจใฏไพ็„ถใจใ—ใฆๅผทใใ€็ฑณๅ›ฝใงใ‚‚ใƒฉใ‚คใƒ‰ใ‚ทใ‚งใ‚ขใ€ใ‚ซใƒผใ‚ทใ‚งใ‚ขใ€ใ‚ตใƒ–ใ‚นใ‚ฏใƒชใƒ—ใ‚ทใƒงใƒณๅž‹ใฎ่ปŠไธกๅˆฉ็”จใ‚ตใƒผใƒ“ใ‚นใพใงๅซใ‚ใŸใ€Œๆ‰€ๆœ‰ใ‹ใ‚‰ๅˆฉ็”จใธใ€ใฎใƒˆใƒฌใƒณใƒ‰ใฏๅฎš็€ใ—ใŸใจ่จ€ใฃใฆใ‚ˆใ„ใ€‚

ใ—ใ‹ใ—ใ€2021ๅนดๅ‰ๅพŒใฎใ€Œใƒžใƒใƒผไฝ™ใ‚Šใ€ใฎๆ™‚ๆœŸใจๆฏ”ในใ‚‹ใจใ€2023ใ€œ2025ๅนดใฎใƒ™ใƒณใƒใƒฃใƒผๆŠ•่ณ‡ๅฎถใฎๆ…‹ๅบฆใฏๆ˜Žใ‚‰ใ‹ใซๆ…Ž้‡ใซใชใฃใฆใ„ใ‚‹ใ€‚่ฑกๅพด็š„ใชใฎใŒใ€้›ปๅ‹•ใ‚ญใƒƒใ‚ฏใƒœใƒผใƒ‰ใชใฉใฎใƒžใ‚คใ‚ฏใƒญใƒขใƒ“ใƒชใƒ†ใ‚ฃๅˆ†้‡Žใงใ€2024ๅนดใฎไธ–็•ŒใฎๆŠ•่ณ‡้กใฏๅ‰ๅนดใฎ็ด„4ๅˆ†ใฎ1็จ‹ๅบฆใซใพใง่ฝใก่พผใ‚“ใ ใจใ•ใ‚Œใ‚‹ใƒฌใƒใƒผใƒˆใ‚‚ใ‚ใ‚‹ใ€‚

่ˆˆๅ‘ณๆทฑใ„ใฎใฏใ€ใ€Œ้œ€่ฆใ€ใฏใ‚€ใ—ใ‚ไผธใณใฆใ„ใ‚‹ใ“ใจใ ใ€‚ๅŒ—็ฑณๅ…จไฝ“ใง่ฆ‹ใ‚‹ใจใ€ใ‚ทใ‚งใ‚ขๅž‹ใฎใƒžใ‚คใ‚ฏใƒญใƒขใƒ“ใƒชใƒ†ใ‚ฃ๏ผˆใ‚ทใ‚งใ‚ข่‡ช่ปข่ปŠใ‚„ใ‚ทใ‚งใ‚ขใ‚นใ‚ฏใƒผใ‚ฟใƒผ๏ผ‰ใฎๅˆฉ็”จๅ›žๆ•ฐใฏ2024ๅนดใซ2ๅ„„2,500ไธ‡ๅ›žใซ้”ใ—ใ€ๅ‰ๅนดใ‹ใ‚‰็ด„3ๅ‰ฒๅข—ๅŠ ใ—ใŸใจๅ ฑๅ‘Šใ•ใ‚Œใฆใ„ใ‚‹ใ€‚ใคใพใ‚Šใ€ใƒฆใƒผใ‚ถใƒผใฎ่กŒๅ‹•ใจใ—ใฆใฏใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚ตใƒผใƒ“ใ‚นใ‚’ไฝฟใ†ๆ–นๅ‘ใซๅ‹•ใ„ใฆใ„ใ‚‹ไธ€ๆ–นใงใ€ๆŠ•่ณ‡ๅฎถใฏใ€Œ่ตคๅญ—ใ‚’ๅž‚ใ‚Œๆตใ™ใ‚ฐใƒญใƒผใ‚นใ‚นใƒˆใƒผใƒชใƒผใ€ใ‹ใ‚‰ใ€ใ€ŒๅŽ็›Šๆ€งใจ่ฆๅˆถๅฏพๅฟœใ‚’ๅ‰ๆใซใ—ใŸใƒ“ใ‚ธใƒใ‚นใƒขใƒ‡ใƒซใ€ใธใจ่ฉ•ไพก่ปธใ‚’ๅˆ‡ใ‚Šๆ›ฟใˆใŸใจใ„ใ†ใ“ใจใซใชใ‚‹ใ€‚

็ตๆžœใจใ—ใฆใ€็ฑณๅ›ฝใฎใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฏใ€ๆฌกใฎใ‚ˆใ†ใชๅœงๅŠ›ใซใ•ใ‚‰ใ•ใ‚Œใฆใ„ใ‚‹ใ€‚ใฒใจใคใฏใ€้ƒฝๅธ‚ใ‚„ๅทžๆ”ฟๅบœใจใฎใƒ‘ใƒผใƒˆใƒŠใƒผใ‚ทใƒƒใƒ—ใ‚’ๅ‰ๆใซใ—ใŸใ€ใ‚ˆใ‚Šใ€Œใ‚คใƒณใƒ•ใƒฉๅฏ„ใ‚Šใ€ใฎใƒ“ใ‚ธใƒใ‚นใธ่ˆตใ‚’ๅˆ‡ใ‚‹ใ“ใจใ€‚ใ‚‚ใ†ใฒใจใคใฏใ€ใ‚ฝใƒ•ใƒˆใ‚ฆใ‚งใ‚ขใ‚„ใƒ‡ใƒผใ‚ฟใ‚ตใƒผใƒ“ใ‚นใ‚’้€šใ˜ใฆๆ—ขๅญ˜ใƒ—ใƒฌใƒผใƒคใƒผ๏ผˆ่‡ชๅ‹•่ปŠใƒกใƒผใ‚ซใƒผใ€ไบค้€šไบ‹ๆฅญ่€…ใ€ใ‚จใƒใƒซใ‚ฎใƒผไผๆฅญ๏ผ‰ใ‚’ๆ”ฏใˆใ‚‹ใ€ŒB2B๏ผB2Gใƒ—ใƒฉใƒƒใƒˆใƒ•ใ‚ฉใƒผใƒ ใ€ใจใ—ใฆ็”Ÿใๆฎ‹ใ‚Šใ‚’ๅ›ณใ‚‹ใ“ใจใ ใ€‚ๆดพๆ‰‹ใชใƒฆใƒ‹ใ‚ณใƒผใƒณใ‚ˆใ‚Šใ‚‚ใ€ๅœฐๅ‘ณใ ใŒใ‚ญใƒฃใƒƒใ‚ทใƒฅใƒ•ใƒญใƒผใ‚’็”Ÿใฟ็ถšใ‘ใ‚‹ไบ‹ๆฅญใซ่ณ‡้‡‘ใŒ้›†ใพใ‚‹ๆง‹ๅ›ณใŒๅผทใพใฃใฆใ„ใ‚‹ใ€‚


่‡ชๅ‹•้‹่ปขใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฎๅ†็ทจโ€•โ€•ใƒญใƒœใ‚ฟใ‚ฏใ‚ทใƒผใฎๅคขใจ็พๅฎŸ

ใƒขใƒ“ใƒชใƒ†ใ‚ฃใฎ่ฑกๅพดใจใ—ใฆๆณจ็›ฎใ‚’้›†ใ‚ใฆใใŸใฎใŒใ€่‡ชๅ‹•้‹่ปขใƒญใƒœใ‚ฟใ‚ฏใ‚ทใƒผใงใ‚ใ‚‹ใ€‚ใ‹ใคใฆใฏใ€Œๆ•ฐๅนดใงใƒ‰ใƒฉใ‚คใƒใƒผใฏใ„ใชใใชใ‚‹ใ€ใจ่ชžใ‚‰ใ‚ŒใŸใŒใ€ใใฎๆœŸๅพ…ใฏใ“ใ“ๆ•ฐๅนดใงๅคงใใๆบใ•ใถใ‚‰ใ‚Œใฆใ„ใ‚‹ใ€‚

ใจใ‚Šใ‚ใ‘ใ‚คใƒณใƒ‘ใ‚ฏใƒˆใŒๅคงใใ‹ใฃใŸใฎใŒใ€GM๏ผˆใ‚ผใƒใƒฉใƒซใƒปใƒขใƒผใ‚ฟใƒผใ‚บ๏ผ‰ใซใ‚ˆใ‚‹่‡ชๅ‹•้‹่ปขๅญไผš็คพCruiseใธใฎๆŠ•่ณ‡ๅœๆญขใจใ€ใƒญใƒœใ‚ฟใ‚ฏใ‚ทใƒผไบ‹ๆฅญใ‹ใ‚‰ใฎๆ’ค้€€ๆฑบๅฎšใ ใ€‚GMใฏ2024ๅนดๆœซใซCruiseใธใฎ่ณ‡้‡‘ๆ‹ ๅ‡บใ‚’ใ‚„ใ‚ใ€ใƒญใƒœใ‚ฟใ‚ฏใ‚ทใƒผใฎๅ•†ๆฅญๅŒ–ใงใฏใชใใ€่‡ช็คพ่ปŠไธกๅ‘ใ‘ใฎ้ซ˜ๅบฆ้‹่ปขๆ”ฏๆดๆฉŸ่ƒฝ๏ผˆSuper Cruiseใชใฉ๏ผ‰ใซใƒชใ‚ฝใƒผใ‚นใ‚’ๆŒฏใ‚Šๅ‘ใ‘ใ‚‹ๆˆฆ็•ฅ่ปขๆ›ใ‚’็™บ่กจใ—ใŸใ€‚Cruiseใฏ2016ๅนดไปฅ้™ใ€100ๅ„„ใƒ‰ใƒซ่ถ…ใฎๆŠ•่ณ‡ใ‚’ๅ—ใ‘ใฆใใŸใŒใ€2023ๅนดใฎไบ‹ๆ•…ใ‚’ใใฃใ‹ใ‘ใซ่ฆๅˆถๅฝ“ๅฑ€ใ‹ใ‚‰ใฎๅŽณใ—ใ„็›ฎใซใ•ใ‚‰ใ•ใ‚Œใ€ไบ‹ๆฅญ็ถ™็ถšใฎๆญฃๅฝ“ๆ€งใŒๅ•ใ‚ใ‚Œใ‚‹ๅฝขใจใชใฃใŸใ€‚

ไธ€ๆ–นใงใ€่‡ชๅ‹•้‹่ปขใใฎใ‚‚ใฎใŒ้ “ๆŒซใ—ใŸใ‚ใ‘ใงใฏใชใ„ใ€‚ใ‚ซใƒชใƒ•ใ‚ฉใƒซใƒ‹ใ‚ขๅทžใฎ่ตฐ่กŒใƒ‡ใƒผใ‚ฟใ‚’่ฆ‹ใ‚‹ใจใ€Waymoใ‚„Zooxใจใ„ใฃใŸไผๆฅญใฏ2023ใ€œ2024ๅนดใ‚‚ใƒ†ใ‚นใƒˆ่ตฐ่กŒ่ท้›ขใ‚’ไผธใฐใ—ใฆใŠใ‚Šใ€็‰นใซZooxใฏๆœ‰ไบบ่ฉฆ้จ“๏ผˆๅฎ‰ๅ…จใƒ‰ใƒฉใ‚คใƒใƒผๅŒไน—๏ผ‰ใงCruiseใ‚’ไธŠๅ›žใ‚‹่ตฐ่กŒ่ท้›ขใ‚’่จ˜้Œฒใ™ใ‚‹ใชใฉใ€ๆŠ€่ก“้–‹็™บใฏ็€ๅฎŸใซๅ‰้€ฒใ—ใฆใ„ใ‚‹ใ€‚ใคใพใ‚Šใ€ใ€ŒๅฎŒๅ…จ่‡ชๅ‹•้‹่ปขใ‚ฟใ‚ฏใ‚ทใƒผใ‚’ๅ…จ็ฑณใงไธ€ๆฐ—ใซๅฑ•้–‹ใ™ใ‚‹ใ€ใจใ„ใ†ใ‚ทใƒŠใƒชใ‚ชใŒ้ž็พๅฎŸ็š„ใ ใฃใŸใฎใงใ‚ใฃใฆใ€้™ๅฎšใ‚จใƒชใ‚ขใ‚„็”จ้€”ใ‚’็ตžใฃใŸๅฝขใงใฎ่‡ชๅ‹•้‹่ปขๆดป็”จใฏๅผ•ใ็ถšใๆจก็ดขใ•ใ‚Œใฆใ„ใ‚‹ใ€‚

ๅฎ…้…ๅ‘ใ‘ใฎ่‡ชๅ‹•้‹่ปขใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใ‚‚ๅŒๆง˜ใ ใ€‚่ทฏไธŠใ‚’่ตฐใ‚‹ๅฐๅž‹้…้€ใƒญใƒœใƒƒใƒˆใง็Ÿฅใ‚‰ใ‚Œใ‚‹Nuroใฏใ€2022ๅนดไปฅ้™ใ€่ค‡ๆ•ฐๅ›žใซใ‚ใŸใฃใฆๅคง่ฆๆจกใชใƒฌใ‚คใ‚ชใƒ•ใจไบ‹ๆฅญๅ†็ทจใซ่ธใฟๅˆ‡ใ‚Šใ€ๆดพๆ‰‹ใชๅ•†ๆฅญๅฑ•้–‹ใ‹ใ‚‰ใ„ใฃใŸใ‚“่ท้›ขใ‚’็ฝฎใ„ใฆ็ ”็ฉถ้–‹็™บใซใƒ•ใ‚ฉใƒผใ‚ซใ‚นใ™ใ‚‹ๆˆฆ็•ฅใธใจ็งป่กŒใ—ใŸใ€‚ใ“ใ‚Œใฏใ€่‡ชๅ‹•้‹่ปขใƒใƒผใƒ‰ใ‚ฆใ‚งใ‚ขใฎใ‚ณใ‚นใƒˆใ€ใ‚ปใƒณใ‚ตใƒผไพกๆ ผใ€ไฟ้™บใƒปๆณ•่ฆๅˆถๅฏพๅฟœใชใฉใ‚’่€ƒใˆใ‚‹ใจใ€็ŸญๆœŸ็š„ใซ้ป’ๅญ—ๅŒ–ใ™ใ‚‹ใƒ“ใ‚ธใƒใ‚นใƒขใƒ‡ใƒซใ‚’็ต„ใฟ็ซ‹ใฆใ‚‹ใฎใŒ้›ฃใ—ใ„ใจใ„ใ†ๅ†ทๅŽณใช็พๅฎŸใฎ่กจใ‚Œใงใ‚‚ใ‚ใ‚‹ใ€‚

ใ“ใ†ใ—ใŸ็Šถๆณใ‚’ๅ—ใ‘ใ€็ฑณๅ›ฝใฎ่‡ชๅ‹•้‹่ปขใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฎๅคšใใฏใ€ใ„ใใคใ‹ใฎๆ–นๅ‘ใซๅˆ†ๅฒใ—ใคใคใ‚ใ‚‹ใ€‚ใฒใจใคใฏใ€Waymoใ‚„Zooxใฎใ‚ˆใ†ใซใ€ๅทจ้กใฎใƒใƒƒใ‚ฏ๏ผˆGoogle่ฆชไผš็คพAlphabetใ‚„Amazonใชใฉ๏ผ‰ใ‚’ๅพ—ใฆใ€ๆ™‚้–“ใ‚’ใ‹ใ‘ใฆใ€ŒๆŠ€่ก“ใจ่ฆๅˆถใฎไธกๆ–นใ‚’ๅ‰ๆใซใ—ใŸ้ƒฝๅธ‚ไบค้€šใ‚คใƒณใƒ•ใƒฉใ€ใ‚’็›ฎๆŒ‡ใ™่ทฏ็ทšใ€‚ใ‚‚ใ†ใฒใจใคใฏใ€่‡ชๅ‹•้‹่ปขใใฎใ‚‚ใฎใ‚’ๅ‰้ขใซๅ‡บใ™ใฎใงใฏใชใใ€ADAS๏ผˆๅ…ˆ้€ฒ้‹่ปขๆ”ฏๆดใ‚ทใ‚นใƒ†ใƒ ๏ผ‰ใ‚„ใƒ•ใƒชใƒผใƒˆ็ฎก็†ใ€ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใชใฉใ€ใ€Œ่‡ชๅ‹•้‹่ปข้–ข้€ฃใฎใ‚ฝใƒ•ใƒˆใ‚ฆใ‚งใ‚ขใƒปใƒ„ใƒผใƒซ็พคใ€ใจใ—ใฆๆ—ขๅญ˜ใƒกใƒผใ‚ซใƒผใซๆŠ€่ก“ใ‚’ๆไพ›ใ™ใ‚‹่ทฏ็ทšใงใ‚ใ‚‹ใ€‚

ใ„ใšใ‚Œใซใ—ใฆใ‚‚ใ€ใ€Œใƒญใƒœใ‚ฟใ‚ฏใ‚ทใƒผใงไบบ้–“ใƒ‰ใƒฉใ‚คใƒใƒผใ‚’ไธ€ๆฐ—ใซ็ฝฎใๆ›ใˆใ‚‹ใ€ใจใ„ใ†ใ‚นใƒˆใƒผใƒชใƒผใฏๅพŒๆ™ฏใซ้€€ใใ€ใ€ŒไบบใจAIใŒๅ…ฑๅญ˜ใ™ใ‚‹ใ‹ใŸใกใง็งปๅ‹•ใฎๅฎ‰ๅ…จๆ€งใƒปๅŠน็އๆ€งใ‚’้ซ˜ใ‚ใ‚‹ใ€ใจใ„ใ†ใ€ใ‚ˆใ‚Šๅœฐใซ่ถณใฎใคใ„ใŸใƒ†ใƒผใƒžใซๅ†ๅฎš็พฉใ•ใ‚Œใคใคใ‚ใ‚‹ใจ่จ€ใˆใ‚‹ใ ใ‚ใ†ใ€‚


EVใƒปใƒžใ‚คใ‚ฏใƒญใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚คใƒณใƒ•ใƒฉใซๅ‘ใ‹ใ†ใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฎใƒ•ใƒญใƒณใƒ†ใ‚ฃใ‚ข

ไป–ๆ–นใงใ€ใ“ใฎๆ•ฐๅนดใงๆœ€ใ‚‚ใ€Œ็†ฑใ„ใ€้ ˜ๅŸŸใฎใฒใจใคใŒEVๅ……้›ปใ‚คใƒณใƒ•ใƒฉ้–ข้€ฃใฎใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใงใ‚ใ‚‹ใ€‚

Crunchbaseใฎใƒ‡ใƒผใ‚ฟใซใ‚ˆใ‚Œใฐใ€2023ใ€œ2024ๅนดใซใ‹ใ‘ใฆEVๅ……้›ปใซ็‰นๅŒ–ใ—ใŸใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—65็คพใ ใ‘ใงใ€็ดฏ่จˆ49ๅ„„ใƒ‰ใƒซไปฅไธŠใฎใ‚จใ‚ฏใ‚คใƒ†ใ‚ฃ่ณ‡้‡‘๏ผˆVCๆŠ•่ณ‡ใ‚„ๅŠฉๆˆ้‡‘ใ‚’ๅซใ‚€๏ผ‰ใ‚’่ชฟ้”ใ—ใฆใ„ใ‚‹ใ€‚ใ“ใ“ใซใฏใ€ๆ€ฅ้€Ÿๅ……้›ปๅ™จใฎใƒใƒผใƒ‰ใ‚ฆใ‚งใ‚ขใ‚’้–‹็™บใ™ใ‚‹ไผๆฅญใ ใ‘ใงใชใใ€ๅ……้›ปใƒใƒƒใƒˆใƒฏใƒผใ‚ฏใฎ้‹ๅ–ถใ€่ชฒ้‡‘ใƒปไผšๅ“ก็ฎก็†ใƒ—ใƒฉใƒƒใƒˆใƒ•ใ‚ฉใƒผใƒ ใ€ใƒ•ใƒชใƒผใƒˆๅ‘ใ‘ใ‚จใƒใƒซใ‚ฎใƒผใƒžใƒใ‚ธใƒกใƒณใƒˆใ‚ฝใƒ•ใƒˆใชใฉใ€ๅคšๆง˜ใชใƒ—ใƒฌใƒผใƒคใƒผใŒๅซใพใ‚Œใฆใ„ใ‚‹ใ€‚

ใ‚ขใƒกใƒชใ‚ซๆ”ฟๅบœๅดใฎๅพŒๆŠผใ—ใ‚‚ๅคงใใ„ใ€‚้€ฃ้‚ฆๆ”ฟๅบœใ‚„้‹่ผธ็œใฏใ€ๆ•ฐๅๅ„„ใƒ‰ใƒซ่ฆๆจกใฎ่ฃœๅŠฉ้‡‘ใ‚นใ‚ญใƒผใƒ ใ‚’้€šใ˜ใฆ้ซ˜้€Ÿๅ……้›ปใƒใƒƒใƒˆใƒฏใƒผใ‚ฏๆ•ดๅ‚™ใ‚’ๆ”ฏๆดใ—ใฆใŠใ‚Šใ€ๆฐ‘้–“ใฎๅ……้›ปไบ‹ๆฅญ่€…ใ‚„ใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฏใ€ใ“ใ‚Œใ‚‰ใฎๅ…ฌ็š„่ณ‡้‡‘ใจVCใƒžใƒใƒผใฎไธกๆ–นใ‚’ใƒฌใƒใƒฌใƒƒใ‚ธใ—ใฆไบ‹ๆฅญๆ‹กๅคงใ‚’ๅ›ณใฃใฆใ„ใ‚‹ใ€‚

ๅ…ทไฝ“็š„ใชใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฎไพ‹ใจใ—ใฆใฏใ€ใƒ‹ใƒฅใƒผใƒจใƒผใ‚ฏ็™บใฎใ€ŒItโ€™s Electricใ€ใŒๅˆ†ใ‹ใ‚Šใ‚„ใ™ใ„ใ€‚ใƒ–ใƒซใƒƒใ‚ฏใƒชใƒณใ‚’ๆ‹ ็‚นใจใ™ใ‚‹ๅŒ็คพใฏใ€่ทฏไธŠ้ง่ปŠใŒๅคšใ่‡ชๅฎ…ใ‚ฌใƒฌใƒผใ‚ธใ‚’ๆŒใŸใชใ„ไฝๆฐ‘ใŒๅคšใ„ใจใ„ใ†้ƒฝๅธ‚ๆง‹้€ ใซ็€็›ฎใ—ใ€ไฝๅฎ…ใ‚„ๅบ—่ˆ—ใฎๅ‰ใฎๆญฉ้“ใซๅฐๅž‹ใฎEVๅ……้›ปๅ™จใ‚’่จญ็ฝฎใ™ใ‚‹ใƒขใƒ‡ใƒซใ‚’ๅฑ•้–‹ใ—ใฆใ„ใ‚‹ใ€‚้›ปๆฐ—ไปฃใฏๅปบ็‰ฉใฎใ‚ชใƒผใƒŠใƒผใŒไพ›็ตฆใ—ใ€ใใฎไปฃใ‚ใ‚Šใซๅนด้–“ๆ•ฐๅƒใƒ‰ใƒซๅ˜ไฝใฎๅŽๅ…ฅใ‚’ๅพ—ใ‚‰ใ‚Œใ‚‹ไป•็ต„ใฟใ‚’ๆง‹็ฏ‰ใ—ใ€Uberใชใฉใ‹ใ‚‰ใ‚‚ๅ‡บ่ณ‡ใ‚’ๅ—ใ‘ใฆใ„ใ‚‹ใ€‚ใ€Œๅ……้›ปๅ™จใ‚’ใฉใ“ใซ็ฝฎใใฎใ‹ใ€ใจใ„ใ†ใ‚คใƒณใƒ•ใƒฉใฎ็ฉบ็™ฝใ‚’ใ€ใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใŒไธๅ‹•็”ฃใ‚ชใƒผใƒŠใƒผใจใฎใƒžใƒƒใƒใƒณใ‚ฐใ‚’้€šใ˜ใฆๅŸ‹ใ‚ใฆใ„ใๅ…ธๅž‹ไพ‹ใจ่จ€ใˆใ‚‹ใ€‚

ใ‚ฐใƒญใƒผใƒใƒซใซ่ฆ‹ใ‚‹ใจใ€EVๅ……้›ปใ‚คใƒณใƒ•ใƒฉใฎใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฏ็ฑณๅ›ฝใ€ใ‚คใƒณใƒ‰ใ€ๆฌงๅทžใ‚’ไธญๅฟƒใซ1000็คพไปฅไธŠใŒๆดปๅ‹•ใ—ใฆใŠใ‚Šใ€ใใฎไธญใงใ‚‚ใƒ‹ใƒฅใƒผใƒจใƒผใ‚ฏใ‚„ใ‚ตใƒณใƒ•ใƒฉใƒณใ‚ทใ‚นใ‚ณใฏไธป่ฆใƒใƒ–ใจใ—ใฆไฝ็ฝฎใฅใ‘ใ‚‰ใ‚Œใฆใ„ใ‚‹ใจใฎๅˆ†ๆžใ‚‚ใ‚ใ‚‹ใ€‚็ฑณๅ›ฝ็™บใฎใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฏใ€ๅคง่ฆๆจกใ‚คใƒณใƒ•ใƒฉใจใ„ใ†ใ‚ˆใ‚Šใ€ใ€Œใ‚ฝใƒ•ใƒˆใ‚ฆใ‚งใ‚ขใจใƒ‡ใƒผใ‚ฟใงๆ—ขๅญ˜ใ‚คใƒณใƒ•ใƒฉใฎ็จผๅƒ็އใ‚’ๆœ€ๅคงๅŒ–ใ™ใ‚‹ใ€ๆ–นๅ‘ใซๅผทใฟใ‚’ๆŒใคใ‚ฑใƒผใ‚นใŒ็›ฎ็ซ‹ใคใ€‚ๅ…ทไฝ“็š„ใซใฏใ€ๅ……้›ปใ‚นใƒ†ใƒผใ‚ทใƒงใƒณใฎใƒ€ใ‚คใƒŠใƒŸใƒƒใ‚ฏใƒ—ใƒฉใ‚คใ‚ทใƒณใ‚ฐใ€ใƒ•ใƒชใƒผใƒˆ่ปŠไธกใฎๅ……้›ปใ‚นใ‚ฑใ‚ธใƒฅใƒผใƒชใƒณใ‚ฐใ€้›ปๅŠ›ใ‚ฐใƒชใƒƒใƒ‰ใจ้€ฃๅ‹•ใ—ใŸ้œ€็ตฆ่ชฟๆ•ด๏ผˆใƒใƒผใƒใƒฃใƒซใƒ‘ใƒฏใƒผใƒ—ใƒฉใƒณใƒˆ๏ผ‰ใชใฉใ ใ€‚

ไธ€ๆ–นใ€ใƒžใ‚คใ‚ฏใƒญใƒขใƒ“ใƒชใƒ†ใ‚ฃใงใฏใ€ŒๆŠ•่ณ‡็ธฎๅฐใƒป้œ€่ฆๅข—ๅŠ ใ€ใจใ„ใ†ใ‚ฎใƒฃใƒƒใƒ—ใŒ็ถšใใชใ‹ใงใ€ใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฏใ‚ˆใ‚Šใƒ‹ใƒƒใƒใงB2Bๅฏ„ใ‚Šใฎ้ ˜ๅŸŸใธใจใ‚ทใƒ•ใƒˆใ—ใฆใ„ใ‚‹ใ€‚ใ‚ทใ‚งใ‚ขใ‚นใ‚ฏใƒผใ‚ฟใƒผใฎใƒ•ใƒชใƒผใƒˆ้‹ๅ–ถใ‹ใ‚‰ใ€ไผๆฅญใ‚ญใƒฃใƒณใƒ‘ใ‚นๅ†…ใƒปๅทฅๅ ดๅ†…็งปๅ‹•ใ‚„่ฆณๅ…‰ๆ–ฝ่จญๅ†…ใฎ่ถณใจใ—ใฆใฎใƒžใ‚คใ‚ฏใƒญใƒขใƒ“ใƒชใƒ†ใ‚ฃๆไพ›ใธใจ่ปธ่ถณใ‚’็งปใ—ใŸใ‚Šใ€ใƒ‡ใƒชใƒใƒชใƒผไบ‹ๆฅญ่€…ๅ‘ใ‘ใซ้›ปๅ‹•ใƒใ‚คใ‚ฏ๏ผ‹ใƒใƒƒใƒ†ใƒชใƒผใ‚นใƒฏใƒƒใƒ—ใ‚นใƒ†ใƒผใ‚ทใƒงใƒณใ‚’ใพใจใ‚ใฆๆไพ›ใ™ใ‚‹ใ€Œใƒขใƒ“ใƒชใƒ†ใ‚ฃใƒปใ‚ขใ‚บใƒปใ‚ขใƒปใ‚ตใƒผใƒ“ใ‚น for ไบ‹ๆฅญ่€…ใ€ใฎใ‚ˆใ†ใชใƒขใƒ‡ใƒซใŒ็™ปๅ ดใ—ใฆใ„ใ‚‹ใ€‚

็ทใ˜ใฆ่จ€ใˆใฐใ€ใ‚ขใƒกใƒชใ‚ซใฎใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฎๆœ€ๅ‰็ทšใฏใ€ใ€Œไบบใ‚’ไน—ใ›ใฆ่ตฐใ‚‹ใ‚ตใƒผใƒ“ใ‚นใ€ใใฎใ‚‚ใฎใ‚ˆใ‚Šใ‚‚ใ€ใใ‚Œใ‚’ๆ”ฏใˆใ‚‹ใ‚คใƒณใƒ•ใƒฉใจใ‚ฝใƒ•ใƒˆใ‚ฆใ‚งใ‚ขใ€ใใ—ใฆ่กŒๆ”ฟใƒปๅคงไผๆฅญใจใฎใƒ‘ใƒผใƒˆใƒŠใƒผใ‚ทใƒƒใƒ—ๆง‹็ฏ‰ใธใจ้‡ๅฟƒใ‚’็งปใ—ใฆใ„ใ‚‹ใ€‚


ใ€Œไบค้€šใฎใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใ€ใ‹ใ‚‰ใ€Œใ‚คใƒณใƒ•ใƒฉใฎใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใ€ใธ

ใ“ใ“ใพใง่ฆ‹ใฆใใŸใ‚ˆใ†ใซใ€ใ‚ขใƒกใƒชใ‚ซใฎใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฏใ€ใ‹ใคใฆใฎใ‚ˆใ†ใชใ€Œใ‚ขใƒ—ใƒชไธ€ใคใงไบค้€š้ฉๅ‘ฝใ‚’่ตทใ“ใ™ใ€ใจใ„ใ†ใƒ•ใ‚งใƒผใ‚บใ‚’ๆŠœใ‘ใ€ใ€Œ่ฆๅˆถใ€ใ€Œๅฎ‰ๅ…จใ€ใ€Œใ‚คใƒณใƒ•ใƒฉๆŠ•่ณ‡ใ€ใ€ŒๅŽ็›Šๆ€งใ€ใจใ„ใฃใŸ็พๅฎŸใฎๅˆถ็ด„ๆกไปถใจ็œŸๆญฃ้ขใ‹ใ‚‰ๅ‘ใๅˆใ†ๆฎต้šŽใซๅ…ฅใฃใฆใ„ใ‚‹ใ€‚

่‡ชๅ‹•้‹่ปขใƒญใƒœใ‚ฟใ‚ฏใ‚ทใƒผใฎใ‚ˆใ†ใซใ€ไธ€ๆ™‚ใฏ่ฑกๅพด็š„ใชๅญ˜ๅœจใ ใฃใŸใƒ“ใ‚ธใƒใ‚นใƒขใƒ‡ใƒซใŒๅพŒ้€€ใ™ใ‚‹ไธ€ๆ–นใงใ€EVๅ……้›ปใ‚„ใƒžใ‚คใ‚ฏใƒญใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚คใƒณใƒ•ใƒฉใ€ใƒ‡ใƒผใ‚ฟใƒ—ใƒฉใƒƒใƒˆใƒ•ใ‚ฉใƒผใƒ ใชใฉใ€ใ‚ˆใ‚Š็›ฎ็ซ‹ใŸใชใ„ใŒ็€ๅฎŸใซไพกๅ€คใ‚’็”Ÿใ‚€้ ˜ๅŸŸใซ่ตทๆฅญๅฎถใจ่ณ‡ๆœฌใŒๆตใ‚Œ่พผใฟใคใคใ‚ใ‚‹ใ€‚ใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚’ใ‚ใใ‚‹ใ‚คใƒŽใƒ™ใƒผใ‚ทใƒงใƒณใฏใ€่ปŠไธกใใฎใ‚‚ใฎใ‹ใ‚‰ใ€ใ‚คใƒณใƒ•ใƒฉใƒปใ‚ฝใƒ•ใƒˆใ‚ฆใ‚งใ‚ขใƒปใ‚ฌใƒใƒŠใƒณใ‚นใ‚’ๅซใ‚€ใ€Œใ‚จใ‚ณใ‚ทใ‚นใƒ†ใƒ ๅ…จไฝ“ใฎๅ†่จญ่จˆใ€ใธใจใ‚นใ‚ฑใƒผใƒซใ‚ขใƒƒใƒ—ใ—ใŸใจใ‚‚่จ€ใˆใ‚‹ใ ใ‚ใ†ใ€‚

ๆ—ฅๆœฌใ‹ใ‚‰ใ“ใฎๅ‹•ใใ‚’็œบใ‚ใ‚‹ใจใ€ๅ˜ใซใ‚ขใƒ—ใƒชใ‚„่ปŠไธกใฎใ‚ณใƒ”ใƒผใ‚’็›ฎๆŒ‡ใ™ใฎใงใฏใชใใ€ใ€Œ้ƒฝๅธ‚ใฎใ‚คใƒณใƒ•ใƒฉๆŠ•่ณ‡ใ€ใ€Œ้›ปๅŠ›ใ‚ทใ‚นใƒ†ใƒ ใ€ใ€Œ่ฆๅˆถใจใฎๅฏพ่ฉฑใ€ใ‚’ๅซใ‚ใŸ็ทๅˆๆˆฆ็•ฅใจใ—ใฆใƒขใƒ“ใƒชใƒ†ใ‚ฃใƒ“ใ‚ธใƒใ‚นใ‚’ๆง‹ๆƒณใ™ใ‚‹ใ“ใจใฎ้‡่ฆๆ€งใŒ่ฆ‹ใˆใฆใใ‚‹ใ€‚ใ‚ขใƒกใƒชใ‚ซใฎใƒขใƒ“ใƒชใƒ†ใ‚ฃใ‚นใ‚ฟใƒผใƒˆใ‚ขใƒƒใƒ—ใฎ็พๅœจๅœฐใฏใ€ไปŠๅพŒใฎๆ—ฅๆœฌใฎใƒขใƒ“ใƒชใƒ†ใ‚ฃๆ”ฟ็ญ–ใƒปใƒ“ใ‚ธใƒใ‚นใƒขใƒ‡ใƒซใ‚’่€ƒใˆใ‚‹ใ†ใˆใงใ‚‚ๅคšใใฎ็คบๅ”†ใ‚’ไธŽใˆใฆใใ‚Œใ‚‹ใฏใšใงใ‚ใ‚‹ใ€‚

็”Ÿๆดปใ‚คใƒณใƒ•ใƒฉใซใชใฃใŸๆ—ฅๆœฌใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ดโ€•โ€•ๆ‹กๅคงใ™ใ‚‹ไพฟๅˆฉใ•ใจ่ฆ‹ใˆใฆใใŸ่ชฒ้กŒ

28 November 2025 at 01:41

ใ‚ณใƒญใƒŠ็ฆใงไธ€ๆฐ—ใซๆ‹กๅคงใ—ใŸๆ—ฅๆœฌใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ด

ๆ—ฅๆœฌใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ดใฏใ€ใ‚‚ใจใ‚‚ใจๅฏฟๅธใ‚„ใƒ”ใ‚ถใ€ไป•ๅ‡บใ—ๅผๅฝ“ใชใฉใ€Œ้›ป่ฉฑใงๆณจๆ–‡ใ™ใ‚‹ๅ‡บๅ‰ๆ–‡ๅŒ–ใ€ใ‚’ใƒ™ใƒผใ‚นใซๆˆ้•ทใ—ใฆใใพใ—ใŸใ€‚ใจใ“ใ‚ใŒ2010ๅนดไปฃๅพŒๅŠใ‹ใ‚‰ใ€ใ‚ขใƒ—ใƒช็ตŒ็”ฑใงๆณจๆ–‡ใงใใ‚‹ใ‚ชใƒณใƒฉใ‚คใƒณๅž‹ใฎใ‚ตใƒผใƒ“ใ‚นใŒ็™ปๅ ดใ—ใ€ๆง‹้€ ใŒๅคงใใๅค‰ใ‚ใ‚Šใพใ—ใŸใ€‚Uber EatsใŒๆ—ฅๆœฌใงใ‚ตใƒผใƒ“ใ‚นใ‚’ๅง‹ใ‚ใŸใฎใฏ2016ๅนดใงใ€ๅฝ“ๅˆใฏๆฑไบฌใฎ้ƒฝๅฟƒ้ƒจใŒไธญๅฟƒใงใ—ใŸใŒใ€ใใฎๅพŒๆ•ฐๅนดใงไธป่ฆ้ƒฝๅธ‚ใซๅบƒใŒใ‚Šใ€ใ€Œใ‚ขใƒ—ใƒชใง้ ผใ‚€ๅ‡บๅ‰ใ€ใจใ„ใ†ๆ–ฐใ—ใ„ๅˆฉ็”จใ‚นใ‚ฟใ‚คใƒซใŒๅฎš็€ใ—ใฆใ„ใใพใ—ใŸใ€‚

่ปขๆฉŸใซใชใฃใŸใฎใฏๆ–ฐๅž‹ใ‚ณใƒญใƒŠใ‚ฆใ‚คใƒซใ‚นๆ„ŸๆŸ“็—‡ใฎๆต่กŒใงใ™ใ€‚ๅค–้ฃŸๅธ‚ๅ ดๅ…จไฝ“ใŒ2019ๅนดๆฏ”ใงใƒžใ‚คใƒŠใ‚นใจใชใ‚‹ไธ€ๆ–นใ€ใƒ‡ใƒชใƒใƒชใƒผใฏๅคงใใไผธใณใ€2022ๅนดใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ด่ฆๆจกใฏ็ด„7754ๅ„„ๅ††ใจใ€2019ๅนดๆฏ”ใงๅ…ซๅ‰ฒไปฅไธŠๅข—ๅŠ ใ—ใŸใจใ•ใ‚Œใฆใ„ใพใ™ใ€‚ใใฎๅพŒใ‚‚ๆˆ้•ทใฏ็ถšใใ€่ชฟๆŸปไผš็คพNPDใ‚ธใƒฃใƒ‘ใƒณใฎใƒฌใƒใƒผใƒˆใซใ‚ˆใ‚Œใฐใ€2023ๅนดใฎใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ดใฏ็ด„8600ๅ„„ๅ††่ฆๆจกใจใ€ๅ‰ๅนดใ‹ใ‚‰ใ•ใ‚‰ใซ็ด„ไธ€ๅ‰ฒไผธใณใพใ—ใŸใ€‚ๅˆฅใฎๆฐ‘้–“่ชฟๆŸปใงใ‚‚ใ€2023ๅนดๆ™‚็‚นใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ด่ฆๆจกใฏ็ด„8620ๅ„„ๅ††ใจใ•ใ‚ŒใฆใŠใ‚Šใ€2019ๅนดใฎ2ๅ€ไปฅไธŠใฎๆฐดๆบ–ใซ้”ใ—ใฆใ„ใ‚‹ใ“ใจใŒ็คบใ•ใ‚Œใฆใ„ใพใ™ใ€‚

ใ“ใ“ใงใ„ใ†ใ€Œใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ดใ€ใซใฏใ€ใ‚ขใƒ—ใƒชๅž‹ใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผใ ใ‘ใงใชใใ€ๅฏฟๅธใƒปใƒ”ใ‚ถใฎๅ‡บๅ‰ใ€ใ‚ฑใƒผใ‚ฟใƒชใƒณใ‚ฐใ€ใ‚ดใƒผใ‚นใƒˆใƒฌใ‚นใƒˆใƒฉใƒณใชใฉใ‚‚ๅซใพใ‚Œใพใ™ใŒใ€ไผธใณใ‚’ใ‘ใ‚“ๅผ•ใ—ใŸใฎใฏใ‚„ใฏใ‚Šใ‚ขใƒ—ใƒชๅž‹ใ‚ตใƒผใƒ“ใ‚นใงใ™ใ€‚่ƒŒๆ™ฏใซใฏใ€ๅค–ๅ‡บ่‡ช็ฒ›ใ‚„ๅ–ถๆฅญๆ™‚้–“็Ÿญ็ธฎใง้ฃฒ้ฃŸๅบ—ๅดใŒๆ–ฐใŸใช่ฒฉ่ทฏใ‚’ๆฑ‚ใ‚ใŸใ“ใจใ€ใƒ†ใƒฌใƒฏใƒผใ‚ฏใ‚„ๅœจๅฎ…ๆ™‚้–“ใฎๅข—ๅŠ ใง่‡ชๅฎ…ใซใ„ใชใŒใ‚‰้ฃŸไบ‹ใ‚’ๆธˆใพใ›ใŸใ„ใจใ„ใ†้œ€่ฆใŒ้ซ˜ใพใฃใŸใ“ใจใŒใ‚ใ‚Šใพใ™ใ€‚

ใ‚ณใƒญใƒŠใŒ่ฝใก็€ใ„ใŸ็พๅœจใงใ‚‚ใ€ใ€Œๅค–้ฃŸใฏๅค–้ฃŸใ€ใƒ‡ใƒชใƒใƒชใƒผใฏใƒ‡ใƒชใƒใƒชใƒผใ€ใจใ„ใ†ไฝใฟๅˆ†ใ‘ใŒ้€ฒใฟใ€ๅธ‚ๅ ดใฏ้ซ˜ใ„ๆฐดๆบ–ใ‚’็ถญๆŒใ—ใฆใ„ใพใ™ใ€‚ไปŠๅพŒใซใคใ„ใฆใ‚‚ใ€ใ‚ชใƒณใƒฉใ‚คใƒณใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ดใฏ2025ๅนดๅบฆๆ™‚็‚นใง็ด„70ๅ„„ใƒ‰ใƒซ๏ผˆ็ด„1ๅ…†ๅ††ๅผฑ๏ผ‰่ฆๆจกใ‹ใ‚‰ใ€2033ๅนดๅบฆใซใ‹ใ‘ใฆๅนดๅนณๅ‡็ด„6๏ผ…็จ‹ๅบฆใฎๆˆ้•ทใŒ่ฆ‹่พผใพใ‚Œใฆใ„ใ‚‹ใจใฎไบˆๆธฌใ‚‚ใ‚ใ‚Šใ€็ŸญๆœŸ็š„ใซใ€Œใƒ–ใƒผใƒ ใŒๅฎŒๅ…จใซ็ต‚ใ‚ใ‚‹ใ€ใจใ„ใ†ใ‚ˆใ‚Šใฏใ€็ทฉใ‚„ใ‹ใชๆˆ้•ทใƒ•ใ‚งใƒผใ‚บใซๅ…ฅใฃใŸใจ่ฆ‹ใ‚‹ใฎใŒๅฆฅๅฝ“ใงใ™ใ€‚

Uber Eatsใ€ๅ‡บๅ‰้คจใ€Woltใ€menuโ€•โ€•ไธป่ฆใƒ—ใƒฌใƒผใƒคใƒผใฎ็ซถไบ‰ๆง‹้€ 

ใ‚ขใƒ—ใƒชๅž‹ใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผใฎ็ซถไบ‰็’ฐๅขƒใ‚’่ฆ‹ใ‚‹ใจใ€ๆ—ฅๆœฌใงใฏ็พๅœจใ€Uber Eatsใ€ๅ‡บๅ‰้คจใ€Woltใ€menuใฎๅ››ใคใŒไธปใชใƒ—ใƒฌใƒผใƒคใƒผใซใชใฃใฆใ„ใพใ™ใ€‚2022ๅนดๆ™‚็‚นใฎๅˆ†ๆžใงใฏใ€ๅฃฒไธŠใƒ™ใƒผใ‚นใฎๅธ‚ๅ ดใ‚ทใ‚งใ‚ขใฏUber EatsใŒ6ๅ‰ฒ่ถ…ใ€ๅ‡บๅ‰้คจใŒ3ๅ‰ฒๅผทใ‚’ๅ ใ‚ใฆใŠใ‚Šใ€ใ“ใฎไบŒ็คพใŒใ€ŒไบŒๅผทใ€ใจใ—ใฆๅธ‚ๅ ดใ‚’ใƒชใƒผใƒ‰ใ—ใฆใใพใ—ใŸใ€‚ใใฎๅพŒใ‚‚Uber Eatsๅ„ชไฝใฎๆง‹ๅ›ณใฏ็ถšใ„ใฆใŠใ‚Šใ€2024ๅนดๆ™‚็‚นใงใ‚‚ๆœˆ้–“ใ‚ขใ‚ฏใƒ†ใ‚ฃใƒ–ใƒฆใƒผใ‚ถใƒผใฎใ‚ทใ‚งใ‚ขใง่ฆ‹ใ‚‹ใจใ€Uber EatsใŒใปใผๅŠๅˆ†ใ‚’ๅ ใ‚ใ‚‹ๆœ€ๅคงๆ‰‹ใจใ•ใ‚Œใฆใ„ใพใ™ใ€‚

ใŸใ ใ—ใ€ๅ‹ขๅŠ›ๅ›ณใฏๅฐ‘ใ—ใšใคๅค‰ๅŒ–ใ—ใฆใ„ใพใ™ใ€‚2024ๅนดใฎใƒขใƒใ‚คใƒซใ‚ขใƒ—ใƒชๅˆ†ๆžใซใ‚ˆใ‚‹ใจใ€Uber Eatsใ‚„ๅ‡บๅ‰้คจใฏไพ็„ถใจใ—ใฆๅคงใใชๅญ˜ๅœจๆ„Ÿใ‚’ๆŒใกใชใŒใ‚‰ใ‚‚ใ€Woltใ‚„menuใชใฉใฎ็ซถๅˆใซใƒฆใƒผใ‚ถใƒผใ‚ทใ‚งใ‚ขใ‚’ไธ€้ƒจๅฅชใ‚ใ‚Œใฆใ„ใ‚‹็ŠถๆณใŒๅ ฑๅ‘Šใ•ใ‚Œใฆใ„ใพใ™ใ€‚ใ•ใ‚‰ใซใ•ใ‹ใฎใผใ‚‹ใจใ€2022ๅนดใซใฏFoodpandaใ€DiDi Foodใ€DoorDashใจใ„ใฃใŸๆตทๅค–ๅ‹ขใŒ็›ธๆฌกใ„ใงๆ—ฅๆœฌๅธ‚ๅ ดใ‹ใ‚‰ๆ’ค้€€ใ—ใฆใŠใ‚Šใ€็พๅœจใฏๅฐ‘ๆ•ฐใฎใƒ—ใƒฉใƒƒใƒˆใƒ•ใ‚ฉใƒผใƒ ใซ้›†็ด„ใ•ใ‚ŒใŸ็Šถๆ…‹ใงใ™ใ€‚

ๅ„็คพใฎๆˆฆ็•ฅใ‚„ใƒใ‚ธใ‚ทใƒงใƒณใซใ‚‚้•ใ„ใŒใ‚ใ‚Šใพใ™ใ€‚Uber Eatsใฏใปใผๅ…จๅ›ฝใฎ้ƒฝ้“ๅบœ็œŒใซใ‚ตใƒผใƒ“ใ‚นใ‚’ๅบƒใ’ใŸใ†ใˆใงใ€ใ€ŒEatsใƒ‘ใ‚นใ€ใจใ„ใ†ๆœˆ้กๅˆถใฎ้…้€ๆ–™ๅฎš้กใƒ—ใƒฉใƒณใ‚’ๅผทๅŒ–ใ—ใ€ใƒ˜ใƒ“ใƒผใƒฆใƒผใ‚ถใƒผใฎๅ›ฒใ„่พผใฟใ‚’้€ฒใ‚ใฆใ„ใพใ™ใ€‚ใพใŸใ€ใ‚ดใƒผใ‚นใƒˆใƒฌใ‚นใƒˆใƒฉใƒณใ‚„ใƒใƒผใƒใƒฃใƒซใƒ–ใƒฉใƒณใƒ‰ใฎๆ”ฏๆดใซใ‚‚ๅŠ›ใ‚’ๅ…ฅใ‚Œใ€้ฃฒ้ฃŸๅบ—ใŒๅบ—ๅ†…ๅ–ถๆฅญใจใฏๅˆฅใซใƒ‡ใƒชใƒใƒชใƒผๅฐ‚็”จใƒกใƒ‹ใƒฅใƒผใงๅฃฒไธŠใ‚’็ซ‹ใฆใ‚„ใ™ใ„ใ‚จใ‚ณใ‚ทใ‚นใƒ†ใƒ ใ‚’ๆง‹็ฏ‰ใ—ใ‚ˆใ†ใจใ—ใฆใ„ใพใ™ใ€‚

ไธ€ๆ–นใ€ๅ‡บๅ‰้คจใฏLINEใจใฎ้€ฃๆบใ‚’ๆดปใ‹ใ—ใ€ๅœฐๆ–น้ƒฝๅธ‚ใ‚„้ƒŠๅค–ใงใฎใ‚ทใ‚งใ‚ขๆ‹กๅคงใซ่ปธ่ถณใ‚’็งปใ—ใคใคใ‚ใ‚Šใพใ™ใ€‚้ƒฝๅธ‚้ƒจใงใฏUber Eatsใ‚„Woltใจใฎ็ซถไบ‰ใŒๆฟ€ใ—ใ„ใŸใ‚ใ€ๅœฐๅ ดใฎ้ฃฒ้ฃŸๅบ—ใ‚„ไธญๅฐ้ƒฝๅธ‚ใฎ้œ€่ฆใ‚’ๅ–ใ‚Š่พผใฟใ€ใ€ŒๅœฐๅŸŸๅฏ†็€ใ€ใฎๆ–นๅ‘ใซ่ˆตใ‚’ๅˆ‡ใฃใฆใ„ใ‚‹ใฎใŒ็‰นๅพดใงใ™ใ€‚้…้”ๅ“กใธใฎๅ ฑ้…ฌไฝ“็ณปใ‚‚ใ€ๅ›บๅฎšๅ ฑ้…ฌใ‹ใ‚‰่ท้›ขใซๅฟœใ˜ใŸๅค‰ๅ‹•ๅž‹ใซ่ฆ‹็›ดใ™ใชใฉใ€ๅŽ็›Šๆ”นๅ–„ใจใ‚ตใƒผใƒ“ใ‚น็ถญๆŒใฎใƒใƒฉใƒณใ‚นใ‚’ๆŽขใฃใฆใ„ใ‚‹ๆฎต้šŽใงใ™ใ€‚

ๅŽ็›Š้ขใงใฏใ€ๅค–่ณ‡็ณปใจๅ›ฝๅ†…ไผๆฅญใฎๆ˜Žๆš—ใ‚‚่ฆ‹ใˆใพใ™ใ€‚Uber Eatsใฏ2023ๅนดๅบฆใ‹ใ‚‰2024ๅนดๅบฆใซใ‹ใ‘ใฆไบŒใ‚ฑใ‚ฟๆˆ้•ทใ‚’็ถšใ‘ใ€2ๆœŸ้€ฃ็ถšใง้ป’ๅญ—ใ‚’้”ๆˆใ—ใŸใจๅ ฑใ˜ใ‚‰ใ‚Œใฆใ„ใพใ™ใ€‚ไธ€ๆ–นใฎๅ‡บๅ‰้คจใฏ้•ทใ‚‰ใ่ตคๅญ—ใŒ็ถšใ„ใฆใŠใ‚Šใ€็›ด่ฟ‘ใงใฏ่ตคๅญ—ๅน…ใ‚’็ธฎๅฐใ—ใคใคใ‚‚ใ€ๆœฌๆ ผ็š„ใช้ป’ๅญ—ๅŒ–ใฏใ“ใ‚Œใ‹ใ‚‰ใจใ„ใ†็Šถๆณใงใ™ใ€‚้ซ˜้กใชใ‚ญใƒฃใƒณใƒšใƒผใƒณใ‚„ใ‚ฏใƒผใƒใƒณใซ้ ผใฃใŸ้กงๅฎข็ฒๅพ—ใฏใ€ๅˆฉ็”จ่€…ใซใจใฃใฆใฏใ‚ใ‚ŠใŒใŸใ„ๅŠ้ขใ€ไบ‹ๆฅญ่€…ใฎๅŽ็›Šใ‚’ๅœง่ฟซใ—ใ‚„ใ™ใใ€ใฉใฎใ‚ˆใ†ใซใ€Œๅ€คๅผ•ใ้ ผใฟใ€ใ‹ใ‚‰ๆŒ็ถš็š„ใชใƒ“ใ‚ธใƒใ‚นใƒขใƒ‡ใƒซใซ็งป่กŒใ™ใ‚‹ใ‹ใŒๅคงใใชใƒ†ใƒผใƒžใซใชใฃใฆใ„ใพใ™ใ€‚

Woltใ‚„menuใฏใ€้ƒฝๅธ‚้ƒจใงใฎใƒ–ใƒฉใƒณใƒ‰ๅŠ›ใ‚„็‰นๅฎšใ‚จใƒชใ‚ขใธใฎๅผทใฟใ‚’็”Ÿใ‹ใ—ใชใŒใ‚‰ใ€ๅทฎๅˆฅๅŒ–ใ•ใ‚ŒใŸๅบ—่ˆ—ใƒฉใ‚คใƒณใ‚ขใƒƒใƒ—ใ‚„UIใฎไฝฟใ„ใ‚„ใ™ใ•ใงๆ”ฏๆŒใ‚’้›†ใ‚ใฆใ„ใพใ™ใ€‚ๅŠ ใˆใฆใ€่ฟ‘ๅนดใฏใƒฌใ‚นใƒˆใƒฉใƒณใ ใ‘ใงใชใใ€ใ‚นใƒผใƒ‘ใƒผใ‚„ใƒ‰ใƒฉใƒƒใ‚ฐใ‚นใƒˆใ‚ขใ€ใ‚ณใƒณใƒ“ใƒ‹ใฎๅ•†ๅ“ใ‚’ๅฑŠใ‘ใ‚‹ใ€Œใ‚ฏใ‚คใƒƒใ‚ฏใ‚ณใƒžใƒผใ‚นใ€ใฎๆฉŸ่ƒฝใ‚’ๅ–ใ‚Š่พผใ‚€ๅ‹•ใใ‚‚ๅผทใพใฃใฆใŠใ‚Šใ€ใ€Œใ”้ฃฏใ‚’้‹ใถใ‚ขใƒ—ใƒชใ€ใ‹ใ‚‰ใ€Œ่ก—ใฎใ•ใพใ–ใพใชๅ•†ๅ“ใ‚’้‹ใถใ‚คใƒณใƒ•ใƒฉใ€ใธใจๅฝนๅ‰ฒใ‚’ๅบƒใ’ใคใคใ‚ใ‚Šใพใ™ใ€‚

้…้”ๅ“กใฎๅƒใๆ–นใ€้ฃฒ้ฃŸๅบ—ใฎ่ฒ ๆ‹…ใ€ๅœฐๆ–นใจใฎใ‚ฎใƒฃใƒƒใƒ—โ€•โ€•ๅธ‚ๅ ดใŒ็›ด้ขใ™ใ‚‹่ชฒ้กŒใจๅฑ•ๆœ›

ๆˆ้•ทใ‚’็ถšใ‘ใ‚‹ๆ—ฅๆœฌใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ดใงใ™ใŒใ€ไพฟๅˆฉใ•ใฎ่ฃๅดใซใฏใ„ใใคใ‹ใฎๆง‹้€ ็š„ใช่ชฒ้กŒใŒๆจชใŸใ‚ใฃใฆใ„ใพใ™ใ€‚ใใฎไธ€ใคใŒใ€้…้”ๅ“กใฎๅƒใๆ–นใ‚’ใ‚ใใ‚‹ๅ•้กŒใงใ™ใ€‚ใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผใฎ้…้”ๅ“กใฏๅคšใใฎๅ ดๅˆใ€ไผๆฅญใซ้›‡็”จใ•ใ‚ŒใŸใ€Œๅพ“ๆฅญๅ“กใ€ใงใฏใชใใ€ๆฅญๅ‹™ๅง”่จ—ๅฅ‘็ด„ใ‚’็ตใถๅ€‹ไบบไบ‹ๆฅญไธปใจใ—ใฆๆ‰ฑใ‚ใ‚Œใฆใ„ใพใ™ใ€‚Uber Eats้…้”ใƒ‘ใƒผใƒˆใƒŠใƒผใฎๅŠดๅƒ็ต„ๅˆใจใฎๅ›ฃไฝ“ไบคๆธ‰ใ‚’ใ‚ใใฃใฆใฏใ€ใ€ŒๅŠดๅƒ็ต„ๅˆๆณ•ไธŠใฎๅŠดๅƒ่€…ใจใ„ใˆใ‚‹ใ‹ใ€ใŒไบ‰็‚นใจใชใฃใŸไบ‹ไพ‹ใ‚‚ใ‚ใ‚Šใ€ใƒ—ใƒฉใƒƒใƒˆใƒ•ใ‚ฉใƒผใƒ ใƒฏใƒผใ‚ซใƒผใฎๆณ•็š„ใชไฝ็ฝฎใฅใ‘ใ‚’ๅทกใ‚‹่ญฐ่ซ–ใฏ็ถšใ„ใฆใ„ใพใ™ใ€‚

ใ“ใ†ใ—ใŸๅ•้กŒๆ„่ญ˜ใ‚’่ƒŒๆ™ฏใซใ€ๆ—ฅๆœฌใงใฏ2024ๅนด11ๆœˆใ‹ใ‚‰ใ€ใ„ใ‚ใ‚†ใ‚‹ใ€Œใƒ•ใƒชใƒผใƒฉใƒณใ‚นๆ–ฐๆณ•ใ€๏ผˆ็‰นๅฎšๅ—่จ—ไบ‹ๆฅญ่€…ใซไฟ‚ใ‚‹ๅ–ๅผ•ใฎ้ฉๆญฃๅŒ–็ญ‰ใซ้–ขใ™ใ‚‹ๆณ•ๅพ‹๏ผ‰ใŒๆ–ฝ่กŒใ•ใ‚Œใพใ—ใŸใ€‚ใ“ใฎๆณ•ๅพ‹ใฏใ€ใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผ้…้”ๅ“กใฎใ‚ˆใ†ใชใ‚ฎใ‚ฐใƒฏใƒผใ‚ซใƒผใ‚’ๅซใ‚€ใƒ•ใƒชใƒผใƒฉใƒณใ‚นใธใฎๅ ฑ้…ฌๆ”ฏๆ‰•ๆœŸๆ—ฅใฎๆ˜Ž็ขบๅŒ–ใ‚„ใƒใƒฉใ‚นใƒกใƒณใƒˆ้˜ฒๆญขใชใฉใ€ๅ–ๅผ•ไธŠใฎไฟ่ญทใ‚’ๅผทๅŒ–ใ™ใ‚‹ๅ†…ๅฎนใซใชใฃใฆใŠใ‚Šใ€ใƒ—ใƒฉใƒƒใƒˆใƒ•ใ‚ฉใƒผใƒ ไผๆฅญๅดใซใฏๅฏพๅฟœใŒๆฑ‚ใ‚ใ‚‰ใ‚Œใฆใ„ใพใ™ใ€‚ใ—ใ‹ใ—ใ€็คพไผšไฟ้™บใ‚„ๅŠด็ฝ่ฃœๅ„Ÿใ‚’ใฉใ“ใพใงใ‚ซใƒใƒผใ™ใ‚‹ในใใ‹ใชใฉใ€ไธ€่ˆฌใฎๆญฃ็คพๅ“กใจๅŒใ˜ใƒฌใƒ™ใƒซใฎไฟ่ญทใ‚’ใฉใ†ๅฎŸ็พใ™ใ‚‹ใ‹ใซใคใ„ใฆใฏใ€ไพ็„ถใจใ—ใฆ่ญฐ่ซ–ใฎ้€”ไธญใงใ™ใ€‚

ใ‚‚ใ†ไธ€ใคใฎๅคงใใช่ซ–็‚นใฏใ€้ฃฒ้ฃŸๅบ—ๅดใฎ่ฒ ๆ‹…ใงใ™ใ€‚ใƒ—ใƒฉใƒƒใƒˆใƒ•ใ‚ฉใƒผใƒ ใซๆ”ฏๆ‰•ใ†ๆ‰‹ๆ•ฐๆ–™ใฏใ€ๆณจๆ–‡้กใฎไบŒใ€œไธ‰ๅ‰ฒ็จ‹ๅบฆใซ้”ใ™ใ‚‹ใ‚ฑใƒผใ‚นใ‚‚ใ‚ใ‚Šใ€ๅŽŸๆๆ–™่ฒปใ‚„ไบบไปถ่ฒปใŒ้ซ˜้จฐใ™ใ‚‹ใชใ‹ใงๅˆฉ็›Šใ‚’ๅœง่ฟซใ—ใ‚„ใ™ใ„ๆง‹้€ ใซใชใฃใฆใ„ใพใ™ใ€‚ใใฎใŸใ‚ใ€ใƒ‡ใƒชใƒใƒชใƒผๅฐ‚็”จใฎไพกๆ ผใ‚’ๅบ—ๅ†…้ฃฒ้ฃŸใ‚ˆใ‚Š้ซ˜ใ่จญๅฎšใ—ใŸใ‚Šใ€ใƒ‡ใƒชใƒใƒชใƒผ็”จใƒกใƒ‹ใƒฅใƒผใ‚’็ตžใฃใฆๅŽŸไพก็އใ‚’่ชฟๆ•ดใ—ใŸใ‚Šใจใ„ใฃใŸๅทฅๅคซใŒๅ„ๅบ—ใง่กŒใ‚ใ‚Œใฆใ„ใพใ™ใ€‚ๆถˆ่ฒป่€…ใจใ—ใฆใ‚‚ใ€ใ€ŒใŠๅบ—ใง้ฃŸในใ‚‹ใ‚ˆใ‚Š้ซ˜ใ„ใ€ใจๆ„Ÿใ˜ใ‚‹ๅ ด้ขใŒๅข—ใˆใฆใŠใ‚Šใ€ใฉใ“ใพใงไพกๆ ผ่ปขๅซใ‚’ๅ—ใ‘ๅ…ฅใ‚Œใฆใ‚‚ใ‚‰ใˆใ‚‹ใ‹ใฏใ€ไปŠๅพŒใฎๅˆฉ็”จ้ ปๅบฆใซใ‚‚ๅฝฑ้Ÿฟใ—ใ‹ใญใพใ›ใ‚“ใ€‚

ๅœฐๅŸŸๅˆฅใซใฟใ‚‹ใจใ€้ƒฝๅธ‚้ƒจใจๅœฐๆ–นใฎๆ ผๅทฎใ‚‚่ชฒ้กŒใงใ™ใ€‚ไบบๅฃๅฏ†ๅบฆใŒ้ซ˜ใใ€็Ÿญ่ท้›ขใงๅคšใใฎ้…้”ใŒใงใใ‚‹้ƒฝๅธ‚้ƒจใงใฏใ€ไธ€ๅฎšใฎใ‚นใ‚ฑใƒผใƒซใƒกใƒชใƒƒใƒˆใŒๅƒใใ‚„ใ™ใ„ไธ€ๆ–นใ€ๅœฐๆ–นใ‚„้ƒŠๅค–ใงใฏๆณจๆ–‡ๅฏ†ๅบฆใŒไฝŽใใ€้…้”ๅŠน็އใ‚’็ขบไฟใ™ใ‚‹ใฎใŒ้›ฃใ—ใใชใ‚Šใพใ™ใ€‚ใใฎใŸใ‚ใ€Uber Eatsใชใฉใฏๅคง้ƒฝๅธ‚ๅœใ‚’ไธญๅฟƒใซ้ซ˜้ ปๅบฆๅˆฉ็”จใ‚’็‹™ใ„ใคใคใ€ๅ‡บๅ‰้คจใฏLINEใจใฎ้€ฃๆบใ‚’้€šใ˜ใฆๅœฐๆ–นใฎๅธธ้€ฃ้กงๅฎขใ‚’ๅ–ใ‚Š่พผใ‚€ใ‚ˆใ†ใชใ€Œๆฃฒใฟๅˆ†ใ‘ใ€ใŒ่ฆ‹ใ‚‰ใ‚Œใพใ™ใ€‚ไธ€ๆ–นใงใ€ๅœฐๆ–นใฎไธญๅฐ้ฃฒ้ฃŸๅบ—ใŒใƒ‡ใ‚ธใ‚ฟใƒซ่ฒฉ่ทฏใ‚’ๆŒใคใ“ใจใฏใ€่ฆณๅ…‰้œ€่ฆใฎๅ–ใ‚Š่พผใฟใ‚„้ซ˜้ฝขๅŒ–ใ—ใŸๅœฐๅŸŸใงใฎ้ฃŸใฎใ‚คใƒณใƒ•ใƒฉ็ขบไฟใซใ‚‚ใคใชใŒใ‚‹ใŸใ‚ใ€่‡ชๆฒปไฝ“ใ‚„ๅ•†ๅทฅไผšใŒๆ”ฏๆด็ญ–ใ‚’่ฌ›ใ˜ใ‚‹ใ‚ฑใƒผใ‚นใ‚‚ๅข—ใˆใฆใ„ใพใ™ใ€‚

ไปŠๅพŒใฎๅฑ•ๆœ›ใจใ—ใฆใฏใ€ใ„ใใคใ‹ใฎๆ–นๅ‘ๆ€งใŒ่€ƒใˆใ‚‰ใ‚Œใพใ™ใ€‚ไธ€ใคใฏใ€้ฃฒ้ฃŸไปฅๅค–ใฎ้ ˜ๅŸŸใจใฎ้€ฃๆบๅผทๅŒ–ใงใ™ใ€‚ใ‚นใƒผใƒ‘ใƒผใ‚„ใƒ‰ใƒฉใƒƒใ‚ฐใ‚นใƒˆใ‚ขใ€ใ‚ณใƒณใƒ“ใƒ‹ใฎๅ•†ๅ“ใ‚’็Ÿญๆ™‚้–“ใงๅฑŠใ‘ใ‚‹ใ‚ฏใ‚คใƒƒใ‚ฏใ‚ณใƒžใƒผใ‚นใฏใ€ๅ…ฑๅƒใไธ–ๅธฏใ‚„ๅญ่‚ฒใฆๅฎถๅบญใ€้ซ˜้ฝข่€…ใซใจใฃใฆๅคงใใชๅˆฉไพฟๆ€งใ‚’ๆŒใกใพใ™ใ€‚ใพใŸใ€ๆ—ฅ็”จๅ“ใจ้ฃŸไบ‹ใ‚’ๅŒๆ™‚ใซๅฑŠใ‘ใ‚‹ใ“ใจใงใ€ไธ€ๅ›žใ‚ใŸใ‚Šใฎๅฎขๅ˜ไพกใ‚’ๅผ•ใไธŠใ’ใ‚‹ใ“ใจใ‚‚ๅฏ่ƒฝใงใ™ใ€‚ใ‚‚ใ†ไธ€ใคใฏใ€ใƒ‡ใƒผใ‚ฟใจAIๆดป็”จใซใ‚ˆใ‚‹ๅŠน็އๅŒ–ใงใ€ๅคฉๅ€™ใ‚„ใ‚คใƒ™ใƒณใƒˆใ€ใ‚จใƒชใ‚ขใ”ใจใฎ้œ€่ฆไบˆๆธฌใ‚’ใ‚‚ใจใซ้…้”ๅ“กใฎใ‚ทใƒ•ใƒˆใ‚„ใ‚คใƒณใ‚ปใƒณใƒ†ใ‚ฃใƒ–ใ‚’ๆœ€้ฉๅŒ–ใ—ใ€ๅพ…ใกๆ™‚้–“ใฎ็Ÿญ็ธฎใจๅŽ็›Šๆ€งใฎๅ‘ไธŠใ‚’ๅŒๆ™‚ใซ็‹™ใ†ๅ‹•ใใŒๅŠ ้€Ÿใ™ใ‚‹ใงใ—ใ‚‡ใ†ใ€‚

่ฆๆจกใฎ้ขใงใฏใ€็ŸญๆœŸ็š„ใชๆ€ฅๆˆ้•ทๆœŸใฏใ™ใงใซ็ต‚ใ‚ใ‚Šใ€ไปŠๅพŒใฏใ€Œ็”Ÿๆดปใ‚คใƒณใƒ•ใƒฉใจใ—ใฆใฉใ‚Œใ ใ‘็คพไผšใซๆ นไป˜ใใ‹ใ€ใจใ„ใ†ๆฎต้šŽใซๅ…ฅใฃใฆใ„ใพใ™ใ€‚้…้”ๅ“กใฎๅฎ‰ๅ…จใจ็”Ÿๆดปใฎๅฎ‰ๅฎšใ€้ฃฒ้ฃŸๅบ—ใ‚„ๅฐๅฃฒๅบ—ใŒ็ดๅพ—ใงใใ‚‹ๅŽ็›Š้…ๅˆ†ใ€ๅˆฉ็”จ่€…ใŒใ€Œ้ซ˜ใ™ใŽใ‚‹ใ€ใจๆ„Ÿใ˜ใชใ„ไพกๆ ผๆฐดๆบ–โ€•โ€•ใ“ใ‚Œใ‚‰ไธ‰ใคใฎใƒใƒฉใƒณใ‚นใ‚’ใฉใ†ๅ–ใ‚‹ใ‹ใŒใ€ๆ—ฅๆœฌใฎใƒ•ใƒผใƒ‰ใƒ‡ใƒชใƒใƒชใƒผๅธ‚ๅ ดใฎๆŒ็ถš็š„ใชๆˆ้•ทใ‚’ๅทฆๅณใ—ใฆใ„ใใพใ™ใ€‚ไพฟๅˆฉใ•ใฎๅฝฑใง่ฆ‹่ฝใจใ•ใ‚ŒใŒใกใช่ซ–็‚นใซใ‚‚็›ฎใ‚’ๅ‘ใ‘ใชใŒใ‚‰ใ€ใ“ใฎๆ–ฐใ—ใ„ใ‚คใƒณใƒ•ใƒฉใ‚’ใฉใ†่‚ฒใฆใฆใ„ใใ‹ใŒใ€ใ“ใ‚Œใ‹ใ‚‰ใฎๅคงใใชใƒ†ใƒผใƒžใ ใจ่จ€ใˆใ‚‹ใงใ—ใ‚‡ใ†ใ€‚

Build, Buy, or Borrow Compute? โ€“ A CIOโ€™s call on LLM infrastructure

27 November 2025 at 18:20

Across enterprise deployments, the decisive variable isnโ€™t only the specific LLM; itโ€™s the infrastructure strategy as well โ€”how organizations provision, govern, and scale GPU capacity. Projects stall not because teams lack ideas, but because we pick the wrong way to power them. We still treat GPUs like a procurement item when they are closer to an operating strategy. If your strategy is still formingโ€”as it is for many sensible companiesโ€”the pragmatic default is to borrow first: Start by prototyping on GPU-as-a-Serviceโ€”run multiple models on top of rented GPUs; validate ROI with live benchmarks before you decide what to build or buy.

Picture a Tuesday budget review. One team wants an on-prem cluster โ€œso weโ€™re not at the mercy of the cloud.โ€ Another wants to keep everything with a hyperscaler because โ€œwe canโ€™t wait twelve weeks.โ€ Finance is staring at a graph that looks more like a mountain range than a plan. None of them are wrong. Owning capacity is compelling when you fine-tune frequently, need hard latency guarantees, or must keep data in a strict boundary. You control interconnects and schedulers, and unit costs look attractiveโ€”if utilization stays high. But racks and cards are the easy part. The less glamorous reality is drivers, firmware, cooling, observability, security, and an ops team that runs this like a product. Private clusters idling at โ€œrespectableโ€ 35% are not cheap; they are expensive in time.

Buying from a managed platform is the opposite energy: idea on Monday, demo on Friday. You borrow the providerโ€™s maturityโ€”tooling, accelerators, global reachโ€”and pay for that privilege. The risks are familiar: multi-tenant guardrails, the creep of lock-in if you donโ€™t standardize interfaces, and egress that bites. But for many programs, speed is the difference between a pilot that ships and a pilot that fades into a wiki.

This is why I nudge uncertain teams toward borrowingโ€”GPU-as-a-Serviceโ€”first. Treat it as an option, not a crutch. It absorbs spikes, enables honest bake-offs across model families and hardware generations, and turns capital debates into measured operating experiments. After a few cycles, your own data starts to talk back: what you spend per 1,000 tokens, which workloads are spiky theatre and which are boring baseload, where latency really matters (as in users notice) and where it doesnโ€™t. Only then decide what to own, what to reserve, and what to keep elastic.

All of this only works if the architecture is portable by design. Containerize training and inference. Use open interfacesโ€”ONNX for models, KServe/KFServing for servingโ€”and keep a neutral registry so versions donโ€™t vanish into ticket threads. Keep data flows honest about gravity. Retrieval-augmented generation is a good test: embeddings and sources should live where latency and policy demand, not where a providerโ€™s defaults land them. If shifting a workload from borrowed to reserved capacity requires a rewrite, you donโ€™t have an architectureโ€”you have a dependency with good intentions.

Governance canโ€™t wait for โ€œphase two.โ€ Trust is not a slide; it is evaluation harnesses that run every day. Keep a small, boring set of testsโ€”factuality, safety, toxicity, fairnessโ€”and run them across environments. Log prompts and decisions. Track lineage from data source to output so auditors, and your future self, can explain why a model said what it said. Apply the same discipline to money. Treat inference like a product with service levels for latency, availability, and cost per request. Then squeeze it: smaller specialist models where they fit; distillation and quantization where they donโ€™t. In the real world, servingโ€”not trainingโ€”often dominates the bill.

If you want a straightforward way to start, admit uncertainty. Stand up GPU-as-a-Service and run two benchmark rounds: first across model families, then across hardware. Keep the scoring plainโ€”end-to-end latency people feel, accuracy the business accepts, and a cost you can explain to finance without footnotes. Over a quarter, youโ€™ll see a curve of โ€œknown work.โ€ Move that steady baseload to owned or reserved capacityโ€”whichever the math favors. Leave seasonality, experiments, migrations, and cross-generation tests on the borrowed tier. Push the lowest-latency inference to the edge where decisions actually happenโ€”shops, plants, fleetsโ€”and keep the rest near your data lakes. Most important, operate with one fabric for observability and policy across all three modes so youโ€™re not running three AI programs that merely share a name.

Youโ€™ll notice I havenโ€™t said โ€œnever buildโ€ or โ€œalways buy.โ€ The truth is less dramatic. Owning pays when utilization is real and sovereignty is non-negotiable. Buying pays when speed compounds and you need to move a portfolio of ideas across the finish line. Borrowing pays when youโ€™re honest about not knowing the mix yetโ€”and you want the learning to be cheap and fast. That isnโ€™t fence-sitting; itโ€™s how you stop arguing about ideology and start arguing about facts.

My bias is clear: if your strategy is still forming, start with GPU-as-a-Service. It buys time without buying regret and keeps options open while you learn your own economics. When youโ€™re ready, land your baseload where it belongsโ€”owned or reservedโ€”and keep the rest elastic. Do that, and the conversation with your board shifts from โ€œCan we trust this?โ€ to โ€œWhere else can we apply it, and whatโ€™s the payback?โ€ Compute stops being a bottleneck and starts behaving like what it really is in 2025: an instrument of strategy.

Asรญ se preparan los CIO para la avalancha del Black Friday

27 November 2025 at 04:56

La campaรฑa de Navidad ha sido el tradicional motor econรณmico para muchos sectores, que veรญan cรณmo se concentraba en ese perรญodo el grueso de sus ventas. Ahora, la Navidad sigue siendo altamente relevante, pero el perรญodo de ventas arranca antes y se ha hecho mรกs complejo. Si hace un par de dรฉcadas nadie celebraba en Espaรฑa (y en Europa en general) el Black Friday, ahora es uno de los momentos candentes del aรฑo. Es uno de los grandes dรญas de consumo.

Un estudio de Ipsos para Amazon concluye que el 72% de la poblaciรณn espaรฑola adelantarรก sus compras navideรฑas al Black Friday y otro de la OCU que el 78% de la ciudadanรญa acabarรก haciรฉndose con algรบn producto. El gasto medio oscila, tomando los baremos que dan las diferentes estimaciones, en una horquilla que va de los 201 a los 230 euros. Se comprarรก mucho y se someterรก a los sistemas a mucho estrรฉs, de ahรญ que el Black Friday no solo importe a los departamentos de marketing y ventas. Tambiรฉn lo hace para el CIO.

Las compaรฑรญas lo tienen cada vez mรกs en cuenta. โ€œLa concienciaciรณn ha aumentado muchoโ€, explica Stefan Kรผhn, especialista en documentaciรณn informรกtica de FNT Software. โ€œCada aรฑo vemos en las noticias interrupciones del servicio muy sonadas y las empresas comprenden el daรฑo financiero y reputacional que estos incidentes pueden causarโ€, suma. Y, โ€œaunque hay margen de mejoraโ€, las empresas se preparan antes y con mรกs conciencia de lo que se les viene encima. โ€œLa resiliencia del Black Friday no se construye en noviembreโ€, advierte Kรผhn. Lo ven quienes lo observan desde fuera, como las empresas que les dan servicios, pero tambiรฉn los CIO que lo trabajan desde dentro.

Un trabajo de meses

โ€œCada preparaciรณn de Black Friday subes un peldaรฑoโ€, sintetiza Kiko Leรณn Barroso, CIO de IskayPet. โ€œCasi empiezas a prepararlo al dรญa siguiente de haber terminado el aรฑo anterior, cuando haces un anรกlisis posmortem con los aprendizajesโ€, indica. El trabajo supone meses de ajustes, mejoras y refuerzos. En Amazon, revisan y analizan en verano, intensifican pruebas en otoรฑo y se ponen en mรกximos las semanas previas, โ€œendurecemos la seguridad, congelamos cambios de alto riesgo e implementamos las mejoras que han superado todos los controlesโ€, apunta Merce Mariรฑo, directora de Tecnologรญa de AWS Espaรฑa.

Los sistemas TI deben afrontar una avalancha. โ€œBlack Friday es, junto con Prime Day, uno de los mayores picos del aรฑoโ€, confirma Mariรฑo, que habla de โ€œmillones de sesiones, realizaciรณn de pedidos y publicaciรณn de ofertas, ademรกs de las operaciones de inventario y logรญsticaโ€.ย  Es, ademรกs, el pistoletazo de salida para unas semanas muy intensas. ยฟSe puede esperar un momento de descanso tras el viernes de compra? โ€œEn la prรกctica, no. Las campaรฑas se encadenan y la continuidad operativa es permanente: Black Friday, Cyber Monday y la campaรฑa navideรฑaโ€, explica Sergio Peinado, CIO-director de Transformaciรณn Digital y Tecnologรญa en Ontime. โ€œLa mayor transformaciรณn no ha sido solo tecnolรณgica, tambiรฉnย cultural. El โ€˜picoโ€™ ya no es una excepciรณn, sino parte del modeloโ€, suma.

โ€œEl โ€˜picoโ€™ ya no es una excepciรณn, sino parte del modeloโ€, reconoce el CIO de Ontime, Sergio Peinado

Los grandes retos del Black Friday

Todo esto convierte a la campaรฑa de Black Friday en un momento de elevada exigencia, en la que se juegan demasiadas papeletas para afrontar una sobrecarga tรฉcnica.

ย โ€œLo que suele fallar primero no es un servidor o una base de datos especรญficos. Es la falta de visibilidad sobre cรณmo estรก todo conectadoโ€, indica Kรผhn. Ese el talรณn de Aquiles de las empresas, ya que lleva a que el personal TI tenga โ€œdificultades para comprender de dรณnde proviene el cuello de botella, cรณmo dependen los componentes entre sรญ o quรฉ efectos secundarios podrรญa tener un cambio rรกpidoโ€. โ€œSegรบn mi experiencia, el verdadero punto dรฉbil no es la tecnologรญa en sรญ, sino la ausencia de una visiรณn clara y unificada de toda la infraestructuraโ€, seรฑala.

Peinado suma que โ€œlo mรกs difรญcil no es la tecnologรญa, sino la gestiรณn de la incertidumbreโ€. โ€œEs una combinaciรณn de volumen, incertidumbre y criticidadโ€, explica.

Por tanto, la estrategia mรกs eficiente pasa por prevenir antes que curar, testear mucho y dejar todo bien atado antes de que llegue el momento de enfrentarse al frenesรญ de compras. Mariรฑo explica que hacen pruebas de carga y simulaciones de estrรฉs con las que analizan el estado de sus rutas crรญticas. โ€œSi algo no alcanza el objetivo, se refuerzaโ€, indica. โ€œAdemรกs, contamos con planes de โ€˜degradaciรณn eleganteโ€™: si un componente โ€˜no esencialโ€™ sufre, la plataforma prioriza la disponibilidad y el checkout para mantener el flujo de compraโ€, suma.

Al final, la tecnologรญa debe conseguir obrar casi algo digno de magia, que en el momento en el que los sistemas afrontan una avalancha de consumidores todo funcione sin problemas. โ€œLo mรกs complejo es lograr que, aun con un trรกfico muy superior al habitual, la experiencia โ€˜se sienta normalโ€™โ€, seรฑala Mariรฑo. โ€œEl objetivo es que, aunque por detrรกs haya diez veces mรกs actividad, el cliente navegue, aรฑada al carrito y pague con la misma fluidez de un dรญa cualquieraโ€, aรฑade. Ellos usan una โ€œarquitectura elรกstica y distribuidaโ€. โ€œAquรญ entran en juego el CDN para contenido estรกtico y dinรกmico (Amazon CloudFront), el balanceo inteligente de carga (Elastic Load Balancing) y el autoescalado en compute (Amazon EC2 Auto Scaling, AWS Fargate sobre ECS o EKS para contenedores)โ€, indica, reforzando tambiรฉn la respuesta de sus bases de datos para que sobrevivan a los picos.

โ€œLa tecnologรญa debe conseguir obrar casi algo digno de magia, que en el momento en el que los sistemas afrontan una avalancha de consumidores todo funcione sin problemasโ€, Merce Mariรฑo, directora de Tecnologรญa de AWS

La presiรณn se nota en el canal online, pero tambiรฉn en las tiendas fรญsicas. Allรญ el personal de tienda debe gestionar ese aumento de ventas, pero para ello necesitan que la tecnologรญa les dรฉ respuesta. Leรณn Barroso explica que, mรกs allรก de lo que el cliente directo ve, estรก todo lo que cubre lo que no se ve, desde el cloud a los sistemas de envรญos de mensajes de marketing pasando por la logรญstica que permitirรก sincronizar ventas en los diferentes canales y llevar los productos al comprador final. Predecir a quรฉ se va a enfrentar su almacรฉn ayuda a que luego pueda โ€œfuncionar con su productividad habitualโ€.

โ€œLas herramientas clave no son las mรกs sofisticadas, sino las que dan visibilidad, control y capacidad de reacciรณn: observabilidad avanzada, cloud-native y automatizaciรณn de extremo a extremoโ€, resume Peinado.

persona pagando con una tarjeta de crรฉdito

Rupixen | Unsplash

El papel de la IA ย 

ยฟY quรฉ papel ocupa en todo esto la inteligencia artificial? La IA se ha integrado ya en las campaรฑas de marketing y en el anรกlisis de patrones. Asรญ, por ejemplo, desde The Valley recomiendan sacarle provecho como guรญa que anticipa comportamientos y herramienta que optimiza campaรฑas, escogiendo los mensajes mรกs relevantes y posicionando mejor a la marca.

Sin embargo, serรญa un error limitar la IA solo a lo que puede hacer a nivel marketing y comunicaciรณn. Desde el รกrea de tecnologรญa tambiรฉn se emplea para predecir demanda de producto, identificar potenciales fallos, personalizar experiencias o reforzar la seguridad. ย โ€œLa IA estรก muy presente y actรบa en varias capasโ€, confirma Mariรฑo. Aunque, eso sรญ, Peinado recuerda que โ€œno hay que olvidar que la IA es tan buena como la calidad del datoโ€. No todos los sectores tienen los datos รณptimos para sacarle todo ese buen partido.

โ€œLa resiliencia del Black Friday no se construye en noviembreโ€, advierte Stefan Kรผhn

Momento candente de amenazas

Sobrevivir a los picos de consumo es fundamental para llegar con bien al final de la campaรฑa de Black Friday, pero ese no es el รบnico punto caliente en una temporada que estรก repleta de retos. Uno de ellos es la ciberseguridad. โ€œLa seguridad no puede ser una cuestiรณn secundariaโ€, recuerda Kรผhn, que habla de que โ€œel Black Friday es un objetivo perfecto para los ciberdelincuentesโ€.

Las estadรญsticas lo confirman. Segรบn investigaciones de NordVPN, las tiendas falsas crecieron en un 250% en estos dรญas previos a la campaรฑa y el phishing y otras estafas que llegan a los usuarios finales alcanza cifras โ€œsin precedentesโ€. Al fin y al cabo, esto no es mรกs que una extensiรณn de la tรณnica del resto del aรฑo. Segรบn Signicat, una de cada cinco altas de clientes es fraudulenta, el 59% de las empresas se ha enfrentado a intentos de fraude de identidad exitosos y el 22% de los ingresos anuales se va ya a prevenirlos. La Navidad y el Black Friday son puntos calientes para el fraude en pagos, por algo tan bรกsico como el propio flujo de compras se dispara.

Pero todo esto es algo que tienen muy presente los CIO, que listan las amenazas a las que se enfrentan estos dรญas. โ€œEn campaรฑas asรญ aumentan los intentos de ataques tipo DDoS, scraping automatizado, de inyecciรณn y fraude onlineโ€, apunta Mariรฑo. Amazon refuerza su estructura con una larga serie de soluciones propias. โ€œTodo esto se acompaรฑa de simulacros operativos y runbooks claros, con equipos de respuesta 24/7, de modo que cualquier incidente se detecte y mitigue en minutosโ€, indica la experta.

Aun asรญ, y por mucho que este sea un momento caliente, no es รบnico. โ€œRealmente puede pasar en cualquier momentoโ€, recuerda Leรณn Barroso, โ€œy tienes que estar siempre prevenido y preparado. Es la prioridad ceroโ€.

โ€œEsos dรญas buscas tener planes B, C y D para casi todoโ€, reconoce Kiko Leรณn Barroso, CIO de IskayPet

Sobrevivir al Black Friday pasa por el dรญa despuรฉs

Si durante el resto del aรฑo los consumidores no suelen tomarse muy bien que sus compras lleguen tarde o que se extravรญen, las cosas se vuelven todavรญa mรกs complejas durante el Black Friday y la campaรฑa de Navidad. Lo que se compra es, por asรญ decirlo, mรกs sensible, ya que se aprovecha para hacerse con regalos o productos necesarios para las fiestas, y la tolerancia a los errores se desploma. Al tiempo, la cantidad de paquetes y gestiones que deben asumir las empresas se dispara. Que todo fluya es fundamental y, ahรญ tambiรฉn, los CIO tienen un papel crucial.

Se necesita afinar muy bien para que todo funcione. Leรณn Barroso seรฑala que hay que adelantarse a los cuellos de botella, para que no se acaben pasando al transportista. Postergarlos al dรญa despuรฉs aplazarรญa el problema, que seguirรญa estando ahรญ. Se necesita ser capaz de flexibilizar, de buscar soluciones. โ€œEsos dรญas buscas tener planes B, C y D para casi todoโ€, apunta. Lo que para los compradores resulta simple tiene, en realidad, mucha infraestructura detrรกs. โ€œQueremos que lo que se ve parezca sencillo, aunque por detrรกs haya una operaciรณn tecnolรณgica y de datos a gran escalaโ€, apunta Mariรฑo. โ€œTodo estรก orquestado por software y datos: desde que el usuario hace clic y hasta que recibe el paqueteโ€, explica. โ€œLa idea es que la tienda no se caiga, las ofertas sean claras y la logรญstica responda a tiempoโ€, resume.

La prueba de estrรฉs de estas fechas es tambiรฉn un aviso a navegantes. โ€œEl dรญa despuรฉs es un indicador estratรฉgico del nivel de madurez digitalโ€, seรฑala Peinado, uno que cuenta en quรฉ nivel estรก la transformaciรณn digital de la compaรฑรญa. Si las cosas fallan, estรก avisando de que se necesita todavรญa hacer ajustes y mejoras. โ€œEl Black Friday no es la excepciรณn,ย es un recordatorio. Nuestro sistema debe soportar cualquier escenario, no uno puntual.ย El objetivo real es operar con elasticidad y resiliencia continua los 365 dรญasโ€, advierte.

AI ํ™•์‚ฐ์— โ€˜์‚ฌ์šฉ์ž๋‹นโ€™ ์š”๊ธˆ ๋ชจ๋ธ์ด ์‚ฌ๋ผ์ง„๋‹คยทยทยทCIO์—๊ฒŒ ํ•„์š”ํ•œ ํ˜‘์ƒ ์ „๋žต์€?

27 November 2025 at 01:03

์ฃผ์š” ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์†Œํ”„ํŠธ์›จ์–ด ๋ฒค๋”๊ฐ€ ์‚ฌ์šฉ์ž๋‹น ์š”๊ธˆ์ œ ์ฑ…์ • ๋ฐฉ์‹์„ ํฌ๊ธฐํ•˜๊ณ  ์‚ฌ์šฉ๋Ÿ‰ ๋˜๋Š” ์—์ด์ „ํŠธ ์ƒํ˜ธ์ž‘์šฉ ๊ธฐ๋ฐ˜ ์š”๊ธˆ์ œ๋กœ ์˜ฎ๊ฒจ๊ฐ€๋ฉด์„œ, CIO๋Š” ๋ผ์ด์„ ์Šค ํ˜‘์ƒ ์ „๋ฐ˜๊ณผ AI ํ™œ์šฉ๊ด€๋ฆฌ ๋ฐฉ์‹์„ ์‚ฌ์‹ค์ƒ ๋‹ค์‹œ ์„ค๊ณ„ํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์— ๋†“์˜€๋‹ค.

์ด ๊ฐ™์€ ์š”๊ธˆ์ œ ์ „ํ™˜ ํ๋ฆ„์€ ๋ถ€์ธํ•  ์ˆ˜ ์—†๋‹ค. IDC๋Š” ์ตœ๊ทผ ๋ณด๊ณ ์„œ์—์„œ โ€œAI ์—์ด์ „ํŠธ๊ฐ€ ๋ฐ˜๋ณต์ ์ธ ์ˆ˜์ž‘์—…์„ ๋””์ง€ํ„ธ ๋…ธ๋™์œผ๋กœ ๋น ๋ฅด๊ฒŒ ๋Œ€์ฒดํ•˜๋ฉด์„œ, 2028๋…„๊นŒ์ง€ ์ˆœ์ˆ˜ ์‚ฌ์šฉ์ž๋‹น ๊ฐ€๊ฒฉ ์ฑ…์ • ๋ชจ๋ธ์€ ์‚ฌ๋ผ์งˆ ๊ฒƒ์ด๋ฉฐ, ์ „์ฒด ๋ฒค๋”์˜ 70%๊ฐ€ ์ƒˆ๋กœ์šด ๋ชจ๋ธ๋กœ ๊ฐ€์น˜ ์ œ์•ˆ์„ ์žฌ์ •๋น„ํ•˜๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

๋น„์šฉ ๋ณ€๋™์— ๋Œ€๋น„ํ•ด์•ผ ํ•  ์‹œ์ 

์„ธ์ผ์ฆˆํฌ์Šค์™€ ์›Œํฌ๋ฐ์ด ๊ฒฝ์˜์ง„์€ ์ตœ๊ทผ ํˆฌ์ž์ž ๋Œ€์ƒ ์ฝœ์—์„œ ์š”๊ธˆ์ œ ๋ณ€๊ฒฝ ๊ฐ€๋Šฅ์„ฑ์„ ์ง์ ‘ ์–ธ๊ธ‰ํ–ˆ๋‹ค. ์›Œํฌ๋ฐ์ด CEO ์นผ ์—์…ด๋ฐ”ํ๋Š” ์‹ค์  ๋ฐœํ‘œ ์ž๋ฆฌ์—์„œ โ€œ์šฐ๋ฆฌ๋Š” ๊ธฐ์กด ๊ณ ๊ฐ ๊ธฐ๋ฐ˜์„ ์ค‘์‹ฌ์— ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹จ์ˆœํžˆ ์‚ฌ์šฉ์ž ์ˆ˜๊ฐ€ ์•„๋‹ˆ๋ผ ์‚ฌ์šฉ์ž๋‹น ๋งค์ถœ์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์–ดํผ์—ฃ์ง€(UpperEdge)์˜ ์ž๋ฌธ ์‹ค๋ฌด ์ฑ…์ž„์ž์ธ ์• ๋ค ๋งจ์Šคํ•„๋“œ๋Š” โ€œ๊ธฐ์—…์€ ๋‚ด๋…„์— ์ƒ๋‹นํ•œ ๋น„์šฉ ๋ณ€๋™์— ๋Œ€๋น„ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์‚ฌ์ „ ๋ณดํ˜ธ ์žฅ์น˜๊ฐ€ ์—†๋‹ค๋ฉด ์˜ˆ๊ธฐ์น˜ ์•Š์€ ์ค‘๋„ ๊ฐ€๊ฒฉ ์ธ์ƒ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ณ , AI ์ œํ’ˆ์ด ์‚ฌ์šฉ๋Ÿ‰ ๊ธฐ๋ฐ˜ ๋ผ์ด์„ ์Šค๋กœ ์ „ํ™˜๋˜๋ฉด์„œ ์˜ˆ์ƒ๋ณด๋‹ค ๋งŽ์€ ๋น„์šฉ์„ ๋ถ€๋‹ดํ•  ๊ฐ€๋Šฅ์„ฑ๋„ ํฌ๋‹ค. ์„ธ์ผ์ฆˆํฌ์Šค๊ฐ€ ์—์ด์ „ํŠธํฌ์Šค(Agentforce)๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž ์ˆ˜ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์—์„œ ์‚ฌ์šฉ๋Ÿ‰ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋กœ ์ด๋™ํ•˜๋Š” ์‚ฌ๋ก€๊ฐ€ ๋Œ€ํ‘œ์ โ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋งจ์Šคํ•„๋“œ๋Š” ์ผ๋ถ€ ๊ธฐ์—…์ด AI ๋Œ€ํ™” ์‚ฌ์šฉ๋Ÿ‰์„ ์˜ˆ์ƒ๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅด๊ฒŒ ์†Œ์ง„ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๋ฌด์—‡์ด โ€˜๋Œ€ํ™”โ€™๋กœ ์ •์˜๋˜๋Š”์ง€, ์–ด๋–ค ๋ฐฉ์‹์œผ๋กœ ์‚ฌ์šฉ๋Ÿ‰์ด ์‚ฐ์ •๋˜๋Š”์ง€ ๋ช…ํ™•ํžˆ ๊ทœ์ •ํ•˜์ง€ ์•Š์€ ์ฑ„ ์ฃผ๋ฌธ์„œ๋ฅผ ์ž‘์„ฑํ•ด ๋ฌธ์ œ๋ฅผ ๊ฒช๋Š” ๊ธฐ์—…๋„ ์ƒ๋‹น์ˆ˜๋ฅผ ์ฐจ์ง€ํ•œ๋‹ค. ์ด๋Ÿฐ ๊ฒฝ์šฐ ๊ธฐ์—…์€ ์ž์‹ ๋„ ๋ชจ๋ฅด๊ฒŒ ์‚ฌ์šฉ๋Ÿ‰ ํ•œ๋„๋ฅผ ์ดˆ๊ณผํ•˜๊ฒŒ ๋˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ ์ƒ๋‹นํ•œ ์ถ”๊ฐ€ ๋น„์šฉ์„ ์ง€๋ถˆํ•˜๊ฒŒ ๋œ๋‹ค. ์‚ฌ์ „์— ์ ์ ˆํžˆ ํ˜‘์ƒํ–ˆ๋‹ค๋ฉด ํ”ผํ•  ์ˆ˜ ์žˆ์—ˆ์„ ์ƒํ™ฉโ€์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์œ„ํ—˜์„ ๊ณ ๊ฐ์—๊ฒŒ ์ „๊ฐ€ํ•˜๋Š” ๊ตฌ์กฐ

๊ทธ๋ ˆ์ดํ•˜์šด๋“œ ๋ฆฌ์„œ์น˜์˜ ์ˆ˜์„ ์• ๋„๋ฆฌ์ŠคํŠธ ์‚ฐ์น˜ํŠธ ๋น„๋ฅด ๊ณ ๊ธฐ์•„๋„ ๊ฐ™์€ ์˜๊ฒฌ์„ ๋‚ด๋†จ๋‹ค. ๊ณ ๊ธฐ์•„๋Š” โ€œ๊ธฐ์—…์šฉ ์†Œํ”„ํŠธ์›จ์–ด ์š”๊ธˆ์ œ๊ฐ€ ๊ตฌ์กฐ์  ์žฌํŽธ ๋‹จ๊ณ„์— ๋“ค์–ด์„ฐ๋‹ค. SaaS ๊ณ„์•ฝ์˜ ๊ธฐ๋ฐ˜์ด์—ˆ๋˜ ์‚ฌ์šฉ์ž๋‹น ์š”๊ธˆ์ œ๋Š” AI๋กœ ์ธํ•œ ์ธ๋ ฅ ์ถ•์†Œ ํ๋ฆ„ ์•ž์—์„œ ์ ์ฐจ ํž˜์„ ์žƒ๊ณ  ์žˆ๋‹ค. ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๊ฐ€ ์ธ๋ ฅ ๊ทœ๋ชจ์—์„œ ์ž๋™ํ™” ์ค‘์‹ฌ์œผ๋กœ ์ด๋™ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ์ด์–ด ๊ทธ๋Š” โ€œ์ด ๋ณ€ํ™”๋Š” ์ž‘์€ ์กฐ์ • ์ˆ˜์ค€์ด ์•„๋‹ˆ๋ผ ๊ณ„์•ฝ ๊ตฌ์กฐ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋’คํ”๋“œ๋Š” ์ „๋žต์  ์ „ํ™˜์— ๊ฐ€๊น๋‹ค. ๋ฒค๋”๊ฐ€ ๋‹จ์ˆœํžˆ ์˜ค๋ž˜๋œ ๊ฐ€๊ฒฉ ๋ชจ๋ธ์„ ์—†์• ๋Š” ์ฐจ์›์ด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๊ณ ๊ธฐ์•„๋Š” ์†Œํ”„ํŠธ์›จ์–ด ์—…์ฒด๊ฐ€ ๊ฑฐ์˜ ๋ชจ๋“  ์œ„ํ—˜์„ ๊ณ ๊ฐ์—๊ฒŒ ๋– ๋„˜๊ธฐ๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด ํ•ต์‹ฌ์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

๊ทธ๋Š” โ€œ๋ฒค๋”๋Š” AI ์—ฐ์‚ฐ ๋น„์šฉ ๋ณ€๋™์„ฑ์„ ๊ณ ๊ฐ์—๊ฒŒ ์ „๊ฐ€ํ•˜๋Š” ํ•œํŽธ, ๊ณ ๊ฐ ์ธก ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ๋ถ„์„ ๋งˆ์ง„์œผ๋กœ ํก์ˆ˜ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๊ฐ™์€ ์œ„ํ—˜ ์ „๊ฐ€ ๊ตฌ์กฐ๋Š” ์ด์ œ ์‚ฌ์šฉ๋Ÿ‰ ๊ธฐ๋ฐ˜ ๊ฐ€๊ฒฉ ๋ชจ๋ธ์— ๊นŠ์ด ๋‚ด์žฌ๋ผ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋˜ํ•œ โ€œ์˜ˆ์ธก ๊ฐ€๋Šฅํ–ˆ๋˜ ๊ธฐ์กด ๋ผ์ด์„ ์Šค ๋ชจ๋ธ์€ ํฌ๋ ˆ๋”ง, ์ธํ„ฐ๋ž™์…˜, ์ด๋ฒคํŠธ ๋“ฑ ๋ชจํ˜ธํ•œ ๋‹จ์œ„๋กœ ๋Œ€์ฒด๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๊ฐ€์น˜ ๊ตํ™˜์„ ํ๋ฆฌ๋„๋ก ์„ค๊ณ„๋œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋งŽ์€ ์ƒํ™ฉ์—์„œ ์ด๋Ÿฌํ•œ ๋‹จ์œ„๊ฐ€ ํˆฌ๋ช…์„ฑ์ด๋‚˜ ์‚ฌ์ „ ์ •์˜๋œ ์ƒํ•œ ์—†์ด ์ธก์ •๋˜๊ณ  ์žˆ๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค.

์ด์–ด ๊ทธ๋Š” โ€œ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ฒค๋”๋Š” ์•ˆ์ •์ ์ธ ๋งˆ์ง„์„ ํ™•๋ณดํ•˜๋Š” ๋ฐ˜๋ฉด, ๊ณ ๊ฐ์€ ์ดˆ๊ณผ ์‚ฌ์šฉ ์œ„ํ—˜์„ ๋– ์•ˆ๊ฒŒ ๋˜๋Š” ๊ตฌ์กฐ์  ๋น„๋Œ€์นญ์ด ๊ณ ์ฐฉ๋œ๋‹ค. ํšจ๊ณผ์ ์ธ ํ˜‘์ƒ์„ ์œ„ํ•ด์„œ๋Š” ์กฐ๋‹ฌ ๋ถ€์„œ๊ฐ€ AI ๋ฉ”์ปค๋‹ˆ์ฆ˜, ์‹œ์Šคํ…œ ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ, ์ง€์ถœ์„ ์œ ๋ฐœํ•˜๋Š” ํ–‰๋™ ์‹ ํ˜ธ๋ฅผ ์ดํ•ดํ•˜๋Š” ์—ญ๋Ÿ‰์„ ๊ฐ–์ถฐ์•ผ ํ•œ๋‹ค. ๊ทธ๋ ‡์ง€ ๋ชปํ•˜๋ฉด ๊ณ„์•ฝ์ด ํ†ต์ œ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜ ์˜ˆ์‚ฐ์ด ๋น ๋ฅด๊ฒŒ ๋ฌด๋„ˆ์งˆ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

CIO์—๊ฒŒ ํ•„์š”ํ•œ ์ „๋žต

์ด๋Ÿฐ ๋ณ€ํ™”๋Š” ๊ธฐ์—…์ด AI ์‚ฌ์šฉ๋Ÿ‰์„ ์ถœ์žฅ ๊ฒฝ๋น„ ์˜ˆ์‚ฐ์ฒ˜๋Ÿผ ์—„๊ฒฉํ•˜๊ฒŒ ๋ฐฐ๋ถ„ํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋„๋ก ์š”๊ตฌํ•œ๋‹ค. ํ˜„์žฌ AI ๋„์ž… ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•˜๋ฉด ํ–ฅํ›„ ๋ฒค๋” ํ˜‘์ƒ ์ „๋žต๋„ ํฌ๊ฒŒ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋‹ค.

๋งˆ์ผ“ํ”„๋ฃจ๋ธAI(Market-Proven AI)์˜ CEO ์• ๋Ÿฐ ํผํ‚จ์Šค๋Š” ์ฃผ์š” ์†Œํ”„ํŠธ์›จ์–ด ๋ฒค๋”๋ฅผ ๊ต์ฒดํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ „ํ™˜ ๋น„์šฉ์ด ๋งค์šฐ ํฌ๊ธฐ ๋•Œ๋ฌธ์—, ๊ธฐ์—…์ด โ€œ๋‹ค๋ฅธ ๊ณณ์œผ๋กœ ์˜ฎ๊ธฐ๊ฒ ๋‹คโ€๋ผ๊ณ  ์••๋ฐ•ํ•˜๋Š” ์ „๋žต์€ ์‹คํšจ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋”์šฑ์ด ๋ชจ๋“  ๋ฒค๋”๊ฐ€ ์‚ฌ์šฉ์ž ์ˆ˜ ๊ธฐ๋ฐ˜ ์š”๊ธˆ์ œ๋ฅผ ํฌ๊ธฐํ•˜๊ฒŒ ๋˜๋ฉด, ์• ์ดˆ์— ์˜ฎ๊ฒจ๊ฐˆ ์„ ํƒ์ง€๋„ ์‚ฌ๋ผ์ง„๋‹ค.

๋ถ„์„๊ฐ€๋“ค์€ ๋ฒค๋”๊ฐ€ ์ƒˆ๋กœ์šด ์š”๊ธˆ์ œ๋กœ์˜ ์ „ํ™˜์„ ์š”๊ตฌํ•  ๋•Œ, ํ˜‘์ƒ์—์„œ ๋ชจ๋“  ์šฉ์–ด๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ์ •์˜ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ๋จผ์ € ํ•ด์•ผ ํ•  ์ผ์ด๋ผ๊ณ  ์ž…์„ ๋ชจ์•˜๋‹ค.

ํผํ‚จ์Šค๋Š” โ€œ์‚ฌ์šฉ๋Ÿ‰ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์„œ๋กœ ๋‹ค๋ฅด๊ฒŒ ํ•ด์„๋  ์ˆ˜ ์žˆ๋‹ค. ์‚ฌ์šฉ์ž๊ฐ€ ๋กœ๊ทธ์ธํ•œ ์‹œ๊ฐ„๋งŒ์„ ์˜๋ฏธํ•˜๋Š”์ง€, ์•„๋‹ˆ๋ฉด ํ‡ด๊ทผ ํ›„ ์ž๋™์œผ๋กœ ์ด๋ค„์ง€๋Š” ๋ฐฑ์—…๊นŒ์ง€ ํฌํ•จํ•˜๋Š”์ง€ ๋ถ„๋ช…ํžˆ ๋”ฐ์ ธ์•ผ ํ•œ๋‹คโ€๋ฆฌ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์–ด๋ ค์šด ์งˆ๋ฌธ์„ ํ•ด์•ผ ํ•œ๋‹ค. โ€˜์‚ฌ์šฉ๋Ÿ‰์ด ๋ฌด์—‡์„ ์˜๋ฏธํ•˜๋Š”์ง€ ๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋ผโ€™๊ณ  ์š”๊ตฌํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

๋˜ ๋‹ค๋ฅธ ์ „๋žต์€ ๊ณ„์•ฝ ์‚ฌ์šฉ๋Ÿ‰์˜ ์ƒํ•œ์„ ์„ ์—„๊ฒฉํ•˜๊ฒŒ ๋ช…์‹œํ•˜๊ณ , ์ด๋ฅผ ์ดˆ๊ณผํ•˜๊ธฐ ์ „์— ๋ฐ˜๋“œ์‹œ ๋ฒค๋”๊ฐ€ ์„œ๋ฉด์œผ๋กœ ์Šน์ธ์„ ์š”์ฒญํ•˜๋„๋ก ์ฑ…์ž„์„ ๋ถ€์—ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ฒค๋”๊ฐ€ ์Šน์ธ ์—†์ด ์ดˆ๊ณผ ์‚ฌ์šฉ์„ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค๋ฉด, ํ•ด๋‹น ๋น„์šฉ์€ ๋ฒค๋”๊ฐ€ ๋ถ€๋‹ดํ•˜๋„๋ก ํ•˜๋Š” ๊ตฌ์กฐ๋‹ค.

ํผํ‚จ์Šค๋Š” ํŠนํžˆ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ, ๊ทธ์ค‘์—์„œ๋„ ์™„์ „ ์ž์œจํ˜• ์—์ด์ „ํŠธ์˜ ํ™œ๋™์ด ๊ฐ€์žฅ ๊นŒ๋‹ค๋กœ์šด ๊ฐ€๊ฒฉ ๋ณ€์ˆ˜๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋ฒค๋”๊ฐ€ ์—์ด์ „ํŠธ์˜ ํ–‰๋™์„ ํ†ต์ œํ•˜๊ณ  ์–‘์ธก์ด ์‚ฌ์šฉ๋Ÿ‰ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์— ํ•ฉ์˜ํ•œ ๊ฒฝ์šฐ, ์‚ฌ์šฉ๋Ÿ‰์ด ๋Š˜์–ด๋‚ ์ˆ˜๋ก ์ˆ˜์ต์ด ์ฆ๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฒค๋”๋Š” ๋” ๋งŽ์€ ํ™œ๋™์„ ์œ ๋„ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค.

๋ฌด์–ด ์ธ์‚ฌ์ด์ธ  ์•ค ์ŠคํŠธ๋ž˜ํ‹ฐ์ง€์˜ ์ˆ˜์„ ์• ๋„๋ฆฌ์ŠคํŠธ ์ œ์ด์Šจ ์•ค๋”์Šจ์€ ์ƒˆ๋กœ์šด ๊ฐ€๊ฒฉ ๋ชจ๋ธ์ด ์ ์šฉ๋˜๊ธฐ ์ „์— ์œ ์˜ˆ ๊ธฐ๊ฐ„์„ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ์ด CIO๊ฐ€ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋Š” ํ˜„์‹ค์ ์ธ ์ถœ๋ฐœ์ ์ด๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

์•ค๋”์Šจ์€ โ€œ1๋…„ ์ •๋„์˜ ์œ ์˜ˆ๋ฅผ ์š”๊ตฌํ•˜๋Š” ์ „๋žต์ด ๋„๋ฆฌ ํ™œ์šฉ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. CIO๋Š” ์ด ์‹œ๊ฐ„์„ ํ†ตํ•ด ํ˜„์žฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ •ํ™•ํ•˜๊ฒŒ ํŒŒ์•…ํ•˜๊ณ , ๊ฐ€๊ฒฉ ์ „ํ™˜ ์ดํ›„๋ฅผ ๋Œ€๋น„ํ•œ ๋ชจ๋ธ์„ ๋งˆ๋ จํ•  ์ˆ˜ ์žˆ๋‹ค. ์•ค๋”์Šจ์€ ์ด๋ฅผ ์œ„ํ•ด ํ•€์˜ต์Šค(FinOps) ๊ด€๋ จ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”์™€ ๋” ์ •๊ตํ•œ ๊ด€์ธกยท๊ณ„๋Ÿ‰ ๋„๊ตฌ ํˆฌ์ž๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋ฉด์„œ, โ€œ์ด์ œ ์—์ด์ „ํŠธ ์‚ฌ์šฉ๋Ÿ‰์„ ๊ณ„๋Ÿ‰ํ•˜๋Š” ์†Œํ”„ํŠธ์›จ์–ด๋„ ์–ด๋А ์ •๋„ ์ˆ˜์ค€์— ๋„๋‹ฌํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

์•ค๋”์Šจ์€ โ€œ๋ฒค๋”์˜ ๋Œ€์‘ ๋ฐฉ์‹๋„ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ฒค๋”๋Š” โ€˜X๋‹ฌ๋Ÿฌ์— 10์–ต ๊ฐœ์˜ ํ† ํฐ์„ ์ œ๊ณตํ•˜๊ฒ ๋‹คโ€™๋Š” ์‹์œผ๋กœ ์ œ์•ˆํ•  ๊ฒƒ์ด๋‹ค. ํ† ํฐ์ด๋“  ์š”์ฒญ์ด๋“  ์ด์ œ ๋‘˜์€ ๊ฑฐ์˜ ๊ฐ™์€ ์˜๋ฏธ๋กœ ์“ฐ์ด๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ดˆ๊ธฐ์—๋Š” ๋Œ€๋Ÿ‰ ์„ ๊ตฌ๋งค ํ˜•ํƒœ์ด๊ธฐ ๋•Œ๋ฌธ์— ํ† ํฐ ๋‹จ๊ฐ€๊ฐ€ ๋‚ฎ๊ฒŒ ์ฑ…์ •๋˜์ง€๋งŒ, ๋ฌธ์ œ๋Š” ๊ธฐ์—…์ด ์ตœ์ดˆ ์ œ๊ณต๋Ÿ‰์„ ์ดˆ๊ณผํ•  ๋•Œ ๋ฐœ์ƒํ•œ๋‹ค. ๊ทธ๋Š” โ€œ์ดˆ๊ธฐ์—๋Š” ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์—…์ด ํ•œ๋„๋ฅผ ๋„˜๊ธฐ๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์ด ๊ฒฝ์šฐ ๋ฒค๋”๋Š” โ€˜์ดˆ๊ณผ ์‚ฌ์šฉ ์‹œ ๋” ๋†’์€ ์š”์œจ๋กœ ๋น„์šฉ์„ ์ฒญ๊ตฌํ•˜๊ฒ ๋‹คโ€™๊ณ  ํ•  ๊ฒƒ์ด๊ณ , CIO๋Š” ๊ทธ ๋น„์šฉ์„ ๊ฒฐ๊ตญ ์‚ฌ์—… ๋ถ€์„œ์— ๋‹ค์‹œ ์ „๊ฐ€ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ž์œจํ˜• ์—์ด์ „ํŠธ์˜ ์‚ฌ์šฉ๋Ÿ‰์„ ํ†ต์ œํ•˜๋ ค๋ฉด, ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์— ์ž„๊ณ„๊ฐ’์„ ์„ค์ •ํ•ด ์‚ฌ์šฉ๋Ÿ‰์ด ํŠน์ • ์ˆ˜์ค€์— ๋„๋‹ฌํ•˜๋ฉด ๊ฒฝ๋ณด๊ฐ€ ์šธ๋ฆฌ๋„๋ก ํ•  ์ˆ˜ ์žˆ๋‹ค. ์•ค๋”์Šจ์€ โ€œ์—์ด์ „ํŠธ ์ž์ฒด์— โ€˜X๊ฐœ์˜ ํ† ํฐ ์ด์ƒ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š”๋‹คโ€™๋Š” ์ •์ฑ…์„ ์ง์ ‘ ์ ์šฉํ•˜๋Š” ๋ฐฉ์‹๋„ ๊ฐ€๋Šฅํ•˜๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํ•˜์ง€๋งŒ ์œ„ํ—˜๋„ ์กด์žฌํ•œ๋‹ค. DDoS ๊ณต๊ฒฉ์ด ํ˜ธ์ŠคํŒ… ๋น„์šฉ์„ ๊ธ‰์ฆ์‹œํ‚ค๋“ฏ, ์‚ฌ์šฉ๋Ÿ‰ ๊ธฐ๋ฐ˜ ๊ณ„๋Ÿ‰ ์ฒด๊ณ„๋Š” ๊ฒฝ์Ÿ์‚ฌ๋‚˜ ์•…์˜์  ํ–‰์œ„์ž๊ฐ€ ๋น„์šฉ์„ ์˜๋„์ ์œผ๋กœ ๋Œ์–ด์˜ฌ๋ฆฌ๊ธฐ ์œ„ํ•ด ์•…์šฉํ•  ์ทจ์•ฝ์ ์ด ๋  ์ˆ˜ ์žˆ๋‹ค.

์•ค๋”์Šจ์€ โ€œ์˜ˆ๋ฅผ ๋“ค์–ด ๊ณ ๊ฐ ์„œ๋น„์Šค ์—์ด์ „ํŠธ๋ฅผ ๊ณต๊ฒฉํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๋Ÿ‰์˜ ๋ด‡์œผ๋กœ ์‚ฌ์šฉ๋Ÿ‰์„ ํญ์ฆ์‹œํ‚ค๋ฉด ์ƒ๋‹นํ•œ ๋น„์šฉ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค. ๊ทธ๋Š” ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ„์•ฝ์„œ์— ์‚ฌ๊ธฐ ๋ฐฉ์ง€ ์กฐํ•ญ์„ ํฌํ•จํ•ด์•ผ ํ•œ๋‹ค๋ฉด์„œ, โ€œ๊ณต๊ฒฉ์„ ์ž…์ฆํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด ๋น„์šฉ์„ ๋ถ€๋‹ดํ•˜์ง€ ์•Š๋„๋ก ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ ์ ˆํ•œ โ€˜ํšŒ๋กœ ์ฐจ๋‹จ๊ธฐโ€™ ์žฅ์น˜๋ฅผ ๊ณ„์•ฝ์— ๋‚ด์žฅํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

New software pricing metrics will force CIOs to change negotiating tactics

26 November 2025 at 17:18

CIOs are being forced to rethink almost all elements of licensing negotiations, as well as managing how AI will be used, as major enterprise software vendors look to abandon per-seat pricing and shift to pricing based on consumption and/or agent interactions.

The evidence of such pricing shifts is now all but undeniable. โ€œBy 2028, pure seat-based pricing will be obsolete as AI agents rapidly replace manual repetitive tasks with digital labor, forcing 70% of vendors to refactor their value proposition into new models,โ€ said a recent report from IDC.ย 

Brace for โ€˜meaningfulโ€™ price shifts

Executives from Salesforce and Workday have spoken about such likely pricing changes at recent investor calls. โ€œWe are selling back into our base and weโ€™re focused not on just seats, but actually revenue per seat,โ€ Workday CEO Carl Eschenbach told analysts during a recent earnings call.ย 

That means, said Adam Mansfield, UpperEdge advisory practice leader, โ€œenterprises should brace for meaningful price shifts next year, both through unexpected in-term increases where proper protections arenโ€™t in place and through higher-than-anticipated costs tied to AI products transitioning to consumption-based licensing. Salesforceโ€™s move from per-seat or per-user pricing toward usage-based pricing with Agentforce is a prime example.โ€

Mansfield said that some enterprises are discovering that they were consuming AI conversations and surpassing the established volume of available conversations far faster than expected. Additionally, โ€œin many cases, they never fully clarified what constitutes a โ€˜conversationโ€™ or how usage would be counted for their specific use cases, and their order forms are void of the necessary detail. The unfortunate result is that customers inadvertently exceed their volume thresholds and suddenly owe Salesforce more money and, in some cases, itโ€™s a significant amount that could have been avoided with proper up-front negotiation.โ€

Shifting the risk to customers

Sanchit Vir Gogia, the chief analyst at Greyhound Research, agreed. โ€œEnterprise software pricing is undergoing a systemic reset,โ€ he said. โ€œThe per-seat model, long the foundation of SaaS contracts, is collapsing under the force of AI-led workforce contraction, shifting business value away from headcount and toward automation. This is not a marginal evolution. It is a strategic rupture. Vendors are not just retiring outdated pricing logic.โ€

But, he noted, the critical change is that software companies are trying to shift almost all of the risks to their enterprise customers.ย 

โ€œVendors are transferring the cost volatility of AI compute to customers while monetizing customer-side productivity gains as margin. This risk displacement is now embedded in the architecture of consumption pricing,โ€ Gogia said. โ€œWhat was once a predictable licensing model is being replaced by vague units: credits, interactions, events, deliberately designed to obscure value exchange. In many cases, these units are metered without transparency or pre-defined ceilings. The result is a structural asymmetry: vendors preserve their margin floor while customers absorb the risk of overconsumption. To negotiate effectively, procurement must now develop fluency in AI mechanics, system telemetry, and the behavioral signals that trigger spend. Without this, contracts will outpace control and budgets will unravel fast.โ€

Tactics for CIOs

This change will force companies to strictly allocate AI usage and manage it, not unlike how T&E budgets are handled. That would mean a sharp change in how AI strategies are deployed, compared with todayโ€™s AI efforts.ย 

Aaron Perkins, CEO at Market-Proven AI, argued that the very high switching costs that enterprises would face if changing major software suppliers would make the threat to go elsewhere less effective. But more importantly, if all vendors abandon per-seat pricing, there wonโ€™t be anywhere else to go.

Analysts agree that the first area of negotiation when an vendor pushes a different payment model is to precisely define all terms.ย 

โ€œA usage model means multiple things to multiple people. Are we talking just when a user is logged in or are we talking about backups that happen after they log off for the evening?โ€ Perkins asked. โ€œAsk the hard questions. โ€˜Explain to me what constitutes usage.โ€™โ€

Another tactic is to negotiate strict ceilings on how much usage is being purchased and put the onus on the vendor to reach out to you in writing and ask for permission to go beyond that. If they donโ€™t get that permission, then they have to eat any overage costs.

Perkins stressed that agentic interactions, especially fully autonomous interactions, pose an especially challenging pricing situation. If the vendor controls what the agent does and both parties have agreed to a consumption model, the vendor has an incentive to generate more activity so that it can charge more money.

Jason Andersen, principal analyst for Moor Insights & Strategy, recommends that CIOs start by insisting on a delay before the new pricing model goes into effect.ย 

โ€œAsking for a one year stay of execution is a tactic people will follow,โ€ Andersen said. This gives the CIO time to track current usage and to prepare pricing models for when the change happens. That means investing more in FinOps and purchasing better observability tools, he observed, noting, โ€œwe are starting to see decent software to meter these agents.โ€

โ€œThe vendors are going to respond โ€˜I am going to give you a billion tokens for X dollars. Tokens or requests, the terms are becoming interchangeable,โ€ Andersen said. That will deliver a lower per-token cost initially because it will be a large upfront purchase. The catch is that if the enterprise goes beyond that initial number, and in the beginning, almost all enterprises will, then there will be a penalty or overuse charge. โ€œThe vendor will say โ€˜If you go over, I am going to keep taking your money but at a higher rate.โ€™ Youโ€™ll then have to pass [the cost] along to the line of business,โ€ he pointed out.

To manage consumption by autonomous agents, monitoring systems can be coded to set off an alarm when usage hits a threshold. โ€œYou can put policies on the agents themselves that โ€˜You shall not use more than X tokens,โ€™โ€ he said.

But there are risks. Just as a DDoS attack can force an enterprise to pay far more for hosting, usage metering can expose the enterprise to attacks from a rival company or a cyberthief looking to punish the enterprise.ย 

โ€œIf you have a customer service agent and they launch a series of bots to drive up usage,โ€ that can cost a lot, Andersen said. He therefore recommends adding contract provisions to prevent this: โ€œsome sort of fraud protection. If I can prove that I am being attacked, I donโ€™t have to pay for it. But you need to have the right circuit-breakers built into it,โ€ he said.

โ€œ10๋…„์—์„œ 2๋…„์œผ๋กœโ€ฆโ€ IT ์—ญ๋Ÿ‰์˜ โ€˜์œ ํ†ต๊ธฐํ•œโ€™์ด ์งง์•„์ง„๋‹ค

25 November 2025 at 01:24

ํ˜„์žฌ ๋†’์€ ์ˆ˜์š”๋ฅผ ๋ณด์ด๋Š” ๋Œ€ํ‘œ์ ์ธ ์—ญ๋Ÿ‰์—๋Š” ํ•€์˜ต์Šค(FinOps)๊ฐ€ ์žˆ๋‹ค.

๊ธฐ์—…์€ AI ๋„์ž…์ด ํด๋ผ์šฐ๋“œ ๋น„์šฉ์„ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ์šฐ๋ ค๋ฅผ ๊ฐ–๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์„ ์žฌ์ •์ ์œผ๋กœ ํšจ์œจ์ ์œผ๋กœ ์šด์˜ํ•  ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ˜ IT ์ธ์žฌ๊ฐ€ ์ตœ๊ทผ ๋†’์€ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค.

ํ•˜์ง€๋งŒ IT ์ฑ„์šฉยท์•„์›ƒ์†Œ์‹ฑ ์„œ๋น„์Šค ๊ธฐ์—… ํ•˜๋น„ ๋‚ด์‰ฌ(Harvey Nash)์˜ CIO ์•™์ฟ ๋ฅด ์•„๋‚œ๋“œ๋Š” AI์™€ ์ž๋™ํ™”๊ฐ€ ํ•€์˜ต์Šค ์—…๋ฌด๋ฅผ ๋” ์•ˆ์ •์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” ์ˆ˜์ค€์— ๋น ๋ฅด๊ฒŒ ๋„๋‹ฌ ์ค‘์ธ ๋งŒํผ, ํ•ด๋‹น ์—ญ๋Ÿ‰์ด ํ–ฅํ›„ 1~2๋…„ ๋’ค์—๋„ ์ง€๊ธˆ๋งŒํผ ๊ฐ๊ด‘๋ฐ›์„์ง€ ์˜๋ฌธ์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์•„๋‚œ๋“œ๋Š” ์—ญ๋Ÿ‰ ์ˆ˜์š”๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ƒ์Šนํ–ˆ๋‹ค๊ฐ€ ๊ณง๋ฐ”๋กœ ํ•˜๋ฝํ•˜๋Š” ํ˜„์ƒ์ด ํ•€์˜ต์Šค๋งŒ์˜ ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ, ์˜ค๋Š˜๋‚  ๋‹ค์–‘ํ•œ IT ์—ญ๋Ÿ‰ ์ „๋ฐ˜์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ํ๋ฆ„์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ทธ๋Š” โ€œ1970~80๋…„๋Œ€๋งŒ ํ•ด๋„ IT ์—ญ๋Ÿ‰์˜ ์ˆ˜๋ช…์€ 10๋…„ ์ด์ƒ์ด์—ˆ๋‹ค. ์ง€๊ธˆ์€ 2๋…„๋„ ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์•„๋‚œ๋“œ์˜ ์ฃผ์žฅ์€ ์˜ˆ์™ธ์ ์ธ ๊ด€์ ์ด ์•„๋‹ˆ๋‹ค. ์„ธ๊ณ„๊ฒฝ์ œํฌ๋Ÿผ(WEF)์„ ๋น„๋กฏํ•œ ์—ฌ๋Ÿฌ ๊ธ€๋กœ๋ฒŒ ๋ถ„์„๊ธฐ๊ด€์€ ๊ณผ๊ฑฐ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ์œ ์ง€๋˜๋˜ ์ง๋ฌด ์—ญ๋Ÿ‰์˜ โ€˜๋ฐ˜๊ฐ๊ธฐ(half-life)โ€™๊ฐ€ ์ด์ œ ์•ฝ 7๋…„ ์ˆ˜์ค€์œผ๋กœ ์ค„์–ด๋“ค์—ˆ๋‹ค๊ณ  ๋ดค๋‹ค. 2023๋…„ IBM ์กฐ์‚ฌ์—์„œ๋„ ๊ฒฝ์˜์ง„์€ ํ–ฅํ›„ 3๋…„ ๋™์•ˆ AI์™€ ์ž๋™ํ™” ๋„์ž…์˜ ์˜ํ–ฅ์œผ๋กœ ์ „์ฒด ์ง์›์˜ ์•ฝ 40%๊ฐ€ ์žฌ๊ต์œก์„ ๋ฐ›์•„์•ผ ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ–ˆ๋‹ค. ๋˜ํ•œ 2025๋…„ WEF ๋ณด๊ณ ์„œ๋Š” 2025๋…„๋ถ€ํ„ฐ 2030๋…„ ์‚ฌ์ด ๊ธฐ์กด ์—ญ๋Ÿ‰์˜ ์•ฝ 39%๊ฐ€ ๋ณ€ํ™”ํ•˜๊ฑฐ๋‚˜ ๋” ์ด์ƒ ์œ ํšจํ•˜์ง€ ์•Š๊ฒŒ ๋  ๊ฒƒ์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

IT ๋ถ„์•ผ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๊ฐ€ ๋” ๊ทน์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๋Š” IT ์—ญ๋Ÿ‰์ด ๋ถˆ๊ณผ 2๋…„, ํ˜น์€ ๋ช‡ ๋‹ฌ ๋งŒ์— ๊ตฌ์‹์ด ๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์ด๋Ÿฐ ๋ณ€ํ™”๋Š” IT ์กฐ์ง ์ „๋ฐ˜์— ์ƒ๋‹นํ•œ ์••๋ฐ•์„ ์ฃผ๊ณ  ์žˆ๋‹ค. ์•„๋‚œ๋“œ๋Š” โ€œ๊ธฐ์ˆ  ๋ฐœ์ „ ์†๋„๊ฐ€ ๊ธฐ์ˆ  ์ธ์žฌ์˜ ์—ญ๋Ÿ‰ ๊ฐœ๋ฐœ ์†๋„๋ณด๋‹ค ๋น ๋ฅด๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

IT ๊ธฐ์ˆ  ์‹œ์žฅ์˜ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋Š” ๊ฐœ์ธ์˜ ๊ฒฝ๋ ฅ ๊ณ„ํš๋งŒ ํ”๋“œ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋‹ค. IT ๊ธฐ๋Šฅ ์ „์ฒด์™€ ์กฐ์ง ์šด์˜ ๋ฐฉ์‹ ์ „๋ฐ˜์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด CIO์™€ HR ๋ฆฌ๋”, ๊ฒฝ์˜์ง„์€ ์ง์›์ด ๋น ๋ฅด๊ฒŒ ์žฌํ•™์Šตํ•˜๊ณ  ๋ฐœ์ „ํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๋งŒ๋“ค ์ „๋žต์„ ๊ณ ๋ฏผํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด๋‹ค.

์ธํฌํ…Œํฌ ๋ฆฌ์„œ์น˜ ๊ทธ๋ฃน(Info-Tech Research Group) CIO ์‹ค๋ฌด ์—ฐ๊ตฌ ์ฑ…์ž„์ž์ธ ํ—ค๋” ๋ผ์ด์–ด-๋จธ๋ฆฌ๋Š” โ€œIT ๋ถ„์•ผ๋Š” ๊ฑฐ์˜ 18๊ฐœ์›”๋งˆ๋‹ค ๋ณ€ํ™”๋ฅผ ๊ฒช๊ณ , ์ด์— ๋”ฐ๋ผ ํ•„์š”ํ•œ ์—ญ๋Ÿ‰๋„ ๋‹ฌ๋ผ์ง„๋‹ค. ๊ธฐ์กด ์—ญ๋Ÿ‰์ด ์™„์ „ํžˆ ์‚ฌ๋ผ์ง„๋‹ค๋Š” ์˜๋ฏธ๋Š” ์•„๋‹ˆ์ง€๋งŒ, ์ด๋Š” IT ์ธ์žฌ๊ฐ€ ์–ผ๋งˆ๋‚˜ ์œ ์—ฐํ•˜๊ฒŒ ์›€์ง์ผ ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ค€๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๊ด€๋ จ์„ฑ ๋†’์€ IT ์—ญ๋Ÿ‰์˜ ๋ณ€ํ™”

์ธํฌํ…Œํฌ ๋ฆฌ์„œ์น˜ ๊ทธ๋ฃน์€ โ€˜IT ์ธ์žฌ ํŠธ๋ Œ๋“œ 2025โ€™ ๋ณด๊ณ ์„œ์—์„œ, โ€œ๊ธฐ์ˆ  ๊ด€์ ์—์„œ ๊ธฐ๋Šฅ์  ์—ญ๋Ÿ‰์€ ํ‰๊ท  2.5๋…„๋งˆ๋‹ค ๊ตฌ์‹์ด ๋œ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ๋ณด๊ณ ์„œ๋Š” ๋˜ํ•œ โ€œ์„ฑ์ˆ™ํ•œ ์กฐ์ง์ผ์ˆ˜๋ก ์ „๋ฐ˜์ ์ธ ์—ญ๋Ÿ‰์„ ๋ณ€๊ฒฝํ•ด์•ผ ํ•œ๋‹ค๋Š” ํ•„์š”์„ฑ์„ ์ธ์‹ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์กฐ์ง์€ AIยทML ์—ญ๋Ÿ‰์„ ํ•ต์‹ฌ ์—ญ๋Ÿ‰์œผ๋กœ ๋ณผ ๊ฐ€๋Šฅ์„ฑ์ด 2.5๋ฐฐ๋‚˜ ๋†’์•˜๋‹ค. ์ด๋“ค ์กฐ์ง์€ ๋ฏธ๋ž˜์˜ ์š”๊ตฌ์™€ ๋ชฉํ‘œ๋ฅผ ์ถฉ์กฑํ•  ์ค€๋น„๊ฐ€ ๊ฐ€์žฅ ์ž˜ ๋˜์–ด ์žˆ์„ ๊ฒƒโ€์ด๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

๋˜ํ•œ ์ธํฌํ…Œํฌ๋Š” ๋ณด๊ณ ์„œ ์กฐ์‚ฌ์— ์ฐธ์—ฌํ•œ IT ์ „๋ฌธ๊ฐ€์˜ 95%๊ฐ€ 2030๋…„๊นŒ์ง€ ์ ์–ด๋„ ์ผ๋ถ€ ์—ญ๋Ÿ‰์— ๋ณ€ํ™”๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค. ์‘๋‹ต์ž์˜ 28%๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์—ญ๋Ÿ‰์ด ๋ฐ”๋€Œ์–ด์•ผ ํ•œ๋‹ค๊ณ  ํ–ˆ์œผ๋ฉฐ, 17%๋Š” ๋ชจ๋“  ์—ญ๋Ÿ‰์ด ๋ณ€ํ™”ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ํŒ๋‹จํ–ˆ๋‹ค.

IT ๊ต์œกยท์ž๊ฒฉ ์ธ์ฆ ๊ธฐ๊ด€ ์ปดํ‹ฐ์•„(CompTIA)์˜ ์ตœ๊ณ  ๊ธฐ์ˆ  ์—๋ฐ˜์ ค๋ฆฌ์ŠคํŠธ์ธ ์ œ์ž„์Šค ์Šคํƒฑ์–ด๋Š” ์ˆ˜์‹ญ ๋…„์— ๊ฑธ์ณ ๊ฐ€์†๋œ ๊ธฐ์ˆ  ํ˜์‹  ์†๋„๊ฐ€ IT ์—ญ๋Ÿ‰์˜ ๋น ๋ฅธ ๊ต์ฒด ์ฃผ๊ธฐ๋ฅผ ์ฃผ๋„ํ•˜๋Š” ํ•ต์‹ฌ ์š”์ธ์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์Šคํƒฑ์–ด๋Š” โ€œ์˜ˆ๋ฅผ ๋“ค์–ด ํ—ฌ์Šค์ผ€์–ด ๋ถ„์•ผ์—์„œ ํด๋ผ์šฐ๋“œ ์ „์šฉ ์†”๋ฃจ์…˜์„ ๊ฐœ๋ฐœํ•˜๋Š” ์ „๋ฌธ๊ฐ€๋“ค์˜ ๊ฒฝ์šฐ, ์ฃผ์š” ๋ฒค๋” ๋„๊ตฌ๊ฐ€ ํ‰๊ท  ํ•œ ๋‹ฌ ์ฃผ๊ธฐ๋กœ ๋ฐ”๋€Œ๋Š” ์ƒํ™ฉ์„ ๋ชฉ๊ฒฉํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

IT ๋ฆฌ๋”๋“ค์€ ์–ด๋–ค IT ์—ญ๋Ÿ‰์ด ํ•„์š”ํ•ด์ง€๊ณ , ์–ด๋–ค ์—ญ๋Ÿ‰์ด ๋‚ก์•„์ง€๋Š”์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐ AI์™€ ์ž๋™ํ™”๊ฐ€ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๊ณ  ๋ดค๋‹ค. 1~2๋…„ ์ „๋งŒ ํ•ด๋„ ์ˆ™๋ จ๋œ ์ธ์žฌ๊ฐ€ ์ง์ ‘ ์ˆ˜ํ–‰ํ•˜๋˜ ๋ฐ˜๋ณต ์—…๋ฌด ์ƒ๋‹น์ˆ˜๊ฐ€ ์ด์ œ AI์™€ ์ž๋™ํ™”์— ์˜ํ•ด ์ฒ˜๋ฆฌ๋˜๊ณ  ์žˆ๋‹ค. ์•ž์œผ๋กœ๋Š” ๋” ๋งŽ์€ ์ „๋ฌธ์  ์—…๋ฌด๊นŒ์ง€ ์ž๋™ํ™”๋˜๋ฉด์„œ, ์š”๊ตฌ๋˜๋Š” IT ์—ญ๋Ÿ‰์˜ ์œ ํ˜•์€ ๋”์šฑ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๊ณ  ๋ถˆํ•„์š”ํ•ด์ง€๋Š” ์—ญ๋Ÿ‰๋„ ๋Š˜์–ด๋‚  ์ „๋ง์ด๋‹ค.

์„œ๋น„์Šค๋‚˜์šฐ(ServiceNow)์˜ ์ตœ๊ณ  ๋””์ง€ํ„ธ์ •๋ณด ์ฑ…์ž„์ž ์ผˆ๋ฆฌ ๋กœ๋งฅ์€ โ€œ๊ณผ๊ฑฐ์—๋Š” ์ˆ˜์ž‘์—… ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค ๋ฐ์Šคํฌ ์šด์˜, ์ธํ”„๋ผ ๊ด€๋ฆฌ, ERP ์‹ฌ์ธต ์„ค์ • ๋“ฑ์ด 3~6๋…„ ๋’ค๊นŒ์ง€๋„ ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€๋  ํ•ต์‹ฌ ์—ญ๋Ÿ‰์ด์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ž๋™ํ™”์™€ AI๊ฐ€ ์›Œ๋‚™ ๋น ๋ฅด๊ฒŒ ๋ฐœ์ „ํ•˜๋ฉด์„œ, ์ด๋Ÿฐ ์—ญ๋Ÿ‰์€ ์•ž์œผ๋กœ 1~3๋…„ ์ •๋„๋งŒ ์˜๋ฏธ๋ฅผ ๊ฐ–๊ณ  ๊ทธ ์ดํ›„์—๋Š” ์™„์ „ํžˆ ์žฌํŽธ๋  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

์œ ์—ฐํ•˜๊ณ  ๋ฏผ์ฒฉํ•˜๋ฉฐ ์ ์‘๋ ฅ ์žˆ๋Š” ์ธ์žฌ ํ•„์š”

๋กœ๋งฅ์„ ํฌํ•จํ•œ IT ๋ฆฌ๋”๋“ค์€ IT ์ง๋ฌด ์ž์ฒด๊ฐ€ ์‚ฌ๋ผ์ง€๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๊ฐœ๋ฐœ์ž, ์—”์ง€๋‹ˆ์–ด, ์•„ํ‚คํ…ํŠธ, ๋ณด์•ˆ ์ „๋ฌธ๊ฐ€ ๋“ฑ์€ ์•ž์œผ๋กœ๋„ ์ง€์†์ ์œผ๋กœ ํ•„์š”ํ•  ์ „๋ง์ด๋‹ค. ๋‹ค๋งŒ ์ด๋“ค์ด ์ผ์ƒ ์—…๋ฌด์—์„œ ํ™œ์šฉํ•˜๋Š” ๊ธฐ๋Šฅ์˜ ๋ณ€ํ™” ์†๋„๊ฐ€ ์–ด๋А ๋•Œ๋ณด๋‹ค ๋นจ๋ผ์กŒ๋‹ค๋Š” ์ ์ด ๋ฌธ์ œ๋ผ๋Š” ์ง€์ ์ด๋‹ค.

์ผ๋ถ€ CIO์™€ IT ์ž๋ฌธ๊ฐ€๋Š” ์—ญ๋Ÿ‰์˜ ์ˆ˜๋ช…์ด ์งง์•„์ง€๋Š” ํ˜„์ƒ์ด ๋ชจ๋“  ์กฐ์ง์— ๋™์ผํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ๋„ ์•„๋‹ˆ๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์—ฌ์ „ํžˆ ๊ธฐ์กด ๊ธฐ์ˆ ์„ ์šด์˜ํ•˜๋Š” ๊ธฐ์—…์—์„œ๋Š” ํŠน์ • ์—ญ๋Ÿ‰์ด ์˜ค๋ž˜ ์œ ์ง€๋˜๋Š” ๊ฒฝ์šฐ๋„ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

ํ…Œํฌ ์ „๋ฌธ ์ฑ„์šฉ ํ”Œ๋žซํผ ๋‹ค์ด์Šค(Dice)์˜ โ€˜2025 ๊ธฐ์ˆ  ์—ฐ๋ด‰ ๋ณด๊ณ ์„œโ€™๋Š” ์ด ๊ฐ™์€ ์ด์ค‘์  ํ˜„์‹ค์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด ์ตœ๊ทผ ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ์—ฐ๋ด‰์ด ์ƒ์Šนํ•œ ์—ญ๋Ÿ‰์€ AI, ๋ฐ์ดํ„ฐ, ํด๋ผ์šฐ๋“œ ์—”์ง€๋‹ˆ์–ด๋ง์ด์—ˆ์ง€๋งŒ, ์—ฌ๊ธฐ์—๋Š” ์ˆ˜์‹ญ ๋…„ ์ „ ์ฒ˜์Œ ๋“ฑ์žฅํ•œ ๊ธฐ์ˆ ๋„ ํฌํ•จ๋๋‹ค. ๊ทธ ์ค‘์—์„œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP)์™€ ๋ฌธ์„œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋Š” ๊ฐ๊ฐ 1์œ„์™€ 2์œ„๋ฅผ ์ฐจ์ง€ํ–ˆ๊ณ , ์ฝ”๋ณผ(COBOL)์€ 7์œ„, ๋ฃจ๋น„(Ruby)๋Š” 10์œ„์— ์˜ฌ๋ž๋‹ค.

IT ๋ฆฌ๋”๋“ค์€ ์˜ค๋Š˜๋‚  ๊ฐ๊ด‘๋ฐ›๋Š” ์—ญ๋Ÿ‰ ์ค‘ ์–ด๋–ค ๊ฒƒ์ด ๋ฃจ๋น„(1993๋…„ ๊ฐœ๋ฐœ)๋‚˜ ์ฝ”๋ณผ(1959๋…„ ๊ฐœ๋ฐœ)์ฒ˜๋Ÿผ ์žฅ๊ธฐ์ ์ธ ์ƒ๋ช…๋ ฅ์„ ๊ฐ€์งˆ์ง€ ์˜ˆ์ธกํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ์ง„๋‹จํ–ˆ๋‹ค. ๊ธฐ์ˆ  ๋ฐœ์ „๊ณผ ํ˜์‹  ์†๋„๋กœ ์ธํ•ด ๋ช‡ ๋‹ฌ ๋งŒ์— ์‚ฌ๋ผ์งˆ ์—ญ๋Ÿ‰์ด ๋ฌด์—‡์ธ์ง€๋„ ๋‹จ์ •ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

๋Œ€์‹  IT ๋ฆฌ๋”๋“ค์€ ์„ธ๊ณ„๊ฒฝ์ œํฌ๋Ÿผ(WEF)์ด โ€˜์—ญ๋Ÿ‰ ๋ถˆ์•ˆ์ •์„ฑโ€™์ด๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ํ™˜๊ฒฝ ์†์—์„œ ์–ด๋–ป๊ฒŒ ์ ์‘ํ•˜๊ณ  ์„ฑ์žฅํ• ์ง€ ํ•™์Šตํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

์ปดํ‹ฐ์•„์˜ ์Šคํƒฑ์–ด๋Š” ๊ณผ๊ฑฐ์ฒ˜๋Ÿผ IT ์ธ์žฌ๊ฐ€ ํŒŒ์ด์ฌ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด์™€ ๊ฐ™์€ ํŠน์ • ์—ญ๋Ÿ‰ ํ•˜๋‚˜๋งŒ์œผ๋กœ ์žฅ๊ธฐ์ ์ธ ๊ฒฝ๋ ฅ์„ ๋ณด์žฅ๋ฐ›๋˜ ์‹œ๋Œ€๋Š” ์ง€๋‚ฌ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์–ด๋–ค ์—ญ๋Ÿ‰์€ ๋งค์šฐ ๋น ๋ฅด๊ฒŒ ๋ถ€์ƒํ–ˆ๋‹ค๊ฐ€ ๋˜ ๋น ๋ฅด๊ฒŒ ์‚ฌ๋ผ์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ด์ œ๋Š” ์ƒˆ๋กœ์šด ์—ญ๋Ÿ‰์„ ์–ผ๋งˆ๋‚˜ ์‹ ์†ํ•˜๊ฒŒ ์Šต๋“ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๊ฐ€ ๊ธฐ์ค€์ด ๋ผ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋ผ์ด์–ด-๋จธ๋ฆฌ๋Š” CIO๊ฐ€ ์ง์›๋“ค์ด ์—ญ๋Ÿ‰์„ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋„๋ก ์‹œ๊ฐ„์„ ํ™•๋ณดํ•ด ์ฃผ๊ณ , ํ˜„๋Œ€์  IT ์กฐ์ง์˜ ์—…๋ฌด ์š”๊ตฌ๋ฅผ ๋”ฐ๋ผ๊ฐˆ ์ˆ˜ ์žˆ๋„๋ก ํŒ€์›๋“ค์—๊ฒŒ ๋” ๋งŽ์€ ์ฝ”์นญ์„ ์ œ๊ณตํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” CIO์—๊ฒŒ ์„ฑ์žฅ ๋งˆ์ธ๋“œ์…‹์„ ๊ฐ–์ถ˜ ์ธ์žฌ๋ฅผ ์ฑ„์šฉํ•˜๊ฑฐ๋‚˜, ๊ธฐ์กด ์ง์›์ด ์ด๋Ÿฐ ํƒœ๋„๋ฅผ ํ‚ค์šฐ๋„๋ก ์ง€์›ํ•  ๊ฒƒ์„ ์กฐ์–ธํ•˜๊ณ  ์žˆ๋‹ค.

ํ”ผ๋‹‰์Šค๋Œ€ํ•™๊ต(University of Phoenix) IT ๋ถ€์„œ์˜ ์• ์ž์ผ ํ”ผํ”Œ ๋ฆฌ๋”์ธ ํƒ€์ด ์กด์Šค๋Š” ์ด๋Ÿฌํ•œ ๋ฐฉํ–ฅ์„ฑ์„ ์‹ค์ œ๋กœ ์‹คํ–‰ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค. ์• ์ž์ผ ํ”ผํ”Œ ๋ฆฌ๋”๋Š” CIO ์ œ์ด๋ฏธ ์Šค๋ฏธ์Šค๊ฐ€ ๋ฏธ๋ž˜ ์—…๋ฌด ํ™˜๊ฒฝ์— ๋Œ€๋น„ํ•˜๊ธฐ ์œ„ํ•ด ์ตœ๊ทผ ์‹ ์„คํ•œ ์ง์ฑ…์ด๋‹ค.

์กด์Šค๋Š” โ€œ์ผํ•˜๋Š” ๋ฐฉ์‹์ด ๊ณ„์†ํ•ด์„œ ์žฌ์ •์˜๋˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ•˜๋ฉด์„œ, ์ผ๋ถ€ IT์™€ HR ๋ฆฌ๋”๋“ค์ด 9์›”์— ITยท๋ฐ์ดํ„ฐ ์ง๊ตฐ์ด ๋น ๋ฅด๊ฒŒ ๋ณ€ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์„ฑ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ–์ถฐ์•ผ ํ•  ์—ญ๋Ÿ‰ ๋ชฉ๋ก์„ ๊ณต๊ฐœํ–ˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด ๋ชฉ๋ก์—๋Š” ์ฐฝ์˜์  ๋ฌธ์ œ ํ•ด๊ฒฐ, ๋ฆฌ๋”์‹ญ, AI ์œค๋ฆฌ ํ™œ์šฉ, ์ ์‘๋ ฅ, ํ˜ธ๊ธฐ์‹ฌ, ๋ˆ๊ธฐ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜, ๊ธฐ์ˆ ์  ์œ ์ฐฝ์„ฑ, ๋ฏธ๋ž˜ ํŠธ๋ Œ๋“œ ์ดํ•ด, ์ฃผ๋„์„ฑ, ํ˜์‹  ๋“ฑ์ด ํฌํ•จ๋๋‹ค.

์กด์Šค๋Š” ๋Œ€ํ•™ IT ๋ฆฌ๋”์‹ญ์ด ์ฝ”์นญ์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์—ญ๋Ÿ‰์„ ๊ฐœ๋ฐœํ•˜๋„๋ก ์ง€์›ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ง์›๋“ค์ด ์ƒˆ๋กœ์šด ์—ญ๋Ÿ‰์„ ์ตํž ์ˆ˜ ์žˆ๋„๋ก ์—…๋ฌด ์‹œ๊ฐ„ ์ค‘ ์ผ์ • ๋ถ€๋ถ„์„ ํ•™์Šต์— ํ• ๋‹นํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ „ํ–ˆ๋‹ค.

์กด์Šค๋Š” โ€œ์—”์ง€๋‹ˆ์–ด์™€ ๊ธฐ์ˆ  ์กฐ์ง์€ ์ƒˆ๋กญ๊ฒŒ ๋“ฑ์žฅํ•˜๋Š” ์–ด๋–ค ์—ญ๋Ÿ‰์ด๋“  ์ฆ‰์‹œ ๋ฐ›์•„๋“ค์ผ ์ค€๋น„๊ฐ€ ๋˜์–ด ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๊ณ„์†ํ•ด์„œ ์ž์‹ ์„ ์žฌ์ •๋น„ํ•ด์•ผ ํ•œ๋‹ค. ํ”ผ๋‹‰์Šค๋Œ€ํ•™๊ต IT ์กฐ์ง์€ ์กฐ์ •ํ•˜๊ณ  ์œ ์—ฐํ•˜๊ฒŒ ์›€์ง์ด๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ๋‹ค. ํ˜ธ๊ธฐ์‹ฌ์ด ์žˆ๊ณ  ๋ฐฐ์šธ ์ˆ˜ ์žˆ๋Š” ์‚ฌ๋žŒ์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

์นผ๋Ÿผ | AI ROI๋ฅผ ๊ณ„์‚ฐํ•  ๋•Œ ๊ธฐ๋Œ€์น˜๋ฅผ ๋” ๋‚ฎ์ถฐ์•ผ ํ•˜๋Š” ์ด์œ 

23 November 2025 at 22:20

์ž๋™์ฐจ๋ฅผ ๊ตฌ๋งคํ•  ๋•Œ๋Š” ์ฐฝ๋ฌธ ์Šคํ‹ฐ์ปค์— ์ ํžŒ ๊ณต์ธ ์—ฐ๋น„๋ฅผ ๋จผ์ € ๋ณด๊ธฐ ๋งˆ๋ จ์ด๋‹ค. 1๋ฆฌํ„ฐ๋กœ 18km๋ฅผ ๋‹ฌ๋ฆฐ๋‹ค๋Š” ์ˆ˜์น˜๋ฅผ ๋ณด๋ฉด ๊ธฐ๋Œ€๊ฐ€ ์ปค์ง€์ง€๋งŒ, ๋ง‰์ƒ ์ฐจ๋ฅผ ์ง‘๊นŒ์ง€ ๋ชฐ๊ณ  ์˜ค๋ฉด ์‹ค์ฃผํ–‰ ์—ฐ๋น„๋Š” ๊ทธ๋ณด๋‹ค ํ›จ์”ฌ ๋‚ฎ๊ฒŒ ๋‚˜์˜จ๋‹ค๋Š” ์ ์„ ๊นจ๋‹ซ๋Š”๋‹ค. ์ œ์กฐ์‚ฌ๊ฐ€ ํ‰์ง€๋‚˜ ๋‚ด๋ฆฌ๋ง‰๊ธธ, ์ตœ์ ์˜ ์กฐ๊ฑด๋งŒ ๊ฐ€์ •ํ•ด ์ธก์ •ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ์•„๋‹Œ๊ฐ€ ํ•˜๋Š” ์ƒ๊ฐ์ด ๋“ค ๋•Œ๊ฐ€ ๋งŽ๋‹ค.

AI ์ƒ์‚ฐ์„ฑ์„ ๋‘˜๋Ÿฌ์‹ผ ๋…ผ์˜๋„ ์ด์™€ ํฌ๊ฒŒ ๋‹ค๋ฅด์ง€ ์•Š๋‹ค. ๊ธ€๋กœ๋ฒŒ ์ปจ์„คํŒ…์‚ฌ์˜ ๋ณด๊ณ ์„œ๋“ , ์ตœ์‹  AI ํ”Œ๋žซํผ์„ ์•ž์„ธ์šด ๋ฒค๋”์˜ ์„ค๋ช…์ด๋“ , ํ˜น์€ CEO๊ฐ€ ์š”์ฒญํ•œ ROI ์ „๋ง์ด๋“  ๋Œ€๋ถ€๋ถ„์˜ ์˜ˆ์ธก์€ ์ง€๋‚˜์น˜๊ฒŒ ๋‚™๊ด€์ ์ด๋‹ค. ๋ฌธ์„œ๋กœ๋งŒ ๋ณด๋ฉด ๊ทธ๋Ÿด๋“ฏํ•ด ๋ณด์ด์ง€๋งŒ ์‹ค์ œ ์—…๋ฌด ํ™˜๊ฒฝ์—์„œ๋Š” ๊ธฐ๋Œ€์น˜์— ๋ฏธ์น˜์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๊ณผ์žฅ๋œ ์ „๋ง์„ ์ „์ œ๋กœ ์ „๋žต์„ ์„ธ์šฐ๋ฉด, ์กฐ์ง์€ ๋ชฉํ‘œ์—์„œ ๋ฒ—์–ด๋‚˜๊ธฐ ์‰ฌ์šด ๊ธฐ๋ฐ˜์„ ์Šค์Šค๋กœ ๋งŒ๋“ค๊ฒŒ ๋œ๋‹ค.

๋””์ง€ํ„ธ ์ „๋žต ์ปจ์„คํ„ดํŠธ๋กœ ์ผํ•˜๋ฉด์„œ, ์ž ์žฌ๋ ฅ์ด ์ฃผ๋Š” ๊ธฐ๋Œ€๊ฐ๊ณผ ์‹ค์ œ ์‹คํ–‰ ๊ณผ์ •์˜ ํ˜„์‹ค์„ฑ์„ ๊ท ํ˜• ์žˆ๊ฒŒ ๋ฐ˜์˜ํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐ์ค€์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ํ™•์ธํ•ด ์™”๋‹ค. ํฅ๋ฏธ๋กœ์šด ์ ์€ ์ด๋Ÿฐ ์ ‘๊ทผ๋ฒ•์˜ ์ถœ๋ฐœ์ ์ด ๊ธฐ์ˆ ์ด ์•„๋‹ˆ๋ผ ๊ธˆ์œต ๋ถ„์•ผ์—์„œ ๋‚˜์™”๋‹ค๋Š” ์‚ฌ์‹ค์ด๋‹ค.

โ€˜ํ• ์ธ์œจโ€™์„ ์ ์šฉํ•  ํ•„์š”์„ฑ

๊ธˆ์œต ๋ถ„์•ผ์˜ ๊ธฐ์ดˆ ์žฌ๋ฌด ๊ณผ์ •์—์„œ ๊ฐ€๋ฅด์น˜๋Š” ํ˜„๊ธˆํ๋ฆ„ ํ• ์ธ๋ฒ•(DCF)์„ ์ฐธ์กฐํ•  ๋งŒํ•˜๋‹ค. ์ด๋Š” ํˆฌ์ž๋ฅผ ํ‰๊ฐ€ํ•  ๋•Œ ๋ฏธ๋ž˜์— ๋ฐœ์ƒํ•  ํ˜„๊ธˆํ๋ฆ„์„ ๋ชจ๋‘ ํ•ฉ์‚ฐํ•˜๋Š” ๋Œ€์‹ , ์‹œ๊ฐ„๊ณผ ์œ„ํ—˜์„ ๊ณ ๋ คํ•ด ๊ทธ ๊ฐ€์น˜๋ฅผ ํ• ์ธํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋‚ด์ผ ๋ฐ›์„ 1๋‹ฌ๋Ÿฌ๋Š” ์˜ค๋Š˜์˜ 1๋‹ฌ๋Ÿฌ๋ณด๋‹ค ๊ฐ€์น˜๊ฐ€ ๋‚ฎ๊ณ , ๊ทธ 1๋‹ฌ๋Ÿฌ๊ฐ€ ์‹ค์ œ๋กœ ๋“ค์–ด์˜ฌ์ง€ ๋ถˆํ™•์‹คํ•˜๋‹ค๋ฉด ๊ฐ€์น˜๋Š” ๋” ๋–จ์–ด์ง„๋‹ค.

AI ์ƒ์‚ฐ์„ฑ์„ ํ‰๊ฐ€ํ•  ๋•Œ๋„ ์ด์™€ ๊ฐ™์€ ์‚ฌ๊ณ ๋ฐฉ์‹์ด ๋„์›€์ด ๋œ๋‹ค. โ€œ์ฝ”ํŒŒ์ผ๋Ÿฟ์ด ๊ฐœ๋ฐœ์ž ์ƒ์‚ฐ์„ฑ์„ 2๋ฐฐ๋กœ ๋†’์ธ๋‹คโ€์™€ ๊ฐ™์€ ํ‘œ๋ฉด์  ์ˆ˜์น˜๋Š” ์ž ์žฌ๋ ฅ์„ ์ตœ๋Œ€์น˜๋กœ ๊ฐ€์ •ํ•œ ๊ฐ’์ผ ๋ฟ์ด๋‹ค. ์‹ค์ œ ๊ณ„ํš์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ˜„์‹ค์ ์ธ ์ˆ˜์น˜๋ฅผ ์–ป์œผ๋ ค๋ฉด 3๊ฐ€์ง€ ์š”์†Œ๋ฅผ ๊ฐ์•ˆํ•ด โ€˜ํ• ์ธโ€™ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” ๋ชฉํ‘œ์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ๋žŒ์ด ํˆฌ์ž…ํ•ด์•ผ ํ•˜๋Š” ๋…ธ๋ ฅ, ์กฐ์ง์ด AI๋ฅผ ๋ฐ›์•„๋“ค์ด๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„, ๊ทธ๋ฆฌ๊ณ  AI์˜ ๋ถˆ์™„์ „์„ฑ์—์„œ ๋น„๋กฏ๋˜๋Š” ์œ„ํ—˜์„ ์˜๋ฏธํ•œ๋‹ค.

์‚ฌ๋žŒ์˜ ๋…ธ๋ ฅ: ์‚ฌ๋žŒ๊ณผ ๊ธฐ๊ณ„๊ฐ€ ๋งž๋ฌผ๋ฆฌ๋Š” ํ˜„์‹ค

์ƒ์„ฑํ˜• AI๋Š” ์ผ์„ ๋Œ€์‹ ํ•ด์ฃผ๋Š” โ€˜์ž๋™ ์กฐ์ข… ์žฅ์น˜โ€™๊ฐ€ ์•„๋‹ˆ๋ผ ์†๋„๋ฅผ ๋†’์—ฌ์ฃผ๋Š” โ€˜๊ฐ€์†๊ธฐโ€™์— ๊ฐ€๊น๋‹ค. ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ , ๋ชจ๋ธ์ด ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ž‘๋™ํ•˜๋„๋ก ์•ˆ๋‚ดํ•˜๋ฉฐ, ์ตœ์ข… ๊ฒฐ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๋Š” ๊ณผ์ •์€ ์—ฌ์ „ํžˆ ์‚ฌ๋žŒ์ด ๋งก์•„์•ผ ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ง์—์„œ๋Š” ๊นƒํ—ˆ๋ธŒ ์ฝ”ํŒŒ์ผ๋Ÿฟ(GitHub Copilot) ๊ฐ™์€ ๋„๊ตฌ๊ฐ€ ์ฆ‰์‹œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ์ฝ”๋“œ๋ฅผ ๋งŒ๋“ค์–ด์ฃผ์ง€๋งŒ, ๊ทธ ์ฝ”๋“œ ์ƒ๋‹น์ˆ˜๋Š” ์—ฌ์ „ํžˆ ๋””๋ฒ„๊น…๊ณผ ํ…Œ์ŠคํŠธ, ์ˆ˜์ •์ด ํ•„์š”ํ•˜๋‹ค.

ํ•œ ๊ณ ๊ฐ์‚ฌ์˜ ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ์—์„œ ์—”์ง€๋‹ˆ์–ด๋“ค์€ ์—…๋ฌด ์‹œ๊ฐ„์˜ ์•ฝ 4๋ถ„์˜ 1์„ AI๊ฐ€ ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ๊ฒ€ํ† ํ•˜๊ฑฐ๋‚˜ ๋‹ค์‹œ ์ž‘์„ฑํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ–ˆ๋‹ค. ์ƒ์‚ฐ์„ฑ์€ ๋ถ„๋ช… ์˜๋ฏธ ์žˆ๋Š” ์ˆ˜์ค€์œผ๋กœ ์˜ฌ๋ž์ง€๋งŒ, ๋ฒค๋”๊ฐ€ ํ”ํžˆ ์ฃผ์žฅํ•˜๋Š” โ€˜์ƒ์‚ฐ์„ฑ 2๋ฐฐโ€™์™€๋Š” ๊ฑฐ๋ฆฌ๊ฐ€ ์žˆ์—ˆ๋‹ค. ์‹ค์ œ ์ˆ˜์น˜๋Š” ์•ฝ 40% ํ–ฅ์ƒ์— ๊ฐ€๊นŒ์› ๊ณ , ์ด๋Š” ํ›จ์”ฌ ํ˜„์‹ค์ ์ด๋ฉด์„œ๋„ ์ง€์† ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์ด์—ˆ๋‹ค. ๊ฒฐ๋ก ์€ ๋ช…ํ™•ํ–ˆ๋‹ค. AI๋Š” ์—ญ๋Ÿ‰์„ ์ฆํญ์‹œํ‚ค์ง€๋งŒ ์‚ฌ๋žŒ์˜ ํŒ๋‹จ์„ ๋Œ€์‹ ํ•˜์ง€๋Š” ๋ชปํ•œ๋‹ค. ์ด๋ฅผ ์ƒ์‚ฐ์„ฑ ์ „๋ง์— ๋ฐ˜์˜ํ•ด์•ผ ๋ชจ๋ธ์€ ๋” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๊ณ  ๊ณ„ํš์€ ๋” ํ˜„์‹ค์ ์ด ๋œ๋‹ค.

๋„์ž… ์†๋„์™€ ํ™•์‚ฐ ๊ณก์„ 

๋˜ ๋‹ค๋ฅธ ์ค‘์š”ํ•œ ์š”์†Œ๋Š” ๊ธฐ์ˆ  ๋„์ž… ์†๋„๋‹ค. AI๋กœ ์ธํ•œ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์€ ํ•œ๊บผ๋ฒˆ์— ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š”๋‹ค. ๋‹ค๋ฅธ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ธฐ์ˆ ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ๋„์ž… ๊ณผ์ •์€ ํ•™์Šต๊ณผ ์‹คํ—˜, ํ™•์‚ฐ์„ ๊ฑฐ์น˜๋ฉฐ ์ ์ง„์ ์ธ ๊ณก์„ ์„ ๊ทธ๋ฆฐ๋‹ค.

ํฌ์ถ˜ 500๋Œ€ ์ œ์กฐ ๊ธฐ์—…์˜ ํ•œ ์‚ฌ๋ก€๋ฅผ ์‚ดํŽด๋ณผ ๋งŒํ•˜๋‹ค. ์ด ํšŒ์‚ฌ๋Š” ์ฝ”๋“œ ๊ฐœ๋ฐœ์šฉ ์ฝ”ํŒŒ์ผ๋Ÿฟ ๋„์ž…์„ ์ถ”์ง„ํ•˜๋ฉด์„œ ์ด๋Ÿฌํ•œ ๋„์ž… ๊ณก์„ ์„ ์ง์ ‘ ๋ชจ๋ธ๋งํ–ˆ๋‹ค. ์ฒซํ•ด์—๋Š” ์ „์ฒด ๊ฐœ๋ฐœ์ž์˜ ์•ฝ 4๋ถ„์˜ 1๋งŒ ํ™œ๋ฐœํžˆ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ–ˆ๋‹ค. ์‹œ๊ฐ„์ด ์ง€๋‚˜๋ฉด์„œ ๋„์ž…๋ฅ ์€ ๊พธ์ค€ํžˆ ์ฆ๊ฐ€ํ–ˆ๊ณ , ๋น„์šฉ๊ณผ ํšจ๊ณผ๋„ ์ผ์ƒ์ ์ธ ๊ฐœ๋ฐœ ํ๋ฆ„ ์†์—์„œ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ™•๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋๋‹ค. ์ด๋“ค์€ 4๋…„์— ๊ฑธ์นœ ๋„์ž… ๊ธฐ๊ฐ„์„ ๊ธฐ์ค€์œผ๋กœ ROI๋ฅผ ์‚ฐ์ •ํ•ด ์กฐ์ง์ด ๋ณ€ํ™”์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋Š” ์†๋„์™€ ๋งž๋Š” ์˜ˆ์ธก์น˜๋ฅผ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ฐ€ํŒŒ๋ฅด๊ณ  ๋น„ํ˜„์‹ค์ ์ธ ์ƒ์Šน ๊ณก์„ ์ด ์•„๋‹Œ, ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ „๋ง์„ ํ™•๋ณดํ–ˆ๋‹ค.

๊ฐ•๋ ฅํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์‚ฌ๋ก€๊ฐ€ ์žˆ์–ด๋„ ์ƒ์‚ฐ์„ฑ์€ ์ €์ ˆ๋กœ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋„์ž…์—๋Š” ์‹œ๊ฐ„, ๊ต์œก, ๊ทธ๋ฆฌ๊ณ  ๋ฐ˜๋ณต์ ์ธ ์‚ฌ์šฉ ๊ฒฝํ—˜์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฐ ํ˜„์‹ค์  ์กฐ๊ฑด์„ ์ถ”์ •์น˜์— ํฌํ•จํ•ด์•ผ ๊ณ„ํš์€ ๋ฐฉ์–ด ๊ฐ€๋Šฅํ•˜๋ฉด์„œ๋„ ์‹ค์ œ ์‹คํ–‰์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค.

์œ„ํ—˜ ์กฐ์ •: AI ํ™˜๊ฐ์„ ๋ฐ˜์˜

๋ชจ๋“  ์ƒ์‚ฐ์„ฑ ๋ชจ๋ธ์€ ์œ„ํ—˜ ์š”์†Œ๋„ ๊ณ ๋ ค๋ผ์•ผ ํ•œ๋‹ค. ๊ฐ€์žฅ ์„ฑ๋Šฅ์ด ๋›ฐ์–ด๋‚œ ์‹œ์Šคํ…œ๋„ ์˜ค๋ฅ˜๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ๋กœ ์ธํ•œ ์šด์˜ยทํ‰ํŒ ์ธก๋ฉด์˜ ๋น„์šฉ์€ ์ƒ๋‹นํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฐ ์‚ฌ๋ก€๋Š” ๋‰ด์Šค์—์„œ๋„ ์–ด๋ ต์ง€ ์•Š๊ฒŒ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์˜ฌํ•ด ํ•œ ๊ธ€๋กœ๋ฒŒ ๊ธฐ์ˆ  ๊ธฐ์—…์€ AI ์ด๋ฏธ์ง€ ์ƒ์„ฑ๊ธฐ๊ฐ€ ๋ถ€์ ์ ˆํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด์ž ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์„ ์ „๋ฉด ์ฒ ํšŒํ–ˆ๋‹ค. ๋ฌธ์ œ๋Š” ๊ด€๋ฆฌ ๋ถ€์žฌ๊ฐ€ ์•„๋‹ˆ๋ผ ์œ„ํ—˜์„ ๊ณผ์†Œํ‰๊ฐ€ํ•œ ๊ฒƒ์ด์—ˆ๋‹ค. ๊ธฐ์—…์€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๊ณต์ง€ยท์กฐ์œจ ์ž‘์—…์„ ์ง„ํ–‰ํ•˜๋ฉฐ ์‹ ๋ขฐ๋ฅผ ํšŒ๋ณตํ•˜๋Š” ๋ฐ ์ˆ˜ ์ฃผ๋ฅผ ํˆฌ์ž…ํ•ด์•ผ ํ–ˆ๋‹ค. ์ด ํšŒ๋ณต ๊ธฐ๊ฐ„ ๋™์•ˆ ํˆฌ์ž…๋œ ์‹œ๊ฐ„๊ณผ ์ž์›์€ ๋ณธ๋ž˜ ์ƒ์‚ฐ ์—…๋ฌด์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

CIO๊ฐ€ ์ƒ์‚ฐ์„ฑ์„ ์ถ”์ •ํ•  ๋•Œ๋Š” ์ด๋Ÿฐ ๋ถˆ๊ฐ€ํ”ผํ•œ ์‹œํ–‰์ฐฉ์˜ค๋ฅผ ๊ฐ์•ˆํ•ด์•ผ ํ•œ๋‹ค. ๊ฒฐ๊ณผ๋ฌผ ๊ฒ€์ฆ, ์˜ค๋ฅ˜ ์ˆ˜์ •, ํ›„์† ์กฐ์น˜์— ํ•„์š”ํ•œ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ๋ถ„์„์— ํฌํ•จ๋ผ์•ผ ํ•œ๋‹ค. ํˆฌ์ž์ž๊ฐ€ ์œ„ํ—˜์ด ํฐ ์ž์‚ฐ์— ๋” ๋†’์€ ์ˆ˜์ต๋ฅ ์„ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ๊ธฐ์ˆ  ๋ฆฌ๋”๋„ ์œ„ํ—˜์„ฑ์ด ๋†’์€ AI ํ™œ์šฉ์— ๋Œ€ํ•ด์„œ๋Š” ์ƒ์‚ฐ์„ฑ ๊ธฐ๋Œ€์น˜๋ฅผ ์กฐ์ •ํ•ด์•ผ ํ•œ๋‹ค.

๊ฐœ๋…์—์„œ ์‹ค์ฒœ์œผ๋กœ

โ€˜ํ• ์ธ๋œ ์ƒ์‚ฐ์„ฑโ€™ ๊ฐœ๋…์€ ์‹ค์ œ ํ˜„์žฅ์— ์ ์šฉํ•  ๋•Œ ๋น„๋กœ์†Œ ํž˜์„ ๋ฐœํœ˜ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๊ฐ€ ์ฝ”ํŒŒ์ผ๋Ÿฟ์„ ์‚ฌ์šฉํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด๋ณด๋ฉด, ์ด๋ก ์ƒ ์ƒ์‚ฐ์„ฑ์€ 2๋ฐฐ๊นŒ์ง€ ๋Š˜์–ด๋‚  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์‚ฌ๋žŒ ๊ฒ€์ฆ ๊ณผ์ •, ์ ์ง„์ ์ธ ๋„์ž… ์†๋„, ์œ„ํ—˜ ์š”์†Œ๋ฅผ ๋ฐ˜์˜ํ•˜๋ฉด ํ˜„์‹ค์ ์ธ ์ƒ์‚ฐ์„ฑ ์ฆ๊ฐ€๋Š” 30~40% ์ˆ˜์ค€์— ๊ฐ€๊นŒ์›Œ์ง„๋‹ค.

์ด๋ฅผ ์‹œ๊ฐํ™”ํ•˜๋ฉด ํญํฌ์ˆ˜(waterfall) ์ฐจํŠธ ํ˜•ํƒœ๊ฐ€ ๋œ๋‹ค. ์ „์ฒด AI ๊ธฐํšŒ ๊ทœ๋ชจ๋ฅผ ์ถœ๋ฐœ์ ์œผ๋กœ ๋‘๊ณ , ์‚ฌ๋žŒ์˜ ๋…ธ๋ ฅ, ๋„์ž… ์†๋„, ์œ„ํ—˜ ์š”์ธ์„ ๊ณ ๋ คํ•ด ํ•˜๋‚˜์”ฉ ์ฐจ๊ฐํ•ด ๋‚˜๊ฐ„๋‹ค. ๊ทธ๋ ‡๊ฒŒ ๋‚จ๋Š” ์ˆ˜์น˜๊ฐ€ ์‹ค์ œ๋กœ ๋‹ฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์ด๋ฉฐ, ํŒ€์˜ ์‹ค์ œ ์—…๋ฌด ๋ฐฉ์‹์„ ๋ฐ˜์˜ํ•œ ๊ฐ’์ด๊ธฐ ๋•Œ๋ฌธ์— CFO๋‚˜ CEO์—๊ฒŒ๋„ ์ž์‹  ์žˆ๊ฒŒ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฒฝํ—˜์ด ์Œ“์ด๋ฉด ์ด ์ˆ˜์น˜๋ฅผ ๋„˜์–ด์„ค ๊ฐ€๋Šฅ์„ฑ๋„ ์ถฉ๋ถ„ํžˆ ์žˆ๋‹ค.

์„œ๋กœ ๋‹ค๋ฅธ AI์˜ โ€˜์—ฐ๋น„โ€™

AI๋Š” ์—…๋ฌด ๋ฐฉ์‹์„ ๋น ๋ฅด๊ฒŒ ๋ฐ”๊พธ๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ƒˆ ์ฐจ์˜ ๊ณต์ธ ์—ฐ๋น„๊ฐ€ ์‹ค์ œ ์ฃผํ–‰ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋“ฏ, AI ์„ฑ๊ณผ ์—ญ์‹œ ์กฐ์ง์˜ ํ™˜๊ฒฝ, ๊ตฌ์„ฑ์›์˜ ํ™œ์šฉ ๋ฐฉ์‹, ์‹คํ–‰๋ ฅ์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง„๋‹ค. ์ƒ์‚ฐ์„ฑ์— โ€˜ํ• ์ธ์œจโ€™์„ ์ ์šฉํ•ด ๋ฐ”๋ผ๋ณด๋Š” ๊ด€์ ์€ CIO์™€ ๊ธฐ์ˆ  ๋ฆฌ๋”๊ฐ€ AI ๊ธฐ์ˆ ์˜ ์ž ์žฌ๋ ฅ๊ณผ ์‹ค์ œ ์„ฑ๊ณผ ์‚ฌ์ด์˜ ๊ฐ„๊ทน์„ ์ขํžˆ๊ณ , ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๊ณ  ๋ฐฉ์–ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ์‹คํ˜„ ๊ฐ€๋Šฅํ•œ ๊ธฐ๋Œ€์น˜๋ฅผ ์„ธ์šฐ๋„๋ก ๋•๋Š”๋‹ค.

AI ์—ญ์‹œ ์šด์ „๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, โ€˜์—ฐ๋น„โ€™๋Š” ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์งˆ ์ˆ˜๋ฐ–์— ์—†๋‹ค.
dl-ciokorea@foundryco.com

์นผ๋Ÿผ | ๋” ์ ์€ ๋„๊ตฌ๋กœ ๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜์„ ์ถ”์ง„ํ•˜๋ฉฐ ๊นจ๋‹ฌ์€ ๊ตํ›ˆ

21 November 2025 at 00:43

์ปจ์„คํŒ… ๊ธฐ์—…์˜ ์‹œ๋‹ˆ์–ด ์ „๋ฌธ๊ฐ€๋กœ ๋ฆฌํ…Œ์ผ ๋Œ€๊ธฐ์—…์˜ DX ํ”„๋กœ์ ํŠธ์— ํ•ฉ๋ฅ˜ํ–ˆ์„ ๋•Œ, ์ฒซ ํšŒ์˜๋Š” ์˜ˆ์ƒ๋Œ€๋กœ ํ˜๋Ÿฌ๊ฐ”๋‹ค. ํšŒ์˜ ๋‚ด์šฉ์ด โ€˜๋” ๋งŽ์€ ๋„๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹คโ€™๋Š” ๋ฐ ์ง‘์ค‘๋œ ๊ฒƒ์ด์—ˆ๋‹ค. ํšจ์œจ์„ฑ์„ ๋…ผ์˜ํ•  ๋•Œ๋งˆ๋‹ค ๋Œ€ํ™”๋Š” ๋˜ ๋‹ค๋ฅธ ๋ฒค๋” ๋ฐ๋ชจ๋‚˜ ํ”Œ๋žซํผ ์ œ์•ˆ์œผ๋กœ ์ด์–ด์กŒ๊ณ , ์›Œํฌํ”Œ๋กœ์šฐ์šฉ SaaS๋ถ€ํ„ฐ ๊ณ ๊ฐ ์„œ๋น„์Šค๋ฅผ ์œ„ํ•œ ์ฑ—๋ด‡, ๋ถ„์„ ์—…๋ฌด๋ฅผ ์œ„ํ•œ AI ๋Œ€์‹œ๋ณด๋“œ๊นŒ์ง€ ๋Š์ž„์—†์ด ๋„๊ตฌ ๋ชฉ๋ก์ด ๋Š˜์–ด๋‚ฌ๋‹ค.

์ด๋Š” ๋งŽ์€ ์กฐ์ง์ด ์Šต๊ด€์ ์œผ๋กœ ๋ณด์ด๋Š” ๋ฐ˜์‘์ด๋‹ค. DX์˜ ์˜๋ฏธ๊ฐ€ ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ๋„์ž…ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์—ฌ๊ฒจ์ง€๊ณ , ๊ฒฝ์˜์ง„์€ ๊ตฌ๋งคํ•œ ๊ธฐ์ˆ ์˜ ๊ฐœ์ˆ˜๋กœ ์„ฑ๊ณผ๋ฅผ ํŒ๋‹จํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํšŒ์˜ ์ฐธ์—ฌ์ž๋“ค์ด โ€˜ํ˜„์žฌ ๋ถ€์กฑํ•œ ์‹œ์Šคํ…œโ€™์„ ์—ด์ •์ ์œผ๋กœ ๋‚˜์—ดํ•˜๋Š” ๋ชจ์Šต์„ ๋ณด๋ฉฐ ๋ฌธ๋“ ์˜๋ฌธ์ด ๋– ์˜ฌ๋ž๋‹ค. ๊ณผ์—ฐ ์šฐ๋ฆฌ๋Š” ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์ „ํ™˜ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ผ๊นŒ, ์•„๋‹ˆ๋ฉด ๊ทธ์ € ๋„๊ตฌ ์ƒ์ž๋งŒ ๋” ํ‚ค์šฐ๊ณ  ์žˆ๋Š” ๊ฒƒ์ผ๊นŒ? ํ•˜๋Š” ์งˆ๋ฌธ์ด์—ˆ๋‹ค.

์ด๋Ÿฐ ํŒจํ„ด์„ ์ด๋ฏธ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ๋ชฉ๊ฒฉํ•ด ์™”๋‹ค. ์ข‹์€ ์˜๋„๋กœ ํ”Œ๋žซํผ์„ ๊ณ„์† ์ถ”๊ฐ€ํ–ˆ์ง€๋งŒ, ๊ฒฐ๊ตญ ๋”ํ•ด์ง€๋Š” ๊ฑด ์—ญ๋Ÿ‰์ด ์•„๋‹ˆ๋ผ ๋ณต์žก์„ฑ์ด์—ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋‹น์‹œ ๊ธฐ์ค€์œผ๋กœ๋Š” ๋‹ค์†Œ ์—ญํ–‰ํ•˜๋Š” ์ œ์•ˆ์„ ๊บผ๋ƒˆ๋‹ค. ๋” ์ถ”๊ฐ€ํ•˜๊ธฐ ์ „์—, ๋จผ์ € ๋ฌด์—‡์„ ๋บ„ ์ˆ˜ ์žˆ๋Š”์ง€ ์‚ดํŽด๋ณด์ž๋Š” ๊ฒƒ์ด์—ˆ๋‹ค.

์ด ์ œ์•ˆ์— ํšŒ์˜์‹ค์€ ์ž ์‹œ ์กฐ์šฉํ•ด์กŒ๊ณ  ๋ช‡๋ช‡์€ ๋†€๋ž€ ํ‘œ์ •์„ ์ง€์—ˆ์ง€๋งŒ, ๊ทธ ๋Œ€ํ™”๋Š” ์ง€๊ธˆ๊นŒ์ง€ ์ฐธ์—ฌํ–ˆ๋˜ ํ”„๋กœ์ ํŠธ ๊ฐ€์šด๋ฐ ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ DX ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์ด์–ด์ง€๋Š” ๊ณ„๊ธฐ๊ฐ€ ๋๋‹ค.

๊ณผ๋„ํ•œ ๋„๊ตฌ ์‚ฌ์šฉ์˜ ์ˆจ์€ ๋น„์šฉ

์˜ค๋Š˜๋‚  ๊ธฐ์—…์—์„œ โ€˜๋„๊ตฌ ํ™•์‚ฐ(tool sprawl)โ€™์€ ๋ˆˆ์— ์ž˜ ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š์ง€๋งŒ ๋ง‰๋Œ€ํ•œ ๋น„์šฉ์„ ์ดˆ๋ž˜ํ•˜๋Š” ์š”์ธ์ด๋‹ค. ์—ฌ๋Ÿฌ ์‚ฐ์—…์—์„œ ์กฐ์ง์€ ํ†ตํ•ฉ ์†๋„๋ฅผ ๋”ฐ๋ผ๊ฐ€์ง€ ๋ชปํ•  ๋งŒํผ ์ค‘๋ณต ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๋น ๋ฅด๊ฒŒ ์Œ“์•„ ์˜ฌ๋ฆฌ๊ณ  ์žˆ๊ณ , ์ด๋กœ ์ธํ•ด ํ˜ผ๋ž€์ด ๋ฐœ์ƒํ•˜๊ณ  ๋ฐ์ดํ„ฐ๊ฐ€ ์ค‘๋ณต๋˜๋ฉฐ ๊ตฌ๋… ๋น„์šฉ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค.

ํ•ด๋‹น ๋ฆฌํ…Œ์ผ ๊ธฐ์—…๋„ ์˜ˆ์™ธ๋Š” ์•„๋‹ˆ์—ˆ๋‹ค. ๊ฐ ์—…๋ฌด ๋ถ€์„œ๊ฐ€ ์„ ํ˜ธํ•˜๋Š” ๋„๊ตฌ๋ฅผ ์ œ๊ฐ๊ฐ ๋“ค์—ฌ์˜ค๋ฉด์„œ, ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ๋ณด๋“œ, ๊ณ ๊ฐ ํ”ผ๋“œ๋ฐฑ ์ˆ˜์ง‘ ๋„๊ตฌ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ˜‘์—… ์•ฑ๋งŒ ํ•ด๋„ 6๊ฐœ๊ฐ€ ๋„˜์—ˆ๋‹ค.

ํ”„๋กœ์ ํŠธ์— ์ฐธ์—ฌํ•œ ์ฒซ ๋‹ฌ์— ํ•ด๋‹น ๊ธฐ์—…์˜ ๋””์ง€ํ„ธ ์ƒํƒœ๊ณ„๋ฅผ ์ „๋ฉด ์กฐ์‚ฌํ–ˆ๋Š”๋ฐ, ๊ฒฐ๊ณผ๋Š” ์˜ˆ์ƒ์„ ํ›จ์”ฌ ๋›ฐ์–ด๋„˜์—ˆ๋‹ค. ์กฐ์ง ์ „์ฒด์—์„œ ์‹ค์ œ ์‚ฌ์šฉ ์ค‘์ธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด 142๊ฐœ์— ๋‹ฌํ–ˆ๊ณ , ํ˜‘์—…์šฉ ๋„๊ตฌ๋งŒ ํ•ด๋„ 12๊ฐœ๊ฐ€ ๋„˜์—ˆ๋‹ค. ์ผ๋ถ€ ๋ถ€์„œ๋Š” ๋™์ผํ•œ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด 3๊ฐ€์ง€ ๋„๊ตฌ๋ฅผ ๋™์‹œ์— ์‚ฌ์šฉํ•ด ๊ธฐ๋ก์ด ์ค‘๋ณต๋˜๊ณ , ์ฑ…์ž„ ์†Œ์žฌ๊ฐ€ ๋ถˆ๋ถ„๋ช…ํ•ด์ง€๋Š” ๊ฒฝ์šฐ๋„ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

์›Œํฌ์ˆ์—์„œ ํ•œ ํŒ€์žฅ์€ โ€œ์ ์ ˆํ•œ ํŒŒ์ผ์„ ์ฐพ๋Š” ๊ฒŒ ์ƒˆ ์ง์›์„ ์ฐพ๋Š” ๊ฒƒ๋ณด๋‹ค ์–ด๋ ต๋‹คโ€๋ผ๊ณ  ๋†๋‹ด์ฒ˜๋Ÿผ ๋งํ–ˆ๋‹ค. ๊ฐ€๋ณ๊ฒŒ ํ•œ ๋ง์ด์—ˆ์ง€๋งŒ, ์—…๋ฌด์—์„œ ๊ฒช๋Š” ์ขŒ์ ˆ๊ฐ์ด ์ •ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ์ƒ์‚ฐ์„ฑ์„ ๋Œ์–ด์˜ฌ๋ ค์•ผ ํ•  ๊ธฐ์ˆ ์ด ์˜คํžˆ๋ ค ์‚ฌ๋žŒ๋“ค์˜ ์†๋„๋ฅผ ๋Šฆ์ถ”๊ณ  ์žˆ์—ˆ๋˜ ๊ฒƒ์ด๋‹ค.

์ด๋Ÿฐ ํ˜ผ๋ž€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๋ฆฌ๋”๊ฐ€ ์ƒˆ๋กœ์šด ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๋ง๋ถ™์ด๋Š” ๋ฐฉ์‹์œผ๋กœ ๋Œ€์‘ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ•˜๋ฒ„๋“œ๋น„์ฆˆ๋‹ˆ์Šค๋ฆฌ๋ทฐ๊ฐ€ ์ง€์ ํ•˜๋“ฏ, ๋„๊ตฌ๊ฐ€ ๋งŽ์•„์ง„๋‹ค๊ณ  ์ƒ์‚ฐ์„ฑ์ด ์ž๋™์œผ๋กœ ๋†’์•„์ง€๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋ฉฐ, ์˜คํžˆ๋ ค ํ˜ผ๋ž€๋งŒ ๊ฐ€์ค‘์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.

์ถ”๊ฐ€๋ณด๋‹ค ๊ฐ์ถ•์„ ์„ ํƒ

๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์œ„ํ•ด 2๊ฐ€์ง€ ๊ฐ„๋‹จํ•œ ์งˆ๋ฌธ์—์„œ ์‹œ์ž‘ํ–ˆ๋‹ค.

  1. ์‚ฌ๋žŒ๋“ค์ด ์‹ค์ œ๋กœ ๋งค์ผ ์‚ฌ์šฉํ•˜๋Š” ๋„๊ตฌ๋Š” ๋ฌด์—‡์ธ๊ฐ€?
  2. ๊ฐ ๋„๊ตฌ๊ฐ€ ์ œ๊ณตํ•˜๋Š”, ์ธก์ • ๊ฐ€๋Šฅํ•œ ๊ฐ€์น˜๋Š” ๋ฌด์—‡์ธ๊ฐ€?

์ด ๋‘ ์งˆ๋ฌธ์ด ๋Œ€ํ™”๋ฅผ ์™„์ „ํžˆ ๋ฐ”๊ฟ” ๋†“์•˜๋‹ค. โ€˜๋น ์ ธ ์žˆ๋Š” ๊ฒƒ์€ ๋ฌด์—‡์ธ๊ฐ€โ€™์—์„œ โ€˜์‹ค์ œ๋กœ ์ž˜ ์ž‘๋™ํ•˜๋Š” ๊ฒƒ์€ ๋ฌด์—‡์ธ๊ฐ€โ€™๋ฅผ ๋ฌป๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค.

์ดํ›„ ์ง์›์„ ๋Œ€์ƒ์œผ๋กœ, ์‚ฌ์šฉ ์ค‘์ธ ๋„๊ตฌ์˜ ์œ ์šฉ์„ฑ๊ณผ ๋„์ž… ์šฉ์ด์„ฑ์„ ์ต๋ช…์œผ๋กœ ํ‰๊ฐ€ํ•˜๋Š” ์„ธ์…˜์„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ์ง„ํ–‰ํ–ˆ๋‹ค. ๊ฒฐ๊ณผ๋Š” ์˜ˆ์ƒ๋ณด๋‹ค ๋” ๋ช…ํ™•ํ–ˆ๋‹ค. ์ „์ฒด ๋„๊ตฌ์˜ ์•ฝ 40%๋Š” ํ™œ์„ฑ ์‚ฌ์šฉ์ž๊ฐ€ 15%์—๋„ ๋ฏธ์น˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ผ๋ถ€๋Š” ํŒŒ์ผ๋Ÿฟ์šฉ์œผ๋กœ๋งŒ ๋„์ž…๋ผ ํ™•์žฅํ•˜์ง€ ๋ชปํ•œ ๋„๊ตฌ์˜€๊ณ , ๋˜ ์ผ๋ถ€๋Š” ์ด๋ฏธ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜๋Š” ๊ธฐ๋Šฅ๊ณผ ๊ทธ๋Œ€๋กœ ์ค‘๋ณต๋๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, 3๊ฐœ ๋ถ€์„œ๊ฐ€ ๊ฐ๊ฐ ๋ณ„๋„์˜ ์„ค๋ฌธ ์กฐ์‚ฌ ๋„๊ตฌ๋ฅผ ์œ ๋ฃŒ๋กœ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์—ˆ์ง€๋งŒ, ์‚ฌ์‹ค CRM๋งŒ์œผ๋กœ๋„ ํ”ผ๋“œ๋ฐฑ ์ˆ˜์ง‘ ๊ธฐ๋Šฅ์„ ์ถฉ๋ถ„ํžˆ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ ๋‹ค๋ฅธ ๋ถ„์„ ํ”Œ๋žซํผ์€ ์žฌ๋ฌดํŒ€์ด ๋‚ด๋ถ€์ ์œผ๋กœ ์ด๋ฏธ ๋งŒ๋“ค๊ณ  ์žˆ๋Š” ๋ณด๊ณ ์„œ์™€ ๊ฑฐ์˜ ๋™์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๊ณ  ์žˆ์—ˆ๋‹ค.

์ด ๋‚ด์šฉ์„ ๊ณต์œ ํ•˜์ž ํ•œ ์ž„์›์ด โ€œ๊ทธ๋ ‡๋‹ค๋ฉด ์šฐ๋ฆฌ ์†Œํ”„ํŠธ์›จ์–ด์˜ 3๋ถ„์˜ 1์„ ์ค„์—ฌ๋„ ์•„๋ฌด๋„ ๋ˆˆ์น˜์ฑ„์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฑด๊ฐ€์š”?โ€๋ผ๊ณ  ๋ฌผ์—ˆ๋‹ค. ์ด์— โ€œ๋ˆˆ์น˜์ฑ„๊ธด ํ•  ๊ฒ๋‹ˆ๋‹ค. ์ข‹์€ ๋ฐฉํ–ฅ์œผ๋กœ์š”โ€๋ผ๊ณ  ๋‹ตํ–ˆ๋‹ค.

์ด ๋Œ€ํ™”๊ฐ€ ์ฒซ ํ†ตํ•ฉ ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ๋กœ ์ด์–ด์กŒ๋‹ค. ์ฃผ์š” ๋Œ€์ƒ์€ ๋ถ€์„œ๋ณ„ ํŒŒํŽธํ™”๊ฐ€ ์‹ฌํ–ˆ๋˜ ํ˜‘์—… ๋„๊ตฌ์™€ ๋ถ„์„ ์‹œ์Šคํ…œ์ด์—ˆ๋‹ค. ๋‹ค๋งŒ ๊ธฐ์กด ์‹œ์Šคํ…œ์— ์ต์ˆ™ํ•˜๋˜ ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž๋“ค์ด ๋ฐ˜๋ฐœํ•˜๊ณ  ๋‚˜์„ฐ๋‹ค. ์ด์— ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ์ค‘์‹ฌ์œผ๋กœ ๋Œ€์‘ํ•ด, ๋„๊ตฌ ๊ฐ„์†Œํ™”๊ฐ€ ๋กœ๊ทธ์ธ ํšŸ์ˆ˜๋ฅผ ์ค„์ด๊ณ , ๋ฐ์ดํ„ฐ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ํ•˜๋ฉฐ, ์‘๋‹ต ์†๋„๋ฅผ ๋†’์ธ๋‹ค๋Š” ์ ์„ ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณด์—ฌ์คฌ๋‹ค. ๊ทธ๋ ‡๊ฒŒ ์กฐ๊ธˆ์”ฉ ๊ณต๊ฐ๋Œ€๊ฐ€ ํ˜•์„ฑ๋˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค.

๊ธฐ์ˆ  ์Šคํƒ ๊ฐ„์†Œํ™”

๊ฐ€์žฅ ๋จผ์ € ์ฐฉ์ˆ˜ํ•œ ์ผ์€ ํ˜‘์—… ํ™˜๊ฒฝ์˜ ํ‘œ์ค€ํ™”์˜€๋‹ค. 13๊ฐœ์— ๋‹ฌํ•˜๋˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ํ”Œ๋žซํผ์„ 4๊ฐœ๋กœ ์ค„์ด๊ณ , ๋‹จ์ผ ๋กœ๊ทธ์ธ ์ฒด๊ณ„๋ฅผ ๋„์ž…ํ–ˆ์œผ๋ฉฐ, ์Šน์ธ๋œ ๋„๊ตฌ๋“ค์„ ์‚ฌ๋‚ด ์ธํŠธ๋ผ๋„ท๊ณผ ์—ฐ๋™ํ–ˆ๋‹ค. ์ด์ œ ํŒ€์€ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์ฑ„ํŒ… ์ฐฝ, ์—…๋ฌด ์ถ”์  ๋„๊ตฌ, ๋ฌธ์„œ ํฌํ„ธ ์‚ฌ์ด๋ฅผ ์˜ค๊ฐˆ ํ•„์š”๊ฐ€ ์—†์–ด์กŒ๋‹ค.

๋‹ค์Œ์œผ๋กœ๋Š” ๋ถ„์„๊ณผ ๋ณด๊ณ  ์ฒด๊ณ„๋ฅผ ์ •๋น„ํ–ˆ๋‹ค. ์—ฌ๋Ÿฌ BI ๋„๊ตฌ์— ํฉ์–ด์ ธ ์žˆ๋˜ ๋Œ€์‹œ๋ณด๋“œ๋ฅผ ๋‚จ๊ธฐ๋Š” ๋Œ€์‹ , ํ•ต์‹ฌ ์ง€ํ‘œ๋ฅผ ํ•˜๋‚˜์˜ ํ†ตํ•ฉ ํ™”๋ฉด์œผ๋กœ ๋ชจ์•˜๋‹ค. ๋˜ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค ์ฒดํฌ๋ฆฌ์ŠคํŠธ๋ฅผ ๋งˆ๋ จํ•˜๊ณ , ๋ณด๊ณ ์„œ ์Šค์ผ€์ค„๋ง์„ ์ž๋™ํ™”ํ•ด ์ˆ˜์ž‘์—…์œผ๋กœ ์ผ์ผ์ด ๋งž์ถฐ๋ณด๋Š” ๊ณผ์ •์„ ์—†์•ด๋‹ค.

์ด ์ž‘์—…์—๋Š” ์•ฝ 5๊ฐœ์›”์ด ๊ฑธ๋ ธ์ง€๋งŒ, ํšจ๊ณผ๋Š” ์ฆ‰๊ฐ์ ์ด์—ˆ๊ณ  ์ˆ˜์น˜๋กœ๋„ ๋ช…ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚ฌ๋‹ค.

  • ์ฒซ ํ•ด ์†Œํ”„ํŠธ์›จ์–ด ๋ผ์ด์„ ์Šค ๋น„์šฉ 25% ์ ˆ๊ฐ
  • ๋‚จ์€ ๋„๊ตฌ์˜ ํ™œ์„ฑ ์‚ฌ์šฉ๋ฅ  38% ์ฆ๊ฐ€
  • ๋ฒค๋” ์—ฐ๋™ ์ˆ˜๋ฅผ ์ ˆ๋ฐ˜์œผ๋กœ ์ค„์ด๋ฉฐ ๋ณด์•ˆ ๊ตฌ์กฐ ๊ฐ„์†Œํ™”
  • ์‹œ์Šคํ…œ ๊ฐ„ ์ด๋™์ด ์ค„์–ด๋“  ๋•๋ถ„์— ์ง์› ๋งŒ์กฑ๋„ ํ–ฅ์ƒ, ํŠนํžˆ ๋งค์žฅ ๊ด€๋ฆฌ์ž๋“ค์˜ ํ‰๊ฐ€๊ฐ€ ๋šœ๋ ทํ•˜๊ฒŒ ๊ฐœ์„ 

๋ช‡ ๋‹ฌ ํ›„, ํ•œ ๋ถ€์„œ์žฅ์ด โ€œ์ด์ œ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ฐพ์œผ๋ ค๊ณ  ์„ธ ์‚ฌ๋žŒ์—๊ฒŒ ์ „ํ™”ํ•  ํ•„์š”๊ฐ€ ์—†์–ด์กŒ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ์„ ๋•Œ๊ฐ€ ๊ฐ€์žฅ ์ธ์ƒ์ ์ธ ์ˆœ๊ฐ„์ด์—ˆ๋‹ค. ๊ทธ ๋ง์„ ๋“ฃ๋Š” ์ˆœ๊ฐ„, ๋„๊ตฌ ๊ฐ„์†Œํ™” ์ „๋žต์ด ํ™•์‹คํžˆ ํšจ๊ณผ๋ฅผ ๋ƒˆ๋‹ค๋Š” ๊ฑธ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

์ด ๊ฒฝํ—˜์€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์™€๋„ ์ผ์น˜ํ•œ๋‹ค. ๋ฆฌ์›Œํฌ๋“œ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, ์—ฌ๋Ÿฌ ํ˜‘์—… ๋„๊ตฌ๋ฅผ ๋™์‹œ์— ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ์ง์›์€ ํ•˜๋ฃจ์— ์ตœ๋Œ€ ํ•œ ์‹œ๊ฐ„์˜ ์ƒ์‚ฐ์„ฑ์„ ์žƒ๊ณ  ์žˆ๋‹ค. ์‹ค์ œ๋กœ ํ™•์ธํ•œ ๋ฐ์ดํ„ฐ๋„ ์ด ์ถ”์ •์น˜์™€ ๊ฑฐ์˜ ์ •ํ™•ํžˆ ๋งž์•„๋–จ์–ด์กŒ๋‹ค.

๋„๊ตฌ ๊ฐ„์†Œํ™” ์ „๋žต์—์„œ ์–ป์€ ๊ตํ›ˆ

๋Œ์ด์ผœ๋ณด๋ฉด ํŠนํžˆ ๋†€๋ผ์šด ์ ์€ ๋น„์šฉ์„ ์–ผ๋งˆ๋‚˜ ์ ˆ๊ฐํ–ˆ๋Š”์ง€๊ฐ€ ์•„๋‹ˆ๋ผ, ์กฐ์ง์˜ ์‹œ์•ผ๊ฐ€ ์–ผ๋งˆ๋‚˜ ์„ ๋ช…ํ•ด์กŒ๋А๋ƒ์˜€๋‹ค. ๋„๊ตฌ ๊ฐ„์†Œํ™”๋Š” ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์กฐ์ง ์‹œ์Šคํ…œ์„ ์ผ๊ด€๋˜๊ฒŒ ๋งŒ๋“ค์—ˆ๋‹ค. ์ค‘๋ณต๋œ ๋„๊ตฌ๊ฐ€ ์‚ฌ๋ผ์ง€์ž ํŒ€๋“ค์€ ์†Œํ”„ํŠธ์›จ์–ด๊ฐ€ ์•„๋‹ˆ๋ผ ์‹ค์ œ ํ˜‘์—…์„ ํ†ตํ•ด ๋” ๋งŽ์ด ์†Œํ†ตํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ๋ชจ๋‘๊ฐ€ ๋™์ผํ•œ ๋ฐ์ดํ„ฐ์™€ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•˜์ž ์˜์‚ฌ๊ฒฐ์ • ์†๋„๋„ ํ›จ์”ฌ ๋นจ๋ผ์กŒ๋‹ค.

ํ•œ ์ž„์›์€ โ€œ์•ˆ๊ฐœ๊ฐ€ ๊ฑทํžŒ ๋А๋‚Œโ€์ด๋ผ๊ณ ๋„ ํ‘œํ˜„ํ–ˆ๋‹ค. ๋‹จ์ˆœํžˆ ๋„๊ตฌ๊ฐ€ ์ค„์–ด๋“  ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ผํ•˜๋Š” ๋ชฉ์ ์ด ๋‹ค์‹œ ๋˜๋ ทํ•ด์กŒ๋‹ค๋Š” ์˜๋ฏธ์˜€๋‹ค.

์ด ํ”„๋กœ์ ํŠธ์—์„œ ์–ด๋ ค์› ๋˜ ๋ถ€๋ถ„์€ ๊ธฐ์ˆ ์  ์‹คํ–‰์ด ์•„๋‹ˆ์—ˆ๋‹ค. DX๊ฐ€ ๊ณง โ€˜๋„๊ตฌ๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š” ์ผโ€™์ด๋ผ๋Š” ์ธ์‹์„ ๋ฐ”๊พธ๋Š” ๊ณผ์ •์ด์—ˆ๋‹ค. ์˜ค๋žซ๋™์•ˆ ์กฐ์ง์€ ๋„์ž…ํ•œ ๊ธฐ์ˆ ์˜ ๊ฐœ์ˆ˜๋กœ ๋””์ง€ํ„ธ ์„ฑ์ˆ™๋„๋ฅผ ํŒ๋‹จํ•ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ•˜๋ฒ„๋“œ๋น„์ฆˆ๋‹ˆ์Šค๋ฆฌ๋ทฐ๋Š” ์ƒ์‚ฐ์„ฑ์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ์ด ๋„๊ตฌ ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ์‚ฌ๋žŒ๊ณผ ํ”„๋กœ์„ธ์Šค๋ผ๊ณ  ์ง€์ ํ•œ ๋ฐ” ์žˆ๋‹ค. ํ•„์ž์˜ ๊ฒฝํ—˜ ์—ญ์‹œ ์ด ์ฃผ์žฅ๊ณผ ๊ฑฐ์˜ ์œ ์‚ฌํ–ˆ๋‹ค.

ํ•ด๋‹น ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ์–ป์€ ์ฃผ์š” ๊ตํ›ˆ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ๊ฐ„์†Œํ™”๋Š” ํ˜์‹ ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๊ธฐ๋ฐ˜์ด ๋ถˆ์•ˆ์ •ํ•˜๋ฉด ํ˜์‹ ์€ ์ผ์–ด๋‚˜์ง€ ์•Š๋Š”๋‹ค. ํ†ตํ•ฉ์€ ์šด์˜๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ •์‹ ์ ์ธ ์—ฌ์œ ๋„ ํ™•๋ณดํ•ด ์ค€๋‹ค.
  • ๋„๊ตฌ ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ํ•„์ˆ˜๋‹ค. ์ƒˆ๋กœ์šด ํ”Œ๋žซํผ์€ ๋ฐ˜๋“œ์‹œ ์กด์žฌ ์ด์œ ๋ฅผ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๋ฉฐ, ๊ธฐ์กด ์‹œ์Šคํ…œ ๋Œ€๋น„ ์–ด๋–ค ๊ฐ€์น˜๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š”์ง€ ๋ถ„๋ช…ํ•ด์•ผ ํ•œ๋‹ค.
  • ๋ฌธํ™”๊ฐ€ ๋ณ€ํ™”๋ฅผ ๋ฐ›์•„๋“ค์ด๋Š” ํž˜์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๋„๊ตฌ๋ฅผ ์—†์• ๋Š” ๊ฒฐ์ •์ด ์™œ ํ•„์š”ํ•œ์ง€ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋ฉด, ์ง์›์€ ์ด๋ฅผ ์œ„ํ˜‘์œผ๋กœ ๋А๋‚„ ์ˆ˜ ์žˆ๋‹ค. ํˆฌ๋ช…ํ•˜๊ฒŒ ์†Œํ†ตํ•˜๊ณ  ์ดํ•ด์‹œํ‚ค๋Š” ๊ฒƒ์ด ๊ฒฐ์ •์ ์ธ ์ฐจ์ด๋ฅผ ๋งŒ๋“ ๋‹ค.

DX๋Š” ๋” ๋งŽ์€ ๊ธฐ์ˆ ์„ ๋น ๋ฅด๊ฒŒ ๋„์ž…ํ•˜๋Š” ๊ฒฝ์Ÿ์ด ์•„๋‹ˆ๋‹ค. ์˜ฌ๋ฐ”๋ฅธ ๊ธฐ์ˆ ์ด ์กฐ์ง์— ์ง€์†์ ์ธ ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•˜๋„๋ก ๋งŒ๋“œ๋Š” ์ผ์— ๊ฐ€๊น๋‹ค.

์žฅ๊ธฐ์ ์ธ ๊ธฐ๋ฐ˜ ๊ตฌ์ถ•

๋„๊ตฌ ํ†ตํ•ฉ ๋‹จ๊ณ„๋ฅผ ๋งˆ์นœ ๋’ค, ํ•ด๋‹น ๋ฆฌํ…Œ์ผ ๊ธฐ์—…์˜ IT ๋กœ๋“œ๋งต์€ ์™„์ „ํžˆ ๋‹ฌ๋ผ์กŒ๋‹ค. ์„œ๋กœ ๋‹จ์ ˆ๋œ ์ˆ˜์‹ญ ๊ฐœ์˜ ํ”Œ๋žซํผ์„ ์œ ์ง€ํ•˜๋Š” ๋Œ€์‹ , ํ†ตํ•ฉ ์ตœ์ ํ™”์™€ ์ง์› ๊ต์œก, ๋ถ„์„ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”์— ๋” ํˆฌ์žํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์„ ์•ˆ์ •์ ์œผ๋กœ ๋‹ค์ ธ๋†“์ž, ์ดํ›„์—๋Š” AI ๊ธฐ๋ฐ˜ ์ˆ˜์š” ์˜ˆ์ธก, ๊ณ ๋„ํ™”๋œ ๊ฐœ์ธํ™”, ํ”„๋กœ์„ธ์Šค ์ž๋™ํ™” ๊ฐ™์€ ์‹ ๊ธฐ์ˆ ์„ ๋„์ž…ํ•˜๋”๋ผ๋„ ํ™•์‹ ์„ ๊ฐ–๊ณ  ์ถ”์ง„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๋งŽ์€ ์กฐ์ง์ด ์ด ๋ณ€ํ™”๋ฅผ ๊ฐ„๊ณผํ•œ๋‹ค. ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ์ข‡๋Š” ์ผ์ด ์–ธ์ œ๋‚˜ ๋งค๋ ฅ์ ์œผ๋กœ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ์ „ํ™˜์€ ์‚ฌ๋žŒ๊ณผ ํ”„๋กœ์„ธ์Šค๊ฐ€ ํ•จ๊ป˜ ์ž‘๋™ํ•˜๋Š” ๋ฐฉ์‹์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ์„œ ์‹œ์ž‘๋œ๋‹ค.

1๋…„ ๋’ค, ํ•ด๋‹น ๊ธฐ์—…์˜ CIO์™€ ๋‹ค์‹œ ๋งŒ๋‚œ ์ž๋ฆฌ์—์„œ ๊ทธ๋Š” โ€œ์ƒˆ AI ๋„๊ตฌ ๋„์ž…์ด ์•„๋‹ˆ๋ผ ๋ถˆํ•„์š”ํ•œ ์š”์†Œ๋ฅผ ์ œ๊ฑฐํ•œ ๊ฒƒ์ด ๊ฐ€์žฅ ์ž˜ํ•œ ๊ฒฐ์ •์ด์—ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์ด ๋ง์€ ํ˜์‹ ์˜ ์—ญ์„ค์„ ์ •ํ™•ํžˆ ๋ณด์—ฌ์ค€๋‹ค. ์ง„์ „์€ ๋•Œ๋กœ ๋ฌด์–ธ๊ฐ€๋ฅผ ๋”ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๋œ์–ด๋‚ด๋Š” ๋ฐ์„œ ์‹œ์ž‘๋œ๋‹ค.

* Pawan Deep Singh๋Š” ๋”œ๋กœ์ดํŠธ ์†Œ์† ์ปจ์„คํ„ดํŠธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ๊ธ€์€ ๋”œ๋กœ์ดํŠธ ๋ฐ ํŠน์ • ๊ณ ๊ฐ์‚ฌ์˜ ์ž…์žฅ์ด ์•„๋‹ˆ๋‹ค.ย dl-ciokorea@foundryco.com

โ€œ์˜ˆ์ธกยท๋ถ„์„ยท์ž๊ฐ€ ์น˜์œ ๊นŒ์ง€โ€ ํ˜„๋Œ€ IT๋ฅผ ์ง€ํƒฑํ•˜๋Š” AIOps ๋„๊ตฌ ํ†ฑ 14

20 November 2025 at 22:44

AI๊ฐ€ ์ฒ˜์Œ์œผ๋กœ ๊ฐ•๋ ฅํ•œ ์—ญํ• ์„ ๋ฐœํœ˜ํ•œ ๋ถ„์•ผ๋Š” AI๋ฅผ ๋งŒ๋“ค์–ด๋‚ธ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ ๋‚ด๋ถ€์˜€๋‹ค. ์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ์€ ํ•˜๋“œ์ฝ”๋”ฉ๋œ ์ˆ˜์น˜๋กœ ๊ตฌ์„ฑ๋ผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜๊ธฐ์— ์ตœ์ ์˜ ๊ตฌ์กฐ์ด๋‹ค. ์ž์œจ์ฃผํ–‰์ฐจ๋Š” ์•ˆ๊ฐœ, ๋ณดํ–‰์ž, ๋น„ ๊ฐ™์€ ๋ณ€์ˆ˜์— ์‹ ๊ฒฝ ์จ์•ผ ํ•œ๋‹ค. ๋ฐ˜๋ฉด ๊ธฐ๊ณ„ ๋‚ด๋ถ€๋Š” ์ •ํ™•ํ•œ ๊ฐ’์œผ๋กœ ๊ตฌ์„ฑ๋ผ ์„ ๋ช…ํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ฆฐ๋‹ค. ํ•ญ์ƒ ๋‹จ์ˆœํ•˜์ง€๋Š” ์•Š์ง€๋งŒ ๋ˆˆ๋ณด๋ผ ์†์— ์ฐจ๋Ÿ‰์„ ์šด์ „ํ•˜๋Š” ์ผ๋ณด๋‹ค ํ›จ์”ฌ ์‰ฝ๋‹ค.

AI๊ฐ€ ๊ฐ€์žฅ ํฐ ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ถ„์•ผ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํ’๋ถ€ํ•œ ๋ฐฑ์˜คํ”ผ์Šค ์‹ค๋ฌด์ธ ๋ฐ๋ธŒ์˜ต์Šค ์˜์—ญ์ด๋‹ค. ์šด์˜ ๋‹ด๋‹น ์กฐ์ง์€ AIOps๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ์ œ๊ณต๋˜๋Š” ๋‹ค์–‘ํ•œ ์ž๋™ํ™”ยทํšจ์œจํ™” ๋„๊ตฌ์™€ ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•ด ์ตœ์‹  AI ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ธฐ๋ฐ˜์œผ๋กœ IT ์ธํ”„๋ผ๋ฅผ ์œ ์ง€ํ•œ๋‹ค.

AIOps ํ”Œ๋žซํผ์ด ์ˆ˜ํ–‰ํ•˜๋Š” ์—ญํ• 

AIOps์˜ ๊ธฐ๋ณธ ๊ธฐ๋Šฅ ๊ฐ€์šด๋ฐ ์ผ๋ถ€๋Š” ํด๋ผ์šฐ๋“œ ์ธ์Šคํ„ด์Šค์— ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๋” ๋น ๋ฅด๊ฒŒ ๋ฐฐํฌํ•˜๋„๋ก ์†๋„๋ฅผ ๋†’์ด๋Š” ์ž‘์—…์ด๋‹ค. ๋ฐ๋ธŒ์˜ต์Šค ์กฐ์ง์ด ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ๋“  ์—…๋ฌด๋Š” ๋ถ€ํ•˜๋ฅผ ๊ฐ์‹œํ•˜๊ณ  ์ˆ˜์š”๋ฅผ ์˜ˆ์ธกํ•˜๋ฉฐ ์š”์ฒญ์ด ๊ธ‰์ฆํ•˜๋ฉด ์ธ์Šคํ„ด์Šค๋ฅผ ์ž๋™์œผ๋กœ ํ™•์žฅํ•˜๋Š” ๋” ๋˜‘๋˜‘ํ•œ ์ž๋™ํ™” ๊ธฐ๋Šฅ์œผ๋กœ ๊ฐ•ํ™”๋๋‹ค.

AIOps ๋„๊ตฌ๋Š” ๋จธ์‹  ๋ถ€ํ•˜๋ฅผ ์˜ˆ์ธกํ•˜๊ณ  ์‹ค์ œ ์ˆ˜์น˜๊ฐ€ ์˜ˆ์ƒ๊ณผ ๋‹ฌ๋ผ์ง€๋Š”์ง€ ์ง€์†์ ์œผ๋กœ ๊ฐ์‹œํ–ˆ๋‹ค. ์ด์ƒ ์ง•ํ›„๋Š” ์ด๋ฉ”์ผ, ์Šฌ๋ž™ ๋ฉ”์‹œ์ง€, ๊ทธ๋ฆฌ๊ณ  ํŽธ์ฐจ๊ฐ€ ์ถฉ๋ถ„ํžˆ ํฌ๋ฉด ํ˜ธ์ถœ๊ธฐ ์•Œ๋ฆผ์œผ๋กœ ์ด์–ด์ง€๋Š” ๊ฒฝ๋ณด๋กœ ์ „ํ™˜๋๋‹ค. AIOps ์Šคํƒ์˜ ์ƒ๋‹น ๋ถ€๋ถ„์€ ๊ฒฝ๋ณด๋ฅผ ๊ด€๋ฆฌํ•ด ์‚ฌ์†Œํ•œ ๋ฌธ์ œ๋กœ ํšŒ์˜๋‚˜ ๋ฐค์‹œ๊ฐ„์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š๋„๋ก ์กฐ์ •ํ•˜๋Š” ๊ธฐ๋Šฅ์— ์‚ฌ์šฉ๋๋‹ค.

์ด๋Ÿฐ ๋น„์ •์ƒ ํ™œ๋™ ํƒ์ง€ ๊ธฐ๋Šฅ์€ ๋ณด์•ˆ ๊ฐ•ํ™”์—๋„ ํ™œ์šฉ๋˜๋ฉฐ, ๋” ๋ณต์žกํ•œ ์˜์—ญ์ธ ๋งŒํผ AIOps ๋„๊ตฌ๊ฐ€ ๋ณด์•ˆ ์กฐ์ง๊ณผ ๋ฐ๋ธŒ์˜ต์Šค ์กฐ์ง ์–‘์ชฝ์—์„œ ์‚ฌ์šฉ๋๋‹ค.

๊ณ ๊ธ‰ AIOps ๋„๊ตฌ๋Š” ๊ทผ๋ณธ ์›์ธ ๋ถ„์„ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•ด ํ˜„๋Œ€์ ์ธ ๊ธฐ์—…์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ๋ฌธ์ œ๊ฐ€ ์—ฌ๋Ÿฌ ์‹œ์Šคํ…œ์„ ์–ด๋–ป๊ฒŒ ์—ฐ์‡„์ ์œผ๋กœ ํ”๋“œ๋Š”์ง€ ํ๋ฆ„๋„๋ฅผ ์ž๋™ ์ƒ์„ฑํ–ˆ๋‹ค. ๊ณผ๋ถ€ํ•˜๊ฐ€ ๊ฑธ๋ฆฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋Š” API ๊ฒŒ์ดํŠธ์›จ์ด๋ฅผ ๋А๋ฆฌ๊ฒŒ ํ•˜๊ณ , ์ด๋กœ ์ธํ•ด ์›น ์„œ๋น„์Šค๊นŒ์ง€ ๋ฉˆ์ถ˜๋‹ค. ์ด๋ ‡๊ฒŒ ์ž๋™ ์ƒ์„ฑ๋œ ์›Œํฌํ”Œ๋กœ์šฐ ์นดํƒˆ๋กœ๊ทธ๋Š” ๋ฌธ์ œ์˜ ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ๋ฅผ ๋ฌธ์„œํ™”ํ•ด ๊ทผ๋ณธ ์›์ธ์„ ๋” ๋น ๋ฅด๊ฒŒ ์ฐพ๋Š” ๋ฐ ๋„์›€์ด ๋๋‹ค.

์ตœ๊ทผ์—๋Š” ์™„์ „ํ•œ ์ž๋™ ์šด์˜์„ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์ž๊ฐ€ ์น˜์œ  ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ํ™•๋Œ€๋๋‹ค. ์ผ๋ถ€ ๊ด€๋ฆฌ์ž๋Š” AIOps์— ์ง€๋‚˜์นœ ๊ถŒํ•œ์„ ๋ถ€์—ฌํ•˜๋Š” ๋ฐ ๋ถˆ์•ˆ๊ฐ์„ ๋А๋ผ๊ณ , ๋˜ ๋‹ค๋ฅธ ๊ด€๋ฆฌ์ž๋Š” ์‹œ์Šคํ…œ์ด ๋” ๋งŽ์€ IT ํ‹ฐ์ผ“์„ ์Šค์Šค๋กœ ํ•ด๊ฒฐํ•˜๋Š” ๋Šฅ๋ ฅ์— ๊ด€์‹ฌ์„ ๋ณด์˜€๋‹ค.

์ƒ์„ฑํ˜• AI : ์ง„ํ™”ํ•˜๋Š” AIOps ์ธํ„ฐํŽ˜์ด์Šค

์ผ๋ถ€ AIOps ํ”Œ๋žซํผ์€ ์ƒ์„ฑํ˜• AI๋ฅผ ํ†ตํ•ฉํ•ด ์šด์˜ ์ธ๋ ฅ์ด ์ž์—ฐ์–ด ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ๋ฐฉ์‹์œผ๋กœ ๋„๊ตฌ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋„๋ก ์ง€์›ํ–ˆ๋‹ค. ๋Œ€ํ™” ๋‚ด์šฉ์€ ์—ฌ์ „ํžˆ ์ธํ”„๋ผ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ๋งค์šฐ ๊ธฐ์ˆ ์ ์ธ ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ํฌํ•จํ•˜์ง€๋งŒ, SQL ๊ฐ™์€ ํ˜•์‹ ์–ธ์–ด๊ฐ€ ์•„๋‹ˆ๋ผ ์‚ฌ๋žŒ์˜ ์–ธ์–ด๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค.

์ด ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋ฐ˜์‘์€ ์—‡๊ฐˆ๋ ธ๋‹ค. ์ผ๋ถ€ ์‚ฌ์šฉ์ž๋Š” ์ด๋ฅผ ํ†ตํ•ด ์ถฉ๋ถ„ํ•œ ๊ต์œก์„ ๋ฐ›์ง€ ์•Š์€ ์ธ๋ ฅ๋„ IT ํ™˜๊ฒฝ์„ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ณด์•˜๋‹ค. ๋ฐ˜๋ฉด ๋ฐฐํฌ ๊ตฌ์กฐ์˜ ์„ธ๋ถ€ ๊ธฐ์ˆ  ๋…ผ์˜๊ฐ€ ์ค‘์‹ฌ์ด ๋˜๋Š” ๋งŒํผ ์ž์—ฐ์–ด ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ์ œ๊ณต๋˜์–ด๋„ ๋ณธ์งˆ์ ์œผ๋กœ ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€์ง€ ์•Š์„ ๊ฒƒ์ด๋ผ๊ณ  ๋ณด๋Š” ์˜๊ฒฌ๋„ ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ์ƒ์„ฑํ˜• AI์— ํšŒ์˜์ ์ธ ์‚ฌ์šฉ์ž์กฐ์ฐจ ์ž์—ฐ์–ด ๊ธฐ๋ฐ˜ ๋Œ€ํ™” ๊ธฐ๋Šฅ ์ž์ฒด์˜ ๋งค๋ ฅ์€ ์ธ์ •ํ•˜๋Š” ๋ถ„์œ„๊ธฐ์ด๋‹ค.

AIOps ํ”Œ๋žซํผ ์„ ํƒ ์‹œ ๊ณ ๋ ค์‚ฌํ•ญ

์ด๋ฒˆ ์กฐ์‚ฌ์— ํฌํ•จ๋œ ์ƒ๋‹น์ˆ˜ ๋„๊ตฌ๋Š” ์˜ค๋žœ ์—ญ์‚ฌ๋ฅผ ๊ฐ€์ง„ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์ถ•๋๋‹ค. ์ดˆ๊ธฐ์—๋Š” ๋ณต์žกํ•œ ๊ธฐ์—… ์Šคํƒ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ด๋ฒคํŠธ๋ฅผ ์ถ”์ ํ•˜๋Š” ๋„๊ตฌ์˜€๊ณ  ์ดํ›„ AI ๊ธฐ๋Šฅ์ด ์ถ”๊ฐ€๋๋‹ค. ์ผ๋ถ€ ๋„๊ตฌ๋Š” AI ์—ฐ๊ตฌ์—์„œ ์ถœ๋ฐœํ•ด ์™ธ์—ฐ์„ ํ™•๋Œ€ํ•œ ๊ฒฝ์šฐ๋„ ์žˆ๋‹ค. ์–ด๋–ค ์ถœ๋ฐœ์ ์„ ๊ฐ€์กŒ๋“  AIOps ํ”Œ๋žซํผ์„ ํ‰๊ฐ€ํ•˜๋Š” ์กฐ์ง์ด ๊ฐ€์žฅ ๋จผ์ € ํ™•์ธํ•ด์•ผ ํ•  ์š”์†Œ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ์ปค๋„ฅํ„ฐ์˜ ๋ฒ”์œ„์ด๋‹ค.

AIOps ํ”Œ๋žซํผ์˜ ํ†ตํ•ฉ ์ˆ˜์ค€์€ ๋„๊ตฌ๋งˆ๋‹ค ์ฐจ์ด๊ฐ€ ํฌ๋‹ค. ๋Œ€๋ถ€๋ถ„ ๊ธฐ๋ณธ์ ์ธ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๊ฒฝ๋กœ๋Š” ์ œ๊ณตํ•˜์ง€๋งŒ, ์ผ๋ถ€ ์ปค๋„ฅํ„ฐ๋Š” ๋‹ค๋ฅธ ๋„๊ตฌ๋ณด๋‹ค ๋” ๋›ฐ์–ด๋‚œ ์—ฐ๊ฒฐ์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค. AIOps ๋„์ž…์„ ๊ฒ€ํ† ํ•˜๋Š” ์กฐ์ง์€ ๊ฐ ํ”Œ๋žซํผ์ด ๊ธฐ์—… ๋‚ด๋ถ€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ์„œ๋น„์Šค์™€ ์–ผ๋งˆ๋‚˜ ์ž˜ ์—ฐ๋™๋˜๋Š”์ง€ ๋ฐ˜๋“œ์‹œ ํ™•์ธํ•ด์•ผ ํ•œ๋‹ค.

ํ˜„์žฌ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ฃผ์š” AIOps ํ”Œ๋žซํผ

๊ธฐ์—… IT ์ธํ”„๋ผ๋ฅผ ์›ํ™œํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋Š” ์ž‘์—…์„ ๋‹จ์ˆœํ™”ํ•˜๋Š” ๋Œ€ํ‘œ AIOps ๋„๊ตฌ 14์ข…์„ ์†Œ๊ฐœํ•œ๋‹ค.

๋น…ํŒ๋‹ค(BigPanda)

๋น…ํŒ๋‹ค๋Š” ๋น„์ •์ƒ ํ–‰๋™์„ ํƒ์ง€ํ•˜๊ณ  ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋ฐฐ์ •๋œ ์กฐ์ง์˜ ์—…๋ฌด๋ฅผ ์กฐ์œจํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ๋น…ํŒ๋‹ค ํ”Œ๋žซํผ์€ ์ฃผ์š” ํด๋ผ์šฐ๋“œ ์„œ๋น„์Šค ์—…์ฒด์™€ ํ†ตํ•ฉ๋˜๋Š” ๊ทผ๋ณธ ์›์ธ ๋ถ„์„๊ณผ ์‚ฌ์ „ ์ด๋ฒคํŠธ ํƒ์ง€ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. L1 ์˜คํ† ๋ฉ”์ด์…˜ ๊ธฐ๋Šฅ์€ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ ์ดํ›„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ์ž‘์—… ์ผ๋ถ€๋ฅผ ์ž๋™ํ™”ํ•ด AI ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๊ฐ€ ๋” ๋น ๋ฅด๊ณ  ๋˜‘๋˜‘ํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋„๋ก ์ง€์›ํ•œ๋‹ค. ๋น…ํŒ๋‹ค๋Š” ์ง€๋ผ๋‚˜ ์„œ๋น„์Šค๋‚˜์šฐ ๊ฐ™์€ ์‹œ์Šคํ…œ์— ํ‹ฐ์ผ“์„ ์ƒ์„ฑํ•˜๊ณ , ๊ฒฝ๋ณด๋ฅผ ์ „์†กํ•˜๋ฉฐ, ๊ทผ๋ณธ ์›์ธ์„ ๊ฒจ๋ƒฅํ•œ ๋กค๋ฐฑ ์ „๋žต์„ ํฌํ•จํ•œ ์›Œํฌํ”Œ๋กœ์šฐ ๊ณ„ํš์„ ์ œ๊ณตํ•ด IT ์—…๋ฌด ํ๋ฆ„์„ ๋‹จ์ˆœํ™”ํ•œ๋‹ค. ๋ชฉํ‘œ๋Š” ํ™•์žฅ๋˜๋Š” ๊ธฐ์—… ์Šคํƒ์„ ์ดํ•ดํ•˜๋Š” ์Šค๋งˆํŠธ ์ง€์‹ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ  ์•ˆ์ •์  ์šด์˜์„ ์œ„ํ•œ ์ง€๋Šฅํ˜• ๊ณ„ํš์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

BMC ํ—ฌ๋ฆญ์Šค(BMC Helix)

ITSM ์ „๋ฌธ๊ฐ€๋Š” ์ข…์ข… ๋ฌธ์ œ ํ•ด๊ฒฐ๊ณผ ์Šคํƒ ์ง„ํ™”๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด BMC ํ—ฌ๋ฆญ์Šค ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•œ๋‹ค. BMC์˜ AI ๊ธฐ๋ฐ˜ ์†”๋ฃจ์…˜์€ ๊ทผ๋ณธ ์›์ธ ๋ถ„์„๊ณผ ๋”๋ถˆ์–ด ํŒ€ ๊ตฌ์„ฑ์› ๋ˆ„๊ตฌ๋‚˜ ๋ฌธ์ œ๋ฅผ ์ง„๋‹จํ•˜๊ณ  ํ•ด๊ฒฐํ•˜๋„๋ก ๋•๋Š” ๋Œ€ํ™”ํ˜• ์ธํ„ฐํŽ˜์ด์Šค์— ์ค‘์ ์„ ๋‘”๋‹ค. BMC ํ—ฌ๋ฆญ์Šค ํ”Œ๋žซํผ์€ AIOps๋‚˜ ๋ฐฑ์—”๋“œ ์›Œํฌํ”Œ๋กœ์šฐ์—๋งŒ ์ง‘์ค‘ํ•˜์ง€ ์•Š๊ณ , ๊ณ ๊ฐ ์„œ๋น„์Šค ๊ด€๋ฆฌ๋‚˜ ๋ณด์•ˆ ์šด์˜(SecOps)์ฒ˜๋Ÿผ ์™ธ๋ถ€ ๋Œ€์‘์„ ์ง€์›ํ•˜๋Š” ํ†ตํ•ฉ ์ œํ’ˆ๋„ ํ•จ๊ป˜ ์ œ๊ณตํ•œ๋‹ค.

๋ฐ์ดํ„ฐ๋…(Datadog)

๋ฐ์ดํ„ฐ๋…์€ ์›Œ์น˜๋…์ด๋‚˜ ๋น„์ธ  ๊ฐ™์€ AI ๋„๊ตฌ๋ฅผ ์„ฑ๋Šฅ ๊ด€๋ฆฌ ์ œํ’ˆ๊ตฐ์— ์ถ”๊ฐ€ํ•ด ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ์‹œ์ž‘๋  ๋•Œ ๋ฐ๋ธŒ์˜ต์Šค ์กฐ์ง์ด ๋” ์ง€๋Šฅ์ ์ธ ๊ฒฝ๊ณ ๋ฅผ ๋ฐ›๋„๋ก ์ง€์›ํ•œ๋‹ค. ์ด ๋„๊ตฌ์—๋Š” ๊ณ„์ ˆ์„ฑ๊ณผ ์‹œ๊ฐ„๋Œ€์— ๋”ฐ๋ผ ์กฐ์ •๋œ ๊ธฐ๋ก ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ต์…˜์ด ํฌํ•จ๋œ๋‹ค. ์ง€์—ฐ์‹œ๊ฐ„, RAM ์‚ฌ์šฉ๋Ÿ‰, ๋„คํŠธ์›Œํฌ ๋Œ€์—ญํญ ๊ฐ™์€ ์ง€ํ‘œ๊ฐ€ ๊ธฐ์ค€์—์„œ ๋ฒ—์–ด๋‚˜๋ฉด ๊ฒฝ๋ณด๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋ฐ์ดํ„ฐ๋…์€ ์‚ฌ๋žŒ์ด ๊ฐœ์ž…ํ•  ํ•„์š”์„ฑ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋„๊ตฌ๊ฐ€ ์ž์œจ์ ์œผ๋กœ ํ–‰๋™ํ•˜๋Š” ์—์ด์ „ํŠธํ˜• ์„œ๋น„์Šค๋ฅผ ํ™•๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์˜ค๋ฅ˜๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ์ฝ”๋“œ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์‹ฌ์ง€์–ด ์žฌ์ž‘์„ฑํ•˜๋Š” ๊ธฐ๋Šฅ๋„ ๋ฏธ๋ฆฌ๋ณด๊ธฐ ํ˜•ํƒœ๋กœ ์ œ๊ณตํ•œ๋‹ค. ์ด ๋„๊ตฌ๋Š” ๋ฐ์ดํ„ฐ๋… ๋ณด์•ˆ ํƒ์ง€ ์‹œ์Šคํ…œ๊ณผ ํ†ตํ•ฉ๋ผ ์žˆ์œผ๋ฉฐ, ๊ฐ€์ƒ๋จธ์‹ , ํด๋ผ์šฐ๋“œ ์ธ์Šคํ„ด์Šค, ์„œ๋ฒ„๋ฆฌ์Šค ํ™˜๊ฒฝ์—์„œ๋„ ์ž‘๋™ํ•œ๋‹ค.

๋””์ง€ํ…Œ์ดํŠธ ์ด๊ทธ๋‹ˆ์˜ค(Digitate ignio)

๋””์ง€ํ…Œ์ดํŠธ์˜ ์ด๊ทธ๋‹ˆ์˜ค AIOps ํ”Œ๋žซํผ์€ ํ์‡„ ๋ฃจํ”„ ์ž๋™ํ™”์— ์ค‘์ ์„ ๋‘์–ด IT ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ์šด์˜์— ๋ฏผ์ฒฉ์„ฑ๊ณผ ๋ณต์›๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ํ”Œ๋žซํผ์€ ๋‚ด๋ถ€ ๋ฐ ์™ธ๋ถ€ ๋น„์ฆˆ๋‹ˆ์Šค ์ƒํƒœ๋ฅผ ๋ชจ๋‘ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋ฉฐ, ํŠนํžˆ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ๋น„์šฉ ์ตœ์ ํ™”์— ์ง‘์ค‘ํ•œ๋‹ค. ๋””์ง€ํ…Œ์ดํŠธ๋Š” ์ด ์ž๋™ํ™” ๋„๊ตฌ ๋ชจ์Œ์ด ์ „์ฒด ๋ฌธ์ œ์˜ 40%๋ฅผ ์‚ฌ์ „์— ์ฒ˜๋ฆฌํ•˜๊ณ  ์ผ๋ฐ˜ ๊ตฌ์„ฑ์—์„œ ์ˆ˜์ž‘์—…์„ 60% ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ์ˆ˜๋ฐฑ ๊ฐœ์˜ ํ†ตํ•ฉ ๊ธฐ๋Šฅ์„ ์ง€์›ํ•˜๋ฉฐ, ๋‹ค๋ฅธ ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ๋กœ์šฐ์ฝ”๋“œ ๋„๊ตฌ๋„ ์ œ๊ณตํ•œ๋‹ค. ๋””์ง€ํ…Œ์ดํŠธ๋Š” ERPOps๋‚˜ ์กฐ๋‹ฌ ๊ณผ์ •์—์„œ ์›Œํฌ๋กœ๋“œ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ  ๋ฌธ์ œ๋ฅผ ์ถ”์ ยทํ•ด๊ฒฐํ•˜๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ ์ œํ’ˆ๋„ ์ œ๊ณตํ•œ๋‹ค.

๋‹ค์ด๋‚˜ํŠธ๋ ˆ์ด์Šค(Dynatrace)

๋‹ค์ด๋‚˜ํŠธ๋ ˆ์ด์Šค์˜ ํ•ต์‹ฌ ์ „๋žต ๊ธฐ์ˆ ์€ ๋ถ„์„, AI, ์ž๋™ํ™”์ด๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ LLM์€ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ VM, ์ปจํ…Œ์ด๋„ˆ, ๊ธฐํƒ€ ์„œ๋ฒ„๋ฆฌ์Šค ํ™˜๊ฒฝ์„ ์ถ”์ ํ•˜๋Š” ํฌ๊ด„์  ๋ชจ๋‹ˆํ„ฐ๋ง ๋„๊ตฌ์— ํฌํ•จ๋œ๋‹ค. ๋กœ๊ทธ ํŒŒ์ผ, ์ด๋ฒคํŠธ ๋ณด๊ณ ์„œ, ๊ธฐํƒ€ ํŠธ๋ฆฌ๊ฑฐ๊ฐ€ ์ž…๋ ฅ๋˜๊ณ , ๋‹ค์ด๋‚˜ํŠธ๋ ˆ์ด์Šค๋Š” ์ด๋ฅผ ์ •ํ™•ํ•œ AI ๊ธฐ๋ฐ˜ ๊ฒฐ๊ณผ๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ํ•ต์‹ฌ์—๋Š” ํŠน์ • ์ด๋ฒคํŠธ ๋˜๋Š” ์ด๋ฒคํŠธ ๋ฌถ์Œ์„ ๊ฐ์‹œํ•˜๋„๋ก ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์—์ด์ „ํŠธ ๋ชจ์Œ์ด ํฌํ•จ๋œ๋‹ค. ์ค‘์‹ฌ์— ์žˆ๋Š” AI์ธ ๋ฐ์ด๋น„์Šค(Davis)๋Š” ๊ฒฐ์ •๋ก ์  AI๋กœ, ํ๋ฆ„๋„์™€ ํŠธ๋ฆฌ๋ฅผ ๊ตฌ์„ฑํ•ด ์ด์ƒ์ด๋‚˜ ์žฅ์• ์˜ ๊ทผ๋ณธ ์›์ธ์„ ์ •ํ™•ํ•˜๊ฒŒ ์ฐพ์•„๋‚ธ๋‹ค. ๋ฐ์ด๋น„์Šค๋Š” ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ๋ฅผ ์ €์žฅํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ ˆ์ดํฌํ•˜์šฐ์Šค ๊ทธ๋ ˆ์ผ, ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ํ† ํด๋กœ์ง€๋ฅผ ๋งตํ•‘ํ•˜๋Š” ์Šค๋งˆํŠธ์Šค์ผ€์ดํ”„, ์ˆ˜์ง‘๋œ ์ •๋ณด๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ์˜คํ† ๋ฉ”์ด์…˜์—”์ง„๊ณผ ํ•จ๊ป˜ ์ž‘๋™ํ•œ๋‹ค. ์ ์ ˆํžˆ ๊ตฌ์„ฑํ•˜๋ฉด ์ธ์Šคํ„ด์Šค ์žฌ๋ถ€ํŒ… ๊ฐ™์€ ์ˆ˜์ • ์ž‘์—…์„ ์Šค์Šค๋กœ ํŠธ๋ฆฌ๊ฑฐํ•ด ์‚ฌ๋žŒ์˜ ๊ฐœ์ž…์„ ๊ธฐ๋‹ค๋ฆฌ์ง€ ์•Š๊ณ  ๋ฌธ์ œ์˜ ์›์ธ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค.

๊นƒํ—ˆ๋ธŒ ์ฝ”ํŒŒ์ผ๋Ÿฟ(GitHub Copilot)

๋Œ€๋ถ€๋ถ„ AIOps ๋„๊ตฌ๋Š” ์ด๋ฏธ ์‹คํ–‰ ์ค‘์ธ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์ง€์›ํ•˜๋„๋ก ์„ค๊ณ„๋๋‹ค. ๊นƒํ—ˆ๋ธŒ ์ฝ”ํŒŒ์ผ๋Ÿฟ์€ ๋” ์ด๋ฅธ ๋‹จ๊ณ„์—์„œ ์‹œ์ž‘ํ•ด ์ฝ”๋“œ๊ฐ€ ์ž‘์„ฑ๋  ๋•Œ ๋„์›€์„ ์ค€๋‹ค. ๊นƒํ—ˆ๋ธŒ๋Š” โ€œ์—๋””ํ„ฐ๋ฅผ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ๊ฐ€์†๊ธฐ๋กœ ๋งŒ๋“ค๋ผโ€๋ผ๊ณ  ํ™๋ณดํ•œ๋‹ค. ์ด ๋„๊ตฌ๋Š” ํ”„๋กœ๊ทธ๋ž˜๋จธ๊ฐ€ ์ž…๋ ฅํ•˜๋Š” ๋‚ด์šฉ์„ ์ง€์ผœ๋ณด๋ฉฐ ์™„์„ฑ๋œ ์ฝ”๋“œ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ์˜คํ”ˆ์†Œ์Šค ์ฝ”๋“œ๋กœ ํ•™์Šตํ•œ ์ฝ”ํŒŒ์ผ๋Ÿฟ์˜ ์ œ์•ˆ์€ ์ผ์ • ์ˆ˜์ค€์˜ ํ˜„์‹ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ƒˆ ์ฝ”๋“œ์˜ ์ตœ์ข… ์ €์ž๊ฐ€ ๋ˆ„๊ตฌ์ธ์ง€, AI๋ฅผ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€, ์ˆ˜๋งŽ์€ ์˜คํ”ˆ์†Œ์Šค ๊ฐœ๋ฐœ์ž์—๊ฒŒ ์–ด๋–ค ๋ฐฉ์‹์˜ ๊ณต๋กœ๋‚˜ ์ธ์ •์ด ํ•„์š”ํ•œ์ง€๋Š” ์—ฌ์ „ํžˆ ๋…ผ์Ÿ๊ฑฐ๋ฆฌ๋‹ค. ๋‹ต์€ โ€œ๊ทธ๋Ÿด ์ˆ˜๋„ ์žˆ๋‹คโ€ ์ •๋„๋กœ ๋ชจํ˜ธํ•˜๋‹ค. ๋” ํฐ ์งˆ๋ฌธ์€ ์ฝ”ํŒŒ์ผ๋Ÿฟ์ด ์‚ฌ์šฉ์ž์˜ ์ฝ”๋“œ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์ดํ•ดํ•˜๋ฉฐ ์ž๋™์™„์„ฑ๋ณด๋‹ค ์‹ค์ œ๋กœ ์–ผ๋งˆ๋‚˜ ๋” ๋‚˜์€๊ฐ€์ด๋‹ค. ์ด์— ๋Œ€ํ•œ ๋‹ต์€ ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ ์ฝ”ํŒŒ์ผ๋Ÿฟ์ด ๋” ์ž˜ ์•ˆ๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

IBM ์™“์Šจ ํด๋ผ์šฐ๋“œ ํŒฉ(IBM Watson Cloud Pak for AIOps)

IBM์€ ์™“์Šจ ๋ธŒ๋žœ๋“œ AI์™€ ํด๋ผ์šฐ๋“œ ์ œํ’ˆ๊ตฐ์„ ํ†ตํ•ฉํ•ด AIOps์šฉ ์™“์Šจ ํด๋ผ์šฐ๋“œ ํŒฉ์„ ์ถœ์‹œํ–ˆ๋‹ค. ์ด ๋„๊ตฌ๋Š” ํด๋ผ์šฐ๋“œ ๋ชจ๋‹ˆํ„ฐ๋ง ์†Œํ”„ํŠธ์›จ์–ด๊ฐ€ ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ž๋™ ๊ทผ๋ณธ ์›์ธ ๋ถ„์„ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. IBM์€ AI๊ฐ€ ์‚ฌ๊ฑด ๋Œ€์‘์„ ํ˜ผ๋ž€์Šค๋Ÿฌ์šด ์ฑ…์ž„ ๊ณต๋ฐฉ์ด ์•„๋‹ˆ๋ผ ํ†ตํ•ฉ์ ์ด๊ณ  ์ •๋ณด ๊ธฐ๋ฐ˜์˜ ํ•ด๊ฒฐ ๊ณผ์ •์œผ๋กœ ๋ฐ”๊ฟ”์ค€๋‹ค๊ณ  ์„ค๋ช…ํ•œ๋‹ค. ์™“์Šจ์€ ์ด๋ฒคํŠธ ์ŠคํŠธ๋ฆผ์„ ์ง€์†์ ์œผ๋กœ ๊ฐ์‹œํ•˜๊ณ , ์‚ฌ์ „์— ์„ค์ •ํ•œ ์‹ฌ๊ฐ๋„ ์ˆ˜์ค€์— ๋„๋‹ฌํ•˜๋ฉด ๊ธฐ๋ณธ ๊ฒฝ๋ณด๋‚˜ ์ž๋™ํ™”๋œ ๋Œ€์‘์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. IBM์€ ์ด ๊ธฐ๋Šฅ์„ ๋„คํŠธ์›Œํฌ, ๋น„์ฆˆ๋‹ˆ์Šค, RPA ๋“ฑ ๋‹ค๋ฅธ ํด๋ผ์šฐ๋“œ ํŒฉ ์ œํ’ˆ๊ตฐ๊ณผ ํ†ตํ•ฉํ–ˆ๋‹ค.

๋กœ์ง๋ชจ๋‹ˆํ„ฐ(LogicMonitor)

๋กœ์ง๋ชจ๋‹ˆํ„ฐ๋Š” ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ๋ฐ์ดํ„ฐ ๋ ˆ์ดํฌ์—์„œ๋ถ€ํ„ฐ ๋„คํŠธ์›Œํฌ์™€ ๊ฐ€์ƒ๋จธ์‹ ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๊ธฐ์—… ์Šคํƒ ์ „๋ฐ˜์—์„œ ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ™•์žฅ ํ”Œ๋žซํผ์ด๋‹ค. ์ด ํ”Œ๋žซํผ์€ ํด๋ผ์šฐ๋“œ ์„œ๋น„์Šค ์ „์ฒด์™€ ์˜จํ”„๋ ˆ๋ฏธ์Šค ์žฅ๋น„ ๊นŠ์ˆ™ํ•œ ๊ณณ๊นŒ์ง€ ๋„๋‹ฌํ•œ๋‹ค. 3,000๊ฐœ ์ด์ƒ์˜ ํ†ตํ•ฉ๋œ ์ˆ˜์ง‘๊ธฐ๋กœ ํ™•๋ณดํ•œ ๋ฐ์ดํ„ฐ๋Š” ํ‘œ์ค€ ๊ทœ์น™๊ณผ ์—์ด์ „ํŠธํ˜• AI ๋ชจ์Œ์œผ๋กœ ๋ถ„๋ฅ˜ยท๋ถ„์„ยท๋ชจ๋‹ˆํ„ฐ๋ง๋˜์–ด ์ด์ƒ ์ง•ํ›„๋ฅผ ํƒ์ง€ํ•œ๋‹ค. ํ”Œ๋žซํผ์—๋Š” ๊ทผ๋ณธ ์›์ธ ๋ถ„์„ ๊ธฐ๋Šฅ๊ณผ ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋™์ ์œผ๋กœ ์กฐ์ •๋˜๋Š” ์ž„๊ณ„๊ฐ’์— ๋”ฐ๋ผ ๊ฒฝ๋ณด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์‹œ์Šคํ…œ์ด ํฌํ•จ๋œ๋‹ค. ์ดˆ๊ธฐ ๊ฒฝ๋ณด ๊ธฐ๋Šฅ์€ ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๋ฅผ ํ™•์žฅํ•ด ์ง€์—ฐ์‹œ๊ฐ„, ๋Œ€์—ญํญ ๋“ฑ ์ง€ํ‘œ์˜ ์ž„๊ณ„๊ฐ’์„ ๊ณ„์‚ฐํ•˜๋Š” ์˜ˆ์ธก ๋ชจ๋“ˆ์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ๋กœ์ง๋ชจ๋‹ˆํ„ฐ๋Š” ์กฐ์ง์ด ์‹ค์ œ ์ด์ƒ ํ–‰๋™์— ์ง‘์ค‘ํ•˜๋„๋ก โ€˜๊ฒฝ๋ณด ํ”ผ๋กœโ€™์™€ โ€˜๊ฒฝ๋ณด ํญ์ฃผ*๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘”๋‹ค.

๋ฌด๊ทธ์†Œํ”„ํŠธ(Moogsoft)

๋ธ ํ…Œํฌ๋†€๋กœ์ง€์Šค์— ์ธ์ˆ˜๋œ ๋ฌด๊ทธ์†Œํ”„ํŠธ๋Š” ๋‰ด๋ ๋ฆญ, ๋ฐ์ดํ„ฐ๋…, AWS ํด๋ผ์šฐ๋“œ์™€์น˜, ์•ฑ๋‹ค์ด๋‚ด๋ฏน์Šค ๊ฐ™์€ ์ฃผ์š” ์„ฑ๋Šฅ ๋ชจ๋‹ˆํ„ฐ๋ง ๋„๊ตฌ์™€ ํ†ตํ•ฉ๋˜๋Š” ์ „๋ฌธ AIOps ์†”๋ฃจ์…˜์ด๋‹ค. ๋ฌด์Šค์†Œํ”„ํŠธ๋Š” ์ด๋ฒคํŠธ์˜ ์ค‘๋ณต์„ ์ œ๊ฑฐํ•˜๊ณ , ๋‹ค๋ฅธ ์†Œ์Šค์˜ ์ปจํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•ด ๊ฐ•ํ™”ํ•œ ๋’ค, ์ƒ๊ด€ ๋ถ„์„์„ ๊ฑฐ์ณ ๊ฒฝ๋ณด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ๊ณตํ•œ๋‹ค. AI ์—”์ง„์€ ์„ค๋ช… ๊ธฐ๋Šฅ์„ ์œ„ํ•ด ์ƒ์„ฑํ˜• AI๋ฅผ ์ ์šฉํ•˜๊ณ , ์ƒˆ๋กœ์šด ๊ฒฝ๋ณด๋ฅผ ๊ณผ๊ฑฐ ํ–‰๋™๊ณผ ๋น„๊ตํ•ด ๋ฐฐ์น˜ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํ†ต๊ณ„ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•œ๋‹ค. ๋ชฉํ‘œ๋Š” ์‚ฌ๋žŒ์ด ๊ฒฝ๋ณด๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ๊ฒช๋Š” ์–ด๋ ค์›€์„ ์ค„์ด๊ธฐ ์œ„ํ•œ โ€˜๋…ธ์ด์ฆˆ ๊ฐ์†Œโ€™์ด๋‹ค.

๋‰ด๋ ๋ฆญ(New Relic)

๋‰ด๋ ๋ฆญ์€ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด ์Šคํ”Œ๋ ํฌ, ๊ทธ๋ผํŒŒ๋‚˜, AWS ํด๋ผ์šฐ๋“œ์™€์น˜ ๊ฐ™์€ ์—ฌ๋Ÿฌ ํด๋ผ์šฐ๋“œ ์ถ”์  ๋„๊ตฌ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘ํ•œ ์„ฑ๋Šฅ ๋ฐ์ดํ„ฐ๋ฅผ AI ์—”์ง„์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์ž ์žฌ์  ์‹ฌ๊ฐ๋„์˜ ์ด๋ฒคํŠธ์— ๋Œ€ํ•ด ๋ฏผ๊ฐ๋„ ์ˆ˜์ค€์„ ์œ ์—ฐํ•˜๊ฒŒ ์„ค์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ €์šฐ์„ ์ˆœ์œ„ ์˜ค๋ฅ˜๋Š” 15๋ถ„ ๋™์•ˆ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐœ์ƒํ•  ๋•Œ๋งŒ ๊ฒฝ๋ณด๋ฅผ ์šธ๋ฆฌ๋„๋ก ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด ์„œ๋ฒ„ ์žฅ์•  ๊ฐ™์€ ๊ณ ์šฐ์„ ์ˆœ์œ„ ์ด๋ฒคํŠธ๋Š” ์ฆ‰์‹œ ํ˜ธ์ถœ๊ธฐ ์•Œ๋ฆผ์„ ๋ณด๋‚ธ๋‹ค. ์ด์Šˆ ๋กœ๊ทธ๋Š” ๋ชจ๋“  ์ด๋ฒคํŠธ๋ฅผ ์ถ”์ ํ•˜๋ฉฐ, AI๊ฐ€ ๊ฒฝ๋ณด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ์ทจํ•œ ๋…ผ๋ฆฌ์  ๋‹จ๊ณ„๋ฅผ ์ •๋ฆฌํ•œ ์ƒ๊ด€๊ด€๊ณ„ ๊ฒฐ์ • ๋ณด๊ณ ์„œ๋ฅผ ํฌํ•จํ•œ๋‹ค. ๊ณ ๊ฐ์€ ๋ถ„์„๊ณผ ์กฐํšŒ๋ฅผ ์œ„ํ•ด ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๋Š” ๋ฐฉ์‹์„ ํญ๋„“๊ฒŒ ์ปค์Šคํ„ฐ๋งˆ์ด์ฆˆํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ชฉํ‘œ๋Š” ํ‰๊ท  ํƒ์ง€ ์‹œ๊ฐ„(MTTD)์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์ด์–ด์„œ ํ‰๊ท  ์กฐ์‚ฌ ์‹œ๊ฐ„(MTTI)๊ณผ ํ‰๊ท  ํ•ด๊ฒฐ ์‹œ๊ฐ„(MTTR)์„ ์ค„์ด๋Š” ๋ฐ ํ•„์š”ํ•œ ์ง€์›์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

ํŽ˜์ด์ €๋“€ํ‹ฐ(PagerDuty)

์ด๋ฆ„๋งŒ ๋ณด๋ฉด ํŽ˜์ด์ €๋“€ํ‹ฐ๋Š” ์‚ฌ๋žŒ์„ ๊นจ์›Œ IT ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ฒŒ ํ•˜๋Š” ๋„๊ตฌ์ฒ˜๋Ÿผ ๋ณด์ธ๋‹ค. ์ด๋Š” ๊ณผ๊ฑฐ ์ด์•ผ๊ธฐ์ด๋‹ค. ํŽ˜์ด์ €๋“€ํ‹ฐ๋Š” ์ด์ œ ์‚ฌ๋žŒ์„ ํ˜ธ์ถœํ•˜๊ธฐ ์ „์— ์ผ๋ถ€ ๊ฒฐ์ •์„ ์ž๋™ํ™”ํ•˜๋Š” AI ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ๋‚ด๋ถ€ ๋ฌธ์ œ๋“  ๊ณ ๊ฐ ์ง€์› ํฌํ„ธ์„ ํ†ตํ•ด ์ œ๊ธฐ๋œ ๋ฌธ์ œ๋“  ๋Œ€๋ถ€๋ถ„์˜ ์ธ์‹œ๋˜ํŠธ ๋Œ€์‘ ์ ˆ์ฐจ๋ฅผ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐ ์ง‘์ค‘ํ•œ๋‹ค.

์„œ๋น„์Šค๋‚˜์šฐ(ServiceNow)

์„œ๋น„์Šค๋‚˜์šฐ๊ฐ€ ๊ตฌ์ถ•ํ•œ ํ”Œ๋žซํผ์€ ๊ธฐ์—… ๋‚ด ๋ชจ๋“  ์—…๋ฌด๋ฅผ ์ฒ˜๋ฆฌํ•  AI ์—์ด์ „ํŠธ ์ปฌ๋ ‰์…˜ ์ œ๊ณต์— ์ง‘์ค‘ํ•˜๋ฉฐ, ๊ทธ์ค‘ ์ผ๋ถ€๋Š” AIOps ๋ฒ”์ฃผ์— ์†ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด IT ์šด์˜ ๊ด€๋ฆฌ(ITOM) ์ œํ’ˆ๊ตฐ์€ ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ์›Œํฌํ”Œ๋กœ์šฐ ์ž๋™ํ™”๋ฅผ ๊ฒฐํ•ฉํ•ด ๊ณผ๊ฑฐ ์ง€์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฉด๋ฐ€ํžˆ ๊ฐ์‹œํ•˜๊ณ  ์‹ ์†ํ•˜๊ฒŒ ๋Œ€์‘ํ•œ๋‹ค. AI ์ปจํŠธ๋กค ํƒ€์›Œ๋Š” ๋ชจ๋“  ์—์ด์ „ํŠธ๋ฅผ ์ค‘์•™ ํ—ˆ๋ธŒ์™€ ์—ฐ๊ฒฐํ•ด ํด๋ผ์šฐ๋“œ ์•ˆ์ •์„ฑ ๊ฐ™์€ ๊ธฐ๋ณธ ์งˆ๋ฌธ๋ถ€ํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ๊ด€๋ฆฌ ๊ฐ™์€ ๋” ๋ณต์žกํ•œ ์งˆ๋ฌธ๊นŒ์ง€ ์ฒ˜๋ฆฌํ•˜๋„๋ก ์ง€์›ํ•œ๋‹ค. ๋ชฉํ‘œ๋Š” ๊ธฐ์—… ์Šคํƒ ์ „๋ฐ˜์— ๊ฑธ์ณ ์‚ฌ์‹ค์ƒ ๋ชจ๋“  ์˜์—ญ์„ ํฌ๊ด„์ ์œผ๋กœ ์ œ์–ดํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

์‚ฌ์ด์–ธ์Šค๋กœ์ง(ScienceLogic)

์‚ฌ์ด์–ธ์Šค๋กœ์ง์˜ ์Šค์นด์ด๋Ÿฌ ์›(Skylar One) ํ”Œ๋žซํผ์€ ์ง€๋Šฅํ˜• ๊ฐ์‹œ์ž ๋ชจ์Œ์„ ์ œ๊ณตํ•ด ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ํด๋ผ์šฐ๋“œ๋ฅผ ๊ฐ์‹œํ•˜๊ณ  ํ•„์š”ํ•  ๊ฒฝ์šฐ ๊ฐœ์ž…ํ•˜๋„๋ก ์„ค๊ณ„๋๋‹ค. ์ด ์ œํ’ˆ์€ ๋ณต์žกํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ™˜๊ฒฝ์„ ๋Œ€์ƒ์œผ๋กœ ์™„์ „ํ•œ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•ด AI์™€ ๊ด€๋ฆฌ์ž์—๊ฒŒ ์–ด๋–ค ๊ธฐ๋Šฅ์ด ์ž‘๋™ํ•˜๊ณ , ์–ด๋–ค ๊ธฐ๋Šฅ์ด ์ž‘๋™ํ•˜์ง€ ์•Š๋Š”์ง€ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํ”Œ๋žซํผ์—๋Š” ์ „ํ†ต ๋ฐฉ์‹์œผ๋กœ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์ž๋™ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๋กœ์šฐ์ฝ”๋“œ ๋„๊ตฌ์™€ ๋ฌธ์ œ ํ•ด๊ฒฐ ์กฐ์–ธ์„ ์ œ๊ณตํ•˜๋Š” AI ๊ธฐ๋ฐ˜ ๋„๊ตฌ ์Šค์นด์ด๋Ÿฌ ์–ด๋“œ๋ฐ”์ด์ €(Skylar Advisor)๊ฐ€ ํฌํ•จ๋œ๋‹ค. ์Šค์นด์ด๋Ÿฌ ์• ๋„๋ฆฌํ‹ฑ์Šค(Skylar Analytics)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์‹ค์‹œ๊ฐ„ ๋Œ€์‹œ๋ณด๋“œ๋Š” ๊ด€๋ฆฌ์ž์—๊ฒŒ ์ƒํ™ฉ์„ ๋น ๋ฅด๊ฒŒ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ๊ฐ์  ์ง€ํ‘œ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.

์Šคํ”Œ๋ ํฌ ์•ฑ๋‹ค์ด๋‚ด๋ฏน์Šค(Splunk AppDynamics)

์Šคํ”Œ๋ ํฌ ์˜ต์ €๋ฒ„๋นŒ๋ฆฌํ‹ฐ ํฌํŠธํด๋ฆฌ์˜ค๋Š” ๊ธฐ์—… ์Šคํƒ์„ ๊ฐ์‹œํ•˜๊ณ  ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋ฉฐ ํ•ด๋‹น ์„ฑ๋Šฅ์ด ๋‹ค์–‘ํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์ง€ํ‘œ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๋ถ„์„ํ•˜๋„๋ก ์„ค๊ณ„๋๋‹ค. ์•ฑ๋‹ค์ด๋‚ด๋ฏน์Šค๋Š” ๋ณต์žกํ•œ ์Šคํƒ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ๊ทผ๋ณธ ์›์ธ์„ ์ถ”์ ํ•˜๋ฉฐ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ฅผ ๊ฐ€๋Šฅํ•œ ํ•œ ๋น ๋ฅด๊ฒŒ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์˜จํ”„๋ ˆ๋ฏธ์Šค, ํด๋ผ์šฐ๋“œ, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ™˜๊ฒฝ์—์„œ ์ปค์Šคํ…€ ๋ฐ ์ƒ์šฉ ์†Œํ”„ํŠธ์›จ์–ด ๋ชจ๋‘์—์„œ ์ž‘๋™ํ•œ๋‹ค. ์Šคํ”Œ๋ ํฌ AI ์–ด์‹œ์Šคํ„ดํŠธ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•ด ํ–‰๋™ ๋ถ„์„ ๋“ฑ์—์„œ ์ˆ˜์ง‘ํ•œ ๊ณผ๊ฑฐ ๊ธฐ์ค€๊ฐ’๊ณผ ๋‹ค๋ฅธ ์ง€ํ‘œ๋ฅผ ์ถ”์ ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์ด๋ฒคํŠธ๊ฐ€ ์‹œ์Šคํ…œ ์žฅ์• ๋กœ ์ด์–ด์ง€๋Š” ์—ฐ์‡„ ๊ณผ์ •์„ ํ•™์Šตํ•ด ํ๋ฆ„๋„๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๊ทผ๋ณธ ์›์ธ์„ ํŒŒ์•…ํ•œ๋‹ค. ์ปค์Šคํ…€ ๋จธ์‹ ๋Ÿฌ๋‹์œผ๋กœ ๊ตฌ์ถ•ํ•œ ์—์ด์ „ํŠธํ˜• ์•„ํ‚คํ…์ฒ˜๋Š” MCP(Model Control Protocol) ๊ฐ™์€ ๊ฐœ๋ฐฉํ˜• ํ‘œ์ค€๊ณผ ์—ฐ๋™ํ•  ์ˆ˜ ์žˆ๋‹ค. ์•ฑ๋‹ค์ด๋‚ด๋ฏน์Šค๋Š” ํŒ๋งค ์‹ค์ ์ฒ˜๋Ÿผ ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ์™€ ์ง€ํ‘œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ•ํ™”ํ•˜๊ณ , ๊ฐœ๋ฐฉํ˜• ํ‘œ์ค€ ๊ธฐ๋ฐ˜ ์ž๋™ํ™” ๋งํฌ๋ฅผ ํ†ตํ•ด ๋ฐ˜๋ณต์ ์ธ ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์ง€์›ํ•˜๋Š” ์ž๊ฐ€ ์น˜์œ  ๋ฐฉ์‹์„ ๊ฐ•์กฐํ•œ๋‹ค.
dl-ciokorea@foundryco.com

Top 14 AIOps tools for AI-infused IT operations

20 November 2025 at 05:01

Artificial intelligenceโ€™s first great application is in the belly of the beast that birthed it. Computer systems are filled with the hard-coded numbers that make them perfect for applying data-driven machine learning algorithms. Autonomous cars need to fret over fog, wayward pedestrians, and rain. The machines themselves, however, are filled with precise values that lead to crisp decisions. They may not always be simple, but theyโ€™re easier than guiding a car through a snowstorm.

Nowhere is the opportunity for AI more evident than in the world of DevOps, a data-rich, back-office practice that presents a perfect sandbox for exploring the power of artificial intelligence. The teams in charge of operations now have a burgeoning collection of labor-saving and efficiency-boosting tools and platforms on offer under the acronym AIOps, all of which promise to apply the best artificial intelligence algorithms to the work of maintaining IT infrastructure.

What AIOps platforms do

Some of the simplest tasks for AIOps involve speeding up the way software is deployed to cloud instances. All the work that DevOps teams do can be enhanced with smarter automation capable of watching loads, predicting demand, and even starting up new instances when requests spike.

Clever AIOps tools generate predictions about machine loads and watch to see whether anything deviates from their estimates. Anomalies might be turned into alerts that generate emails, Slack messages, or, if the deviation is large enough, pager calls. A good part of the AIOps stack is devoted to managing alerts and ensuring that only the most significant problems turn into something that interrupts a meeting or a good nightโ€™s sleep.

These methods for watching for unusual levels or activity are sometimes deployed to bolster security, a more challenging task, making some AIOps tools the purview of both security staff and the DevOps team.

Sophisticated AIOps tools also offer โ€œroot cause analysis,โ€ which creates flowcharts to track how problems ripple through the various machines in a modern enterprise application. A database thatโ€™s overloaded will slow down an API gateway that, in turn, freezes a web service. These automated catalogs of the workflow can help teams spot the underlying problem faster by documenting and tracking the chains of troublemaking. โ€จLately thereโ€™s more talk of โ€œself-healingโ€ systems that run autonomously. Some managers find it unnerving to give AIOps systems too much leeway. Others are captivated that the machines can clear more IT tickets by themselves. โ€จ

Gen AI: The AIOps interface evolves

Some AIOps platforms are integrating more generative AI tools that allow human staff to interact more conversationally with the tools using natural language. The discussion still involves very technical details about the underlying stack, but the conversation happens in a human language, not something like SQL.

There are also mixed feelings about this evolution. Some AIOps tool users believe it will democratize the work to enable people who may not have as much training to oversee the IT estate. Others feel that if the discussion is all about the nuts and bolts of deployment, it wonโ€™t make much difference if itโ€™s a bit easier to interface with AIOps platforms in natural language. The conversation will still be very technical at its heart. But even if some arenโ€™t so sure about the need for generative AI, the conversational interface is hard to resist.

What to look for in an AIOps platform

Many of the tools in this survey are built on top of monitoring systems with a long history. They began as tools that tracked events in complex enterprise stacks and have now been extended with artificial intelligence. A few of the tools began in AI labs and grew outwards. In either case, anyone evaluating these platforms will want to look at the range of connectors that gather data.

Some AIOps platforms will better integrate with your stack than others. All offer a basic set of pathways to collect raw data, but some connectors are better than others. Anyone considering adopting an AIOps platform will want to evaluate how well each AIOps offering integrates with your particular databases and services.

Top AIOps platforms available today

Here are 14 of the leading AIOps tools simplifying the job of keeping enterprise IT infrastructure humming.

BigPanda

BigPanda focuses on detecting strange behavior and orchestrating the teams assigned to solve it. Its eponymous platform offers root cause analysis and proactive event detection that integrates with the major cloud providers. Its L1 Automation takes over more of the workload that comes after a problem appears, allowing AI-driven automation to speed smarter decisions. BigPanda simplifies ITโ€™s workflow by creating tickets for systems such as Jira or ServiceNow, sending out alerts, and providing workflow plans with rollback strategies that target root causes. The goal is to create a smart knowledge graph that knows the burgeoning enterprise stack and to provide intelligent plans for keeping it humming.

BMC Helix

IT service management (ITSM) professionals often turn to the BMC Helix platform for managing problems and stack evolution. BMCโ€™s AI-powered solution focuses on both root cause analysis and providing a conversational interface that helps all levels of the team diagnose and fix problems. The BMC Helix platform doesnโ€™t just focus on AIOps and backend workflows; there are also well-integrated products for customer service management and SecOps for supporting outward-facing action.

Datadog

Datadog has been adding AI tools such as Watchdog or Bits to its performance management suite so that DevOps teams get smarter warnings when performance begins to fail. The tools include a collection of ML-based options for building performance forecasts based on historical records adjusted for season and time of day. Changes in metrics such as latency, RAM consumption, or network bandwidth can trigger alerts if they depart from norms. Datadog is adding more agentic services so the tools can act autonomously, reducing the need for human intervention. The company is also offering preview access for options that can analyze code and even rewrite it to eliminate an error. The tool is integrated with Datadogโ€™s security detection system, and it can work with virtual machines, cloud instances, and serverless functions.

Digitate ignio

The ignio AIOps platform from Digitate focuses on closed-loop automation, delivering agility and resiliency to IT and business operations. The focus is monitoring the inward- and outward-facing business health while also optimizing costs, especially in clouds. The company estimates its autonomous collection of tools can handle 40% of issues proactively and reduce manual effort by 60% in typical configurations. There are hundreds of integrations and a low-code tool for adding others. The companyโ€™s other products include similar efforts for managing workloads and tracking and solving issues in ERPOps and procurement.

Dynatrace

The three major strategic technologies at the core of Dynatrace are Analytics, AI, and Automation. The machine learning and LLMs are part of a broad, full-featured monitoring tool for tracking cloud-based VMs, containers, and other serverless solutions. In go log files, event reports, and other triggers, and out come what the company calls โ€œprecise, AI-powered answers.โ€ The core includes a collection of agents that can be programmed to watch for specific events or collections of events. The AI at the center is called Davis, a deterministic AI that constructs flowcharts and trees so that it can pinpoint the root cause of any anomaly or failure. Davis works in concert with Grail, a data lakehouse filled with telemetry; SmartScape, a tool for mapping the topology of the enterprise; and AutomationEngine, a tool for integrating the gathered intelligence. Properly configured, it can run autonomously by triggering changes, such as rebooting an instance, that should fix the cause without waiting for a human to get in the loop.

GitHub Copilot

Most AIOps tools are designed to help software thatโ€™s already up and running. GitHub Copilot starts earlier in the process, helping when code is written. As the companyโ€™s ad copy says, โ€œMake your editor your most powerful accelerator.โ€ The tool watches what a programmer types, making completion suggestions. Trained on a gazillion lines of open-source code, Copilotโ€™s ideas are grounded in some form of reality. There are still questions about who is the ultimate author of the new code, whether the AI can be trusted, and whether the millions of open-source coders deserve some credit or hat tip for assistance. The answer may be โ€œperhaps.โ€ A bigger question? How much better does Copilot understand your code, and does it really do much better than autocomplete? That answer: Most of the time Copilot knows.

IBM Watson Cloud Pak for AIOps

IBM created the Watson Cloud Pak for AIOps by integrating its general Watson brand AI with its larger cloud presence. The tool brings automated root cause analysis to data collected from cloud monitoring software. They like to say AI can turn incident response from a crazed search for blame into a unified, information-driven solution-fest. Watson watches constantly over the stream of events until they reach a configurable level of severity. Then Watson responds with a programmable collection of basic alerts or automated responses. IBM has integrated the results with its other Cloud Paks, including Network, Business, and Robotic Process Automation.

LogicMonitor

LogicMonitor is a hybrid extensible platform that gathers telemetry from all corners of an enterprise stack, from the databases and data lakes to the networks and virtual machines. It reaches across cloud services and deep into the on-prem machines. All this data from 3,000-plus integrated collectors is sorted, analyzed, and monitored for anomalies using standard rules and a collection of agentic AIs. The platform bundles a root cause detector with an alert system based on dynamic thresholds adjusted from historical data. Its early warning system depends on a forecasting module that extends this historical data to compute thresholds on latency, bandwidth, and other metrics. LogicMonitor prioritizes reducing โ€œalert fatigueโ€ to avoid the overwhelming โ€œalert stormsโ€ to help teams focus their efforts on truly anomalous behavior.

Moogsoft

Moogsoft, now part of Dell Technologies, is a specialized AIOps solution that integrates with major performance monitoring tools such as New Relic, Datadog, AWS Cloudwatch, and AppDynamics. The product moves the data through a pipeline that deduplicates events, enriches them with contextual data from other sources, and correlates the data before raising an alarm. The AI engine deploys generative AI for explanation and various statistical and clustering algorithms to place new alarms in the context of historical behavior. The goal is โ€œnoise reductionโ€ to reduce challenges humans face in making sense of the alarms.

New Relic

When problems appear, New Relic uses an AI engine to analyze performance data collected from a range of cloud tracking tools such as Splunk, Grafana, and AWSโ€™s CloudWatch. The tool can be configured with flexible levels of sensitivity for a variety of events of potential severity. You can tell New Relic that, for instance, a low-priority error should raise an alarm only if it occurs several times over 15 minutes. But a high-priority event like a crashed server will generate a pager alert immediately. The issue log tracks all events and includes a Correlation Decision report that lays out the logical steps taken by the AI en route to raising an alarm. Customers have a wide range of ways to customize how the historical data is stored for analysis and retrieval. The goal is to minimize the metrics that measure the mean time to detection (MTTD) and then support the human enough to reduce the mean time to investigate (MTTI) and mean time to resolve (MTTR).

PagerDuty

The name suggests PagerDuty is all about waking up a human to resolve an IT issue. Thatโ€™s in the past. PagerDuty today proclaims itโ€™s โ€œpowered by AIโ€ to make some of the decisions before calling a human. The system focuses heavily on automating much of the incident response whether itโ€™s an internal problem or one thatโ€™s raised by customers through its customer support portal.ย 

ServiceNow

The platform built by ServiceNow is devoted to delivering an army of AI agents to handle any enterprise chore, some of which fall under the same umbrella as AIOps. The IT Operations Management (ITOM) suite, for example, combines machine learning with workflow automations to watch carefully and respond quickly based on past knowledge. The AI Control Tower connects all the agents to a central hub that can answer basic questions about cloud stability and more complex questions about governance and management. ServiceNowโ€™s goal is all encompassing control over practically every corner of the enterprise stack.

ScienceLogic

The Skylar One platform from ScienceLogic aims to deliver a collection of smart observers that watch over and perhaps intercede on behalf of the enterprise cloud. The product is aimed at complex, hybrid environments by building a complete model to give any AI and supervising humans the necessary context for understanding whatโ€™s working and, when needed, whatโ€™s not. Notable tools inside the tent include a low-code tool for automating workflows the old-fashioned way, and Skylar Advisor, an AI-driven tool that offers advice on how to fix issues. A real-time dashboard using Skylar Analytics gives humans fast visual cues to whatโ€™s happening.

Splunk AppDynamics

The Splunk Observability portfolio is designed to watch an enterprise stack, grade its performance, and analyze how that performance affects various business metrics.ย  AppDynamics, a division of Cisco that has been folded into the Splunk portfolio, can watch over complex stacks, ferret out root causes, and make suggestions for fixing the most crucial parts as quickly as possible. It works with all types of custom and licensed software, on premises, in the cloud, or both. The Splunk AI Assistant offers a conversational interface that uses machine learning to track metrics that diverge from historical baselines gathered from data such as behavior analytics. The system can build a flowchart and learn how events cascade until system failure, thereby helping identify root causes. Agentic architectures built with custom machine learning can be linked with open standards such as Model Control Protocol (MCP). AppDynamics pushes correlating these metrics with hard โ€œbusiness outcomesโ€ such as sales numbers and a โ€œself-healing mentalityโ€ for its platform by providing links that can automate the resolution of common failures with a mixture of open standards.

Inside the product mindset that runs 7-Eleven

20 November 2025 at 05:00

In 2016, 7-Eleven began a digital transformation aimed at redefining convenience. The starting point was loyalty. โ€œStep one was to build a product discipline, bring the technology in house, and reduce reliance on third parties,โ€ says Scott Albert, VP and head of store and enterprise products.

Two years later, the Texas-based retailer reapplied the product playbook, now powering store systems across more than 13,000 US and Canadian locations. โ€œWe moved from projects โ€” start date, end date โ€” to product: continuous improvement and iteration,โ€ Albert says. โ€œFrom outputs to outcomes, co-owned with design and engineering.โ€

Albert knows the terrain. A company veteran who cut his teeth in operations, he led product for loyalty and now oversees digital product for store systems, fuel, restaurant concepts, and merchandising, evidence of how far the model has scaled.

Setting the foundation

The idea was straightforward but the shift wasnโ€™t. โ€œIt was tough early on because it meant change,โ€ Albert says. โ€œThe business was used to saying, โ€˜I need X.โ€™ Often that wasnโ€™t the real problem. Our job was to get underneath, understand the problem, design a solution for now and the future, and then iterate.โ€

It takes several ingredients to solve big problems, like customer research, business process knowledge, data, and technology, so itโ€™s natural that product teams are cross-functional. But that structure can also create competing priorities if not managed correctly. While the setting is convenience retail, the lesson applies to any CIO shifting from project-based delivery to product-driven transformation. โ€œSuccess depends not on org charts, but on cross-functional trust, buy-in, and commitment,โ€ he says.

That structure set the foundation, and the real breakthroughs came from applying product thinking to their daily work.

Product thinking in action

โ€œFor me and my team, the customer is the store associate,โ€ Albert says. That focus shaped priorities to remove low-value tasks, surface just-in-time insights, and let systems work for people, not the other way around.

The team learned this firsthand on midnight store walks. In one New York City visit, they noticed a new associate glued to her phone. โ€œWe thought she was distracted,โ€ Albert says. โ€œTurns out sheโ€™d recorded her trainer so she could remember.โ€ That single observation sparked a redesign of training to move job aids and how-to videos from a back-room PCs to mobile devices on the floor, embedded in the flow of work.

The same product instinct of watching users, identifying friction, and iterating has carried into 7-Elevenโ€™s AI initiatives. AI-assisted ordering, for example, reduced what was once up to 30 hours a week of manual work to under an hour a day, freeing up associates to focus on customers. At scale, those savings add up to more than 13 million hours reclaimed annually, and test-and-learn pilots tying the changes to about $340 million in incremental sales.

The back office has been transformed as well. After migrating store systems to the cloud with its 7-BOSS platform, 7-Eleven layered in โ€œquick cardsโ€ that surface AI-generated insights and let associates act in three clicks or less. A clustering model identifies lookalike stores by sales mix, location type, even seasonality, and pushes tailored assortment recommendations. โ€œWith three clicks, you can add an item, forecasting kicks in, and delivery happens in days,โ€ Albert says.

Together, these stories trace a clear pattern of observing the customer (in this case the store personnel), solving for their pain points, then amplifying the solution with data and AI. Itโ€™s product thinking at work.

Operating like a product company

Behind the scenes, the mechanics mirror digital natives. Teams run in pods with product, engineering, and design as a three-legged stool. Quarterly planning sets direction, but roadmaps flex. โ€œTell me everything youโ€™ll do next year โ€” that was the old model,โ€ Albert says. โ€œNow we focus on quarters, but sometimes thatโ€™s too long. We plan, then adapt.โ€

Release cadence has accelerated as well, from two or three big bangs a year to monthly releases.

The cultural shift is ongoing funding for work that never ends. โ€œThereโ€™s no such thing as done in product,โ€ he says. โ€œWeโ€™re on the fifth iteration of our forecasting model. Weโ€™ll keep improving.โ€

Start small, measure hard

Albertโ€™s advice to other tech executives: start small. โ€œFind a problem that matters, build a cross-functional team, measure success, and validate results,โ€ he says. โ€œThen add a second team, a third, and youโ€™re off.โ€

And above all, measure. โ€œPick metrics backed by data so no one can debate the results,โ€ he adds.

Nearly 10 years after its first loyalty decision, 7-Elevenโ€™s product mindset now extends far beyond consumer apps. The store itself has become a living product, updated monthly, informed by data, and built around the associate.

For Albert, the real measure of success is to make the system work for the associate, so they can delight customers. โ€œItโ€™s the same product discipline, now applied to every corner of the store, and itโ€™s redefining what convenience looks like at scale,โ€ he says.

โŒ
โŒ