โŒ

Normal view

There are new articles available, click to refresh the page.
Today โ€” 8 December 2025CIO

IBM to buy Confluent to extend its data and automation portfolio

8 December 2025 at 13:48

IBM has agreed to acquire cloud-native enterprise data streaming platform Confluent in a move designed to expand its portfolio of tools for building AI applications

The company said Monday in a release that it sees Confluent as a natural fit for its hybrid cloud and AI strategy, adding that the acquisition is expected to โ€œdrive substantial product synergiesโ€ across its portfolio.

Confluent connects data sources and cleans up data. It built its service on Apache Kafka, an open-source distributed event streaming platform, sparing its customers the hassle of buying and managing their own server clusters in return for a monthly fee per cluster, plus additional fees for data stored and data moved in or out.ย 

IBM expects the deal, which it valued at $11 billion, to close by the middle of next year.

Confluent CEO and co-founder Jay Kreps stated in an email sent internally to staff about the acquisition, โ€œIBM sees the same future we do: one in which enterprises run on continuous, event-driven intelligence, with data moving freely and reliably across every part of the business.โ€

Itโ€™s a good move for IBM, noted Scott Bickley, an advisory fellow at Info-Tech Research Group. โ€œ[Confluent] fills a critical gap within the watsonx platform, IBMโ€™s next-gen AI platform, by providing the ability to monitor real-time data,โ€ he said, and is based on the industry standard for managing and processing real-time data streams.ย 

He added, โ€œIBM already has the pieces of the puzzle required to build and train AI models; Confluent provides the connective tissue to saturate those models with continuous live data from across an organizationโ€™s entire operation, regardless of the source. This capability should pave the road ahead for more complex AI agents and applications that will be able to react to data in real time.โ€

He also pointed out that the company is playing the long game with this acquisition, which is its largest in recent history. โ€œIBM effectively positions itself proactively to compete against the AI-native big data companies like Snowflake and Databricks, who are all racing towards the same โ€˜holy grailโ€™ of realizing AI agents that can consume, process, and react to real-time data within the context of their clientsโ€™ trained models and operating parameters,โ€ he said, adding that IBM is betting that a full-stack vertical AI platform, watsonx, will be more appealing to enterprise buyers than a composable solution comprised of various independent components.

The move, he noted, also complements previous acquisitions such as the $34.5 billion acquisition of Red Hat and the more recent $6.4 billion acquisition of Hashicorp, all of which are built upon dominant open source standards including Linux, Terraform/Vault, and Kafka. This allows IBM to offer a stand-alone vertical, hybrid cloud strategy with full-stack AI capabilities apart from the ERP vendor space and the point solutions currently available.

In addition, he said, the timing was right; Confluent has been experiencing a slowing of revenue growth and was reportedly shopping itself already.

โ€œAt the end of the day, this deal works for both parties. IBM is now playing a high-stakes game and has placed its bet that having the best AI models is not enough; it is the control of the data flow that will matter,โ€ he said.

Tech marketplaces: Solving the last-mile billing barrier to global growth

8 December 2025 at 11:50

According to an IoT Analytics report from early 2024, 1.8% of global enterprise software was sold via marketplaces in 2023 and is forecasted to grow to nearly 10% by 2030. Although this represents a minority share today, it is the segment growing at a much faster pace than any other IT sales channel.

The concept of a technology marketplace as a central hub for software distribution predates the cloud, but I believe its current surge is driven by a fundamentally new dynamic. Cloud giants, or hyperscalers, have reinvented the model by transforming independent software vendors (ISVs) into a motivated army of sales channels. What are the keys to this accelerated growth? And what is the role of the principal actors in this new era of technology commercialization?

The new hyperscaler-ISV economic symbiosis

This new wave of marketplaces is spearheaded by hyperscalers, whose strategy I see as centered on an economic symbiosis with ISVs. The logic is straightforward: an ISVโ€™s software runs on the hyperscalerโ€™s infrastructure. Consequently, every time an ISV sells its solution, it directly drives increased consumption of cloud services, generating a dual revenue stream for the platform.

This pull-through effect, where the ISVโ€™s success translates directly into the platformโ€™s success, is the core incentive that has motivated hyperscalers to invest heavily in developing their marketplaces as a strategic sales channel.

The five players in the marketplace ecosystem

The marketplace ecosystem involves and impacts five key players: the ISV, the hyperscaler, the end customer, the distributor and the reseller or local hyperscaler partner. Letโ€™s examine the role of each.

The ISV as the innovative specialist

In essence, I see the ISV as the entity that transforms the hyperscalerโ€™s infrastructure into a tangible, high-value business solution for the end customer. For ISVs, the marketplace is a strategic channel that dramatically accelerates their time-to-market. It allows them to simplify transactional complexities, leverage the hyperscalerโ€™s global reach and tap into the budgets of customers already under contract with the platform. This can even extend to mobilizing the hyperscalerโ€™s own sales teams as an indirect channel through co-selling programs.

However, in my view, this model presents challenges for the ISV, primarily in managing customer relationships and navigating channel complexity. By operating through one or two intermediaries (the hyperscaler or a local partner), the ISV inevitably cedes some control over and proximity to the end customer.

Furthermore, while partner-involved arrangements simplify the transaction for the customer, they introduce a new layer of complexity for the ISV, who must now manage margin agreements, potential channel conflicts and the tax implications of an indirect sales structure, especially in international transactions.

The hyperscaler as the ecosystem enabler

As the ecosystem enabler, the hyperscaler provides the foundational infrastructure upon which ISVs operate. By leveraging their massive global customer base, I see hyperscalers strategically promote the marketplace with a dual objective: to increase customer loyalty and retention (stickiness) and to drive the cloud consumption generated by these ISVs.

In doing so, the hyperscaler transcends its original role to become the central operator of the ecosystem, assuming what I believe is a new, influential function as a financial and commercial intermediary.

The end customer as the center of gravity

In this ecosystem, the end customer acts as the center of gravity. Their influence stems from their business needs and, most critically, their budget. Both hyperscalers and ISVs align their strategies to meet the customerโ€™s primary demand: transforming a traditionally complex procurement process into a centralized and efficient experience.

However, this appeal can be diminished by operational constraints. A primary limitation arises in territories where the customer cannot pay for purchases in the local currency. This entails managing payments in foreign currencies, reintroducing a level of fiscal and exchange-rate complexity that counteracts the very simplicity that drew them to the marketplace.

The partner as the local reseller

The partner acts as a local reseller in the customerโ€™s procurement process, particularly in countries where the hyperscaler does not have a direct billing entity. In this model, the reseller manages the contractual relationship and invoices the end customer in the local currency, simplifying the transaction for the customer.

This arrangement, however, challenges the marketplace model, which was designed for direct transactions between the hyperscaler and the customer. When a local reseller becomes the billing intermediary, the standard model becomes complicated as it does not natively account for the elements the partner introduces:

  • Partner margin: The payment flow must accommodate the resellerโ€™s commission.
  • Credit risk: The partner, not the hyperscaler, assumes the risk if the end customer defaults on payment.
  • Tax implications: The partner must manage the complexities of international invoicing and related withholding taxes (WHT).

This disconnect has been, in my analysis, a significant barrier to the global expansion of ISV sales through marketplaces in regions where the hyperscaler lacks a legal entity.

The distributor as an aggregator being replaced

Historically, distributors have been the major aggregators in the technology ecosystem, managing relationships and contracts with thousands of ISVs and leading the initial wave of software commercialization. In the new era of digital distribution, however, hyperscaler marketplaces have emerged as a formidable competitor.

In my opinion, the marketplace model strikes at the core of the software distribution business by offering a more efficient platform for transacting digital assets. This leaves distributors to compete primarily on their advantage in handling tangible technology assets.

Key trends: Two noteworthy cases in marketplaces

The strategic use of cloud consumption commitments: A key driver accelerating marketplace adoption is its integration with annual and multiyear cloud consumption contracts. These agreements, in which a customer commits to a minimum expenditure, can often be used to purchase ISV solutions from the marketplace. This creates what I see as a threefold benefit:

  1. The customer can leverage a pre-approved budget to acquire new technology, expediting procurement.
  2. The ISV can close sales faster by overcoming budget hurdles.
  3. The hyperscaler ensures the customer fulfills their consumption commitment, thereby increasing retention.

The integration of professional services is the missing piece: A traditional limitation of marketplaces was their focus solely on software transactions, excluding the professional services (e.g., consulting, migration, implementation) required to deploy them. This created a process gap, forcing customers to manage a separate services contract.

While I have seen the inclusion of some professional services packages directly in marketplaces, this is not universally available for all ISVs. As a result, professional services remain the key missing link needed to complete the sale and offer the customer a comprehensive solution (software + services) in a single transaction.

Key actions for the ecosystem

This new wave of marketplaces is expected to continue its accelerated growth and capture a significant share of the technology distribution market. Assuming this transition is inevitable, I offer the following strategic recommendations for the ecosystemโ€™s key players.

ISVs: Adapt the commercial model to the channel

I believe ISVS must incorporate the costs associated with the partner channel into their marketplace pricing strategy. When a sale requires a local reseller, the ISVโ€™s commercial model must account for a clear partner margin and the impact of withholding taxes.

Iโ€™ve seen that failure to do so will disincentivize the partner from promoting the solution, potentially blocking the sale or, more likely, leading them to offer a competing solution that protects their profitability.

Hyperscalers: Resolve global billing friction

To realize the full global growth potential of the marketplace, hyperscalers must overcome the obstacle of international billing. The solution lies in one of two paths:

  1. Direct investment: Establish local subsidiaries in strategic countries to enable local currency invoicing and ensure compliance with regional tax regulations.
  2. Channel enablement: Design a financially viable model that empowers and compensates local partners to manage billing, assume credit risk and handle administrative complexity in exchange for a clear margin.

Customers: Establish governance and clarity in the billing model

The very simplicity that makes the marketplace attractive is also its greatest risk. The ease of procurement can lead to uncontrolled spending or the acquisition of redundant solutions if clear governance policies are not implemented.

It is essential to establish centralized controls to manage who can purchase and what can be purchased, thereby preventing agility from turning into a budgetary liability.

Customers must also verify whether a transaction will be billed directly by the hyperscaler (potentially involving an international payment in a foreign currency) or through a local partner. This distinction is critical as it determines the vendor of record and has direct implications for managing local taxes and withholding.

Partners: Proactively protect your profitability

From my analysis, the primary risk for a partner is financial; specifically, a loss of profitability when a managed client purchases directly from the marketplace, as this eliminates the partnerโ€™s margin and creates tax uncertainty. Attempting to resolve this retroactively with a penalty clause is often contentious and difficult to enforce.

The solution must be preventative and contractual. A partner of record agreement should be established with the client at the outset of the relationship. This agreement must clearly stipulate that, in exchange for the value the partner provides (e.g., consulting, support, local management), they will be the designated channel for all marketplace transactions.

This protects the partnerโ€™s profitability, prevents losses from unmanaged transactions and aligns the interests of the client and the partner, ensuring the partnerโ€™s value is recognized and compensated with every purchase.

Distributors: Differentiate your value

Faced with diminishing relevance due to hyperscaler marketplaces, distributors must redefine their value proposition. Their strategy should focus on developing an ecosystem of value-added services on their own platform to encourage direct customer purchases and compete more effectively.

The final frontier of frictionless growth

The shift to marketplace distribution is an undeniable force that will reshape how enterprise technology is bought and sold globally. However, the true promise of this model (frictionless, one-stop procurement for the end customer) remains constrained by the very complexities it seeks to eliminate: international billing, channel compensation and tax adherence.

The transition from a domestic (US-centric), direct-sale mindset to a truly global, indirect channel model is the final frontier. Those who solve the โ€œlast mileโ€ of global channel and billing complexity will be the ones to truly own the future of enterprise software distribution.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

Meet the MAESTRO: AI agents are ending multi-cloud vendor lock-in

8 December 2025 at 10:17

For todayโ€™s CIO, the multi-cloud landscape,ย extending across hyperscalers, enterprise platforms, and AI-native cloud providers, is a non-negotiable strategy forย business resilienceย and innovation velocity. Yet, this very flexibility can become a liability, often leading to fragmented automation, vendor sprawl, and costly data silos. The next frontier in cloud optimization isnโ€™t better scriptingโ€”itโ€™sย Agentic AI systems.

These autonomous, goal-driven systems, deployed as coordinated multi-agent ecosystems, act as an enterpriseโ€™s โ€œMAESTRO.โ€ย They donโ€™t just follow instructions; they observe, plan, and execute tasks across cloud boundaries in real-time, effectively transforming vendor sprawl from a complexity tax into a strategic asset.

The architecture of cross-cloud agent interoperability

The core challenge in a multi-cloud environment is not the platforms themselves, but the lack of seamlessย interoperabilityย between the automation layers running on them. The MAESTRO architecture (referencing the Cloud Security Allianceโ€™sย MAESTRO agentic AI threat modeling framework; MAESTRO stands for multi-agent environment, security, threat, risk and outcome) solves this by standardizing the language and deployment of these autonomous agents:

1. The open standards bridge: A2A protocol

For agents to coordinate effectivelyโ€”to enable a FinOps agent on one cloud to negotiate compute resources with an AIOps agent on another cloudโ€”they must speak a common, vendor-agnostic language.ย This is where the emergingย Agent2Agent (A2A) protocolย becomes crucial.

The A2A protocol is an open, universal standard that enables intelligent agents, regardless of vendor or underlying model, to discover, communicate, and collaborate.ย It provides the technical foundation for:

  • Dynamic capability discovery:ย Agents can publish their identity and skills, allowing others to discover and connect without hard-coded integrations.
  • Context sharing:ย Secure exchange of context, intent, and status, enabling long-running, multi-step workflows like cross-cloud workload migration or coordinated threat response.

To fully appreciate the power of the Maestro architecture, consider a critical cross-cloud workflow:ย strategic capacity arbitrage and failover. Aย FinOps agentย on a general-purpose cloud is continuously monitoring an AI inference workloadโ€™s service level objectives(SLOs) and cost-per-inference. When a sudden regional outage is detected by anย AIOps agentย on the same cloud, the AIOps agent broadcasts a high-priority โ€œcapacity sourcingโ€ intent using the A2A protocol. The Maestro orchestrates an immediate response, allowing the FinOps agent to automatically negotiate and provision the required GPU capacity with a specializedย neocloud agent. Simultaneously, a security agentย ensures the new data pipeline adheres to the required data sovereignty rules before theย workload migration agentย seamlessly shifts the portable Kubernetes container to the new, available capacity, all in under a minute to maintain continuous model performance. This complex, real-time coordination is impossible without the standardized language and interoperability provided by the A2A protocol and the Kubernetes-native deployment foundation.

2. The deployment foundation: Kubernetes-native frameworks

To ensure agents can be deployed, scaled, and managed consistently across clouds, we must leverage aย Kubernetes-nativeย approach. Kubernetes is already the de facto orchestration layer for enterprise cloud-native applications. New Kubernetes-native agent frameworks, like kagent, are emerging to extend this capability directly to multi-agent systems.

This approach allows the Maestro to:

  • Zero-downtime agent portability:ย Package agents as standard containers, making it trivial to move a high-value security agent from one cloud to another for resilience or cost arbitrage.
  • Observability and auditability:ย Leverage Kubernetesโ€™ built-in tools for monitoring, logging, and security to gain visibility into the agentโ€™s actions and decision-making process, a non-negotiable requirement for autonomous systems.

Strategic value: Resilience and zero lock-in

The Maestro architecture fundamentally shifts the economics and risk profile of a multi-cloud strategy.

  • Reduces vendor lock-in:ย By enforcing open standards like A2A, the enterprise retains control over its core AI logic and data models. The Maestroโ€™s FinOps agents are now capable of dynamic cost and performance arbitrage across a more diverse compute landscape that includes specialized providers.ย Neoclouds are purpose-built for AI, offering GPU-as-a-Service (GPUaaS) and unique performance advantages for training and inference. By packaging AI workloads as portable Kubernetes containers, the Maestro can seamlessly shift them to the most performant or cost-effective platformโ€”whether itโ€™s an enterprise cloudย for regulated workloads, or a specializedย AI-native cloud for massive, high-throughput training. Asย BCGย emphasizes, managing the evolving dynamics ofย digital platform lock-inย requires disciplined sourcing and modular, loosely coupled architectures. The agent architecture makes it dramatically easier to port or coordinate high-value AI services, providing true strategic flexibility.
  • Enhances business resilience (AIOps):ย AIOps agents, orchestrated by the Maestro, can perform dynamic failover, automatically redirecting traffic or data pipelines between regions or providers during an outage. Furthermore, the Maestro can orchestrate strategic capacity sourcing, instantly rerouting critical AI inference workloads to available, high-performance GPU capacity offered by specialized neoclouds to ensure continuous model performance during a regional outage on a general-purpose cloud. They can also ensure compliance by dynamically placing data or compute in the โ€œgreenestโ€ (most energy-efficient) cloud or the required sovereign region to meetย data sovereigntyย rules.

The future trajectory

The shift to the Maestro architecture represents more than just a technological upgrade; it signals the true democratization of the multi-cloud ecosystem. By leveraging open standards like A2A, the enterprise is moving away from monolithic vendor platforms and toward a vibrant, decentralizedย marketplace of agentic services. In this future state, enterprises will gain access to specialized, hyper-optimized capabilities from a wide array of providers, treating every compute, data, or AI service as a modular, plug-and-play component. This level of strategic flexibility fundamentally alters the competitive landscape, transforming the IT organization from a consumer of platform-centric services to a strategic orchestrator of autonomous, best-of-breed intelligence. This approach delivers the โ€œstrategic freedom from vendor lock-inโ€ necessary to continuously adapt to market changes and accelerate innovation velocity, effectively turning multi-cloud complexity into a decisive competitive advantage.

Governance: Managing the autonomous agent sprawl

The power of autonomous agents comes with the risk of โ€œmisaligned autonomyโ€โ€”agents doing what they were optimized to do, but without the constraints and guardrails the enterprise forgot to encode.ย Success requires a robustย governance frameworkย to manage the burgeoning population of agents.

  • Human-in-the-loop (HITL) for critical decisions:ย While agents execute most tasks autonomously, the architecture must enforce clearย human intervention pointsย for high-risk decisions, such as a major cost optimization that impacts a business-critical service or an automated incident response that involves deleting a core data store.ย Gartnerย emphasizes the importance of transparency, clear audit trails, and the ability for humans to intervene or override agent behavior.ย In fact, Gartner predicts that by 2028, loss of controlโ€”where AI agents pursue misaligned goalsโ€”will be the top concern for 40% of Fortune 1000 companies.
  • The 4 pillars of agent governance:ย A strong framework must cover the full agent lifecycle:
    1. Lifecycle management:ย Enforcing separation of duties for development, staging, and production.
    2. Risk management:ย Implementing behavioral guardrails and compliance checks.
    3. Security:ย Applying least privilege access to tools and APIs.
    4. Observability:ย Auditing every action to maintain a complete chain of reasoning for compliance and debugging.

By embracing this Maestro architecture, CIOs can transform their multi-cloud complexity into a competitive advantage, achieving unprecedented levels of resilience, cost optimization, and, most importantly, strategic freedom from vendor lock-in.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

Why cyber resilience must be strategic, not a side project

8 December 2025 at 07:45

As one of the worldโ€™s foremost voices on cybersecurity and crisis leadership, Sarah Armstrong-Smith has spent her career at the intersection of technology, resilience and human decision-making. Formerly chief security advisor at Microsoft Europe, and now a member of the UK Government Cyber Advisory Board, she is widely recognized for her ability to translate complex technical challenges into actionable business strategy.

In this exclusive interview with The Cyber Security Speakers Agency, Sarah explores how todayโ€™s CIOs must evolve from technology enablers to resilience architects โ€” embedding cyber preparedness into the core of business strategy. Drawing on decades of experience leading crisis management and resilience functions at global organizations, she offers a masterclass in how technology leaders can balance innovation with security, manage disruption with clarity and build cultures of trust in an era defined by volatility and digital interdependence.

For business and technology leaders navigating the next wave of transformation, Sarahโ€™s insights offer a rare blend of strategic depth and practical foresight โ€” a roadmap for leadership in the age of perpetual disruption.

1. As digital transformation accelerates, how can CIOs embed cyber resilience into the very fabric of business strategy rather than treating it as a separate function?

Cyber resilience should be recognised as a strategic enabler, not merely a technical safeguard. CIOs must champion a holistic approach where resilience is woven into every stage of digital transformation โ€” from initial design through to deployment and ongoing operations.

This requires close collaboration with business leaders to ensure risk management and security controls are embedded from the outset, rather than being an afterthought. By aligning cyber resilience objectives with business outcomes, CIOs can work alongside CISOs to help their organizations anticipate threats, adapt rapidly to disruptions and maintain stakeholder trust.

Embedding resilience also demands a shift in organizational mindset. CIOs should help to foster a culture where every employee understands their role in protecting digital assets and maintaining operational service.

This involves education and cross-functional exercises that simulate real-world incidents, aligned to current threats. By making resilience a shared responsibility and a key performance metric, CIOs can ensure their organizations are not only prepared to withstand a range of threats but are also positioned to recover quickly and thrive in the face of adversity.

2. CIOs and CISOs often face tension between innovation and security. Whatโ€™s your advice for maintaining that balance while still driving progress?

Balancing innovation and security are constant challenges that require CIOs to act as both risk managers and business catalysts. The key is to embed security and resilience considerations early into the innovation lifecycle, ensuring new technologies and processes are assessed for risk early and often.

CIOs should promote agile governance frameworks that allow for rapid experimentation while maintaining clear guardrails around information protection, compliance and operational integrity. By involving security teams from the outset, organizations can identify potential vulnerabilities before they become systemic issues.

At the same time, CISOs must avoid creating a culture of fear that stifles creativity. Instead, they should encourage responsible risk-taking by providing teams with the tools, guidance and autonomy to innovate securely.

This includes leveraging automation, zero-trust architectures and continuous monitoring to reduce vulnerabilities and enable faster, safer deployment of solutions. Ultimately, the goal is to create an environment where innovation and security are mutually reinforcing, driving competitive advantage and organizational resilience.

3. Youโ€™ve led crisis management and resilience teams across major organizations. What leadership lessons can CIOs take from managing incidents under pressure?

Effective crisis leadership is built on preparation, decisiveness and transparent communication. CIOs must ensure their teams are well-versed in incident response and empowered to act swiftly when an incident occurs.

This means investing in due diligence, having clear escalation paths and robust playbooks that outline the critical path, and designated roles and responsibilities. During a crisis, leaders must remain calm, protect critical assets and make informed decisions based on real-time intelligence.

Equally important is the ability to communicate clearly with both internal and external stakeholders. CIOs and CISOs should work in unison to provide timely updates to the board, regulators and customers, balancing transparency with the need to protect vulnerable people and sensitive data.

Demonstrating accountability and empathy during a crisis can help preserve trust and minimise reputational damage. After the incident, leaders should be thoroughly committed to post-mortems to identify โ€˜no blameโ€™ lessons learned and drive continuous improvement, ensuring the organization emerges stronger and more resilient.

4. With AI transforming both security threats and defences, what role should CIOs play in governing ethical and responsible AI adoption?

CIOs are uniquely positioned to guide the ethical deployment of AI and emerging tech, balancing innovation with risk management and societal responsibility. They should contribute to governance frameworks that address data privacy, algorithmic bias and transparency, ensuring AI systems are designed and operated in accordance with core organizational policies and regulatory requirements. This involves collaborating with legal, compliance and HR teams to develop policies that safeguard against unintended consequences and consequential impact.

Additionally, CIOs should champion ongoing education and awareness around AI ethics, both within IT and across the wider organization. By fostering a culture of accountability and continuous learning, CIOs can help teams identify and mitigate risks associated with AI through the implementation of rigorous engineering principles.

Regular technical and security assessments and stakeholder engagement is essential to maintaining trust and ensuring AI adoption delivers positive outcomes for those most impacted by it.

5. In your experience, what distinguishes organizations that recover stronger from a cyber incident from those that struggle to regain trust?

Organizations that recover stronger from cyber incidents typically demonstrate resilience through proactive planning, transparent communication and a commitment to continuous improvement. They invest in proactive and reactive capabilities and a positive culture driven by empathetic leadership, empowerment and accountability.

When an incident occurs, these organizations respond swiftly, contain the threat and communicate transparently with stakeholders about the actions being taken to remediate and reduce future occurrences.

Conversely, organizations that struggle often lack preparedness and fail to engage stakeholders effectively. Delayed or inconsistent communication can erode trust and amplify reputational damage.

The most resilient organizations treat incidents and near-misses as learning opportunities, conducting thorough post-incident reviews and implementing changes to strengthen their defences. By prioritising transparency, accountability and a culture of resilience, CIOs can help their organizations not only recover but also enhance their reputation and stakeholder confidence.

6. How can CIOs cultivate a security-first culture across non-technical teams โ€” especially in remote or hybrid work environments?

Cultivating a security-first culture requires CIOs and CISOs to make cybersecurity relevant and accessible to all employees, regardless of technical expertise. This starts with tailored training programmes that address the specific risks faced by different stakeholders, rather than a one-size-fits-all approach.

This should leverage engaging formats โ€“ like interactive workshops, gamified learning and real-world simulations to reinforce positive behaviors and outcomes

Beyond training, CIOs and CISOs must embed security into everyday workflows by providing user-friendly tools and clear guidance. Regular communication, visible leadership and recognition of positive security behaviors can help sustain momentum.

In hybrid environments, CIOs should ensure policies are dynamic and adaptive to evolving threats, enabling employees to work securely without sacrificing productivity. By fostering a sense of shared responsibility and empowering non-technical teams, CIOs can build a resilient culture that extends beyond the IT department.

7. Boards are increasingly holding CIOs accountable for resilience and risk. How can technology leaders communicate complex security risks in business language?

To effectively engage boards, CIOs must translate technical issues into enterprise risks, framing cybersecurity and resilience as a strategic imperative rather than a technical challenge. This involves articulating how exposure to specific threats could affect safety, revenue, reputation, regulatory compliance and operational services. CIOs and CISOs should use clear, non-technical language, supported by real-world scenarios, to illustrate the potential consequences of ineffective controls and the value of resilience investments.

Regular, structured and diligent reporting โ€” such as dashboards, heat maps and risk registers โ€” can help boards visualise enterprise risk exposure and track progress over time. CIOs should foster open dialogue, encouraging board members to ask questions and participate in scenario planning.

By aligning security discussions with business objectives and demonstrating the ROI of resilience initiatives, technology and security leaders can build trust and secure the support needed to drive meaningful change.

8. What emerging risks or trends should CIOs be preparing for in 2025 and beyond?

CIOs must stay ahead of a rapidly evolving threat landscape, characterised by the proliferation of AI-enabled attacks, supply chain vulnerabilities and targeted campaigns. The rise of quantum computing poses long-term risks to traditional encryption methods, necessitating understanding and early exploration of quantum-safe solutions.

Additionally, regulatory scrutiny around data sovereignty and ethical AI is intensifying, requiring codes of conduct and governance strategies.

Beyond technology, CIOs should anticipate continuous shifts in workforce dynamics, such as the increase in human-related threats. Societal risks, geopolitical instability and the convergence of physical and cyber threats are also shaping the resilience agenda. By maintaining a forward-looking perspective and investing in adaptive capabilities, leaders can position their organizations to navigate uncertainty and capitalize on emerging opportunities.

9. How important is collaboration between CIOs and other business leaders, such as CFOs and CHROs, in building organizational resilience?

Collaboration across the entire C-suite is essential for building holistic resilience that encompasses people, technology, finance and processes. CIOs must work closely with CFOs to align resilience investments with business priorities and CROs to ensure risk management strategies are financially sustainable. Engaging CHROs is equally important, as workforce readiness and culture play a critical role in responding to and recovering from disruptions.

Joint initiatives such as cross-functional crisis simulations, integrated risk assessments and shared accountability frameworks can help break down silos and foster a unified approach to resilience.

By leveraging diverse perspectives and expertise, CIOs can drive more effective decision-making and ensure resilience is embedded throughout the organization. Ultimately, strong collaboration enables organizations to reduce assumptions, anticipate challenges, respond cohesively and emerge stronger in times of adversity.

10. Finally, what personal qualities do you believe future-ready CIOs must develop to lead effectively through constant disruption?

Future-ready CIOs must embody adaptability, strategic vision and emotional intelligence. The pace of technological change and the frequency of disruptive events demand leaders who can pivot quickly, embrace uncertainty and inspire confidence in their teams. CIOs should cultivate an inquisitive mindset, continuously seeking new knowledge and challenging conventional wisdom to stay ahead of emerging trends.

Equally important are communication and collaboration skills. CIOs must be able to articulate complex ideas clearly, build consensus across diverse stakeholders and foster a culture of trust and accountability.

Resilience, empathy and a commitment to ethical leadership will enable CIOs to navigate challenges with integrity and guide their organizations through periods of uncertainty and transformation. By developing these qualities, CIOs can lead with purpose and drive sustainable success in an ever-changing landscape.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

ใ‚จใƒณใ‚ธใƒ‹ใ‚ข่ฆ–็‚นใ‹ใ‚‰่ฆ‹ใŸLLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆๅฎŸ่ฃ…ๅ…ฅ้–€โ”€โ”€ใƒ•ใƒฌใƒผใƒ ใƒฏใƒผใ‚ฏ้ธๅฎšใ‹ใ‚‰ใƒ—ใƒญใƒˆใ‚ฟใ‚คใƒ—ๆง‹็ฏ‰ใพใง

8 December 2025 at 07:22

ใ‚ขใƒผใ‚ญใƒ†ใ‚ฏใƒใƒฃใฎๅ…จไฝ“ๅƒใ‚’ๆŠผใ•ใˆใ‚‹

ๆœ€ๅˆใฎไธ€ๆญฉใจใ—ใฆ้‡่ฆใชใฎใฏใ€LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚ทใ‚นใƒ†ใƒ ใฎๅŸบๆœฌ็š„ใชใ‚ขใƒผใ‚ญใƒ†ใ‚ฏใƒใƒฃใ‚’้ ญใฎไธญใงๆใ‘ใ‚‹ใ‚ˆใ†ใซใ™ใ‚‹ใ“ใจใงใ™ใ€‚ๅคšใใฎๅ ดๅˆใ€ไธญๆ ธใซใฏLLMๆŽจ่ซ–APIใŒใ‚ใ‚Šใ€ใใฎๅ‘จๅ›ฒใซใƒ—ใƒญใƒณใƒ—ใƒˆใƒ†ใƒณใƒ—ใƒฌใƒผใƒˆใ€ใƒ„ใƒผใƒซ็พคใ€ใƒกใƒขใƒชใ‚นใƒˆใ‚ขใ€RAG็”จใฎใƒ™ใ‚ฏใƒˆใƒซใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นใ€ใƒญใ‚ฐใ‚„ใƒขใƒ‹ใ‚ฟใƒชใƒณใ‚ฐใฎไป•็ต„ใฟใŒ้…็ฝฎใ•ใ‚Œใพใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ่‡ชไฝ“ใฏใ€ใ“ใ‚Œใ‚‰ใ‚’็ต„ใฟๅˆใ‚ใ›ใŸใ€Œใ‚ชใƒผใ‚ฑใ‚นใƒˆใƒฌใƒผใ‚ทใƒงใƒณๅฑคใ€ใจใ—ใฆๅฎŸ่ฃ…ใ•ใ‚Œใ€่ฆณๅฏŸใƒปๆ€่€ƒใƒป่กŒๅ‹•ใฎใƒซใƒผใƒ—ใ‚’็ฎก็†ใ—ใพใ™ใ€‚

ใ‚ฏใƒฉใ‚คใ‚ขใƒณใƒˆใ‹ใ‚‰ใฎใƒชใ‚ฏใ‚จใ‚นใƒˆใฏใ€ใพใšใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ตใƒผใƒใƒผใ‚’้€šใ˜ใฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซๆธกใ•ใ‚Œใพใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏใ€็พๅœจใฎใ‚ณใƒณใƒ†ใ‚ญใ‚นใƒˆใจใƒกใƒขใƒชใ‚’ใ‚‚ใจใซใƒ—ใƒญใƒณใƒ—ใƒˆใ‚’ๆง‹็ฏ‰ใ—ใ€LLM APIใ‚’ๅ‘ผใณๅ‡บใ—ใพใ™ใ€‚LLMใ‹ใ‚‰่ฟ”ใฃใฆใใŸๅ‡บๅŠ›ใฎใ†ใกใ€ใƒ„ใƒผใƒซๅ‘ผใณๅ‡บใ—ใŒๅซใพใ‚Œใฆใ„ใ‚‹้ƒจๅˆ†ใฏใƒ‘ใƒผใ‚นใ•ใ‚Œใ€ๅฏพๅฟœใ™ใ‚‹ใƒ„ใƒผใƒซ้–ขๆ•ฐใ‚„ๅค–้ƒจAPIใŒๅฎŸ่กŒใ•ใ‚Œใพใ™ใ€‚ใใฎ็ตๆžœใŒๅ†ใณใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซๆˆปใ‚Šใ€ๆฌกใฎใ‚นใƒ†ใƒƒใƒ—ใฎใƒ—ใƒญใƒณใƒ—ใƒˆใซ็ต„ใฟ่พผใพใ‚Œใ€ใƒซใƒผใƒ—ใŒ็ถšใใพใ™ใ€‚

RAGใ‚’็ต„ใฟ่พผใ‚€ๅ ดๅˆใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒๅฟ…่ฆใซๅฟœใ˜ใฆๆคœ็ดขใƒ„ใƒผใƒซใ‚’ๅ‘ผใณๅ‡บใ—ใ€ใƒฆใƒผใ‚ถใƒผใฎ่ณชๅ•ใ‚„ใ‚ฟใ‚นใ‚ฏใซ้–ข้€ฃใ™ใ‚‹ใƒ‰ใ‚ญใƒฅใƒกใƒณใƒˆใ‚’ใƒ™ใ‚ฏใƒˆใƒซใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นใ‹ใ‚‰ๅ–ๅพ—ใ—ใพใ™ใ€‚ๅ–ๅพ—ใ—ใŸใƒ†ใ‚ญใ‚นใƒˆใฏใ€LLMใฎใ‚ณใƒณใƒ†ใ‚ญใ‚นใƒˆใซ็ต„ใฟ่พผใพใ‚Œใ€ไบ‹ๅฎŸใƒ™ใƒผใ‚นใฎๅ›ž็ญ”ใ‚„ๅˆคๆ–ญใ‚’ๆ”ฏใˆใพใ™ใ€‚ใƒกใƒขใƒชใ‚นใƒˆใ‚ขใฏใ€ใƒฆใƒผใ‚ถใƒผใ”ใจใฎ้•ทๆœŸ็š„ใชๆƒ…ๅ ฑใ‚„ใ‚ฟใ‚นใ‚ฏใฎไธญ้–“็Šถๆ…‹ใ‚’ไฟๆŒใ—ใ€ๆฌกๅ›žไปฅ้™ใฎใ‚คใƒณใ‚ฟใƒฉใ‚ฏใ‚ทใƒงใƒณใงใ‚‚ๆดป็”จใ•ใ‚Œใพใ™ใ€‚

ใ“ใฎใ‚ˆใ†ใชๆง‹้€ ใ‚’ๆ„่ญ˜ใ™ใ‚‹ใ“ใจใงใ€ใ€Œใฉใ“ใ‚’ๅ…ˆใซไฝœใ‚Šใ€ใฉใ“ใ‚’ๅพŒใ‹ใ‚‰ๅทฎใ—ๆ›ฟใˆๅฏ่ƒฝใซไฟใคใ‹ใ€ใจใ„ใ†่จญ่จˆๅˆคๆ–ญใŒใ—ใ‚„ใ™ใใชใ‚Šใพใ™ใ€‚ใŸใจใˆใฐใ€ๆœ€ๅˆใฏๅ˜็ด”ใชRDBMSใ‚’ใƒกใƒขใƒชใ‚นใƒˆใ‚ขใจใ—ใฆไฝฟใ„ใ€ๅพŒใ‹ใ‚‰ๅฐ‚็”จใฎใƒ™ใ‚ฏใƒˆใƒซใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นใ‚„ใ‚ญใƒฃใƒƒใ‚ทใƒฅๅฑคใ‚’่ฟฝๅŠ ใ™ใ‚‹ใจใ„ใฃใŸๆฎต้šŽ็š„ใชใ‚ขใƒ—ใƒญใƒผใƒใŒๅฏ่ƒฝใซใชใ‚Šใพใ™ใ€‚

ใƒ•ใƒฌใƒผใƒ ใƒฏใƒผใ‚ฏ้ธๅฎšใจๅฐใ•ใชใƒ—ใƒญใƒˆใ‚ฟใ‚คใƒ—

ๅฎŸ่ฃ…ๆ‰‹ๆฎตใจใ—ใฆใฏใ€ๅ„็คพใ‚„ใ‚ณใƒŸใƒฅใƒ‹ใƒ†ใ‚ฃใŒๆไพ›ใ™ใ‚‹ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใƒ•ใƒฌใƒผใƒ ใƒฏใƒผใ‚ฏใ‚„ใƒฏใƒผใ‚ฏใƒ•ใƒญใƒผใ‚จใƒณใ‚ธใƒณใ‚’ๅˆฉ็”จใ™ใ‚‹ๆ–นๆณ•ใจใ€่‡ชๅ‰ใง่–„ใ„ใ‚ชใƒผใ‚ฑใ‚นใƒˆใƒฌใƒผใ‚ทใƒงใƒณใƒฌใ‚คใƒคใƒผใ‚’ๆ›ธใๆ–นๆณ•ใŒใ‚ใ‚Šใพใ™ใ€‚ใฉใกใ‚‰ใ‚’้ธใถใซใ›ใ‚ˆใ€ใ€Œๆœ€ๅˆใ‹ใ‚‰ๅฎŒ็’งใชๅŸบ็›คใ‚’ไฝœใ‚ใ†ใจใ—ใชใ„ใ€ใ“ใจใŒๆˆๅŠŸใฎ้ตใงใ™ใ€‚

ใƒ•ใƒฌใƒผใƒ ใƒฏใƒผใ‚ฏใ‚’้ธใถ้š›ใซใฏใ€ๅฏพๅฟœใ—ใฆใ„ใ‚‹LLMใƒ—ใƒญใƒใ‚คใƒ€ใ€ใƒ„ใƒผใƒซ้€ฃๆบใฎใ—ใ‚„ใ™ใ•ใ€ใ‚นใƒ†ใƒผใƒˆ็ฎก็†ใฎไป•็ต„ใฟใ€ใƒญใ‚ฐใ‚„ใƒขใƒ‹ใ‚ฟใƒชใƒณใ‚ฐใฎๆฉŸ่ƒฝใชใฉใ‚’็ขบ่ชใ—ใพใ™ใ€‚ใพใŸใ€ใ‚ณใƒผใƒ‰ใฎ่ชญใฟใ‚„ใ™ใ•ใ‚„ๆ‹กๅผตใฎใ—ใ‚„ใ™ใ•ใ‚‚้‡่ฆใงใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆŒฏใ‚‹่ˆžใ„ใ‚’็ดฐใ‹ใๅˆถๅพกใ—ใŸใใชใ‚‹ๅ ด้ขใฏๅฟ…ใš่จชใ‚Œใ‚‹ใŸใ‚ใ€ใƒ–ใƒฉใƒƒใ‚ฏใƒœใƒƒใ‚ฏใ‚นใซ่ฆ‹ใˆใ‚‹ใƒ•ใƒฌใƒผใƒ ใƒฏใƒผใ‚ฏใ‚ˆใ‚Šใ‚‚ใ€ไธญ่บซใ‚’็†่งฃใ—ใ‚„ใ™ใ„ใ‚‚ใฎใ‚’้ธใถๆ–นใŒ้•ทๆœŸ็š„ใซใฏๅฎ‰ๅ…จใงใ™ใ€‚

ๆœ€ๅˆใฎใƒ—ใƒญใƒˆใ‚ฟใ‚คใƒ—ใจใ—ใฆใฏใ€ไธ€ใคใฎๆ˜Ž็ขบใชใƒฆใƒผใ‚นใ‚ฑใƒผใ‚นใซ็‰นๅŒ–ใ—ใŸใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ไฝœใ‚‹ใฎใŒใ‚ˆใ„ใงใ—ใ‚‡ใ†ใ€‚ใŸใจใˆใฐใ€ใ‚ฆใ‚งใƒ–ๆคœ็ดขใจ็คพๅ†…RAGใ‚’็ต„ใฟๅˆใ‚ใ›ใฆใƒฌใƒใƒผใƒˆ่‰ๆกˆใ‚’ไฝœใ‚‹ใƒชใ‚ตใƒผใƒใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚„ใ€็คพๅ†…ใฎFAQใ‚’ๅ‚็…งใ—ใชใŒใ‚‰ๅพ“ๆฅญๅ“กใฎๅ•ใ„ๅˆใ‚ใ›ใซ็ญ”ใˆใ‚‹ใƒ˜ใƒซใƒ—ใƒ‡ใ‚นใ‚ฏใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใชใฉใงใ™ใ€‚ใ“ใฎๆฎต้šŽใงใฏใ€่ช่จผใ‚„่ค‡้›‘ใชๆจฉ้™็ฎก็†ใ€ใ‚นใ‚ฑใƒผใƒชใƒณใ‚ฐๆˆฆ็•ฅใชใฉใฏๆœ€ไฝŽ้™ใซใจใฉใ‚ใ€ใจใซใ‹ใใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎใ€Œๆ‰‹่งฆใ‚Šใ€ใ‚’ใƒใƒผใƒ ใงๅ…ฑๆœ‰ใ™ใ‚‹ใ“ใจใŒ็›ฎ็š„ใซใชใ‚Šใพใ™ใ€‚

ใƒ—ใƒญใƒˆใ‚ฟใ‚คใƒ—ใฎไธญใงใฏใ€ใƒ„ใƒผใƒซใ‚’ไบŒใ€ไธ‰ๅ€‹ใซ็ตžใ‚Šใ€ใƒกใƒขใƒชใ‚‚ใ‚ปใƒƒใ‚ทใƒงใƒณๅ†…ใฎ็ฐกๆ˜“ใชใ‚‚ใฎใซ็•™ใ‚ใ‚‹ใจๅฎŸ่ฃ…ใŒๆฅฝใซใชใ‚Šใพใ™ใ€‚ใใฎไปฃใ‚ใ‚Šใ€ใƒญใ‚ฐใ‚’ไธๅฏงใซๆฎ‹ใ—ใ€ใฉใฎใ‚ˆใ†ใชใƒ—ใƒญใƒณใƒ—ใƒˆใŒใฉใฎใ‚ˆใ†ใชๅ‡บๅŠ›ใ‚’็”Ÿใ‚“ใ ใฎใ‹ใ€ใƒ„ใƒผใƒซใฎๅ‘ผใณๅ‡บใ—ใŒๆˆๅŠŸใ—ใŸใฎใ‹ๅคฑๆ•—ใ—ใŸใฎใ‹ใ‚’ๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ไป•็ต„ใฟใ‚’ๆ•ดใˆใฆใŠใใจใ€ๅพŒใฎๆ”นๅ–„ใซๅฝน็ซ‹ใกใพใ™ใ€‚

้–‹็™บใƒ—ใƒญใ‚ปใ‚นใจใƒ†ใ‚นใƒˆใƒป่ฉ•ไพกใฎๅทฅๅคซ

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ้–‹็™บใงใ‚จใƒณใ‚ธใƒ‹ใ‚ขใŒๆˆธๆƒ‘ใ„ใ‚„ใ™ใ„ใฎใŒใ€ใƒ†ใ‚นใƒˆใฎ้›ฃใ—ใ•ใงใ™ใ€‚ๅŒใ˜ๅ…ฅๅŠ›ใซๅฏพใ—ใฆๅŒใ˜ๅฟœ็ญ”ใŒ่ฟ”ใ‚‰ใชใ„ใ“ใจใ‚‚ๅคšใใ€ๅพ“ๆฅใฎๅ˜ไฝ“ใƒ†ใ‚นใƒˆใ‚„ใ‚นใƒŠใƒƒใƒ—ใ‚ทใƒงใƒƒใƒˆใƒ†ใ‚นใƒˆใฎๆ‰‹ๆณ•ใ‚’ใใฎใพใพ้ฉ็”จใ™ใ‚‹ใ“ใจใฏๅ›ฐ้›ฃใงใ™ใ€‚ใใ“ใง้‡่ฆใซใชใ‚‹ใฎใŒใ€ใ‚ทใƒŠใƒชใ‚ชใƒ™ใƒผใ‚นใฎ่ฉ•ไพกใจใ€่‡ชๅ‹•่ฉ•ไพกใจไบบๆ‰‹่ฉ•ไพกใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚

ๅ…ทไฝ“็š„ใซใฏใ€ๅ…ธๅž‹็š„ใชใ‚ฟใ‚นใ‚ฏใ‚ทใƒŠใƒชใ‚ชใ‚’่ค‡ๆ•ฐ็”จๆ„ใ—ใ€ใใ‚Œใžใ‚Œใซใคใ„ใฆๆœŸๅพ…ใ•ใ‚Œใ‚‹ๆŒฏใ‚‹่ˆžใ„ใฎๆกไปถใ‚’ๅฎš็พฉใ—ใพใ™ใ€‚ใŸใจใˆใฐใ€Œใ“ใฎๅ•ใ„ๅˆใ‚ใ›ใซๅฏพใ—ใฆใฏใ€็คพๅ†…่ฆ็จ‹ใฎ่ฉฒๅฝ“็ฎ‡ๆ‰€ใ‚’ๅผ•็”จใ—ใคใคใ€ไธ‰ใคใฎ้ธๆŠž่‚ขใ‚’ๆ็คบใ™ใ‚‹ใ€ใจใ„ใฃใŸใƒฌใƒ™ใƒซใงใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ๅฎšๆœŸ็š„ใซใ“ใ‚Œใ‚‰ใฎใ‚ทใƒŠใƒชใ‚ชใซๅฏพใ—ใฆๅฎŸ่กŒใ—ใ€LLMใ‚’็”จใ„ใŸ่‡ชๅ‹•่ฉ•ไพกใ‚„ใƒซใƒผใƒซใƒ™ใƒผใ‚นใฎใƒใ‚งใƒƒใ‚ซใƒผใงๅˆๅฆใ‚’ๅˆคๅฎšใ—ใพใ™ใ€‚ใ“ใ‚ŒใซๅŠ ใˆใฆใ€้‡่ฆใชใ‚ทใƒŠใƒชใ‚ชใซใคใ„ใฆใฏไบบๆ‰‹ใซใ‚ˆใ‚‹ใƒฌใƒ“ใƒฅใƒผใ‚’่กŒใ„ใ€ไธป่ฆณ็š„ใชๅ“่ณชใ‚‚็ขบ่ชใ—ใพใ™ใ€‚

้–‹็™บใƒ—ใƒญใ‚ปใ‚นใจใ—ใฆใฏใ€ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚„ใƒ„ใƒผใƒซๆง‹ๆˆใ‚’้ ป็นใซๅค‰ๆ›ดใงใใ‚‹ใ‚ˆใ†ใซใ—ใคใคใ€ๅค‰ๆ›ดใฎๅฝฑ้Ÿฟ็ฏ„ๅ›ฒใ‚’ๆŠŠๆกใ™ใ‚‹ใŸใ‚ใฎ่ฉ•ไพกใ‚ธใƒงใƒ–ใ‚’CIใซ็ต„ใฟ่พผใ‚€ใจใ‚ˆใ„ใงใ—ใ‚‡ใ†ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎ่จญๅฎšใ‚’ๅค‰ๆ›ดใ™ใ‚‹ใŸใณใซใ€ใ‚ทใƒŠใƒชใ‚ช่ฉ•ไพกใ‚’่ตฐใ‚‰ใ›ใ€้‡่ฆๆŒ‡ๆจ™ใฎๅค‰ๅŒ–ใ‚’ๅฏ่ฆ–ๅŒ–ใ—ใพใ™ใ€‚ใ“ใ‚Œใซใ‚ˆใ‚Šใ€ใ€Œไธ€ใคใฎใƒฆใƒผใ‚นใ‚ฑใƒผใ‚นใ‚’ๆ”นๅ–„ใ—ใŸใคใ‚‚ใ‚ŠใŒใ€ๅˆฅใฎใƒฆใƒผใ‚นใ‚ฑใƒผใ‚นใ‚’ๅŠฃๅŒ–ใ•ใ›ใฆใ—ใพใฃใŸใ€ใจใ„ใฃใŸไบ‹ๆ…‹ใ‚’ๆ—ฉๆœŸใซๆคœ็Ÿฅใงใใพใ™ใ€‚

ๆœ€ๅพŒใซใ€้‹็”จใƒ•ใ‚งใƒผใ‚บใงใฏใ€ใƒฆใƒผใ‚ถใƒผใฎใƒ•ใ‚ฃใƒผใƒ‰ใƒใƒƒใ‚ฏใจใƒญใ‚ฐๅˆ†ๆžใŒ้‡่ฆใชๆƒ…ๅ ฑๆบใซใชใ‚Šใพใ™ใ€‚ใƒฆใƒผใ‚ถใƒผใซ็ฐกๅ˜ใซใ€Œใ“ใฎๅ›ž็ญ”ใฏๅฝนใซ็ซ‹ใฃใŸใ‹ใ€ใ€Œใฉใ“ใŒๅ•้กŒใ ใฃใŸใ‹ใ€ใ‚’้€ไฟกใ—ใฆใ‚‚ใ‚‰ใˆใ‚‹ใ‚คใƒณใ‚ฟใƒผใƒ•ใ‚งใƒผใ‚นใ‚’็”จๆ„ใ—ใ€ใใฎๆƒ…ๅ ฑใ‚’ใƒญใ‚ฐใจ็ดใฅใ‘ใฆๅˆ†ๆžใ™ใ‚‹ใ“ใจใงใ€ๆ”นๅ–„ใฎๅ„ชๅ…ˆ้ †ไฝใ‚’ๆฑบใ‚ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ใ‚จใƒณใ‚ธใƒ‹ใ‚ขใฏใ€ใƒขใƒ‡ใƒซใ‚„ใƒ—ใƒญใƒณใƒ—ใƒˆใฎ่ชฟๆ•ดใ ใ‘ใงใชใใ€ใƒ„ใƒผใƒซใฎ่ฟฝๅŠ ใƒปๅ‰Š้™คใ€ใƒกใƒขใƒชๆˆฆ็•ฅใฎ่ฆ‹็›ดใ—ใ€ใ‚จใƒฉใƒผๅ‡ฆ็†ใฎๅผทๅŒ–ใชใฉใ€ใ‚ทใ‚นใƒ†ใƒ ๅ…จไฝ“ใ‚’ๅฏพ่ฑกใจใ—ใŸๆ”นๅ–„ใ‚’็ถ™็ถš็š„ใซ่กŒใ†ใ“ใจใซใชใ‚Šใพใ™ใ€‚

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆๅฎŸ่ฃ…ใฏใ€ๅ˜ใชใ‚‹APIๅ‘ผใณๅ‡บใ—ใฎใƒฉใƒƒใƒ‘ใƒผไฝœใ‚Šใงใฏใชใใ€ๆŽจ่ซ–ใ‚ทใ‚นใƒ†ใƒ ใ€ใƒฏใƒผใ‚ฏใƒ•ใƒญใƒผใ€ใƒ‡ใƒผใ‚ฟๅŸบ็›คใ€UXใŒไบคๅทฎใ™ใ‚‹็ทๅˆๆ ผ้—˜ๆŠ€ใฎใ‚ˆใ†ใช้ ˜ๅŸŸใงใ™ใ€‚ใ—ใ‹ใ—ใ€ๅฐใ•ใชใƒ—ใƒญใƒˆใ‚ฟใ‚คใƒ—ใ‹ใ‚‰ๅง‹ใ‚ใ€ใ‚ขใƒผใ‚ญใƒ†ใ‚ฏใƒใƒฃใฎ้ชจๆ ผใ‚’ๆ„่ญ˜ใ—ใชใŒใ‚‰ๅพใ€…ใซๆ‹กๅผตใ—ใฆใ„ใ‘ใฐใ€็พๅฎŸ็š„ใชใ‚ณใ‚นใƒˆใงๆœฌ็•ช้‹็”จใซ่€ใˆใ†ใ‚‹ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’่‚ฒใฆใฆใ„ใใ“ใจใŒใงใใพใ™ใ€‚

ๅฎ‰ๅ…จใชLLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ไฝœใ‚‹ใŸใ‚ใฎใƒชใ‚นใ‚ฏใจใ‚ฌใƒใƒŠใƒณใ‚นโ”€โ”€ๅนป่ฆšใƒปใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใƒปๆณ•็š„่ฒฌไปป

8 December 2025 at 07:21

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ็‰นๆœ‰ใฎใƒชใ‚นใ‚ฏใฎๅ…จไฝ“ๅƒ

ใพใšๆŠผใ•ใˆใฆใŠใใŸใ„ใฎใฏใ€LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎใƒชใ‚นใ‚ฏใฏใ€ๅ˜ไธ€ใฎๆŠ€่ก“็š„ๅ•้กŒใงใฏใชใใ€่ค‡ๆ•ฐใฎใƒฌใ‚คใƒคใƒผใซใพใŸใŒใฃใฆใ„ใ‚‹ใจใ„ใ†็‚นใงใ™ใ€‚ใฒใจใคใฏใ€LLMใใฎใ‚‚ใฎใŒๆŒใคๅนป่ฆšใฎๅ•้กŒใงใ™ใ€‚ใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ„ใŒ่ชคใฃใŸๆƒ…ๅ ฑใ‚’่‡ชไฟกๆบ€ใ€…ใซ่ชžใฃใฆใ—ใพใ†ๆŒฏใ‚‹่ˆžใ„ใฏใ‚ˆใ็Ÿฅใ‚‰ใ‚Œใฆใ„ใพใ™ใŒใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจใ—ใฆๅค–้ƒจใƒ„ใƒผใƒซใซใ‚ขใ‚ฏใ‚ปใ‚นใ™ใ‚‹ๅ ดๅˆใ€ใ“ใฎ่ชคใ‚ŠใŒๅ…ทไฝ“็š„ใชใ‚ขใ‚ฏใ‚ทใƒงใƒณใซใคใชใŒใฃใฆใ—ใพใ†ๅฏ่ƒฝๆ€งใŒใ‚ใ‚Šใพใ™ใ€‚ๅญ˜ๅœจใ—ใชใ„APIใ‚จใƒณใƒ‰ใƒใ‚คใƒณใƒˆใ‚’ๅ‘ผใณๅ‡บใใ†ใจใ—ใŸใ‚Šใ€่ชคใฃใŸๆกไปถใงใƒ‡ใƒผใ‚ฟใ‚’ๆŠฝๅ‡บใ—ใŸใ‚Šใ™ใ‚‹ใ“ใจใฏใ€ๆฅญๅ‹™ใƒ—ใƒญใ‚ปใ‚นใซ็›ดๆŽฅ็š„ใชๅฝฑ้Ÿฟใ‚’ไธŽใˆใพใ™ใ€‚

ๆฌกใซใ€ใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใจใƒ—ใƒฉใ‚คใƒใ‚ทใƒผใฎใƒชใ‚นใ‚ฏใŒใ‚ใ‚Šใพใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏใ€ใƒฆใƒผใ‚ถใƒผใฎๅ…ฅๅŠ›ๅ†…ๅฎนใ ใ‘ใงใชใใ€็คพๅ†…ใฎๅ„็จฎใ‚ทใ‚นใƒ†ใƒ ใ‚„ใƒ‰ใ‚ญใƒฅใƒกใƒณใƒˆใซใ‚ขใ‚ฏใ‚ปใ‚นใ™ใ‚‹ใ“ใจใŒๅคšใใ€ใใฎ้Ž็จ‹ใงๆฉŸๅฏ†ๆƒ…ๅ ฑใ‚’ๆ‰ฑใ„ใพใ™ใ€‚ใ“ใ‚Œใ‚‰ใฎๆƒ…ๅ ฑใŒใƒขใƒ‡ใƒซๆไพ›่€…ใ‚„ใƒญใ‚ฐใ‚ทใ‚นใƒ†ใƒ ใ‚’้€šใ˜ใฆๅค–้ƒจใซ้€ไฟกใ•ใ‚Œใ‚‹ๅ ดๅˆใ€ๆƒ…ๅ ฑ็ฎก็†ไธŠใฎใƒชใ‚นใ‚ฏใŒ็”Ÿใ˜ใพใ™ใ€‚ใพใŸใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒๆ”ปๆ’ƒ่€…ใซๆ‚ช็”จใ•ใ‚Œใ‚‹ๅฏ่ƒฝๆ€งใ‚‚็„ก่ฆ–ใงใใพใ›ใ‚“ใ€‚ใŸใจใˆใฐใ€ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚คใƒณใ‚ธใ‚งใ‚ฏใ‚ทใƒงใƒณๆ”ปๆ’ƒใซใ‚ˆใฃใฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎ่กŒๅ‹•ๆ–น้‡ใŒๆ›ธใๆ›ใˆใ‚‰ใ‚Œใ€ๆ„ๅ›ณใ—ใชใ„ๆƒ…ๅ ฑ้€ไฟกใ‚„ๆ“ไฝœใŒ่กŒใ‚ใ‚Œใ‚‹ใจใ„ใฃใŸใ‚ทใƒŠใƒชใ‚ชใงใ™ใ€‚

ใ•ใ‚‰ใซใ€ๆณ•็š„่ฒฌไปปใฎๅ•้กŒใ‚‚ใ‚ใ‚Šใพใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒ็”Ÿๆˆใ—ใŸๅ†…ๅฎนใ‚„ๅฎŸ่กŒใ—ใŸใ‚ขใ‚ฏใ‚ทใƒงใƒณใŒๆณ•ไปค้•ๅใ‚„ๅฅ‘็ด„้•ๅใซใคใชใŒใฃใŸๅ ดๅˆใ€่ชฐใŒ่ฒฌไปปใ‚’่ฒ ใ†ใฎใ‹ใ€‚ใƒขใƒ‡ใƒซๆไพ›่€…ใ‹ใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’็ต„ใฟ่พผใ‚“ใ ใ‚ตใƒผใƒ“ใ‚นๆไพ›่€…ใ‹ใ€ใใ‚Œใจใ‚‚ๆœ€็ต‚็š„ใซๅˆฉ็”จใ—ใŸใƒฆใƒผใ‚ถใƒผใ‹ใ€‚ใ“ใฎๅ•ใ„ใซๆ˜Ž็ขบใช็ญ”ใˆใŒๅ‡บใฆใ„ใชใ„้ ˜ๅŸŸใ‚‚ๅคšใใ€ใ‚ฌใƒใƒŠใƒณใ‚น่จญ่จˆใฎ้›ฃใ—ใ•ใ‚’ๅข—ใ—ใฆใ„ใพใ™ใ€‚

ใ‚ฌใƒผใƒ‰ใƒฌใƒผใƒซ่จญ่จˆใจๆจฉ้™็ฎก็†ใฎ่€ƒใˆๆ–น

ใ“ใ†ใ—ใŸใƒชใ‚นใ‚ฏใซๅฏพๅ‡ฆใ™ใ‚‹ใŸใ‚ใซใฏใ€ๆŠ€่ก“็š„ใƒป้‹็”จ็š„ใชใ‚ฌใƒผใƒ‰ใƒฌใƒผใƒซใ‚’ๅคšๅฑค็š„ใซ่จญ่จˆใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ใใฎไธญๅฟƒใซใ‚ใ‚‹ใฎใŒๆจฉ้™็ฎก็†ใงใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไธŽใˆใ‚‹ๆจฉ้™ใฏใ€ๅŽŸๅ‰‡ใจใ—ใฆๅฟ…่ฆๆœ€ๅฐ้™ใซใจใฉใ‚ใ€ใ€Œใพใšใฏ่ชญใฟๅ–ใ‚Šๅฐ‚็”จใ‹ใ‚‰ๅง‹ใ‚ใ‚‹ใ€ใ“ใจใŒๅฎ‰ๅ…จใชใ‚ขใƒ—ใƒญใƒผใƒใงใ™ใ€‚ใŸใจใˆใฐใ€CRMใ‚ทใ‚นใƒ†ใƒ ใจใฎ้€ฃๆบใงใฏใ€ๆœ€ๅˆใฏ้กงๅฎขๆƒ…ๅ ฑใฎๅ‚็…งใฎใฟใซ็ตžใ‚Šใ€ไธ€ๅฎšๆœŸ้–“ๅ•้กŒใŒใชใ„ใ“ใจใ‚’็ขบ่ชใ—ใŸใ†ใˆใงใ€ใƒฌใ‚ณใƒผใƒ‰ๆ›ดๆ–ฐใฎๆจฉ้™ใ‚’้™ๅฎš็š„ใซ่งฃๆ”พใ—ใฆใ„ใใจใ„ใฃใŸๆฎต้šŽ็š„ใช่จญ่จˆใŒ่€ƒใˆใ‚‰ใ‚Œใพใ™ใ€‚

ใพใŸใ€ๅฑ้™บๅบฆใฎ้ซ˜ใ„ใ‚ขใ‚ฏใ‚ทใƒงใƒณใซใคใ„ใฆใฏใ€ๅฟ…ใšไบบ้–“ใฎๆ‰ฟ่ชใ‚’ๆŒŸใ‚€ใƒฏใƒผใ‚ฏใƒ•ใƒญใƒผใซใ™ใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚้ซ˜้กใชๆ”ฏๆ‰•ใ„ๆŒ‡็คบใ€ๅฅ‘็ด„ๆกไปถใฎๅค‰ๆ›ดใ€ๅฏพๅค–็š„ใช้‡่ฆๆ–‡ๆ›ธใฎ้€ไป˜ใชใฉใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒใƒ‰ใƒฉใƒ•ใƒˆใ‚„ๆๆกˆใ‚’่กŒใ†ใ“ใจใฏใ‚ใฃใฆใ‚‚ใ€ๆœ€็ต‚ๅฎŸ่กŒใฏไบบ้–“ใŒ่กŒใ†ๅฝขใซใ™ในใใงใ™ใ€‚ใ“ใฎใ€Œไบบ้–“ใฎๆ‰ฟ่ชใ‚นใƒ†ใƒƒใƒ—ใ€ใ‚’ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎใƒ•ใƒญใƒผใฎไธญใซๆ˜Ž็คบ็š„ใซ็ต„ใฟ่พผใ‚€ใ“ใจใงใ€่ชคๅ‹•ไฝœใฎๅฝฑ้Ÿฟใ‚’้™ๅฎšใงใใพใ™ใ€‚

ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚คใƒณใ‚ธใ‚งใ‚ฏใ‚ทใƒงใƒณใ‚„ใƒ‡ใƒผใ‚ฟๆผใˆใ„ใธใฎๅฏพ็ญ–ใจใ—ใฆใฏใ€ๅ…ฅๅŠ›ใจๅ‡บๅŠ›ใฎใƒ•ใ‚ฃใƒซใ‚ฟใƒชใƒณใ‚ฐใ‚‚ๆฌ ใ‹ใ›ใพใ›ใ‚“ใ€‚ใƒฆใƒผใ‚ถใƒผๅ…ฅๅŠ›ใ‚„ๅค–้ƒจใ‚ตใ‚คใƒˆใ‹ใ‚‰ๅ–ๅพ—ใ—ใŸใƒ†ใ‚ญใ‚นใƒˆใ‚’ใใฎใพใพใ‚ทใ‚นใƒ†ใƒ ใƒ—ใƒญใƒณใƒ—ใƒˆใซๅ–ใ‚Š่พผใพใชใ„ใ€ๅค–้ƒจใซ้€ไฟกใ—ใฆใฏใชใ‚‰ใชใ„ๆƒ…ๅ ฑใŒๅ‡บๅŠ›ใซๅซใพใ‚Œใฆใ„ใชใ„ใ‹ใ‚’ใƒใ‚งใƒƒใ‚ฏใ™ใ‚‹ใ€็‰นๅฎšใฎใ‚ญใƒผใƒฏใƒผใƒ‰ใ‚„ใƒ‘ใ‚ฟใƒผใƒณใŒๆคœๅ‡บใ•ใ‚ŒใŸๅ ดๅˆใซใฏๅ‡ฆ็†ใ‚’ๅœๆญขใ—ใฆใ‚ขใƒฉใƒผใƒˆใ‚’ไธŠใ’ใ‚‹ใจใ„ใฃใŸไป•็ต„ใฟใŒๆœ‰ๅŠนใงใ™ใ€‚ใ“ใ‚Œใ‚‰ใฏใ€ใƒขใƒ‡ใƒซใฎๅค–ๅดใฎใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใƒฌใ‚คใƒคใƒผใงๅฎŸ่ฃ…ใงใใ‚‹ใ“ใจใŒๅคšใใ€ใ‚ฌใƒผใƒ‰ใƒฌใƒผใƒซใฎ้‡่ฆใชไธ€้ƒจใซใชใ‚Šใพใ™ใ€‚

ใƒขใƒ‹ใ‚ฟใƒชใƒณใ‚ฐใจ่ฒฌไปปใฎๆ˜Ž็ขบๅŒ–ใซใ‚ˆใ‚‹ใ‚ฌใƒใƒŠใƒณใ‚น

ใ‚ฌใƒผใƒ‰ใƒฌใƒผใƒซใ‚’่จญ่จˆใ—ใŸใจใ—ใฆใ‚‚ใ€ไธ€ๅบฆๅฐŽๅ…ฅใ—ใŸใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ใใฎใพใพๆ”พ็ฝฎใ—ใฆใ‚ˆใ„ใ‚ใ‘ใงใฏใ‚ใ‚Šใพใ›ใ‚“ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏๅญฆ็ฟ’ๆธˆใฟใƒขใƒ‡ใƒซใฎไธŠใซๆˆใ‚Š็ซ‹ใฃใฆใ„ใ‚‹ใจใฏใ„ใˆใ€ใใฎๆŒ™ๅ‹•ใฏใ‚ณใƒณใƒ†ใ‚ญใ‚นใƒˆใ‚„็’ฐๅขƒใซใ‚ˆใฃใฆๅค‰ๅŒ–ใ—ใพใ™ใ€‚ใ—ใŸใŒใฃใฆใ€้‹็”จ้–‹ๅง‹ๅพŒใ‚‚็ถ™็ถš็š„ใชใƒขใƒ‹ใ‚ฟใƒชใƒณใ‚ฐใจๆ”นๅ–„ใŒๅฟ…่ฆใงใ™ใ€‚

ใƒขใƒ‹ใ‚ฟใƒชใƒณใ‚ฐใฎๅฏพ่ฑกใซใฏใ€ๆˆๅŠŸใ—ใŸใ‚ฟใ‚นใ‚ฏใจๅคฑๆ•—ใ—ใŸใ‚ฟใ‚นใ‚ฏใฎๆฏ”็އใ€ใƒฆใƒผใ‚ถใƒผใซใ‚ˆใ‚‹ไฟฎๆญฃ้ ปๅบฆใ€ใ‚จใƒฉใƒผใ‚„ไพ‹ๅค–ใฎ็™บ็”Ÿใƒ‘ใ‚ฟใƒผใƒณใ€ใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃไธŠใฎ็–‘็พฉใฎใ‚ใ‚‹ๆŒ™ๅ‹•ใชใฉใŒๅซใพใ‚Œใพใ™ใ€‚็‰นใซ้‡่ฆใชใฎใฏใ€ใ€Œ้‡ๅคงไบ‹ๆ•…ใซใคใชใŒใ‚‹ๆ‰‹ๅ‰ใฎๆœช้‚ไบ‹ไพ‹ใ€ใ‚’ๆ—ฉๆœŸใซๆคœ็Ÿฅใ™ใ‚‹ใ“ใจใงใ™ใ€‚ใŸใจใˆใฐใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒ็ฆๆญขใ•ใ‚Œใฆใ„ใ‚‹ๅค–้ƒจใƒ‰ใƒกใ‚คใƒณใธใฎใ‚ขใ‚ฏใ‚ปใ‚นใ‚’่ฉฆใฟใŸใŒใ€ใ‚ฌใƒผใƒ‰ใƒฌใƒผใƒซใซใ‚ˆใ‚Šใƒ–ใƒญใƒƒใ‚ฏใ•ใ‚ŒใŸใจใ„ใ†ใƒญใ‚ฐใฏใ€่จญ่จˆใฎๆ”นๅ–„ไฝ™ๅœฐใ‚’็คบใ™่ฒด้‡ใชใ‚ทใ‚ฐใƒŠใƒซใงใ™ใ€‚

ใพใŸใ€่ฒฌไปปใฎๆ˜Ž็ขบๅŒ–ใ‚‚ใ‚ฌใƒใƒŠใƒณใ‚นใฎไธ€้ƒจใงใ™ใ€‚็ต„็น”ๅ†…้ƒจใซใŠใ„ใฆใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎ่จญ่จˆใจ้‹็”จใซใคใ„ใฆๆœ€็ต‚่ฒฌไปปใ‚’่ฒ ใ†ใ‚ชใƒผใƒŠใƒผใ‚’ๆ˜Ž็คบใ—ใ€ๅค‰ๆ›ด็ฎก็†ใ‚„ใ‚คใƒณใ‚ทใƒ‡ใƒณใƒˆๅฏพๅฟœใฎใƒ—ใƒญใ‚ปใ‚นใ‚’ๅฎš็พฉใ—ใฆใŠใๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ๅค–้ƒจๅ‘ใ‘ใซใฏใ€ๅˆฉ็”จ่ฆ็ด„ใ‚„ใƒ—ใƒฉใ‚คใƒใ‚ทใƒผใƒใƒชใ‚ทใƒผใซใŠใ„ใฆใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆฉŸ่ƒฝใจ้™็•Œใ€ใƒฆใƒผใ‚ถใƒผๅดใซๆฑ‚ใ‚ใ‚‰ใ‚Œใ‚‹็ขบ่ช็พฉๅ‹™ใชใฉใ‚’ๅˆ†ใ‹ใ‚Šใ‚„ใ™ใ่ชฌๆ˜Žใ™ใ‚‹ใ“ใจใŒๆฑ‚ใ‚ใ‚‰ใ‚Œใพใ™ใ€‚

ๅฎ‰ๅ…จใชLLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจใฏใ€ใƒชใ‚นใ‚ฏใŒใ‚ผใƒญใฎใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใงใฏใชใใ€ใƒชใ‚นใ‚ฏใŒๅฏ่ฆ–ๅŒ–ใ•ใ‚Œใ€ใ‚ณใƒณใƒˆใƒญใƒผใƒซๅฏ่ƒฝใชๅฝขใง้‹็”จใ•ใ‚Œใฆใ„ใ‚‹ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใงใ™ใ€‚ๅนป่ฆšใ‚„่ชคๅˆคๆ–ญใ‚’ๅฎŒๅ…จใซๆŽ’้™คใ™ใ‚‹ใ“ใจใฏใงใใชใ„ไปฅไธŠใ€ใใ‚Œใ‚‰ใ‚’ๅ‰ๆใจใ—ใฆใ€ใฉใ“ใงๆญขใ‚ใ€ใฉใ“ใงไบบ้–“ใซใคใชใใฎใ‹ใ€ๅ•้กŒใŒ็™บ็”Ÿใ—ใŸใจใใซใฉใ†ๆคœ็Ÿฅใ—ใ€ใฉใ†ๅญฆใณใซๅค‰ใˆใ‚‹ใฎใ‹ใจใ„ใ†ใ‚ฌใƒใƒŠใƒณใ‚นใฎๆž ็ต„ใฟใ“ใใŒใ€่จญ่จˆใจๅŒใ˜ใใ‚‰ใ„้‡่ฆใซใชใฃใฆใ„ใใพใ™ใ€‚

CIOs shift from โ€˜cloud-firstโ€™ to โ€˜cloud-smartโ€™

8 December 2025 at 05:01

Common wisdom has long held that a cloud-first approach will gain CIOs benefits such as agility, scalability, and cost-efficiency for their applications and workloads. While cloud remains most IT leadersโ€™ preferred infrastructure platform, many are rethinking their cloud strategies, pivoting from cloud-first to โ€œcloud-smartโ€ by choosing the best approach for specific workloads rather than just moving everything off-premises and prioritizing cloud over other considerations for new initiatives.

Cloud cost optimization is one factor motivating this rethink, with organizations struggling to control escalating cloud expenses amid rapid growth. An estimated 21% of enterprise cloud infrastructure spend, equivalent to $44.5 billion in 2025, is wasted on underutilized resources โ€” with 31% of CIOs wasting half of their cloud spend, according to a recent survey from VMware.

The full rush to the cloud is over, says Ryan McElroy, vice president of technology at tech consultancy Hylaine. Cloud-smart organizations have a well-defined and proven process for determining which workloads are best suited for the cloud.

For example, โ€œsomething that must be delivered very quickly and support massive scale in the future should be built in the cloud,โ€ McElroy says. โ€œSolutions with legacy technology that must be hosted on virtual machines or have very predictable workloads that will last for years should be deployed to well-managed data centers.โ€

The cloud-smart trend is being influenced by better on-prem technology, longer hardware cycles, ultra-high margins with hyperscale cloud providers, and the typical hype cycles of the industry, according to McElroy. All favor hybrid infrastructure approaches.

However, โ€œAI has added another major wrinkle with siloed data and compute,โ€ he adds. โ€œMany organizations arenโ€™t interested in or able to build high-performance GPU datacenters, and need to use the cloud. But if theyโ€™ve been conservative or cost-averse, their data may be in the on-prem component of their hybrid infrastructure.โ€

These variables have led to complexity or unanticipated costs, either through migration or data egress charges, McElroy says.

He estimates that โ€œonly 10% of the industry has openly admitted theyโ€™re movingโ€ toward being cloud-smart. While that number may seem low, McElroy says it is significant.

โ€œThere are a lot of prerequisites to moderate on your cloud stance,โ€ he explains. โ€œFirst, you generally have to be a new CIO or CTO. Anyone who moved to the cloud is going to have a lot of trouble backtracking.โ€

Further, organizations need to have retained and upskilled the talent who manage the datacenter they own or at the co-location facility. They must also have infrastructure needs that outweigh the benefits the cloud provides in terms of raw agility and fractional compute, McElroy says.

Selecting and reassessing the right hyper-scaler

Procter & Gamble embraced a cloud-first strategy when it began migrating workloads aboutย eight years ago, says Paola Lucetti, CTO and senior vice president. At that time, the mandate was that all new applications would be deployed in the public cloud, and existing workloads would migrate from traditional hosting environments to hyperscalers, Lucetti says.

โ€œThis approach allowed us to modernize quickly, reduce dependency on legacy infrastructure, and tap into the scalability and resilience that cloud platforms offer,โ€ she says.

Today, nearly all P&Gโ€™s workloads run on cloud. โ€œWe chooseย to keep selected workloadsย outside of the public cloudย because of latency or performance needs that we regularly reassess,โ€ Lucetti says. โ€œThis foundation gave us speed and flexibility during a critical phase of digital transformation.โ€

As the companyโ€™s cloud ecosystem has matured, so have its business priorities. โ€œCost optimization, sustainability, and agility became front and center,โ€ she says. โ€œCloud-smart for P&G means selecting and regularly reassessing the right hyperscaler for the right workload, embedding FinOps practices for transparency and governance, and leveraging hybrid architectures to support specific use cases.โ€

This approach empowers developers through automation, AI, and agentic to drive value faster, Lucetti says. โ€œThis approach isnโ€™t just technical โ€” itโ€™s cultural. It reflects a mindset of strategic flexibility, where technology decisions align with business outcomes.โ€

AI is reshaping cloud decisions

AI represents a huge potential spend requirement and raises the stakes for infrastructure strategy, says McElroy.

โ€œRenting servers packed with expensive Nvidia GPUs all day every day for three years will be financially ruinous compared to buying them outright,โ€ he says, โ€œbut the flexibility to use next yearโ€™s models seamlessly may represent a strategic advantage.โ€

Cisco, for one, has become far more deliberate about what truly belongs in the public cloud, says Nik Kale, principal engineer and product architect. Cost is one factor, but the main driver is AI data governance.

โ€œBeing cloud-smart isnโ€™t about repatriation โ€” itโ€™s about aligning AIโ€™s data gravity with the right control plane,โ€ he says.

IT has parsed out what should be in a private cloud and what goes into a public cloud. โ€œTraining and fine-tuning large models requires strong control over customer and telemetry data,โ€ Kale explains. โ€œSo we increasingly favor hybrid architectures where inference and data processing happen within secure, private environments, while orchestration and non-sensitive services stay in the public cloud.โ€

Ciscoโ€™s cloud-smart strategy starts with data classification and workload profiling. Anything with customer-identifiable information, diagnostic traces, and model feedback loops are processed within regionally compliant private clouds, he says.

Then there are โ€œstateless services, content delivery, and telemetry aggregation that benefit from public-cloud elasticity for scale and efficiency,โ€ Kale says.

Ciscoโ€™s approach also involves โ€œpackaging previously cloud-resident capabilities for secure deployment within customer environments โ€” offering the same AI-driven insights and automation locally, without exposing data to shared infrastructure,โ€ he says. โ€œThis gives customers the flexibility to adopt AI capabilities without compromising on data residency, privacy, or cost.โ€

These practices have improved Ciscoโ€™s compliance posture, reduced inference latency, and yielded measurable double-digit reductions in cloud spend, Kale says.

One area where AI has fundamentally changed their approach to cloud is in large-scale threat detection. โ€œEarly versions of our models ran entirely in the public cloud, but once we began fine-tuning on customer-specific telemetry, the sensitivity and volume of that data made cloud egress both costly and difficult to govern,โ€ he says. โ€œMoving the training and feedback loops into regional private clouds gave us full auditability and significantly reduced transfer costs, while keeping inference hybrid so customers in regulated regions received sub-second response times.โ€

IT saw a similar issue with its generative AI support assistant. โ€œInitially, case transcripts and diagnostic logs were processed in public cloud LLMs,โ€ Kale says. โ€œAs customers in finance and healthcare raised legitimate concerns about data leaving their environments, we re-architected the capability to run directly within their [virtual private clouds] or on-prem clusters.โ€

The orchestration layer remains in the public cloud, but the sensitive data never leaves their control plane, Kale adds.

AI has also reshaped how telemetry analytics is handled across Ciscoโ€™s CX portfolio. IT collects petabyte-scale operational data from more than 140,000 customer environments.

โ€œWhen we transitioned to real-time predictive AI, the cost and latency of shipping raw time-series data to the cloud became a bottleneck,โ€ Kale says. โ€œBy shifting feature extraction and anomaly detection to the customerโ€™s local collector and sending only high-level risk signals to the cloud, we reduced egress dramatically while improving model fidelity.โ€

In all instances, โ€œAI made the architectural trade-offs clear: Specific workloads benefit from public-cloud elasticity, but the most sensitive, data-intensive, and latency-critical AI functions need to run closer to the data,โ€ Kale says. โ€œFor us, cloud-smart has become less about repatriation and more about aligning data gravity, privacy boundaries, and inference economics with the right control plane.โ€

A less expensive execution path

Like P&G, World Insurance Associates believes cloud-smart translates to implementing a FinOps framework. CIO Michael Corrigan says that means having an optimized, consistent build for virtual machines based on the business use case, and understanding how much storage and compute is required.

Those are the main drivers to determine costs, โ€œso we have a consistent set of standards of what will size our different environments based off of the use case,โ€ Corrigan says. This gives World Insurance what Corrigan says is an automated architecture.

โ€œThen we optimize the build to make sure we have things turned on like elasticity. So when services arenโ€™t used typically overnight, they shut down and they reduce the amount of storage to turn off the amount of computeโ€ so the company isnโ€™t paying for it, he says. โ€œIt starts with the foundation of optimization or standards.โ€

World Insurance works with its cloud providers on different levels of commitment. With Microsoft, for example, the insurance company has the option to use virtual machines, or what Corrigan says is a โ€œreserved instance.โ€ By telling the provider how many machines they plan to consume or how much they intend to spend, he can try to negotiate discounts.

โ€œThatโ€™s where the FinOps framework has to really be in place โ€ฆ because obviously, you donโ€™t want to commit to a level of spend that you wouldnโ€™t consume otherwise,โ€ Corrigan says. โ€œItโ€™s a good way for the consumer or us as the organization utilizing those cloud services, to get really significant discounts upfront.โ€

World Insurance is using AI for automation and alerts. AI tools are typically charged on a compute processing model, โ€œand what you can do is design your query so that if it is something thatโ€™s less complicated, itโ€™s going to hit a less expensive execution pathโ€ and go to a small language model (SLM), which doesnโ€™t use as much processing power, Corrigan says.

The user gets a satisfactory result, and โ€œthere is less of a cost because youโ€™re not consuming as much,โ€ he says.

Thatโ€™s the tactic the company is taking โ€” routing AI queries to the less expensive model. If there is a more complicated workflow or process, it will be routed to the SLM first โ€œand see if it checks the box,โ€ Corrigan says. If its needs are more complex, it is moved to the next stage, which is more expensive, and generally involves an LLM that requires going through more data to give the end user what theyโ€™re looking for.

โ€œSo we try to manage the costs that way as well so weโ€™re only consuming whatโ€™s really needed to be consumed based on the complexity of the process,โ€ he says.

Cloud is โ€˜a living frameworkโ€™

Hylaineโ€™s McElroy says CIOs and CTOs need to be more open to discussing the benefits of hybrid infrastructure setups, and how the state of the art has changed in the past few years.

โ€œMany organizations are wrestling with cloud costs they know instinctively are too high, but there are few incentives to take on the risky work of repatriation when a CFO doesnโ€™t know what savings theyโ€™re missing out on,โ€ he says.

Lucetti characterizes P&Gโ€™s cloud strategy as โ€œa living framework,โ€ and says that over the next few years, the company will continue to leverage the right cloud capabilities to enable AI and agentic for business value.

โ€œThe goal is simple: Keep technology aligned with business growth, while staying agile in a rapidly changing digital landscape,โ€ she says. โ€œCloud transformation isnโ€™t a destination โ€” itโ€™s a journey. At P&G, we know that success comes from aligning technology decisions with business outcomes and by embracing flexibility.โ€

Get data, and the data culture, ready for AI

8 December 2025 at 05:00

When it comes to AI adoption, the gap between ambition and execution can be impossible to bridge. Companies are trying to weave the tech into products, workflows, and strategies, but good intentions often collapse under the weight of the day-to-day realities from messy data and lack of a clear plan.

โ€œThatโ€™s the challenge we see most often across the global manufacturers we work with,โ€ says Rob McAveney, CTO at software developer Aras. โ€œMany organizations assume they needAI, when the real starting point should be defining the decision you want AI to support, and making sure you have the right data behind it.โ€

Nearly two-thirds of leaders say their organizations have struggled to scale AI across the business, according to a recent McKinsey global survey. Often, they canโ€™t move beyond tests of pilot programs, a challenge thatโ€™s even more pronounced among smaller organizations. Often, pilots fail to mature, and investment decisions become harder to justify.

A typical issue is the data simply isnโ€™t ready for AI. Teams try to build sophisticated models on top of fragmented sources or messy data, hoping the technology will smooth over the cracks.

โ€œFrom our perspective, the biggest barriers to meaningful AI outcomes are data quality, data consistency, and data context,โ€ McAveney says. โ€œWhen data lives in silos or isnโ€™t governed with shared standards, AI will simply reflect those inconsistencies, leading to unreliable or misleading outcomes.โ€

Itโ€™s an issue that impacts almost every sector. Before organizations double down on new AI tools, they must first build stronger data governance, enforce quality standards, and clarify who actually owns the data meant to fuel these systems.

Making sure AI doesnโ€™t take the wheel

In the rush to adopt AI, many organizations forget to ask the fundamental questionofwhat problem actually needs to be solved. Without that clarity, itโ€™s difficult to achieve meaningful results.

Anurag Sharma, CTO of VyStar Credit Union believes AI is just another tool thatโ€™s available to help solve a given business problem, and says every initiative should begin with a clear, simple statement of the business outcome itโ€™s meant to deliver. He encourages his team to isolate issues AI could fix, and urges executives to understand what will change and who will be affected before anything moves forward.

โ€œCIOs and CTOs can keep initiatives grounded by insisting on this discipline, and by slowing down the conversation just long enough to separate the shiny from the strategic,โ€ Sharma says.

This distinction becomes much easier when an organization has an AI COE or a dedicated working group focused on identifying real opportunities. These teams help sift through ideas, set priorities, and ensure initiatives are grounded in business needs rather than buzz.

The group should also include the people whose work will be affected by AI, along with business leaders, legal and compliance specialists, and security teams. Together, they can define baseline requirements that AI initiatives must meet.

โ€œWhen those requirements are clear up front, teams can avoid pursuing AI projects that look exciting but lack a real business anchor,โ€ says Kayla Underkoffler, director of AI security and policy advocacy at security and governance platform Zenity.

She adds that someone in the COE should have a solid grasp of the current AI risk landscape. That person should be ready to answer critical questions, knowing what concerns need to be addressed before every initiative goes live.

โ€œA plan could have gaping cracks the team isnโ€™t even aware of,โ€ Underkoffler says. โ€œItโ€™s critical that security be included from the beginning to ensure the guardrails and risk assessment can be added from the beginning and not bolted on after the initiative is up and running.โ€

In addition, there should be clear, measurable business outcomes to make sure the effort is worthwhile. โ€œEvery proposal must define success metrics upfront,โ€ says Akash Agrawal, VP of DevOps and DevSecOps at cloud-based quality engineering platform LambdaTest, Inc. โ€œAI is never explored, itโ€™s applied.โ€

He recommends companies build in regular 30- or 45-day checkpoints to ensure the work continues to align with business objectives. And if the results donโ€™t meet expectations, organizations shouldnโ€™t hesitate to reassess and make honest decisions, he says. Even if that means walking away from the initiative altogether.

Yet even when the technology looks promising, humans still need to remain in the loop. โ€œIn an early pilot of our AI-based lead qualification, removing human review led to ineffective lead categorization,โ€ says Shridhar Karale, CIO at sustainable waste solutions company, Reworld. โ€œWe quickly retuned the model to include human feedback, so it continually refines and becomes more accurate over time.โ€

When decisions are made without human validation, organizations risk acting on faulty assumptions or misinterpreted patterns. The aim isnโ€™t to replace people, but to build a partnership in which humans and machines strengthen one other.

Data, a strategic asset

Ensuring data is managed effectively is an often overlooked prerequisite for making AI work as intended. Creating the right conditions means treating data as a strategic asset: organizing it, cleaning it, and having the right policies in place so it stays reliable over time.

โ€œCIOs should focus on data quality, integrity, and relevance,โ€ says Paul Smith, CIO at Amnesty International. His organization works with unstructured data every day, often coming from external sources. Given the nature of the work, the quality of that data can be variable. Analysts sift through documents, videos, images, and reports, each produced in different formats and conditions. Managing such a high volume of messy, inconsistent, and often incomplete information has taught them the importance of rigor.

โ€œThereโ€™s no such thing as unstructured data, only data that hasnโ€™t yet had structure applied to it,โ€ Smith says. He also urges organizations to start with the basics of strong, everyday data-governance habits. That means checking whether the data is relevant, and ensuring itโ€™s complete, accurate, and consistent, and outdated information can skew results.

Smith also emphasizes the importance of verifying data lineage. That includes establishing provenance โ€” knowing where the data came from and whether its use meets legal and ethical standards โ€” and reviewing any available documentation that details how it was collected or transformed.

In many organizations, messy data comes from legacy systems or manual entry workflows. โ€œWe strengthen reliability by standardizing schemas, enforcing data contracts, automating quality checks at ingestion, and consolidating observability across engineering,โ€ says Agrawal.

When teams trust the data, their AI outcomes improve. โ€œIf you canโ€™t clearly answer where the data came from and how trustworthy is it, then you arenโ€™t ready,โ€ Sharma adds. โ€œItโ€™s better to slow down upfront than chase insights that are directionally wrong or operationally harmful, especially in the financial industry where trust is our currency.โ€

Karale says that at Reworld, theyโ€™ve created a single source of truth data fabric, and assigned data stewards to each domain. They also maintain a living data dictionary that makes definitions and access policies easy to find with a simple search. โ€œEach entry includes lineage and ownership details so every team knows whoโ€™s responsible, and they can trust the data they use,โ€ Karale adds.

A hard look in the organizational mirror

AI has a way of amplifying whatever patterns it finds in the data โ€” the helpful ones, but also the old biases organizations would rather leave behind. Avoiding that trap starts with recognizing that bias is often a structural issue.

CIOs can do a couple of things to prevent problems from taking root. โ€œVet all data used for training or pilot runs and confirm foundational controls are in place before AI enters the workflow,โ€ says Underkoffler.

Also, try to understand in detail how agentic AI changes the risk model. โ€œThese systems introduce new forms of autonomy, dependency, and interaction,โ€ she says. โ€œControls must evolve accordingly.โ€

Underkoffler also adds that strong governance frameworks can guide organizations on monitoring, managing risks, and setting guardrails. These frameworks outline whoโ€™s responsible for overseeing AI systems, how decisions are documented, and when human judgment must step in, providing structure in an environment where the technology is evolving faster than most policies can keep up.

And Karale says that fairness metrics, such as disparate impact, play an important role in that oversight. These measures help teams understand whether an AI system is treating different groups equitably or unintentionally favoring one over another. These metrics could be incorporated into the model validation pipeline.

Domain experts can also play a key role in spotting and retraining models that produce biased or off-target outputs. They understand the context behind the data, so theyโ€™re often the first to notice when something doesnโ€™t look right. โ€œContinuous learning is just as important for machines as it is for people,โ€ says Karale.

Amnesty Internationalโ€™s Smith agrees, saying organizations need to train their people continuously to help them pick out potential biases. โ€œRaise awareness of risks and harms,โ€ he says. โ€œThe first line of defense or risk mitigation is human.โ€

SAS, 2026๋…„ AI ์‚ฐ์—…์„ ์ด๋Œ 8๊ฐ€์ง€ ์ „๋ง ๊ณต๊ฐœยทยทยท์ฑ…์ž„์„ฑยทROI ์ค‘์š”์„ฑ ์ปค์ ธ

8 December 2025 at 03:26

SAS๋Š” 2025๋…„์„ ๋Œ์•„๋ณด๋ฉด์„œ AI ๊ธฐ์ˆ ์˜ ๋น ๋ฅธ ๋ฐœ์ „๊ณผ ๋‹ค์–‘ํ•œ ์„ฑ๊ณผ๋ฅผ ์ธ์ •ํ•˜๋ฉด์„œ๋„, ์ž ์žฌ์ ์ธ AI ๊ฑฐํ’ˆ, ์—๋„ˆ์ง€ ์‚ฌ์šฉ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ๋ถ€๋‹ด, ์ƒ์„ฑํ˜• AI ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ์˜ ๊ธฐ๋Œ€ ์ดํ•˜ ์„ฑ๊ณผ ๋“ฑ ์—ฌ๋Ÿฌ ์šฐ๋ ค ์š”์†Œ๊ฐ€ ์กด์žฌํ•œ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. SAS ์ „๋ฌธ๊ฐ€๋“ค์€ 2026๋…„์ด AI๋กœ๋ถ€ํ„ฐ ์‹ค์งˆ์ ์ธ ROI(ํˆฌ์ž์ˆ˜์ต๋ฅ )๋ฅผ ํ™•๋ณดํ•˜๊ณ , ์œค๋ฆฌ์ ยท๊ฒฝ์ œ์  ๊ณผ์ œ๋ฅผ ๋ณธ๊ฒฉ์ ์œผ๋กœ ํ•ด๊ฒฐํ•ด์•ผ ํ•˜๋Š” ์ค‘์š”ํ•œ ์‹œ๊ธฐ๊ฐ€ ๋  ๊ฒƒ์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์•ž์œผ๋กœ์˜ ์ „๋ง์—๋Š” ์šฐ๋ ค์™€ ํ•จ๊ป˜ ์‹ ์ค‘ํ•œ ๊ธฐ๋Œ€๊ฐ๋„ ๊ณต์กดํ•œ๋‹ค. SAS ์ฃผ์š” ๋ฆฌ๋”๋“ค์€ AI ๋ฐœ์ „์˜ ํ•ต์‹ฌ ์š”์ธ์œผ๋กœ โ€˜์ฑ…์ž„์„ฑโ€™์„ ๊ฐ•์กฐํ•˜๋ฉฐ, AI ๊ณต๊ธ‰์ž๋ฟ ์•„๋‹ˆ๋ผ ์ด๋ฅผ ํ™œ์šฉํ•˜๋Š” ์กฐ์ง ๋ชจ๋‘๊ฐ€ ์ฑ…์ž„ ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ธฐ์ˆ ์„ ์ ์šฉํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ๋˜ํ•œ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ์˜ ๊ธฐ๋ณธ์„ ๊ฐ•ํ™”ํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” AI๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด ๊ธฐ์ˆ  ์„ฑ์ˆ™ ๋‹จ๊ณ„๋กœ ๋‚˜์•„๊ฐ€๊ณ  ์กฐ์ง์˜ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•˜๋ฉฐ ํ˜์‹  ์†๋„๋ฅผ ๋†’์ด๋Š” ๋ฐ ์ค‘์š”ํ•œ ๊ธฐ๋ฐ˜์ด ๋œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

SAS์˜ ๋ฐ์ดํ„ฐ ๋ฐ AI ๋ฆฌ๋”๋“ค์ด ์ œ์‹œํ•˜๋Š” 2026๋…„ ์ฃผ์š” ์ „๋ง์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  1. AI ์‹œ์žฅ์˜ ์‹ฌํŒ: ์ฑ…์ž„ ์žˆ๋Š” ํ˜์‹ ์— ๋Œ€ํ•œ ์š”๊ตฌ
    2026๋…„์€ AI ์‹œ์žฅ์˜ ์‹ฌํŒ์ด ์‹œ์ž‘๋˜๋Š” ํ•ด๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค. AI์— ๋Œ€ํ•œ ๊ณผ๋„ํ•œ ๊ธฐ๋Œ€๊ฐ€ ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ์ถฉ๋Œํ•˜๊ณ , ์ฑ…์ž„ ์žˆ๋Š” ํ˜์‹ ๋งŒ์ด ์‚ด์•„๋‚จ๋Š” ์‹œ์ ์ด๋‹ค. ์ผ๊ด€๋œ ROI์™€ ํˆฌ๋ช…ํ•œ ๊ฐ๋…์— ๋Œ€ํ•œ ์š”๊ตฌ๋Š” ์ฆ๊ฐ€ํ•˜๊ณ  ๊ฒ€์ฆ๋˜์ง€ ์•Š์€ ํ—ˆํ™ฉ๋œ ํ”„๋กœ์ ํŠธ๋Š” ํ๊ธฐ๋  ๊ฒƒ์ด๋‹ค. ๊ธฐ๋ณธ์ด ๋˜๋Š” ๋ฐ์ดํ„ฐ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜, ๊ฒฌ๊ณ ํ•œ ๋ชจ๋ธ๋ง, ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ํˆฌ์ž๋ฅผ ์žฌ์ง‘์ค‘์‹œํ‚ฌ ๊ฒƒ์ด๋‹ค. ๊ณผ๋Œ€ํ‰๊ฐ€๋œ ๊ธฐ์ˆ ์€ ์‚ฌ๋ผ์ง€๊ณ , ์ธก์ • ๊ฐ€๋Šฅํ•œ ํšจ๊ณผ์™€ ์šด์˜์˜ ์—„๊ฒฉํ•จ์„ ๊ฐ–์ถ˜ ์ฑ…์ž„ ์žˆ๋Š” AI๊ฐ€ ๊ทธ ์ž๋ฆฌ๋ฅผ ์ฐจ์ง€ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์ด ๊ณผ์ •์ด ์–ผ๋งˆ๋‚˜ ๊ฐ•๋„ ๋†’๊ฒŒ ์ง„ํ–‰๋  ๊ฒƒ์ธ์ง€์™€ AI์˜ ์ง„์ •ํ•œ ๋ฅด๋„ค์ƒ์Šค๊ฐ€ ์–ธ์ œ ์‹œ์ž‘๋  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ์˜๋ฌธ์€ ๊ณ„์†๋  ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค.
  1. AI ์ง€์ถœ์˜ ๋Œ€๊ฒฉ๋ณ€
    ์ฑ—GPT ๋ž˜ํผ(wrapper)์™€ ๊ฐ™์€ ๊ธฐ์ˆ ์— ์ˆ˜์‹ญ์–ต ๋‹ฌ๋Ÿฌ๊ฐ€ ํˆฌ์ž…๋œ ํ›„, CFO๋“ค์€ ์ด์ œ ์‹ค์งˆ์ ์ธ ROI๋ฅผ ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€๋ถ€๋ถ„์˜ ์ƒ์„ฑํ˜• AI ํ”„๋กœ์ ํŠธ์—์„œ ROI ๋‹ฌ์„ฑ์€ ์–ด๋ ค์šธ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. โ€˜AI ํ˜์‹ โ€™์ด๋ผ๋Š” ๋ช…๋ชฉ์œผ๋กœ ์˜ˆ์‚ฐ ์ง‘ํ–‰์ด ์ •๋‹นํ™”๋˜๋˜ ์‹œ๊ธฐ๋Š” ์ง€๋‚ฌ๋‹ค. ์ด์ œย ์ฟผ๋ฆฌ๋‹น ๋น„์šฉ, ์ •ํ™•๋„, ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ์— ๋Œ€ํ•œ ํ™•์ธ๊ณผ ๋ถ„์„์ด ํ•„์ˆ˜๋‹ค. 6~12๊ฐœ์›” ๋‚ด์—ย ๊ตฌ์ฒด์ ์ธ ๋น„์šฉ ์ ˆ๊ฐ, ๋งค์ถœ ์„ฑ์žฅ ๋˜๋Š” ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์„ ์ž…์ฆํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ธฐ์—…์€ AI ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ ์ค‘๋‹จ๋˜๊ฑฐ๋‚˜ ๊ณต๊ธ‰์—…์ฒด๋ฅผ ๊ต์ฒดํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  2. ์—์ด์ „ํ‹ฑ(Agentic) AI๊ฐ€ ์†์ต์— ๋Œ€ํ•œ ์ฑ…์ž„์„ ๊ฐ–๊ฒŒ ๋  ๊ฒƒ
    ํฌ์ถ˜ 500๋Œ€ ๊ธฐ์—…๋“ค์€ 2026๋…„ ๋ง๊นŒ์ง€ ๊ณ ๊ฐ ์ƒํ˜ธ์ž‘์šฉ์˜ 4๋ถ„์˜ 1 ์ด์ƒ์„ ์—์ด์ „ํ‹ฑ ์‹œ์Šคํ…œ์ด ์ž์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ–ˆ๋‹ค. ์ด ์—์ด์ „ํŠธ๋“ค์€ ๋‹จ์ˆœ ์ƒ๋‹ด์„ ๋„˜์–ด ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋งค์ถœ ํšจ๊ณผ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ฌ ๊ฒƒ์ด๋‹ค. ๊ทธ ๊ฒฐ๊ณผ โ€˜์ตœ๊ณ  ์—์ด์ „ํŠธ ์ฑ…์ž„์ž(Chief Agent Officer)โ€™์™€ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์—ญํ• ์ด ์ƒ๊ฒจ๋‚  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๋ฐ˜๋ฉด, ์ž์œจ ์‹œ์Šคํ…œ์ด ๋งค์ถœ์„ ์ฃผ๋„ํ•˜๊ฒŒ ๋˜๋ฉด ๋Œ€๊ทœ๋ชจ โ€˜์—์ด์ „ํŠธ ์žฅ์• โ€™ ๋ฐœ์ƒ ์‹œ ๋ง‰๋Œ€ํ•œ ์—ฌํŒŒ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•œ ๋‹ค์šดํƒ€์ž„์€ ๊ธฐ์—… ๋งค์ถœ์— ์ง์ ‘์ ์ธ ํƒ€๊ฒฉ์„ ์ฃผ๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  3. ์ƒˆ๋กœ์šด ๋™๋ฃŒ, ์—์ด์ „ํ‹ฑ AI
    2026๋…„, ๊ธฐ์—…์€ AI ์—์ด์ „ํŠธ๊ฐ€ ๋” ์ด์ƒ ๋„๊ตฌ๊ฐ€ ์•„๋‹Œ ํŒ€์›์ด ๋˜๋Š” ์ƒˆ๋กœ์šด ์ƒํƒœ๊ณ„๋กœ ์ง„์ž…ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์‚ฌ๋žŒ๊ณผ AI๊ฐ€ ํ˜ผํ•ฉ๋œ ํŒ€์œผ๋กœ ์šด์˜๋˜๋ฉฐ, ์—์ด์ „ํŠธ๋Š” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ํ˜‘๋ ฅ์ž๋กœ์„œ ์—…๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ , ์—…๋ฌด ๋งฅ๋ฝ์„ ๊ณต์œ ํ•˜๋ฉฐ ์‚ฌ๋žŒ๋“ค๊ณผ ํ•จ๊ป˜ ์ง€์†์ ์œผ๋กœ ํ•™์Šตํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  1. AI ๋Œ€์ฒด๋ก ๋ณด๋‹ค AI ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋ก 
    AI๋ฅผ ์‚ฌ์šฉํ•ด ์ผ์ž๋ฆฌ๋ฅผ ์—†์•จ ๊ฒƒ์ธ๊ฐ€, ์•„๋‹ˆ๋ฉด AI๋กœ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ํž˜์„ ์‹ค์–ด ๊ฒฝ์Ÿ ์šฐ์œ„๋ฅผ ์ฐฝ์ถœํ•  ๊ฒƒ์ธ๊ฐ€? 2026๋…„ ๋ฆฌ๋”๋“ค์€ ์ด ๋‘ ๊ฐ€์ง€ ์„ ํƒ์ง€ ์‚ฌ์ด์—์„œ ๊ณ ๋ฏผํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์ ์  ๋” ๋ช…ํ™•ํ•ด์ง€๋Š” ์‚ฌ์‹ค์€ AI๋Š” ์‚ฌ๋žŒ์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์‚ฌ๋žŒ์˜ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๊ธฐ์—…์€ ์ง€์†์ ์ธ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ์ธ๋ ฅ์— ํˆฌ์žํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€๋‹ดํ•˜๊ณ  ์ฃผ๋„์ ์ธ ๋ฆฌ๋”๋ฅผ ํ•„์š”๋กœ ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  2. ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๊ฐ€ AI ํŒจ๊ถŒ์˜ ์ƒˆ๋กœ์šด ์ „์žฅ์ด ๋  ๊ฒƒ
    ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋Š” ๋‹จ์ˆœํ•œ ์ž„์‹œ๋ฐฉํŽธ์ด ์•„๋‹ˆ๋ผ, ๋ฐ์ดํ„ฐ ๋ถ€์กฑ, ํ”„๋ผ์ด๋ฒ„์‹œ ์ œํ•œ, ์ปดํ”Œ๋ผ์ด์–ธ์Šค ๋ณ‘๋ชฉ์— ๋งž์„œ๋Š” ์ „๋žต์  ๋ฌด๊ธฐ๋‹ค. 2026๋…„์—๋Š” ๋ฐ์ดํ„ฐ ๊ตฐ๋น„ ๊ฒฝ์Ÿ์ด ๋ฒŒ์–ด์งˆ ๊ฒƒ์ด๋ฉฐ, ๊ธฐ์—…๋“ค์€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ˜„์‹ค ๋ฐ์ดํ„ฐ๋ฟ ์•„๋‹ˆ๋ผ ์–ผ๋งˆ๋‚˜ ํ™•์‹  ์žˆ๊ฒŒ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๋†“๊ณ  ๊ฒฝ์Ÿํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์‹ค์ œ์™€ ๊ฐ™์€ ์ •๊ตํ•จ์„ ๊ฐ–์ถ”๊ณ , ์‹คํ—˜์  ๊ธฐ๋Šฅ์—์„œ ๋ฒ—์–ด๋‚˜ ๋น„์ฆˆ๋‹ˆ์Šค ์šฐ์œ„๋ฅผ ์ฐฝ์ถœํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ์ „ํ™˜์— ์„ฑ๊ณตํ•˜๋Š” ๊ธฐ์—…์ด ์Šน์ž๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.
  3. CIO? ์ด์ œ๋Š” โ€˜์ตœ๊ณ  ํ†ตํ•ฉ ์ฑ…์ž„์ž(Chief Integration Officer)โ€™์˜ ์‹œ๋Œ€
    2026๋…„ CIO๋“ค์ด ์—์ด์ „ํ‹ฑ AI์˜ ๋ฏธ๋ž˜๋ฅผ ์ค€๋น„ํ•˜๋Š” ์ฃผ์—ญ์ด ๋˜๋ฉด์„œ, ๊ธฐ์กด์˜ ๊ธฐ์ˆ  ์ œ๊ณต์ž์—์„œ ์—์ด์ „ํ‹ฑ AI๋ฅผ ์œ„ํ•œ โ€˜ํ†ตํ•ฉ์žโ€™๋กœ ์—ญํ• ์ด ๋‹ฌ๋ผ์งˆ ๊ฒƒ์ด๋‹ค. ์ฆ‰, โ€˜์ตœ๊ณ  ํ†ตํ•ฉ ์ฑ…์ž„์ž(Chief Integration Officer)โ€™๋กœ์˜ ์ „ํ™˜์„ ์˜๋ฏธํ•œ๋‹ค. ์—์ด์ „ํŠธ๊ฐ€ ์ฃผ๋„ํ•˜๋Š” ์„ธ์ƒ์—์„œ IT ์•„ํ‚คํ…์ฒ˜์˜ ๋ฏธ๋ž˜๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด, AI ๊ฑฐ๋ฒ„๋„Œ์Šค, ํ†ตํ•ฉ, ๊ทธ๋ฆฌ๊ณ  ๋ถ€์„œ ๊ฐ„ ๋ฆฌ๋”์‹ญ์ด CIO๋“ค์˜ ์ผ์ƒ ์—…๋ฌด๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค. ย 
  1. ์–‘์ž(Quantum)์— ๊ฑฐ๋Š” ๊ธฐ๋Œ€
    2026๋…„ ์–‘์ž ์‹œ์žฅ์€ ๊ด€๋ จ ๊ธฐ์ˆ ์ด 2030๋…„๊นŒ์ง€ ์ดˆ๊ธฐ ๋‹จ๊ณ„์˜ ๊ฐ€์น˜๋ฅผ ์‹คํ˜„ํ•  ๊ฒƒ์ด๋ผ๋Š” ๊ธฐ๋Œ€๊ฐ๊ณผ ํ•จ๊ป˜ ๋”์šฑ ๋œจ๊ฑฐ์›Œ์งˆ ๊ฒƒ์ด๋‹ค. ํˆฌ์ž์ž๋“ค์€ ํ•˜๋“œ์›จ์–ด์™€ ํฌ์ŠคํŠธ-์–‘์ž ์•”ํ˜ธํ™”์—์„œ ๋ฒ—์–ด๋‚˜ ์†Œํ”„ํŠธ์›จ์–ด์™€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋” ํฐ ๋น„์ค‘์„ ๋‘๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ํ•œํŽธ, ์‹ค์ œ ์–‘์ž ๊ฐ€์น˜๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์†Œํ”„ํŠธ์›จ์–ด ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ณ„์ธต์„ ํฌํ•จํ•ด ์ „์ฒด ์Šคํƒ์„ ํฌ๊ด„ํ•˜๋Š” โ€˜์–‘์ž ์•„ํ‚คํ…์ฒ˜(Quantum Architecture)โ€™๋ผ๋Š” ์šฉ์–ด์— ์ฃผ๋ชฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฏธ๋ž˜์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ์ „๋ฌธ ์ธ๋ ฅ ์ฑ„์šฉ์ด ๊ธ‰์ฆํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.

์ด์ค‘ํ˜ SAS์ฝ”๋ฆฌ์•„ ๋Œ€ํ‘œ์ด์‚ฌ๋Š” โ€œ์ „ ์„ธ๊ณ„์ ์œผ๋กœ AI ํˆฌ์ž์— ๋Œ€ํ•œ ROI์™€ ์‹ ๋ขฐ์„ฑ ํ™•๋ณด ์š”๊ตฌ๊ฐ€ ๋†’์•„์ง€๋Š” ๊ฐ€์šด๋ฐ, ๊ตญ๋‚ด ๊ธฐ์—…๋“ค๋„ AI ๋„์ž…์— ๋Œ€ํ•ด ๋‹จ๊ธฐ์ ยท์‹คํ—˜์  ์ ‘๊ทผ์—์„œ ์ค‘์žฅ๊ธฐ์ ยท์ „๋žต์  ๊ด€์ ์œผ๋กœ ์ „ํ™˜ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋˜ํ•œ โ€œ๋‹จ์ˆœ ์—…๋ฌด์— ์ ์šฉ๋˜๋˜ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM, Large Language Models) ๊ธฐ๋ฐ˜ ์ƒ์„ฑํ˜• AI์˜ ๋น„์ฆˆ๋‹ˆ์Šค ์ˆ˜์ต ๊ฐœ์„  ํšจ๊ณผ์— ์˜๋ฌธ์„ ์ œ๊ธฐํ•˜๋Š” ์กฐ์ง์ด ๋Š˜์–ด๋‚˜๋ฉด์„œ, ๋Œ€์•ˆ์œผ๋กœ ์—์ด์ „ํ‹ฑ AI๋ฅผ ๊ณ ๋ คํ•˜๋Š” ์›€์ง์ž„์ด ํ™•์‚ฐ๋˜๊ณ  ์žˆ๋‹คโ€๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ทธ๋Š” 2026๋…„ ๊ตญ๋‚ด ์‹œ์žฅ ์ „๋ง์— ๋Œ€ํ•ด โ€œ๊ธˆ์œต๊ถŒ์—์„œ๋Š” ๋ฆฌ์Šคํฌ ๊ด€๋ฆฌ, ๋‚ด๋ถ€ํ†ต์ œ, ALM(์ž์‚ฐยท๋ถ€์ฑ„ ์ข…ํ•ฉ๊ด€๋ฆฌ) ๋“ฑ ์ „๋ฌธ ์˜์—ญ์—์„œ AI ์ ์šฉ์„ ํ™•๋Œ€ํ•ด ์‹ค์งˆ์  ROI๋ฅผ ํ™•๋ณดํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋”์šฑ ํ™œ๋ฐœํ•ด์งˆ ๊ฒƒ์ด๋ฉฐ, ๊ณต๊ณต ๋ถ„์•ผ๋Š” ๋””์ง€ํ„ธํ”Œ๋žซํผ์ •๋ถ€ 2.0์„ ์ค‘์‹ฌ์œผ๋กœ AIยทํด๋ผ์šฐ๋“œยท๋ณด์•ˆ ํˆฌ์ž๊ฐ€ ๊ฐ•ํ™”๋˜๋Š” ๋™์‹œ์—, ์—์ด์ „ํ‹ฑ AI ๊ธฐ๋ฐ˜ ์—…๋ฌด ํšจ์œจํ™”์™€ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์˜ ํ™œ์šฉ์ด AI ํˆฌ์ž์˜ ํ•ต์‹ฌ์ด ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์ด์ค‘ํ˜ ๋Œ€ํ‘œ์ด์‚ฌ๋Š” ๋‚ด๋…„๋„ ์‚ฌ์—…์— ๋Œ€ํ•ด โ€œ๊ธ€๋กœ๋ฒŒ ์„ฑ๊ณต ์‚ฌ๋ก€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตญ๋‚ด ๊ณ ๊ฐ๋“ค์ด AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ํ™•๋ณดํ•˜๊ณ  ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ฐฝ์ถœํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ธˆ์œตยท๊ณต๊ณต ๋ถ€๋ฌธ ์†”๋ฃจ์…˜๊ณผ ์ „๋ฌธ ์„œ๋น„์Šค๋ฅผ ํ†ตํ•ด ์ ๊ทน ์ง€์›ํ•˜๊ฒ ๋‹คโ€๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

์ฑ„์šฉ๋งŒ์œผ๋ก  ๋ถ€์กฑํ•˜๋‹คยทยทยทCIO์˜ ๋ฆฌ๋”์‹ญ์ด ์ธ์žฌ ์œ ์ง€์— ์ค‘์š”ํ•œ ์ด์œ 

8 December 2025 at 03:20

๊ธฐ์ˆ  ์ง์›, ํŠนํžˆ ์ „๋ฌธ ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์ธ์žฌ๋Š” ์—ฌ์ „ํžˆ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ต๋‹ค. Gi๊ทธ๋ฃน์˜ ์ตœ๊ทผ ๊ธ€๋กœ๋ฒŒ IT HR ํŠธ๋ Œ๋“œ ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, ๊ธฐ์—…์˜ 47%๊ฐ€ ์ ํ•ฉํ•œ ์ธ์žฌ๋ฅผ ์ฐพ๊ณ  ์œ ์ง€ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์ง๋ฅ  ์—ญ์‹œ ์—ฌ์ „ํžˆ ๋†’์€ ์ˆ˜์ค€์„ ์œ ์ง€ํ•˜๊ณ  ์žˆ๋‹ค.

๊ธ€๋กœ๋ฒŒ ์กฐ์‚ฌ ์—…์ฒด ์„ธ๊ณ ์Šค(Cegos)๊ฐ€ ์ดํƒˆ๋ฆฌ์•„์˜ ์ •๋ณด์‹œ์Šคํ…œ ์ฑ…์ž„์ž 200๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰ํ•œ ์กฐ์‚ฌ์—์„œ, ์‘๋‹ต์ž์˜ 53%๋Š” IT ์ธ์žฌ ํ™•๋ณด์™€ ์œ ์ง€๊ฐ€ โ€˜๋งค์ผ ์ง๋ฉดํ•˜๋Š” ๋ฌธ์ œโ€™๋ผ๊ณ  ๋‹ตํ–ˆ๋‹ค. IT ๋ถ€์„œ์˜ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๊ณผ์ œ๋กœ๋Š” ์‚ฌ์ด๋ฒ„๋ณด์•ˆ์ด ๊ผฝํ˜”์ง€๋งŒ, ์ด ๋ฌธ์ œ๋Š” ๋‹ค์ˆ˜์˜ CIO๊ฐ€ ์ผ์ • ์ˆ˜์ค€ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋А๋ผ๋Š” ์˜์—ญ์ด์—ˆ๋‹ค. ๋ฐ˜๋ฉด IT ์ธ์žฌ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ž์‹ ํ•œ ๋น„์œจ์€ 8%์— ๋ถˆ๊ณผํ–ˆ๋‹ค. ์ดํƒˆ๋ฆฌ์•„ CIO๋Š” ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋‹ค์Œ์œผ๋กœ IT ํŒ€์˜ ์—ญ๋Ÿ‰ ๊ฐœ๋ฐœ๊ณผ ์ธ์žฌ ์œ ์ง€๋ฅผ ์ค‘๋Œ€ํ•œ ๊ณผ์ œ๋กœ ๊ผฝ์•˜์œผ๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ณธ ๋น„์œจ๋„ ๊ฐ๊ฐ 24%์™€ 9%์— ๊ทธ์ณค๋‹ค.

์ดํƒˆ๋ฆฌ์•„ ํ†ต๊ณ„์ฒญ ์ด์Šคํƒ€ํŠธ(Istat)์˜ CIO์ธ ์ฒด์น ๋ฆฌ์•„ ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ์ธ์žฌ๊ฐ€ ์—†์–ด์„œ๊ฐ€ ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ธ์žฌ๋Š” ๋ถ„๋ช…ํžˆ ์žˆ์ง€๋งŒ ์ œ๋Œ€๋กœ ํ‰๊ฐ€๋ฐ›์ง€ ๋ชปํ•œ๋‹ค. ๊ทธ๋ž˜์„œ ๋งŽ์€ ์ด๋“ค์ด ํ•ด์™ธ๋กœ ๋‚˜๊ฐ€๋Š” ๊ธธ์„ ํƒํ•œ๋‹ค. ์ธ์žฌ๋ž€ โ€˜์ ์žฌ์ ์†Œ์— ๋†“์ธ ์‚ฌ๋žŒโ€™์„ ์˜๋ฏธํ•œ๋‹ค. CIO๋ฅผ ํฌํ•จํ•œ ๋ฆฌ๋”๋ผ๋ฉด ์ธ์žฌ๋ฅผ ์•Œ์•„๋ณด๊ณ , ๊ทธ๋“ค์ด ์ธ์ •๋ฐ›๊ณ  ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋А๋ผ๊ฒŒ ํ•˜๋ฉฐ, ์ ์ ˆํ•œ ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•ด ์„ฑ์žฅ์‹œํ‚ฌ ์—ญ๋Ÿ‰์„ ๊ฐ–์ถฐ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ธ์žฌ ๊ด€๋ฆฌ์˜ ์ฃผ์ฒด๊ฐ€ ๋œ CIO

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๊ฒฐ์†๋ ฅ ์žˆ๊ณ  ๋™๊ธฐ ๋ถ€์—ฌ๋œ ์กฐ์ง์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ ์ธ์žฌ ๊ด€๋ฆฌ ๋ฐฉ๋ฒ•์„ ๋ช…ํ™•ํžˆ ์ œ์‹œํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œCIO๋กœ์„œ ์Šค์Šค๋กœ ์„ค์ •ํ•œ ๋ชฉํ‘œ๋Š” ๋‚ด๋ถ€์™€ ์™ธ๋ถ€์˜ ์„œ๋น„์Šค ์ด์šฉ์ž์—๊ฒŒ ๋” ๋†’์€ ํ’ˆ์งˆ์˜ ๊ฒฐ๊ณผ๋ฌผ์„ ๊ณ„์† ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด์—ˆ๋‹คโ€๋ผ๋ฉฐ, โ€œIT ๋ถ€์„œ๋Š” ์—…๋ฌด ์šด์˜์— ํ•ต์‹ฌ์ ์ธ ๋™๋ ฅ์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹œ์ž‘ํ•œ ํ”„๋กœ์ ํŠธ๋ฅผ ํ™•์‹คํžˆ ๋งˆ๋ฌด๋ฆฌํ•˜๊ณ , ๊ธฐ๊ด€์ด ์ง€์†์ ์œผ๋กœ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์ฒด์ ์ธ ์„ฑ๊ณผ๋ฅผ ๋‚ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋‚˜๋Š” IT ๊ธฐ๋Šฅ ์ž์ฒด๋ฅผ ๊ณ ๋„ํ™”ํ•˜๊ณ , ์ œ๊ณต๋˜๋Š” ์„œ๋น„์Šค์˜ ํ’ˆ์งˆ์„ ๋†’์ด๋ฉฐ, ์กฐ์ง ์šด์˜์˜ ์ ํ•ฉ์„ฑ์„ ํ™•๋ณดํ•˜๊ณ , ๊ตฌ์„ฑ์›์˜ ๋ณต์ง€๋ฅผ ํ–ฅ์ƒํ•˜๋Š” ์—ญํ• ์„ ๋งก๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ด์Šคํƒ€ํŠธ์˜ IT ๋ถ€์„œ๋Š” ํ˜„์žฌ 195๋ช… ๊ทœ๋ชจ๋กœ, ๊ธฐ๊ด€ ์ „์ฒด ์ธ๋ ฅ์˜ ์•ฝ 10%๋ฅผ ์ฐจ์ง€ํ•œ๋‹ค. ์ฝœ๋ผ์‚ฐํ‹ฐ๊ฐ€ 2023๋…„ 10์›” CIO๋กœ ์ž„๋ช…๋œ ์งํ›„ ๊ฐ€์žฅ ๋จผ์ € ํ•œ ์ผ์€, ๊ด€๋ฆฌ ์กฐ์ง์— ๋ฐฐ์น˜๋œ ๋ชจ๋“  ์ธ๋ ฅ์„ ์ง์ ‘ ๋งŒ๋‚˜ ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„๋Š” ์ผ์ด์—ˆ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ2001๋…„๋ถ€ํ„ฐ ์ด์Šคํƒ€ํŠธ์—์„œ ์ผํ•ด์™”๊ณ , ์„œ๋กœ ๋Œ€๋ถ€๋ถ„ ์•Œ๊ณ  ์ง€๋‚ด๋Š” ์‚ฌ์ดโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œIT ๋ถ€์„œ์—์„œ ์—ฌ๋Ÿฌ ์—ญํ• ์„ ๋งก์•„์™”์œผ๋ฉฐ, CIO๊ฐ€ ๋œ ๋’ค์—๋Š” ๋ชจ๋‘์˜ ์˜๊ฒฌ์„ ๊ฒฝ์ฒญํ•˜๋Š” ๋ฐ ์ง‘์ค‘ํ•œ๋‹ค. ์„œ๋กœ ์ž˜ ์•„๋Š” ๋งŒํผ ๋™๋ฃŒ๋“ค์ด ํ˜‘์—…์— ํฐ ๊ธฐ๋Œ€๋ฅผ ๊ฑธ๊ณ  ์žˆ๋‹ค๊ณ  ๋А๋‚€๋‹ค. ๊ทธ๋ž˜์„œ ์†”์งํ•œ ๋Œ€ํ™”๋ฅผ ์ถ”๊ตฌํ•˜๊ณ  ๋ชจํ˜ธํ•จ์„ ํ”ผํ•˜๋ ค๊ณ  ํ•œ๋‹ค. ๋‹ค๋งŒ, ๊ฒฝ์ฒญํ•œ๋‹ค๋Š” ๊ฒŒ ์ฑ…์ž„์„ ๋„˜๊ธด๋‹ค๋Š” ๋œป์€ ์•„๋‹ˆ๋‹ค. ์–ด๋–ค ์ œ์•ˆ์€ ๋ฐ›์•„๋“ค์ด๊ณ  ์–ด๋–ค ์ œ์•ˆ์€ ๊ฑฐ์ ˆํ•˜๋ฉฐ, ์„ ํƒ์—๋Š” ๋‚˜๋ฆ„์˜ ์ด์œ ๋ฅผ ์„ค๋ช…ํ•˜๋ ค๊ณ  ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๋˜ ๋‹ค๋ฅธ ์กฐ์น˜๋กœ ์˜ค๋ž˜์ „ ์ด์Šคํƒ€ํŠธ์—์„œ ์ง„ํ–‰๋๋˜ โ€˜๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ, ๋‘ ๊ฐ€์ง€ ํ•ด๊ฒฐ์ฑ…โ€™ ํ”„๋กœ๊ทธ๋žจ์„ ๋‹ค์‹œ ๋„์ž…ํ–ˆ๋‹ค. ์ด๋Š” ์ง์›๋“ค์—๊ฒŒ ์ž๋ฐœ์ ์œผ๋กœ ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ  ๋‘ ๊ฐ€์ง€ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์•ˆํ•ด ๋‹ฌ๋ผ๊ณ  ์š”์ฒญํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Š” ์ˆ˜์ง‘๋œ ๋‚ด์šฉ์„ ์ง์ ‘ ๊ฒ€ํ† ํ•ด, ๋Œ€๋ฉด ๋ฏธํŒ…์—์„œ ์˜๊ฒฌ์„ ๊ณต์œ ํ•˜๊ณ  ์ œ์•ˆ์˜ ํƒ€๋‹น์„ฑ์„ ๋…ผ์˜ํ•˜๋ฉฐ ํ›„์† ์กฐ์น˜๊ฐ€ ํ•„์š”ํ•œ ์‚ฌํ•ญ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ๋Š” ์ด ํ”„๋กœ๊ทธ๋žจ์ด ๋™๋ฃŒ๋“ค๊ณผ์˜ ์‹ ๋ขฐ๋ฅผ ๋‹ค์ง€๋Š” ๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ด์—ˆ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์ผ๋ถ€ ์˜๊ฒฌ์€ ๊ฒฝ๋ ฅ ๊ฐœ๋ฐœ ๊ธฐํšŒ๋‚˜ ๊ธฐ์ˆ ์  ๋ฌธ์ œ์— ๊ด€ํ•œ ๊ฒƒ์ด์—ˆ์ง€๋งŒ, ๊ฐ€์žฅ ๋งŽ์ด ์ œ๊ธฐ๋œ ๋ถˆ๋งŒ์€ ๋‚ด๋ถ€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฌธ์ œ์™€ ์ธ๋ ฅ ๋ถ€์กฑ์ด์—ˆ๋‹ค. ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๋ชจ๋“  ์‚ฌ๋žŒ๊ณผ ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„๋ฉฐ, ์ž์‹ ์ด ๊ฐœ์ž…ํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„๊ณผ ๊ทธ๋ ‡์ง€ ๋ชปํ•œ ๋ถ€๋ถ„์„ ๋ช…ํ™•ํžˆ ์„ค๋ช…ํ–ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๊ณต๊ณต ๋ถ€๋ฌธ์˜ ๊ฒฝ๋ ฅ ์ฒด๊ณ„๋‚˜ ์ฑ„์šฉ์€ ์—„๊ฒฉํ•œ ์ ˆ์ฐจ์— ๋”ฐ๋ผ ์ง„ํ–‰๋˜๊ธฐ ๋•Œ๋ฌธ์— CIO๊ฐ€ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์—ฌ์ง€๊ฐ€ ๊ฑฐ์˜ ์—†๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ๋ชจ๋“  ์ด์Šˆ๋ฅผ ๋Šฅ๋™์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ–ˆ๋‹ค. ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ œ๋ผ๊ธฐ๋ณด๋‹ค ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋ง‰์—ฐํ•œ ์ €ํ•ญ์ฒ˜๋Ÿผ ๋А๊ปด์ง€๋Š” ๋ถ€๋ถ„์— ๋Œ€ํ•ด์„œ๋Š” ๊ตฌ์„ฑ์›์˜ ๋‚ด์  ๋™๊ธฐ์™€ ์ฑ…์ž„๊ฐ์„ ๋Œ์–ด๋‚ด๋Š” ๋ฐ ์ง‘์ค‘ํ–ˆ๋‹ค. ๊ธฐ๊ด€์˜ ์ „๋žต์ด ๋ฌด์—‡์ด๋ฉฐ, ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ์ž๊ฐ€ ์–ด๋–ค ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•˜๋Š” ๊ณผ์ •์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ๊ฒฐ๊ตญ ์‚ฌ๋žŒ๋“ค์€ ์ž์‹ ์ด ์–ด๋–ค ํ™˜๊ฒฝ์—์„œ ์ผํ•˜๊ณ  ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์ž์‹ ์˜ ์ผ์ด ์ „์ฒด ๊ทธ๋ฆผ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์•Œ ๊ถŒ๋ฆฌ๊ฐ€ ์žˆ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์กฐ์ง์˜ ์ฐธ์—ฌ์™€ ๋ชฐ์ž…์€ ํ•˜๋ฃจ์•„์นจ์— ๋งŒ๋“ค์–ด์ง€์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๋ถ€์„œ์žฅ๊ณผ ์„œ๋น„์Šค ๋งค๋‹ˆ์ €๋ฅผ ํฌํ•จํ•œ ์ง์›๋“ค๊ณผ ์ •๊ธฐ์ ์œผ๋กœ ๋งŒ๋‚˜๋ฉฐ ์†Œํ†ต์„ ์ด์–ด๊ฐ€๊ณ  ์žˆ๋‹ค.

๊ณ ๋ฏผ์ด ๋” ํฐ ์ค‘์†Œ๊ธฐ์—…

์ด์Šคํƒ€ํŠธ์˜ ๊ฒฝ์šฐ IT ๋ถ€์„œ ๊ทœ๋ชจ๊ฐ€ ํฐ ํŽธ์— ์†ํ•˜์ง€๋งŒ, ์ค‘์†Œ๊ธฐ์—…์—์„œ๋Š” CIO๋ฅผ ํฌํ•จํ•ด ๋ช‡ ๋ช… ์•ˆ ๋˜๋Š” ๊ตฌ์„ฑ์›๋งŒ์œผ๋กœ IT ๋ถ€์„œ๋ฅผ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ƒ๋‹น ๋ถ€๋ถ„์€ ์™ธ๋ถ€ ์ปจ์„คํ„ดํŠธ๋‚˜ ๋ฒค๋”๊ฐ€ ๋งก์•„ ์ผ์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฐ ๊ตฌ์กฐ์—์„œ๋Š” ์—ฌ๋Ÿฌ ํ”„๋กœ์ ํŠธ์— ๊ฑธ์ณ ์ž์›์„ ์กฐ์œจํ•˜๋Š” ์—…๋ฌด์™€ ์‹ค์ œ IT ์šด์˜ ์—…๋ฌด๋ฅผ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๋ถ€๋‹ด์ด ํฌ๋‹ค. ํด๋ผ์šฐ๋“œ ์•„์›ƒ์†Œ์‹ฑ์€ ํ•˜๋‚˜์˜ ๋ฐฉ๋ฒ•์ด ๋  ์ˆ˜ ์žˆ์ง€๋งŒ, ๋งŽ์€ CIO๊ฐ€ ๋ฒค๋” ์ข…์†์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋‚ด๋ถ€ ์—ญ๋Ÿ‰์„ ๋” ํ™•๋ณดํ•˜๊ธธ ์›ํ•œ๋‹ค.

IT ์ธ๋ ฅ์ด 3๋ช…๋ฟ์ธ ํ•œ ์ค‘์†Œ ์˜๋ฃŒ๊ธฐ์—… CIO๋Š” โ€œ์ธ์žฌ๋ฅผ ๋Œ์–ด์˜ค๋Š” ๊ฒƒ๋„, ๋ถ™์žก์•„๋‘๋Š” ๊ฒƒ๋„ ์–ด๋ ค์›Œ ๊ฒฐ๊ตญ ์•„์›ƒ์†Œ์‹ฑ์„ ํ•  ์ˆ˜๋ฐ–์— ์—†๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์—…๋ฌด๋ฅผ ์™ธ๋ถ€๋กœ ๋„˜๊ฒจ ๋‚ด๋ถ€ ์ž์›์„ ํ™•๋ณดํ•˜๋ ค๋ฉด ํšŒ์‚ฌ์˜ ๋…ธํ•˜์šฐ๊ฐ€ ๋น ์ ธ๋‚˜๊ฐˆ ์œ„ํ—˜๋„ ๊ฐ์ˆ˜ํ•ด์•ผ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ง€๊ธˆ์œผ๋กœ์„  ๋‹ค๋ฅธ ์„ ํƒ์ง€๊ฐ€ ์—†๋‹ค. ๋Œ€๊ธฐ์—… ์ˆ˜์ค€์˜ ์—ฐ๋ด‰์„ ์ œ์‹œํ•  ์ˆ˜ ์—†๊ณ , ์ด์ง์ด ์žฆ์€ IT ์ธ์žฌ์—๊ฒŒ ๊พธ์ค€ํžˆ ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ์‚ฌ๋žŒ์„ ๋ฝ‘์•„ ๊ต์œกํ•˜๊ณ , ์กฐ๊ธˆ์”ฉ ์„ฑ์žฅํ•˜๋Š” ๋ชจ์Šต์„ ์ง€์ผœ๋ณด๋‹ค๊ฐ€ ๊ฒฐ๊ตญ ๋– ๋‚˜๋Š” ์ƒํ™ฉ์ด ๋ฐ˜๋ณต๋˜๊ณ  ์žˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์˜๋ฃŒ ์‚ฐ์—…์€ ์ „๋ฌธ์„ฑ์ด ๋งค์šฐ ๋†’์•„ ํ•„์š”ํ•œ ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์‚ฌ๋žŒ์ด ๋“œ๋ฌผ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ธฐ์ˆ  ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์ธ์žฌ์—๊ฒŒ ์‹œ์žฅ์€ ์–ธ์ œ๋‚˜ ๋งค๋ ฅ์ ์ธ ์กฐ๊ฑด์„ ๋‚ด์„ธ์šด๋‹ค. ํŠนํžˆ ๋ฏผ๊ฐ„ ๊ธฐ์—…์€ ์ฑ„์šฉ์˜ ์œ ์—ฐ์„ฑ๊ณผ ๋‹ค์–‘ํ•œ ๊ฒฝ๋ ฅ ๊ฒฝ๋กœ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด ๊ณต๊ณต ๊ธฐ๊ด€๋ณด๋‹ค ์ธ์žฌ ์œ ์น˜๊ฐ€ ํ›จ์”ฌ ์‰ฝ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ๊ณต๊ณต ๋ถ€๋ฌธ์€ ๋ฏผ๊ฐ„ ๊ธฐ์—…์ด ์ˆ˜์ต์„ฑ์ด ๋‚ฎ๋‹ค๊ณ  ํŒ๋‹จํ•ด ํˆฌ์žํ•˜์ง€ ์•Š๋Š” ์ฃผ์ œ๋ฅผ ์—ฐ๊ตฌํ•˜๊ณ , ํƒ๊ตฌํ•˜๊ณ , ๊นŠ์ด ํŒŒ๊ณ ๋“ค ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ณต๊ณต ๊ธฐ๊ด€์€ ๊ณต๋™์ฒด์˜ ์ด์ต์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ , ์žฅ๊ธฐ์ ์ธ ํˆฌ์ž๋ฅผ ๊ฐ๋‹นํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ–๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ธ์žฌ ์œ ์ง€์˜ ํ•ต์‹ฌ์ธ โ€˜๊ต์œกโ€™

์„ธ๊ณ ์Šค์˜ ๊ธ€๋กœ๋ฒŒ ์ง€ํ‘œ์— ๋”ฐ๋ฅด๋ฉด, CIO๋Š” IT ์ˆ˜์š”๋ฅผ ์ถฉ์กฑํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ธ์žฌ ์ฑ„์šฉ๊ณผ ๊ธฐ์กด ํŒ€์˜ ๊ต์œก์„ ์šฐ์„ ์ˆœ์œ„๋กœ ๋‘๊ณ  ์žˆ๋‹ค. ์ด๋•Œ ์žฌ๊ต์œก๊ณผ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋Š” ์ธ์žฌ ํ™•๋ณด์™€ ์œ ์ง€ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ฌ๋Ÿฌ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ๋‹ค.

์„ธ๊ณ ์Šค ์ดํƒˆ๋ฆฌ์•„์˜ ๋น„์ฆˆ๋‹ˆ์Šค ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜ ๋ฐ ์‹คํ–‰ ์ฑ…์ž„์ž ์—๋งˆ๋ˆ„์—˜๋ผ ํ”ผ๋ƒํƒ€๋กœ๋Š” โ€œ์‹œ์žฅ์ด ๋งค์šฐ ๊ฒฝ์Ÿ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ์ธ์žฌ๋ฅผ ์œ ์ง€ํ•˜๋ ค๋ฉด ์ด์ง์„ ๋ง‰์„ ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๊ธฐ์—…์ด ์ถฉ๋ถ„ํ•œ ๋ณด์ƒ๊ณผ ํ•จ๊ป˜ ์ž๊ทน์ ์ด๊ณ  ๋ณด๋žŒ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ์กฐ์„ฑํ•˜๋ฉด, ๊ตฌ์„ฑ์› ์—ญ์‹œ ๋‹ค๋ฅธ ๊ธฐํšŒ๋ฅผ ์ฐพ๋Š” ๋Œ€์‹  ํ˜„์žฌ ์—…๋ฌด์— ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งŽ์€ ์ง์›์ด ๊ฐ๋‹นํ•˜๊ธฐ ์–ด๋ ค์šด ์—…๋ฌด๋ฅผ ๊ณผ๋„ํ•˜๊ฒŒ ๋– ์•ˆ๊ณ  ์žˆ๋‹ค๊ณ  ๋А๋ผ๋Š”๋ฐ, ์ด๋“ค์ด ํŠนํžˆ ๊ฐ€์น˜๊ฐ€ ๋†’์€๋ฐ๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ง€์›์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ํšŒ์‚ฌ๊ฐ€ ์ด๋“ค์„ ์ง€์›ํ•  ์‹ ๊ทœ ์ธ๋ ฅ์„ ์ฑ„์šฉํ•˜๊ฑฐ๋‚˜ ๊ต์œก์— ํˆฌ์žํ•˜๋ฉด ์‹ฌ๋ฆฌ์  ์•ˆ์ •๊ฐ์„ ์กฐ์„ฑํ•˜๊ณ  ์ถฉ์„ฑ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์‹ค์ œ๋กœ ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ์กฐ์ง์˜ ๊ท ํ˜• ์žˆ๋Š” ์šด์˜๊ณผ ๊ด€๋ฆฌ ์—ญ๋Ÿ‰์„ ๋’ท๋ฐ›์นจํ•˜๋Š” โ€˜์ง€์†์  ํ•™์Šตโ€™์„ ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธด๋‹ค. IT ๊ต์œก ์˜ˆ์‚ฐ์€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์ง€๋งŒ, ๊ตฌ์„ฑ์›์ด ์ œ๊ธฐํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•  ํ˜„์‹ค์  ๋Œ€์•ˆ์€ ์ผ๋ถ€ ๋งˆ๋ จ๋ผ ์žˆ๋‹ค.

๋‹ค๋งŒ ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ์ด๋Ÿฐ ๊ฒฝ์šฐ์—๋Š” ํ™•๊ณ ํ•œ ์˜์ง€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ธฐ๊ด€์ด ํˆฌ์ž…ํ•œ ๋น„์šฉ์ด ์žˆ๋Š” ๋งŒํผ ๊ต์œก์€ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด์•ผ ํ•œ๋‹ค. ์‚ฌ์ด๋ฒ„๋ณด์•ˆ์ฒ˜๋Ÿผ ๋ณ€ํ™”๊ฐ€ ๋น ๋ฅธ ์˜์—ญ์€ ๋” ํฐ ํˆฌ์ž๋„ ์š”๊ตฌ๋œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ฆฌ๋”์‹ญ์˜ ํ•„์š”์„ฑ

CIO๋Š” ๊ตฌ์„ฑ์›์„ ์ œ๋Œ€๋กœ ์ง€์›ํ•˜๊ณ , ๊ถŒํ•œ์„ ๋ถ€์—ฌํ•˜๋ฉฐ, ๋™๊ธฐ๋ฅผ ๋†’์ด๋Š” ์—…๋ฌด๋ฅผ ๋ช…ํ™•ํžˆ ๋ถ€์—ฌํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์„ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๋ณต์ง€ ์ œ๋„๋ฅผ ๋งˆ๋ จํ•˜๊ธฐ ์œ„ํ•ด HR ๋ถ€์„œ์™€ ๊ธด๋ฐ€ํžˆ ํ˜‘๋ ฅํ•˜๋Š” ๊ฒƒ๋„ ํ•„์ˆ˜ ์š”์†Œ๋กœ ๊ผฝํžŒ๋‹ค.

Gi๊ทธ๋ฃน ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, ์ดํƒˆ๋ฆฌ์•„ IT ๊ตฌ์ง์ž๊ฐ€ ์ฑ„์šฉ ๊ธฐ์—…์„ ์„ ํƒํ•  ๋•Œ ์šฐ์„ ์ˆœ์œ„๋กœ ๊ณ ๋ คํ•˜๋Š” ์š”์†Œ๋Š” ๊ธ‰์—ฌ, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ทผ๋ฌด ํ˜•ํƒœ, ์ผ๊ณผ ์ƒํ™œ์˜ ๊ท ํ˜•, ๊ณผ๋„ํ•œ ์ŠคํŠธ๋ ˆ์Šค๊ฐ€ ์—†๋Š” ์ง๋ฌด, ๊ฒฝ๋ ฅ ๊ฐœ๋ฐœ ๋ฐ ์„ฑ์žฅ ๊ธฐํšŒ ์ˆœ์ด์—ˆ๋‹ค.

๋‹ค๋งŒ ์ธ์žฌ ๊ด€๋ฆฌ๋ผ๋Š” ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋˜ ๋‹ค๋ฅธ ์š”์†Œ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. CIO ์Šค์Šค๋กœ ์ž์‹ ์˜ ๋ฆฌ๋”์‹ญ ์—ญํ• ์„ ๋” ๋ช…ํ™•ํžˆ ์ž๊ฐํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํ˜„์žฌ ์ดํƒˆ๋ฆฌ์•„ IT ์ฑ…์ž„์ž๋“ค์€ ๋ฆฌ๋”์‹ญ ๊ด€๋ จ ์š”์†Œ๋ฅผ ํ•ต์‹ฌ ์—ญ๋Ÿ‰ ์ค‘ ๊ฐ€์žฅ ๋‚ฎ์€ ์ˆœ์œ„์— ๋‘๊ณ  ์žˆ๋‹ค. ์„ธ๊ณ ์Šค ์กฐ์‚ฌ์—์„œ๋Š” ๊ธฐ์ˆ  ์ „๋ฌธ์„ฑ, ์ „๋žต์  ๋น„์ „, ํ˜์‹  ์—ญ๋Ÿ‰์ด ์ตœ์šฐ์„ ์œผ๋กœ ๊ผฝํžŒ ๋ฐ˜๋ฉด, ๋ฆฌ๋”์‹ญ์€ ํ•œ์ฐธ ๋’ค๋กœ ๋ฐ€๋ ธ๋‹ค. ํ•˜์ง€๋งŒ CIO์˜ ๋ฆฌ๋”์‹ญ์€ ์กฐ์ง ์šด์˜์˜ ๊ทผ๊ฐ„์ด์–ด์•ผ ํ•œ๋‹ค. ์ด๋Š” ํŠน์ • ๊ฒฐ์ •์— ์˜๊ฒฌ ์ฐจ์ด๊ฐ€ ์žˆ์„ ๋•Œ์—๋„ ๋ณ€ํ•จ์—†์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ๋ฆฌ๋”๋กœ์„œ ์—…๋ฌด ๊ณต๊ฐ„์—์„œ์˜ ์กด์žฌ๊ฐ์„ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ด์Šคํƒ€ํŠธ๋Š” ์˜ค๋ž˜์ „๋ถ€ํ„ฐ ์žฌํƒ ๊ทผ๋ฌด์™€ ์Šค๋งˆํŠธ ์—…๋ฌด๋ฅผ ์ œ๋„ํ™”ํ•ด ๋ˆ„๊ตฌ๋‚˜ ํ•„์š”ํ•˜๋ฉด ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ์ธ์ ์œผ๋กœ๋Š” ์‚ฌ๋ฌด์‹ค์—์„œ ์ผํ•˜๋Š” ๊ฒƒ์„ ์„ ํ˜ธํ•˜์ง€๋งŒ, ์‚ฌ์ƒํ™œ๊ณผ ์—…๋ฌด์˜ ๋ฐธ๋Ÿฐ์Šค๋ฅผ ์กด์ค‘ํ•˜๋ฉฐ ์œ ์—ฐ ๊ทผ๋ฌด์— ๋ฐ˜๋Œ€ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋‹ค๋งŒ ๋‚˜๋Š” ๋งค์ผ ํ˜„์žฅ์— ๋‚˜์˜จ๋‹ค. ๋™๋ฃŒ๋“ค๋„ ๋‚ด๊ฐ€ ์ด๊ณณ์— ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

ํ•œ๊ตญ-Arm, ๋ฐ˜๋„์ฒดยทAI ์ธ์žฌ 1,400๋ช… ์–‘์„ฑ MOU ์ฒด๊ฒฐ

8 December 2025 at 03:19

์ด๋ฒˆ MOU๋Š” ๊ฐ™์€ ๋‚  ์ด์žฌ๋ช… ๋Œ€ํ†ต๋ น์ด ์†Œํ”„ํŠธ๋ฑ…ํฌ ์†์ •์˜ ํšŒ์žฅ, Arm์˜ ๋ฅด๋„ค ํ•˜์Šค CEO์™€ ๋ฉด๋‹ดํ•œ ๊ฒƒ์„ ๊ณ„๊ธฐ๋กœ ์ถ”์ง„๋œ ๊ฒƒ์œผ๋กœ, ํ•œ๊ตญ๊ณผ ์†Œํ”„ํŠธ๋ฑ…ํฌยทArm ๊ฐ„ ํ˜‘๋ ฅ ํ™•๋Œ€ ๊ฐ€๋Šฅ์„ฑ์„ ๋…ผ์˜ํ•œ ๋ฐ ๋”ฐ๋ฅธ ๊ฒƒ์ด๋‹ค.

ํ˜‘์•ฝ์—๋Š” โ–ฒ์‚ฐ์—… ๋งž์ถคํ˜• ์ธ์žฌ 1,400๋ช… ์–‘์„ฑ โ–ฒ๊ธฐ์ˆ  ๊ต๋ฅ˜ ๋ฐ ์ƒํƒœ๊ณ„ ๊ฐ•ํ™” โ–ฒ๋Œ€ํ•™ ๊ฐ„ ์—ฐ๊ณ„ ํ™•๋Œ€ โ–ฒR&D ํ˜‘๋ ฅ ๋“ฑ์ด ํฌํ•จ๋๋‹ค. ์‚ฐ์—…๋ถ€์™€ Arm์€ ํ›„์† ๋…ผ์˜๋ฅผ ์œ„ํ•œ ์‹ค๋ฌดํ˜‘์˜์ฒด๋ฅผ ๊ตฌ์„ฑํ•ด ์„ธ๋ถ€ ์ถ”์ง„ ๋ฐฉ์•ˆ์„ ๋งˆ๋ จํ•  ๊ณ„ํš์ด๋‹ค.

ํŠนํžˆ ์‚ฐ์—…๋ถ€๋Š” Arm๊ณผ ํ•จ๊ป˜ โ€˜Arm ์Šค์ฟจ(Arm School, ๊ฐ€์นญ)โ€™์„ ์„ค๋ฆฝํ•ด 2026๋…„๋ถ€ํ„ฐ 2030๋…„๊นŒ์ง€ ์•ฝ 1,400๋ช…์˜ IP ์„ค๊ณ„ ์ „๋ฌธ ์ธ๋ ฅ์„ ์–‘์„ฑํ•œ๋‹ค๋Š” ๊ตฌ์ƒ์ด๋‹ค. Arm์€ ์• ํ”Œยท๊ตฌ๊ธ€ยทMS ๋“ฑ ๊ธ€๋กœ๋ฒŒ ๋น…ํ…Œํฌ ๋ฐ ์‚ผ์„ฑยท์—”๋น„๋””์•„ยทํ€„์ปด ๋“ฑ ์ฃผ์š” ๋ฐ˜๋„์ฒด ๊ธฐ์—…์ด ํ™œ์šฉํ•˜๋Š” ํ•ต์‹ฌ ์„ค๊ณ„ ํ”Œ๋žซํผ์œผ๋กœ, ์ •๋ถ€๋Š” ์ด๋ฒˆ ํ˜‘๋ ฅ์ด ๊ตญ๋‚ด ์‹œ์Šคํ…œ ๋ฐ˜๋„์ฒด ๊ฒฝ์Ÿ๋ ฅ ๊ฐ•ํ™”์— ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค.

๊ณต์‹ ์ž…์žฅ๋ฌธ์— ๋”ฐ๋ฅด๋ฉด ์‚ฐ์—…๋ถ€๋Š” ๋ฐ˜๋„์ฒด ํŠน์„ฑํ™” ๋Œ€ํ•™์› ์ง€์ •์„ ํฌํ•จํ•œ ๊ด€๋ จ ์ ˆ์ฐจ๋ฅผ ์ฐจ์งˆ ์—†์ด ์ถ”์ง„ํ•  ๊ณ„ํš์ด๋ฉฐ, ๊ด‘์ฃผ๊ณผํ•™๊ธฐ์ˆ ์›์„ ์šฐ์„  ๊ฒ€ํ†  ๋Œ€์ƒ์— ๋‘๊ณ  ์žˆ๋‹ค.

๊น€์ •๊ด€ ์‚ฐ์—…๋ถ€ ์žฅ๊ด€์€ โ€œ์ด๋ฒˆ ์–‘ํ•ด๊ฐ์„œ๋ฅผ ํ†ตํ•ด AI ๋ฐ˜๋„์ฒด ์‚ฐ์—…์„ ์ด๋Œ ํ•ต์‹ฌ ์ธ๋ ฅ ์–‘์„ฑ ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ–ˆ๋‹คโ€๋ฉฐ โ€œAI ์‹œ๋Œ€์— ๋Œ€๋น„ํ•ด ๊ธ€๋กœ๋ฒŒ ๊ธฐ์—…๋“ค๊ณผ์˜ ํ˜‘๋ ฅ์„ ์ง€์† ํ™•๋Œ€ํ•˜๊ฒ ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํ•œํŽธ, Arm์˜ ์ง€๋ถ„ ์•ฝ 90%๋ฅผ ๋ณด์œ ํ•œ ์ผ๋ณธ ์†Œํ”„ํŠธ๋ฑ…ํฌ์˜ ์†์ •์˜ ํšŒ์žฅ์€ ์ด๋ฒˆ ํ˜‘์•ฝ์„ ์œ„ํ•œ ์ ‘๊ฒฌ์—์„œ โ€œ์•ž์œผ๋กœ ๋ชจ๋“  ๊ตญ๊ฐ€์™€ ๊ธฐ์—…๋“ค์€ ASI ์‹œ๋Œ€๋ฅผ ์ค€๋น„ํ•˜์—ฌ์•ผ ํ•˜๊ณ , ๊ตญ๋ฏผ๋“ค์—๊ฒŒ ๋ณดํŽธ์  ์ ‘๊ทผ๊ถŒ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ์—ญ๋Ÿ‰์„ ์ง‘์ค‘ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ โ€œASI๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—๋„ˆ์ง€, ๋ฐ˜๋„์ฒด, ๋ฐ์ดํ„ฐ, ๊ต์œก์˜ ๋„ค ๊ฐ€์ง€ ์ž์›์ด ํ•„์ˆ˜์ โ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์† ํšŒ์žฅ์€ ๋˜ํ•œ ํ•œ๊ตญ์˜ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•  ๋•Œ, ASI ๊ตฌ์ถ•์„ ์œ„ํ•ด์„œ๋Š” ๋ฐ์ดํ„ฐ์„ผํ„ฐ์˜ ๋Œ€ํญ์ ์ธ ์ฆ์„ค์ด ํ•„์š”ํ•˜๋ฉฐ, ์ด๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ๋’ท๋ฐ›์นจํ•  ์ˆ˜ ์žˆ๋Š” ์—๋„ˆ์ง€ ํ™•๋ณด์— ๋”์šฑ ํž˜์จ์•ผ ํ•œ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.
jihyun.lee@foundryco.com

์ผ๋ฌธ์ผ๋‹ต | ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ CIO๊ฐ€ ๋งํ•˜๋Š” โ€˜CIO์˜ ์—ญํ• ๊ณผ ๋งค๋ ฅโ€™

8 December 2025 at 03:03

Q: ์—”์ง€๋‹ˆ์–ด๋กœ์„œ์˜ ๊ฒฝ๋ ฅ์„ ์‹œ์ž‘ํ•œ ์ดˆ๊ธฐ ์‹œ์ ˆ๊ณผ, ์ดํ›„ ์ปค๋ฆฌ์–ด์˜ ๋ฐฉํ–ฅ์„ ๋ฐ”๊พธ๊ฒŒ ๋œ ๊ณ„๊ธฐ๋Š” ๋ฌด์—‡์ธ๊ฐ€?
A: 1989๋…„ ๋‚˜๋Š” ๋ฏธ์“ฐ๋น„์‹œ๊ฐ€์„ธ์ด(ํ˜„ ๋ฏธ์“ฐ๋น„์‹œ์ผ€๋ฏธ์ปฌ)์— ์ƒ์‚ฐ๊ธฐ์ˆ  ์—”์ง€๋‹ˆ์–ด๋กœ ์‹ ์ž… ์ž…์‚ฌํ–ˆ๋‹ค. ๋ฐฐ์น˜๋œ ๊ณณ์€ ์˜ค์นด์•ผ๋งˆํ˜„ ๊ตฌ๋ผ์‹œํ‚ค์‹œ์˜ ๋ฏธ์ฆˆ์‹œ๋งˆ ์‚ฌ์—…์†Œ๋กœ, ๋Œ€๊ทœ๋ชจ ์„์œ ยทํ™”ํ•™ ์‚ฐ์—…๋‹จ์ง€์—์„œ ํ•„๋“œ ์—”์ง€๋‹ˆ์–ด๋ง ์—…๋ฌด๋ฅผ ๋งก์œผ๋ฉฐ ์ปค๋ฆฌ์–ด์˜ ์ฒซ๊ฑธ์Œ์„ ๋‚ด๋””๋Ž ๋‹ค.

์ „ํ™˜์ ์€ 1996๋…„์— ์ฐพ์•„์™”๋‹ค. ๋ฏธ๊ตญ ๋™๋ถ€์˜ ๋ณด์Šคํ„ด๊ณผ ์„œ๋ถ€ ์ƒŒํ”„๋ž€์‹œ์Šค์ฝ”์— ์‹ ๊ทœ ๊ฑฐ์ ์„ ์„ค๋ฆฝํ•œ๋‹ค๋Š” ๊ณ„ํš์ด ์ถ”์ง„๋˜๋ฉด์„œ, ๋ฏธ ์„œ๋ถ€ ๊ฑฐ์ ์˜ ์ดˆ๊ธฐ ๋ฉค๋ฒ„๋กœ ์„ ๋ฐœ๋ผ ์‹ค๋ฆฌ์ฝ˜๋ฐธ๋ฆฌ์— ์ฃผ์žฌํ•˜๊ฒŒ ๋๋‹ค. ๋‹น์‹œ์—๋Š” ์œˆ๋„์šฐ 95์˜ ๋“ฑ์žฅ, ์ธํ„ฐ๋„ท์˜ ๋Œ€์ค‘ํ™”, e๋น„์ฆˆ๋‹ˆ์Šค๊ฐ€ ๋ง‰ ํƒœ๋™ํ•˜๋˜ ์‹œ๊ธฐ์˜€๋‹ค. ๋ฏธ๊ตญ ์ „์ฒด ํˆฌ์ž๊ธˆ์˜ ์•ฝ 3๋ถ„์˜ 1์ด ๋ชจ์ธ๋‹ค๋Š”, ์„ธ๊ณ„ ์ตœ์ „์„ ์˜ ๊ธฐ์ˆ ๊ณผ ์ž๋ณธ์ด ์ง‘๊ฒฐํ•œ ํ˜„์žฅ์— ๋ชธ์„ ๋‘๊ฒŒ ๋œ ๊ฒƒ์ด๋‹ค.

3๋…„๊ฐ„์˜ ์ฃผ์žฌ๋ฅผ ๋งˆ์น˜๊ณ  ๋ฏธ์ฆˆ์‹œ๋งˆ๋กœ ๋ณต๊ท€ํ•ด ๋‹ค์‹œ ์ƒ์‚ฐ๊ธฐ์ˆ  ์—…๋ฌด๋ฅผ ๋งก์•˜์ง€๋งŒ, ๋งˆ์Œ ์†์—๋Š” โ€˜๋Œ์•„๊ฐ€๊ธฐ ์–ด๋ ค์šด ์„ธ๊ณ„๋ฅผ ๋ณด์•„๋ฒ„๋ ธ๋‹คโ€™๋Š” ๊ฐ๊ฐ์ด ์ž๋ฆฌ ์žก์•˜๋‹ค. ์‹ค๋ฆฌ์ฝ˜๋ฐธ๋ฆฌ์—์„œ ๊ฒฝํ—˜ํ•œ ์†๋„๊ฐ, ํ˜์‹ , ๋ฏธ๋ž˜๋ฅผ ํ–ฅํ•œ ๋„์ „์ •์‹ ์„ ์•Œ๊ณ  ๋‚œ ๋’ค์—๋Š” ์ด์ „์˜ ์ผ์ƒ์œผ๋กœ ๋ณต๊ท€ํ•  ์ˆ˜ ์—†์—ˆ๋‹ค.

๊ฒฐ๊ตญ ์ €๋Š” ์Šค์Šค๋กœ ์ง€์›ํ•ด ์ •๋ณด์‹œ์Šคํ…œ ๋ถ€๋ฌธ์œผ๋กœ ๋ถ€์„œ๋ฅผ ์˜ฎ๊ธฐ๊ธฐ๋กœ ํ–ˆ๋‹ค. ์ดํ›„ DX๋ฅผ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ํ”„๋กœ์ ํŠธ๋ฅผ ๋‹ด๋‹นํ•˜๋ฉฐ ๊ธฐ์ˆ ๊ณผ ๊ฒฝ์˜์„ ์ž‡๋Š” ์—ญํ• ์„ ํ•˜๊ฒŒ ๋๋‹ค. ๊ทธ๋ฆฌ๊ณ  2021๋…„, ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์˜ CIO๋กœ ์ž๋ฆฌ๋ฅผ ์˜ฎ๊ฒผ๊ณ , ์ง€๊ธˆ์€ ๊ธฐ์—…์˜ ๋””์ง€ํ„ธ ์ „๋žต์„ ์ด๋„๋Š” ์œ„์น˜์—์„œ ๋ฏธ๋ž˜๋ฅผ ํ–ฅํ•œ ๋„์ „์„ ์ด์–ด๊ฐ€๊ณ  ์žˆ๋‹ค.

Q: ERP ํ”„๋กœ์ ํŠธ๋ฅผ ์„ธ ๋ฒˆ์ด๋‚˜ ์ถ”์ง„ํ–ˆ๋‹ค๊ณ  ๋“ค์—ˆ๋‹ค. ์–ด๋–ค ์ ์ด ๊ฐ€์žฅ ์–ด๋ ค์› ๋‚˜?
A: ๋‚˜์˜ ๊ฒฝ๋ ฅ์—์„œ ๊ฐ€์žฅ ํฐ ๋„์ „์€ ๋‹จ์—ฐ ERP ๋„์ž… ํ”„๋กœ์ ํŠธ์˜€๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ์ด ์„ธ ๋ฒˆ, ์ค‘๋‹จ ์œ„๊ธฐ์— ๋น ์ง„ ERP ํ”„๋กœ์ ํŠธ๋ฅผ ๋‹ค์‹œ ์‚ด๋ ค๋‚ธ ๊ฒฝํ—˜์ด ์žˆ๋‹ค. ๊ฐ๊ฐ์˜ ํ”„๋กœ์ ํŠธ๋Š” ์ „์ž„์ž๊ฐ€ ๋‚œํ•ญ์— ๋น ์ ธ ์‚ฌ์‹ค์ƒ ๋ฉˆ์ถฐ์„  ์ƒํƒœ์—์„œ ์ œ๊ฐ€ ํˆฌ์ž…๋ผ, ์ „์ฒด ๊ตฌ์กฐ๋ฅผ ์ •๋น„ํ•˜๊ณ  ๋‹ค์‹œ ๊ถค๋„์— ์˜ฌ๋ ค ์™„์„ฑ๊นŒ์ง€ ์ด๋Œ์–ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด์—ˆ๋‹ค. ๊ธˆ์•ก๋„ ๊ทœ๋ชจ๋„ ๋ฐฉ๋Œ€ํ•ด, CIO๋กœ์„œ์˜ ์‚ฌ๊ณ ๋ฐฉ์‹๊ณผ ํ–‰๋™ ์›์น™์„ ํ˜•์„ฑํ•œ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ฒฝํ—˜์ด์—ˆ๋‹ค.

๋‚ด ๊ฒฝ๋ ฅ์—์„œ ๋…ํŠนํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด, ์ƒ์‚ฐ๊ธฐ์ˆ ์—์„œ IT๋กœ ์ปค๋ฆฌ์–ด๋ฅผ ์ „ํ™˜ํ•œ ์ , ๊ทธ๋ฆฌ๊ณ  ์‹ค๋ฆฌ์ฝ˜๋ฐธ๋ฆฌ ํ•œ๊ฐ€์šด๋ฐ์„œ ์ผํ•œ ๊ฒฝํ—˜์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ•œ๋‹ค. ๊ท€๊ตญ ํ›„์—๋Š” ๊ธฐ์—… ๋‚ด๋ถ€ ์—…๋ฌด์— ๊ทธ์น˜์ง€ ์•Š๊ณ  ๋‹ค์–‘ํ•œ ์—…๊ณ„์—์„œ ๊ฒฝํ—˜์„ ์Œ“์•˜๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์„์œ ํ™”ํ•™๊ณต์—…ํ˜‘ํšŒ์—์„œ์˜ IT ๊ด€๋ จ ํ™œ๋™, ๊ธฐ์—… ๊ฐ„ ๊ฑฐ๋ž˜์˜ ์ „์žํ™”(EDI) ์ถ”์ง„, ๊ตญ๋‚ด์™ธ ๋Œ€ํ˜• ๋™์ข… ๊ธฐ์—… 22๊ฐœ์‚ฌ๊ฐ€ ์ฐธ์—ฌํ•œ ๊ธ€๋กœ๋ฒŒ ํ™”ํ•™์ œํ’ˆ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ ๊ตฌ์ถ• ๋“ฑ ์—…๊ณ„ ์ „์ฒด๋ฅผ ์•„์šฐ๋ฅด๋Š” ํ”„๋กœ์ ํŠธ์—๋„ ๊ด€์—ฌํ–ˆ๋‹ค.

โ€˜ํ˜„์žฅ๊ณผ ๋ณธ์‚ฌโ€™, โ€˜๊ตญ๋‚ด์™€ ํ•ด์™ธโ€™, โ€˜์—…๋ฌด์™€ ITโ€™ ๊ฐ™์ด ๊ฒฝ๊ณ„๋ฅผ ๋„˜๋‚˜๋“ค๋ฉฐ ์ผํ•ด์˜จ ๊ฒฝํ—˜์€ ํ˜„์žฌ CIO๋กœ์„œ์˜ ์‹œ์•ผ์™€ ํŒ๋‹จ๋ ฅ์œผ๋กœ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค.

์ œ๊ฐ€ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ๊ฒƒ์€ โ€˜๋ˆˆ์•ž์˜ ์ผ์— ์ง‘์ค‘ํ•ด ์ตœ์„ ์„ ๋‹คํ•˜๋Š” ๊ฒƒโ€™์ด๋‹ค. ์ง€๋‚˜์น˜๊ฒŒ ๊ตฌ์ฒด์ ์ธ ๋ชฉํ‘œ๋ฅผ ์„ธ์šฐ๋ฉด ์˜คํžˆ๋ ค ์žฅ๊ธฐ์  ๊ฐ€๋Šฅ์„ฑ์„ ์ขํžŒ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์˜๋„์ ์œผ๋กœ ๋ช…ํ™•ํ•œ ๋ชฉํ‘œ๋ฅผ ์ •ํ•ด๋‘์ง€ ์•Š๊ณ  ์ง€๊ธˆ ์ด ์ˆœ๊ฐ„์— ๋ชฐ์ž…ํ•˜๋Š” ํƒœ๋„๋ฅผ ์œ ์ง€ํ•˜๊ณ  ์žˆ๋‹ค.

ERP์ฒ˜๋Ÿผ ๋Œ€๊ทœ๋ชจ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๋ฌธ์ œ์™€ ๋‚œ๊ด€์ด ๋Š์ž„์—†์ด ๋ฐœ์ƒํ•œ๋‹ค. ๊ทธ ์†์—์„œ๋„ โ€˜๋„๋ง์น˜์ง€ ์•Š๋Š”๋‹คโ€™, โ€˜๋๊นŒ์ง€ ์ฑ…์ž„์„ ๋‹คํ•œ๋‹คโ€™๋Š” ์ž์„ธ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์ง€์ผœ์™”๋‹ค. ๊ฒฝํ—˜์„ ์Œ“๊ณ , ์Šค์Šค๋กœ ์‚ฌ๊ณ ํ•˜๊ณ , ์ž์‹ ์˜ ๊ธฐ์ค€์„ ๋ฐ”ํƒ•์œผ๋กœ ์ „๋žต์„ ์„ธ์šฐ๋Š” ๊ฒƒ. ์ด ๋ถ€๋ถ„์ด ๋‚˜์˜ ๋ฆฌ๋”์‹ญ์˜ ๊ทผ๊ฐ„์ด๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•œ ๊นจ๋‹ฌ์Œ์€ ์ด๊ฒƒ์ด๋‹ค. โ€˜ํ•ด์™ธ๋ฅผ ์•Œ์•„์•ผ ์ผ๋ณธ์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๊ณ , ํƒ€์‚ฌ๋ฅผ ์•Œ์•„์•ผ ์ž์‚ฌ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฌ๋žŒ์„ ์ดํ•ดํ•ด์•ผ ๋น„๋กœ์†Œ ์ž์‹ ์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค.โ€™ ์ด ํ†ต์ฐฐ์ด ์ œ๊ฒŒ๋Š” ๊ฐ€์žฅ ํฐ ์ž์‚ฐ์ด๋ฉฐ, CIO๋กœ์„œ ์•ž์œผ๋กœ ๋‚˜์•„๊ฐ€๋Š” ์›๋™๋ ฅ์ด ๋˜๊ณ  ์žˆ๋‹ค.

Q: ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์—์„œ CIO๋กœ ์ผํ•˜๋ฉด์„œ ๋А๋‚€ ๊นจ๋‹ฌ์Œ์€ ๋ฌด์—‡์ด์—ˆ๋‚˜?
57์„ธ์— ์„ ํƒํ•œ ์ด์ง์€ ๊ฒฐ์ฝ” ๋น ๋ฅธ ๊ฒฐ์ •์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ง‰์ƒ ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์— ๋“ค์–ด์„œ๊ณ  ๋ณด๋‹ˆ, ๊ทธ์ „๊นŒ์ง€ ๋ณด์ด์ง€ ์•Š์•˜๋˜ ๊ฒƒ๋“ค์ด ์„ ๋ช…ํ•˜๊ฒŒ ๋ณด์ด๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ๊ทธ์ค‘์—์„œ๋„ ํŠนํžˆ ๊ฐ•ํ•˜๊ฒŒ ๋‚จ์€ ๊ฒƒ์€ IT ์ „๋žต์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ด ๋˜๋Š” ๋‘ ๊ฐ€์ง€ ํ‚ค์›Œ๋“œ, โ€˜๊ฑฐ๋ฒ„๋„Œ์Šคโ€™์™€ โ€˜์‹œ๋„ˆ์ง€โ€™์˜€๋‹ค.

์ด์ „ ์ง์žฅ์—์„œ๋Š” ์—ฌ๋Ÿฌ ์ƒ์žฅ ์žํšŒ์‚ฌ๋ฅผ ํฌํ•จํ•œ ๋Œ€๊ทœ๋ชจ ๊ทธ๋ฃน ์ „์ฒด์˜ ์ •๋ณด์‹œ์Šคํ…œ์„ ํ†ตํ•ฉ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๋Š” ๋ฏธ์…˜์„ ๋งก์•˜๋‹ค. ๋…๋ฆฝ์„ฑ์ด ๊ฐ•ํ•œ ๊ฐ ํšŒ์‚ฌ๋ฅผ ํ•œ ๋ฐฉํ–ฅ ์•„๋ž˜ ๋ชจ์œผ๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹จ์ˆœํžˆ ๊ทœ์ •์„ ๊ฐ•์š”ํ•˜๊ฑฐ๋‚˜ ์ง€์นจ์„ ๋‚ด๋ ค๋ณด๋‚ด๋Š” ๋ฐฉ์‹๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ฐ ์ •์ฑ…์ด๋‚˜ ๋ฐฉ์นจ์ด ํ˜„์žฅ์— ์–ด๋–ค ์ด์ต์„ ์ฃผ๋Š”์ง€, ์™œ ํ•„์š”ํ•œ์ง€ ์„ค๋“๋ ฅ ์žˆ๊ฒŒ ์„ค๋ช…ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ–ˆ๋‹ค.

๊ฑฐ๋ฒ„๋„Œ์Šค์˜ ๊ธฐ๋ฐ˜ ์œ„์—์„œ ์‹œ๋„ˆ์ง€๊ฐ€ ์ƒ๊ธฐ๊ณ , ๊ตฌ์„ฑ์› ํ•œ ์‚ฌ๋žŒ ํ•œ ์‚ฌ๋žŒ์ด ๋‚ฉ๋“ํ•ด ์Šค์Šค๋กœ ์›€์ง์ด๊ธฐ ์‹œ์ž‘ํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ. ์ €๋Š” ๊ทธ ๊ตฌ์กฐ ์„ค๊ณ„์•ผ๋ง๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ IT ์ „๋žต์˜ ๋ณธ์งˆ์ด๋ผ๋Š” ์ ์„ ์ƒˆ๋กญ๊ฒŒ ๊นจ๋‹ฌ์•˜๋‹ค.

DX๋ฅผ ์ถ”์ง„ํ•˜๋Š” ๊ณผ์ •์—์„œ๋„ ๊ฐ™์€ ๊ตํ›ˆ์„ ์–ป์—ˆ๋‹ค. ํ†ฑ๋‹ค์šด ๋ฐฉ์‹์€ ์ „์‚ฌ์  ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ฐ•ํ•œ ์ถ”์ง„๋ ฅ์ด ์žˆ์ง€๋งŒ, ๋ฐ”ํ…€์—…์€ ํ˜„์žฅ์˜ ์ Š์€ ์ธ์žฌ๊ฐ€ ๊ณผ์ œ๋ฅผ ์Šค์Šค๋กœ์˜ ์ผ๋กœ ๋ฐ›์•„๋“ค์ด๊ณ  ๋„์ „ํ•˜๋ฉด์„œ ์„ฑ์žฅ์˜ ๊ธฐํšŒ๋ฅผ ๋งŒ๋“ค์–ด๋‚ธ๋‹ค. ์ด ๋‘ ์ถ•์ด ์„œ๋กœ ๋งž๋ฌผ๋ฆด ๋•Œ, DX๋Š” ๋น„๋กœ์†Œ ์กฐ์ง ์ „์ฒด๋กœ ํ™•์‚ฐ๋˜๊ณ  ์‹ค์งˆ์ ์ธ ๋ณ€ํ™”๋กœ ์ด์–ด์ง„๋‹ค.

Q: ๋ฆฌ๋”์‹ญ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋‹ค๊ณ  ๋А๋ผ๋Š” ์š”์†Œ๋Š” ๋ฌด์—‡์ธ๊ฐ€?
37๋…„์— ๊ฑธ์นœ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฒฝ๋ ฅ ์†์—์„œ ์ œ๊ฐ€ ๊ฐ€์žฅ ๊นŠ์ด ๋А๋‚€ ๊ฒƒ์€ โ€˜์‚ฌ๋žŒ์„ ์–ด๋–ป๊ฒŒ ์›€์ง์ด๊ฒŒ ํ•  ๊ฒƒ์ธ๊ฐ€โ€™๋ผ๋Š” ๊ณผ์ œ์˜ ์ค‘์š”์„ฑ์ด๋‹ค. ํ”„๋กœ์ ํŠธ, ๋ถ€ํ•˜ ์ง์›, ๋™๋ฃŒ, ์ดํ•ด๊ด€๊ณ„์ž, ๊ทธ๋ฆฌ๊ณ  ์ƒ์‚ฌ๊นŒ์ง€ ๋ชจ๋“  ๊ด€๊ณ„ ์†์—์„œ ๊ฐ€์žฅ ์–ด๋ ต๊ณ  ๋™์‹œ์— ๊ฐ€์žฅ ํฐ ๊ฐ€์น˜๋ฅผ ๊ฐ€์ง„ ๋„์ „์€ ๊ฒฐ๊ตญ โ€˜๊ฒฝ์˜์„ ์–ด๋–ป๊ฒŒ ์›€์ง์ผ ๊ฒƒ์ธ๊ฐ€โ€™๋ผ๋Š” ์ ์ด์—ˆ๋‹ค.

์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋จผ์ €, ์ž์‹ ์ด ๋ฌด์—‡์„ ํ•˜๊ณ  ์‹ถ์€์ง€, ๋ฌด์—‡์„ ์ „๋‹ฌํ•˜๊ณ  ์‹ถ์€์ง€์— ๋Œ€ํ•œ ํ™•๊ณ ํ•œ ์ถ•์„ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค. ๊ทธ ์ถ•์ด ํ”๋“ค๋ฆฌ๋ฉด ์‚ฌ๋žŒ๋“ค์€ ๋”ฐ๋ผ์˜ค์ง€ ์•Š๋Š”๋‹ค. ๋”๋ถˆ์–ด ๊ทธ ์ถ•์„ ๋ช…ํ™•ํ•œ ์–ธ์–ด๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ๋„ ํ•„์š”ํ•˜๋‹ค. ๋ง๋กœ ํ˜•ํƒœ๋ฅผ ๊ฐ–์ถ”์ง€ ์•Š์œผ๋ฉด ์ƒ๊ฐ๊ณผ ์˜์ง€๋Š” ๊ฒฐ์ฝ” ์ „๋‹ฌ๋˜์ง€ ์•Š๋Š”๋‹ค.

๋ง์ด ์ „๋‹ฌ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹ ๋ขฐ๊ฐ€ ์ „์ œ๋˜์–ด์•ผ ํ•œ๋‹ค. ์‹ ๋ขฐ๊ฐ€ ํ˜•์„ฑ๋˜๋ฉด ์ƒ๋Œ€๋Š” ๊ณต๊ฐํ•˜๊ณ , ๊ณต๊ฐ์€ ํ–‰๋™์˜ ๋ณ€ํ™”๋ฅผ ์ด๋ˆ๋‹ค. ์ด ์ผ๋ จ์˜ ๊ณผ์ • ์ฆ‰ ์ถ•์„ ์„ธ์šฐ๊ณ , ์–ธ์–ด๋กœ ์ •๋ฆฌํ•˜๊ณ , ์‹ ๋ขฐ๋ฅผ ์Œ“๊ณ , ๊ณต๊ฐ์„ ์–ป์–ด, ํ–‰๋™์„ ์œ ๋„ํ•˜๋Š” ๊ณผ์ •์„ ์–ผ๋งˆ๋‚˜ ์•„๋ฆ„๋‹ต๊ฒŒ ์ˆœํ™˜์‹œํ‚ค๋А๋ƒ๊ฐ€ ๋ฆฌ๋”์—๊ฒŒ ์ฃผ์–ด์ง„ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ๋ผ๊ณ  ๋А๋ผ๊ณ  ์žˆ๋‹ค.

๊ทธ ๊ธฐ๋ฐ˜์—๋Š” โ€˜์ž๊ธฐ๋ฅผ ์•„๋Š” ๊ฒƒโ€™์ด ์žˆ๋‹ค. ๋ฌผ๋ก  ์ž์‹ ์„ ์•ˆ๋‹ค๋Š” ๊ฒƒ์€ ์ฒ ํ•™์ ์ด๋ฉฐ ๊ฒฐ์ฝ” ์‰ฌ์šด ์ผ์ด ์•„๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ โ€˜ํ•ด์™ธ๋ฅผ ์•Œ๋ฉด ์ผ๋ณธ์ด ๋ณด์ด๊ณ , ์ผ๋ณธ์„ ์•Œ๋ฉด ์ž์‚ฌ๊ฐ€ ๋ณด์ด๋ฉฐ, ์ž์‚ฌ๋ฅผ ์•Œ๋ฉด ์ž์‹ ์ด ๋ณด์ธ๋‹คโ€™๋Š” ์ˆœํ™˜์  ๊นจ๋‹ฌ์Œ์ด ๋ฆฌ๋”๋กœ์„œ์˜ ์‹œ์•ผ๋ฅผ ํ•œ์ธต ๋„“ํ˜€์ค€๋‹ค.

Q: CIO๊ฐ€ ๊ฒฝ์˜์ž๊ฐ€ ๋  ์ˆ˜ ์žˆ์„๊นŒ?
์ง€๊ธˆ CIO๋กœ์„œ์˜ ์—ญํ• ์„ ๋Œ์•„๋ณด๋ฉด, ๋‘ ๊ฐ€์ง€ ์œ ํ˜•์ด ์žˆ๋‹ค๊ณ  ๋А๋‚€๋‹ค. ํ•˜๋‚˜๋Š” โ€˜์ •๋ณด์‹œ์Šคํ…œ์„ ์ด๊ด„ํ•˜๋Š” CIOโ€™, ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” โ€˜๊ฒฝ์˜์˜ ํ•œ ์ถ•์„ ๋‹ด๋‹นํ•˜๋Š” CIOโ€™๋‹ค.

๋‚˜๋Š” ์ง€๊ธˆ๊นŒ์ง€ ํ›„์ž๋ฅผ ๋ชฉํ‘œ๋กœ ํ•ด ์™”๋‹ค. IT ์ „๋ฌธ์„ฑ์—๋งŒ ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ , ๋ฐ”๊นฅ์„ธ์ƒ์„ ์ดํ•ดํ•˜๊ณ , ์—…๊ณ„๋ฅผ ๋„˜๋‚˜๋“ค๋ฉฐ, ํ˜„์žฅ๊ณผ ๊ฒฝ์˜์„ ์ž‡๋Š” ์‹œ๊ฐ์ด CIO์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋„“ํ˜€ ์ค€๋‹ค๊ณ  ๋ฏฟ๊ณ  ์žˆ๋‹ค.

๊ทธ๋ž˜์„œ ๋‚ด๊ฐ€ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋กœ ์ธ๋ฌธํ•™ ์ฆ‰ ์ธ๋ฅ˜๊ฐ€ ์ถ•์ ํ•ด ์˜จ ์ง€ํ˜œ๋‹ค.

์ƒˆ๋กœ์šด ๊ฒƒ์€ ๋ฌด(็„ก)์—์„œ ๊ฐ‘์ž๊ธฐ ์ƒ๊ฒจ๋‚˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, ์—ฌ๋Ÿฌ ์ง€ํ˜œ๊ฐ€ ๊ฒฐํ•ฉ๋˜๋ฉฐ ์ฐฝ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ƒ์„ฑํ˜• AI๊ฐ€ ๋“ฑ์žฅํ•˜๋ฉด์„œ, ์šฐ๋ฆฌ๋Š” ๊ทธ ์–ด๋А ๋•Œ๋ณด๋‹ค ์ฐฝ์กฐ์ ์ธ ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ๊ธฐํšŒ๋ฅผ ๊ฐ–๊ฒŒ ๋๋‹ค.

์ •๋ณด์‹œ์Šคํ…œ ๋ถ€์„œ ์—ฌ๋Ÿฌ๋ถ„๋„ ์ด๋Ÿฐ ๊ด€์ ์„ ๊ผญ ๊ฐ€์ ธ ๋ณด๊ธธ ๋ฐ”๋ž€๋‹ค. ๋•Œ๋กœ๋Š” ์ „๋ฌธ ์˜์—ญ์„ ๋„˜์–ด์„œ ๋‹ค๋ฅธ ๋ถ„์•ผ๋กœ ๊ฑด๋„ˆ๊ฐ€ ๋ณด๊ณ , ํ˜„์žฅ์— ๋‹ค๊ฐ€๊ฐ€๊ณ , ๊ฒฝ์˜๊ณผ ๋Œ€ํ™”ํ•ด ๋ณด๋Š” ๊ฒฝํ—˜๋“ค์ด ์Œ“์ผ ๋•Œ, CIO๋กœ์„œ์˜ ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ฆด ๊ฑฐ๋ผ๊ณ  ํ™•์‹ ํ•œ๋‹ค.

๋˜ํ•œ ์ผ๋ณธ IT ์‚ฐ์—…์—๋Š” ๊ตฌ์กฐ์  ํŠน์ง•์ด ์žˆ๋‹ค. ์‹œ์Šคํ…œ ์—”์ง€๋‹ˆ์–ด์˜ ์•ฝ 70%๊ฐ€ ์™ธ๋ถ€ ํŒŒํŠธ๋„ˆ ์†Œ์†์ด๋ผ๋Š” ํ˜„์‹ค์ด๋‹ค. ๋‚ด์žฌํ™”์˜ ํ•„์š”์„ฑ์ด ๊ฐ•์กฐ๋˜์ง€๋งŒ ํ•œ๊ณ„๋„ ๋šœ๋ ทํ•˜๋‹ค. ๊ทธ๋ž˜์„œ ๋ฒค๋”๋‚˜ ์ปจ์„คํ„ดํŠธ๋ฅผ ๋‹จ์ˆœํ•œ ๊ณต๊ธ‰์ž๊ฐ€ ์•„๋‹ˆ๋ผ ํ•จ๊ป˜ ์‹ธ์šฐ๋Š” โ€˜์ „์šฐโ€™๋กœ ์ธ์‹ํ•˜๊ณ  ํ˜‘๋ ฅ ๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

๊ณ ๊ฐ์‚ฌ๊ฐ€ ์ผ๋ฐฉ์ ์œผ๋กœ ์ง€์‹œํ•˜๋Š” ๊ด€๊ณ„๋ฅผ ๋„˜์–ด์„œ, ์„œ๋กœ ๋ฐฐ์šฐ๊ณ  ์ง€ํ˜œ๋ฅผ ๋ชจ์œผ๋Š” ํŒŒํŠธ๋„ˆ์‹ญ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ. ์ด๋Ÿฌํ•œ ๊ด€๊ณ„๊ฐ€ ์•ž์œผ๋กœ์˜ ITยทDX ๋ถ„์•ผ์—์„œ ์ง„์ •ํ•œ ๊ฐ€์น˜ ์ฐฝ์ถœ์„ ์ด๋Œ ํ•ต์‹ฌ์ด๋ผ๊ณ  ๋ฏฟ๊ณ  ์žˆ๋‹ค.

Q: CIO๋กœ์„œ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ์ฒ ํ•™์ด๋‚˜ ๊ฐ€์น˜๊ด€์€ ๋ฌด์—‡์ธ๊ฐ€?
๊ฐœ์ธ์ ์œผ๋กœ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ๋‘ ๊ฐ€์ง€ ํ‚ค์›Œ๋“œ๊ฐ€ ์žˆ๋‹ค. 21์„ธ๊ธฐ๋ฅผ ์‚ด์•„๊ฐ€๋Š” ์ธ๋ฅ˜๊ฐ€ ๋ฐ˜๋“œ์‹œ ์†Œ์ค‘ํžˆ ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ๊ฐ€์น˜, ๋ฐ”๋กœ โ€˜์–ด์›จ์–ด๋‹ˆ์Šค(๊นจ๋‹ฌ์Œยท์˜์‹)โ€™์™€ โ€˜์ปดํŒจ์…˜(์ดํƒ€์„ฑยท๋ฐฐ๋ ค)โ€™์ด๋‹ค. ์ด ๋‘ ๊ฐ€์ง€๋Š” ์ œ๊ฐ€ ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์˜ CIO๋กœ ๋ถ€์ž„ํ–ˆ์„ ๋•Œ๋ถ€ํ„ฐ, ํšŒ์‚ฌ๊ฐ€ ๊ธฐ๋Œ€ํ•˜๋Š” ์—ญํ• ๊ณผ ์ผ๋ณธ ์ œ์กฐ์—… ์ „์ฒด๋ฅผ ๋” ๊ฐ•ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ ์ž ํ•˜๋Š” ์ œ ๊ฐœ์ธ์  ์†Œ๋ง ๋ชจ๋‘์—์„œ ์ค‘์‹ฌ์ถ•์ด ๋˜์–ด์™”๋‹ค.

๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์€ โ€˜๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ ๊ทธ๋ฃน IT Wayโ€™๋ผ๋Š” ์›์น™์„ ์ˆ˜๋ฆฝํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ IT ์ „๋žต์„ ์ถ”์ง„ํ•˜๊ณ  ์žˆ๋‹ค. ์ง€๊ธˆ ์ƒ์„ฑํ˜• AI๋Š” ํ”ผํ•  ์ˆ˜ ์—†๋Š” ํ•ต์‹ฌ ์ฃผ์ œ๋กœ ๋– ์˜ฌ๋ž๊ณ , ์ค‘์š”ํ•œ ๊ฒƒ์€ AI๊ฐ€ ๋ฌด์—‡์„ ๋งŒ๋“œ๋Š”๊ฐ€๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜์‚ฌ๋žŒ์ด ์ƒ์„ฑํ˜• AI๋ฅผ ํ™œ์šฉํ•ด ์–ด๋–ค ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š”๊ฐ€โ€™์— ์žˆ๋‹ค. ์ƒ์„ฑํ˜• AI๋Š” ์–ด๋””๊นŒ์ง€๋‚˜ IT ๋„๊ตฌ์˜ ํ•˜๋‚˜์ด๊ณ , ์ฃผ์ฒด๋Š” ์ธ๊ฐ„์ด๋‹ค. ๊ทธ๋ž˜์„œ ์ €๋Š” ์–ธ์ œ๋‚˜ โ€˜์‚ฌ๋žŒ ์ค‘์‹ฌโ€™์ด๋ผ๋Š” ์‚ฌ๊ณ ๋ฐฉ์‹์„ ์•ˆํŒŽ์œผ๋กœ ๊พธ์ค€ํžˆ ๊ฐ•์กฐํ•ด ์™”๊ณ , ์ด ์ฒ ํ•™์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์—ฌ๋Ÿฌ ์ •์ฑ…์„ ํŽผ์ณ์™”๋‹ค.

์ผ๋ณธ ์ œ์กฐ์—…์ด ๊ฐ•ํ•ด์ง€๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธฐ์—… ๊ฐ„์˜ ๊ฒฝ๊ณ„๋ฅผ ๋„˜์–ด์„œ๋Š” ์—ฐ๋Œ€์™€ ๋Œ€ํ™”๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ์ €๋Š” ์ด์ง ์ „์„ ํฌํ•จํ•œ ์•ฝ 5๋…„ ๋™์•ˆ 70์—ฌ ๊ฐœ ๊ธฐ์—…, 6,000๋ช… ์ด์ƒ์˜ ๊ด€๊ณ„์ž๋“ค๊ณผ ์Šคํ„ฐ๋””, ๊ฐ•์—ฐ ๋“ฑ์„ ํ†ตํ•ด ์ง€์†์ ์œผ๋กœ ์˜๊ฒฌ์„ ๋‚˜๋ˆ„์–ด ์™”๋‹ค. ๊ทธ ๊ณผ์ •์—์„œ ์ œ ์ƒ๊ฐ์— ๊ณต๊ฐํ•ด์ฃผ๋Š” ์‚ฌ๋žŒ๋“ค์„ ๋งŽ์ด ๋งŒ๋‚ฌ๊ณ , ๊ทธ๋ถ„๋“ค๊ณผ์˜ ๊ต๋ฅ˜ ์†์—์„œ ์ € ์ž์‹ ๋„ ์„ฑ์žฅํ•˜๊ณ  ์žˆ์Œ์„ ์‹ค๊ฐํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ง€์  ์ถ•์ ์ด ์ƒˆ๋กœ์šด ์ •์ฑ…๊ณผ ์‹œ๋„๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ์ค‘์š”ํ•œ ์›๋™๋ ฅ์ด ๋œ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค.

๋‚ด๊ฐ€ ๋ฌด์—‡๋ณด๋‹ค๋„ ์ „๋‹ฌํ•˜๊ณ  ์‹ถ์€ ๋ฉ”์‹œ์ง€๋Š” ๋‹จ์ˆœํ•˜๋‹ค. ๋ฐ”๋กœ โ€˜๋ชจ๋“  ๊ธฐ์ˆ ์€ ์‚ฌ๋žŒ์„ ํ–‰๋ณตํ•˜๊ฒŒ ํ•˜๋Š” ๋ฐฉํ–ฅ์„ ์ง€ํ–ฅํ•ด์•ผ ํ•œ๋‹คโ€™์ด๋‹ค. 100๋…„, 200๋…„ ํ›„ ์šฐ๋ฆฌ์˜ ํ›„์†์ด ๋Œ์•„๋ดค์„ ๋•Œ, โ€˜๊ทธ ์‹œ๋Œ€๋ฅผ ๊ธฐ์ ์œผ๋กœ ๋ฌด์–ธ๊ฐ€๊ฐ€ ๋ฐ”๋€Œ์—ˆ๋‹คโ€™๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๊ทธ๊ฒƒ์€ ์ธํ„ฐ๋„ท๊ณผ ๊ฐ™์€ ์ปค๋‹ค๋ž€ ํ˜์‹ ์ผ ๊ฒƒ์ด๋ฉฐ, ์ง€๊ธˆ ์ง„ํ–‰ ์ค‘์ธ ์ƒ์„ฑํ˜• AI ์—ญ์‹œ ๊ทธ ๋ณ€๊ณก์  ์ค‘ ํ•˜๋‚˜๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ ๋ฐ˜๋“œ์‹œ ๋„์ „ํ•ด์•ผ ํ•  ๋˜ ํ•˜๋‚˜์˜ ๊ณผ์ œ๋Š” ๋ฏธ๋ž˜ ์„ธ๋Œ€๊ฐ€ โ€œ์ง€๊ตฌ ํ™˜๊ฒฝ์„ ์ง€ํ‚ค๋ฉด์„œ๋„ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹คโ€๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ๋Œ€๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋‹ค. ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์€ ์ž์›์ˆœํ™˜์„ ํ•ต์‹ฌ์œผ๋กœ ์‚ผ๋Š” ๊ธฐ์—…์œผ๋กœ, ์ด๋Ÿฌํ•œ ๋ฏธ๋ž˜์ƒ์„ ์‹คํ˜„ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋งก๊ณ  ์žˆ๋‹ค. ๋น„์ฆˆ๋‹ˆ์Šค ์„ธ๊ณ„์—์„œ๋Š” ์ข…์ข… โ€˜๋‹ฌ์ฝคํ•œ ์ด์•ผ๊ธฐ๋งŒ ํ•ด์„œ๋Š” ์•ˆ ๋œ๋‹คโ€™๊ณ  ํ•˜์ง€๋งŒ, ์ง€๊ตฌ ํ™˜๊ฒฝ์„ ์ง€ํ‚ค๋Š” ๋ฌธ์ œ์—์„œ๋Š” ์ดํƒ€์„ฑ๊ณผ ๋ฐฐ๋ ค๊ฐ€ ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค. ์ด๋Š” ์ธ๋ฅ˜ ์ „์ฒด๊ฐ€ ๋” ๊นŠ์ด ์ธ์‹ํ•ด์•ผ ํ•  ๊ฐ€์น˜๋‹ค.

CIO๋Š” ๋Œ€๊ฐœ ํŠน์ • ์ „๋ฌธ ๋ถ„์•ผ์— ๊ฐ•์ ์„ ์ง€๋‹Œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๊ณ , ๊ฒฝ์˜์ง„๊ณผ ๋™๋“ฑํ•œ ์ˆ˜์ค€์—์„œ ๋…ผ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์š”๊ตฌ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ IT๋งŒ ์•Œ๊ณ  ์žˆ์–ด์„œ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค. ํ•ด์™ธ์˜ ์‹œ๊ฐ, ์—…๊ณ„์˜ ํ๋ฆ„, ๊ทธ๋ฆฌ๊ณ  ์ธ๋ฌธํ•™ ๋ฆฌ๊ฐ™์€ ๋น„(้ž) IT ์˜์—ญ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•˜๋‹ค. ๊ธฐ์—…๊ณผ ์‚ฐ์—…๋งˆ๋‹ค ๊ณผ์ œ๋Š” ๋‹ค๋ฅด์ง€๋งŒ, IT๋งŒ ์ƒ๊ฐํ•ด์„œ๋Š” ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋„๋‹ฌํ•  ์ˆ˜ ์—†๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ์ž์˜ ์ „๋ฌธ์„ฑ์„ ์‚ด๋ฆฌ๋ฉด์„œ๋„ ๋ณตํ•ฉ์  ์‹œ๊ฐ์œผ๋กœ ์ ‘๊ทผํ•˜๋Š” ํƒœ๋„๊ฐ€ ์•ž์œผ๋กœ์˜ CIO์—๊ฒŒ ์š”๊ตฌ๋˜๋Š” ์ž์„ธ๋ผ๊ณ  ๋ฏฟ๊ณ  ์žˆ๋‹ค.

*์ด ๊ธฐ์‚ฌ๋Š” CIO ์žฌํŒฌ์—์„œ ์ง„ํ–‰๋œ โ€˜๋ฆฌ๋”์‹ญ ๋ผ์ด๋ธŒ ์žฌํŒฌโ€™์˜ ๋‚ด์šฉ์„ ๋ฐ”ํƒ•์œผ๋กœ ์ผ๋ถ€ ๊ฐ์ƒ‰ํ•˜์—ฌ ๊ตฌ์„ฑํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
dl-ciokorea@foundryco.com

MS, M365 ๊ตฌ๋… ์š”๊ธˆ ์ธ์ƒ ์˜ˆ๊ณ ยทยทยท๋ถ„์„๊ฐ€๋“ค โ€œ๋Œ€์•ˆ ๋ชจ์ƒ‰ ๋ฐ ์žฌํ˜‘์ƒ ํ•„์š”โ€

8 December 2025 at 02:51

M365 ๊ณ ๊ฐ์€ 2026๋…„ 7์›” 1์ผ๋ถ€ํ„ฐ ๋” ๋†’์€ ๊ตฌ๋… ์š”๊ธˆ์„ ๋ถ€๋‹ดํ•˜๊ฒŒ ๋  ์ „๋ง์ด๋‹ค. ๋น„์ฆˆ๋‹ˆ์Šค์šฉ์„ ๋น„๋กฏํ•ด E3ยทE5, ํ”„๋ก ํŠธ๋ผ์ธ, ์ •๋ถ€์šฉ ๊ตฌ๋… ๋“ฑ ๋Œ€๋ถ€๋ถ„์˜ ์š”๊ธˆ์ œ๊ฐ€ ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค.

MS๋Š” ์ง€๋‚œ 4์ผ ๋ธ”๋กœ๊ทธ๋ฅผ ํ†ตํ•ด ์—ฌ๋Ÿฌ ์š”๊ธˆ์ œ์— ์ƒˆ ๊ธฐ๋Šฅ์ด ์ถ”๊ฐ€๋˜๋ฉด์„œ ์ธ์ƒ์ด ์ด๋ค„์กŒ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ์—ฌ๊ธฐ์—๋Š” ํ™•์žฅ๋œ ์ฝ”ํŒŒ์ผ๋Ÿฟ ์ฑ— ๊ธฐ๋Šฅ๊ณผ E3์— ํฌํ•จ๋˜๋Š” MS ๋””ํŽœ๋” ํฌ ์˜คํ”ผ์Šค(Microsoft Defender for Office), E5์— ์ ์šฉ๋˜๋Š” ์‹œํ๋ฆฌํ‹ฐ ์ฝ”ํŒŒ์ผ๋Ÿฟ, ๊ทธ๋ฆฌ๊ณ  E3ยทE5๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์ธํŠ (Intune)์˜ ์›๊ฒฉ ์ง€์› ๋ฐ ๊ณ ๊ธ‰ ๋ถ„์„ ๊ธฐ๋Šฅ ๋“ฑ์ด ์žˆ๋‹ค.

์ƒˆ๋กœ์šด ๊ตฌ๋… ์š”๊ธˆ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • M365 ๋น„์ฆˆ๋‹ˆ์Šค ๋ฒ ์ด์ง์€ ์›” ์‚ฌ์šฉ์ž๋‹น 1๋‹ฌ๋Ÿฌ ์˜ฌ๋ผ 7๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 ๋น„์ฆˆ๋‹ˆ์Šค ์Šคํƒ ๋‹ค๋“œ๋Š” 1.5๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ ์›” 14๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • ์˜คํ”ผ์Šค 365 E3๋Š” ์›” 3๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ 26๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 E3๋Š” 3๋‹ฌ๋Ÿฌ ์˜ฌ๋ผ 39๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 E5๋Š” 3๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ ์›” 60๋‹ฌ๋Ÿฌ๋กœ ์กฐ์ •๋œ๋‹ค.
  • M365 F1์€ 0.75๋‹ฌ๋Ÿฌ ์˜ฌ๋ผ 3๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 F3๋Š” 2๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ ์›” 10๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.

์ด ๊ฐ€์šด๋ฐ M365 ๋น„์ฆˆ๋‹ˆ์Šค ํ”„๋ฆฌ๋ฏธ์—„์€ ์›” ์‚ฌ์šฉ์ž๋‹น 22๋‹ฌ๋Ÿฌ, ์˜คํ”ผ์Šค 365 E1์€ 10๋‹ฌ๋Ÿฌ๋กœ ๊ธฐ์กด ๊ฐ€๊ฒฉ์„ ์œ ์ง€ํ•œ๋‹ค. ์ •๋ถ€์šฉ M365 ์š”๊ธˆ์ œ๋Š” ํ”Œ๋žœ์— ๋”ฐ๋ผ 5%์—์„œ 10% ์ˆ˜์ค€์˜ ์ธ์ƒ์ด ์ ์šฉ๋œ๋‹ค. ๋ชจ๋“  ์š”๊ธˆ์—๋Š” ํ˜‘์—… ์•ฑ์ธ ํŒ€์ฆˆ(Teams)๊ฐ€ ํฌํ•จ๋ผ ์žˆ์œผ๋ฉฐ, ํŒ€์ฆˆ๋ฅผ ์ œ์™ธํ•  ๊ฒฝ์šฐ ๋” ๋‚ฎ์€ ์š”๊ธˆ์ด ์ฑ…์ •๋œ๋‹ค.

๊ฐ€ํŠธ๋„ˆ ์• ๋„๋ฆฌ์ŠคํŠธ ์žญ ๋„ค์ด๊ธ€๊ณผ ์Šคํ‹ฐ๋ธ ํ™”์ดํŠธ๋Š” ์ด๋ฒˆ ์กฐ์น˜์— ๋Œ€ํ•ด โ€œ์ตœ๊ทผ ์ด์–ด์ง€๋Š” ๊ฐ€๊ฒฉ ์ •์ฑ… ๋ณ€ํ™”๋Š” ๊ณ ๊ฐ์˜ ์šฐ๋ ค์™€ ํ”ผ๋กœ๊ฐ์„ ๋”์šฑ ์‹ฌํ™”์‹œํ‚ฌ ๊ฒƒโ€์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

MS๋Š” 2022๋…„์—๋„ M365 ๊ฐ€๊ฒฉ์„ 9%์—์„œ 25% ๋ฒ”์œ„๋กœ ์ธ์ƒํ•œ ๋ฐ” ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” M365 ๋“ฑ ์ฃผ์š” ์ œํ’ˆ์˜ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ณ„์•ฝ(EA) ์กฐ๊ฑด์„ ๋ณ€๊ฒฝํ•ด, ๋Œ€๊ทœ๋ชจ ๊ณ ๊ฐ์—๊ฒŒ ์ œ๊ณต๋˜๋˜ ์‚ฌ์šฉ์ž ์ˆ˜ ๊ธฐ๋ฐ˜ ํ• ์ธ ์ •์ฑ…์„ ๋‹จ๊ณ„์ ์œผ๋กœ ํ์ง€ํ–ˆ๋‹ค.

๊ฐ€ํŠธ๋„ˆ ์• ๋„๋ฆฌ์ŠคํŠธ๋“ค์€ ๊ธฐ์—…์ด ์ด๋ฒˆ ์ธ์ƒ์— ๋”ฐ๋ฅธ ์žฌ๋ฌด์  ๋ถ€๋‹ด์„ ์ค„์ด๋ ค๋ฉด โ€œํ˜‘์ƒ ์ „๋žต์„ ์ ๊ทน ํ™œ์šฉํ•˜๊ณ , ๋Œ€์•ˆ์„ ๊ฒ€ํ† ํ•˜๋ฉฐ, ๋ผ์ด์„ ์Šค ํ• ๋‹น์„ ์ตœ์ ํ™”ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

๋˜ํ•œ ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด 7์›” 1์ผ ๊ฐ€๊ฒฉ ๋ณ€๊ฒฝ ์ด์ „์— ๊ณ„์•ฝ์„ ์กฐ๊ธฐ ๊ฐฑ์‹ ํ•˜๋Š” ๋ฐฉ์•ˆ์„ ๊ณ ๋ คํ•  ๊ฒƒ์„ ์ œ์•ˆํ–ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์š”๊ธˆ ์ธ์ƒ์„ ๋‹ค์Œ ๊ฐฑ์‹  ์‹œ์ ๊นŒ์ง€ ๋Šฆ์ถœ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๊ฐ€ํŠธ๋„ˆ๊ฐ€ ์ตœ๊ทผ IT ๋ฆฌ๋” 215๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰ํ•œ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, M365 ๊ณ ๊ฐ์˜ 17%๋Š” ๋Œ€์•ˆ ์†”๋ฃจ์…˜์„ ๊ฒ€ํ†  ์ค‘์ด๋ฉฐ, ๊ตฌ๋… ๋น„์šฉ์— ์ถฉ๋ถ„ํ•œ ๊ฐ€์น˜๋ฅผ ๋А๋‚€๋‹ค๊ณ  ๋‹ตํ•œ ๋น„์œจ์€ 5%์— ๋ถˆ๊ณผํ–ˆ๋‹ค.

MS๋Š” ์˜ฌํ•ด ์ดˆ ์‹ค์  ๋ฐœํ‘œ์—์„œ ์ „ ์„ธ๊ณ„ ์ƒ์—…์šฉ M365 ์‚ฌ์šฉ์ž๊ฐ€ 4์–ต 3์ฒœ๋งŒ ๋ช…์„ ๋„˜์–ด์„ฐ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

J. ๊ณจ๋“œ ์–ด์†Œ์‹œ์—์ด์ธ ์˜ ์• ๋„๋ฆฌ์ŠคํŠธ ์žญ ๊ณจ๋“œ๋Š” MS๊ฐ€ ์ด์ „๋ถ€ํ„ฐ ์ฃผ๊ธฐ์ ์œผ๋กœ ๊ฐ€๊ฒฉ์„ ์ธ์ƒํ•ด ์™”๋‹ค๊ณ  ์–ธ๊ธ‰ํ•˜๋ฉฐ, โ€œAI ๊ธฐ๋Šฅ์„ ์šด์˜ํ•˜๊ธฐ ์œ„ํ•ด ์ƒ๋‹นํ•œ ์ถ”๊ฐ€ ์—ฐ์‚ฐ์ด ํ•„์š”ํ•ด์ง„ ๋งŒํผ, ์ด๋ฅผ ์ง€์›ํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ํด๋ผ์šฐ๋“œ ์ธํ”„๋ผ ์šด์˜ ๋น„์šฉ์„ ํšŒ์ˆ˜ํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ์ดํ•ดํ•  ๋งŒํ•˜๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ณจ๋“œ๋Š” ์ด๋ฒˆ ๊ฐ€๊ฒฉ ์ธ์ƒ์ด ๊ณ ๊ฐ ์ˆ˜์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€๋Š” ์•Š์„ ๊ฒƒ์œผ๋กœ ๋‚ด๋‹ค๋ดค๋‹ค. ๊ทธ๋Š” โ€œ๋Œ€๋ถ€๋ถ„์˜ ๊ณ ๊ฐ์ด ์ด๋ฏธ MS ์ƒํƒœ๊ณ„์— ๊นŠ์ด ๋ฌถ์—ฌ ์žˆ์–ด ๊ฒฐ๊ตญ ์ด๋ฒˆ ์กฐ์ •๋„ ๋ฐ›์•„๋“ค์ด๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œ์š”์ฆ˜ ๊ตฌ๊ธ€๊ณผ์˜ ๊ฐ€๊ฒฉ ๊ฒฝ์Ÿ์ด ์น˜์—ดํ•˜๊ธด ํ•˜์ง€๋งŒ, ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์‹œ์žฅ์—์„œ MS์—์„œ ๊ตฌ๊ธ€ ์˜คํ”ผ์Šค๋กœ ๋Œ€๊ฑฐ ์ด๋™ํ•˜๋Š” ํ๋ฆ„์€ ๋ณด์ด์ง€ ์•Š๋Š”๋‹ค. ๋‹ค๋งŒ ์ค‘์†Œ๊ธฐ์—… ๋ฐ ์ค‘๊ธฐ์—…์—์„œ๋Š” ๊ตฌ๊ธ€์˜ ์„ฑ์žฅ์„ธ๊ฐ€ ๋šœ๋ ทํ•˜๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ, ์•ˆ๋“œ๋กœ์ด๋“œ ๊ธฐ๋ฐ˜ POS ๊ฐœ๋ฐœยทยทยทํŽธ์˜์ ์— ์ฒซ ๋„์ž…

8 December 2025 at 02:40

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ๋Š” ๊ธฐ์กด ๊ตญ๋‚ด ํŽธ์˜์ ์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ์œˆ๋„์šฐ ๊ธฐ๋ฐ˜ ๋Œ€์‹  ์•ˆ๋“œ๋กœ์ด๋“œ ์šด์˜์ฒด์ œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํŒ๋งค์‹œ์  ์ •๋ณด๊ด€๋ฆฌ ๊ธฐ๊ธฐ(POS)๋ฅผ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ์Šค๋งˆํŠธํฐ์ด๋‚˜ ํƒœ๋ธ”๋ฆฟ PC๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์นœ์ˆ™ํ•˜๊ณ  ํŽธ๋ฆฌํ•œ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•ด ๊ฒฝ์˜์ฃผ๋“ค์˜ ์ ‘๊ทผ์„ฑ์„ ๊ฐ•ํ™”ํ–ˆ๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค. ๋˜ํ•œ ์•ˆ๋“œ๋กœ์ด๋“œ ์šด์˜์ฒด์ œ์˜ ๊ฐœ๋ฐฉ์„ฑ์„ ํ™œ์šฉํ•ด POS ๊ธฐ๋Šฅ ์™ธ์—๋„ ๋‹ค์–‘ํ•œ ์—…๋ฌด์šฉ ์•ฑ์„ ์†์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋ผ ์ ํฌ ์šด์˜์˜ ์œ ์—ฐ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ๋†’์˜€๋‹ค.

ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜์œผ๋กœ ์šด์˜๋˜๋Š” ์•ˆ๋“œ๋กœ์ด๋“œ POS ์‹œ์Šคํ…œ์€ ๋ฐ์ดํ„ฐ ๋ณด์•ˆ์„ฑ์ด ๋›ฐ์–ด๋‚˜๊ณ  ์‹œ์Šคํ…œ ์—…๋ฐ์ดํŠธ์™€ ์œ ์ง€๋ณด์ˆ˜๋„ ์šฉ์ดํ•˜๋‹ค. ๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ๋Š” ๊ฒฝ์˜์ฃผ๋“ค์˜ ์‹ค์ œ ์‚ฌ์šฉ ๊ฒฝํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ์„ค๊ณ„๋ผ ๋งค์žฅ ์šด์˜์— ์‹ค์งˆ์ ์ธ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ํ•ด๋‹น ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ๋ฌด๊ฑฐ์šด POS์™€ ๋น„๊ตํ•ด ํƒœ๋ธ”๋ฆฟ PCํ˜•ํƒœ๋กœ ๋”์šฑ ๊ฐ€๋ณ๊ณ  ์ด๋™์ด ์ž์œ ๋กœ์›Œ์กŒ์œผ๋ฉฐ, ์ž์ฃผ ์‚ฌ์šฉํ•˜๋Š” ๋ฉ”๋‰ด๋ฅผ ์ง์ ‘ ์„ค์ •ํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋‚˜๋งŒ์˜ ๋ฉ”๋‰ดโ€™, ์•ผ๊ฐ„์— ๋ˆˆ์˜ ํ”ผ๋กœ๋ฅผ ์ค„์—ฌ์ฃผ๋Š” โ€˜๋‹คํฌ ๋ชจ๋“œโ€™๋“ฑ ์‚ฌ์šฉ์ž๋ฅผ ๋ฐฐ๋ คํ•œ ๊ธฐ๋Šฅ๋„ ์ ์šฉ๋๋‹ค.

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ๋Š” ์˜ฌํ•ด๋ถ€ํ„ฐ ์„ธ๋ธ์ผ๋ ˆ๋ธ๊ณผ ํ˜‘๋ ฅํ•˜์—ฌ ์‹ ๊ทœ ์ ํฌ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์•ˆ๋“œ๋กœ์ด๋“œ ๊ธฐ๋ฐ˜ ํด๋ผ์šฐ๋“œ POS๋ฅผ ๋„์ž…ํ•˜๊ณ , ํ–ฅํ›„ ์ „๊ตญ ๋ชจ๋“  ์„ธ๋ธ์ผ๋ ˆ๋ธ ์ ํฌ๋กœ ํ™•๋Œ€ ์ ์šฉํ•  ๊ณ„ํš์ด๋‹ค.

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ ๊ด€๊ณ„์ž๋Š” โ€œ์ด๋ฒˆ ์•ˆ๋“œ๋กœ์ด๋“œ ํด๋ผ์šฐ๋“œ POS ๊ฐœ๋ฐœ์€ ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ ๋„์ž…์„ ๋„˜์–ด, ํŽธ์˜์  ์—…๊ณ„์— ์Šค๋งˆํŠธ ์šด์˜์˜ ์ƒˆ๋กœ์šด ํ‘œ์ค€์„ ์ œ์‹œํ•˜๋Š” ์ด์ •ํ‘œ๊ฐ€ ๋  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œ์•ž์œผ๋กœ AI ๊ธฐ๋ฐ˜ ๊ณ ๊ฐ ๋งž์ถคํ˜• ๊ด‘๊ณ  ๋“ฑ ์ง€์†์ ์ธ ๊ธฐ์ˆ  ํ˜์‹ ์„ ํ†ตํ•ด ๊ฒฝ์˜์ฃผ์™€ ๊ณ ๊ฐ ๋ชจ๋‘์—๊ฒŒ ๋” ๋‚˜์€ ํŽธ์˜์  ๊ฒฝํ—˜์„ ์ œ๊ณตํ•˜๊ณ , ํšจ์œจ์ ์ธ ๋งค์žฅ ์šด์˜์„ ์ง€์›ํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

Yesterday โ€” 7 December 2025CIO

โ€œPMO์—์„œ BTO๋กœโ€ AI๊ฐ€ ์—ฌ๋Š” ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ์˜ ๋Œ€์ „ํ™˜

7 December 2025 at 21:42

CIO ์ž…์žฅ์—์„œ AI๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ๋…ผ์˜๋Š” ํ˜์‹ ์—์„œ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ๋‹จ๊ณ„๋กœ ๋ฐœ์ „ํ–ˆ๋‹ค. ์˜ค๋žซ๋™์•ˆ ์ธ๊ฐ„์˜ ์กฐ์œจ๊ณผ ํ†ต์ œ ์˜์—ญ์ด์—ˆ๋˜ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ์ง€๋Šฅํ˜• ์‹œ์Šคํ…œ์ด ํ”„๋กœ์ ํŠธ ์ง„ํ–‰ ๋ฐ ์„ฑ๊ณผ๋ฅผ ์–ด๋–ป๊ฒŒ ์žฌํŽธํ•˜๊ณ  ๋ณ€ํ˜์„ ๊ฐ€์†ํ•˜๋Š”์ง€ ์‹œํ—˜ํ•˜๋Š” ๋ฌด๋Œ€๋กœ ๋น ๋ฅด๊ฒŒ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค.

์‚ฐ์—…๊ตฐ์„ ๋ง‰๋ก ํ•˜๊ณ  ๋ชจ๋“  ๊ธฐ์—… CIO๋Š” AI์˜ ์•ฝ์†์„ ์šด์˜ ์ธก๋ฉด์—์„œ ์ˆ˜์น˜ํ™”ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ณผ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹ค. ํ”„๋กœ์ ํŠธ ๊ธฐ๊ฐ„ ๋‹จ์ถ•, ๊ฐ„์ ‘๋น„ ๊ฐ์†Œ, ํฌํŠธํด๋ฆฌ์˜ค ํˆฌ๋ช…์„ฑ ์ œ๊ณ  ๊ฐ™์€ ์ง€ํ‘œ๋กœ ์–ด๋–ป๊ฒŒ ์„ค๋ช…ํ•  ๊ฒƒ์ธ๊ฐ€ ํ•˜๋Š” ๋ฌธ์ œ๋‹ค. ์กฐ์ง€์•„ ๊ณต๊ณผ๋Œ€ํ•™๊ต๊ฐ€ 2025๋…„์— ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ์ „๋ฌธ๊ฐ€์™€ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ๋ฆฌ๋” 217๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰ํ•œ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด, ์กฐ์‚ฌ ๋Œ€์ƒ ๊ธฐ์—…์˜ 73%๊ฐ€ ์–ด๋–ค ํ˜•ํƒœ๋กœ๋“  ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ์˜์—ญ์— AI๋ฅผ ๋„์ž…ํ–ˆ๋‹ค๊ณ  ์‘๋‹ตํ–ˆ๋‹ค.

ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์—ด๊ธฐ ์†์—์„œ๋„ AI๊ฐ€ ํ”„๋กœ์ ํŠธ ๋งค๋‹ˆ์ €(PM)์˜ ์—ญํ• ์„ ์–ด๋–ป๊ฒŒ ์žฌ์ •์˜ํ•  ๊ฒƒ์ธ์ง€, ํ–ฅํ›„ ๋น„์ฆˆ๋‹ˆ์Šค ํ˜์‹  ํ”„๋กœ๊ทธ๋žจ์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๊ทœ์ •ํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ์งˆ๋ฌธ์€ ์—ฌ์ „ํžˆ ๋‚จ์•„ ์žˆ๋‹ค.

์—ญํ• ์€ ๋ฐ”๋€Œ์ง€๋งŒ PM์˜ ์ค‘์š”์„ฑ์€ ๊ทธ๋Œ€๋กœ

์ด๋ฏธ ์—ฌ๋Ÿฌ ์‚ฐ์—…์—์„œ ํ”„๋กœ์ ํŠธ ์ „๋ฌธ๊ฐ€๋Š” ๋ณ€ํ™”๋ฅผ ์ฒด๊ฐํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ฒˆ ์กฐ์‚ฌ์—์„œ AI๋ฅผ ์ผ์ฐ ๋„์ž…ํ•œ ๊ธฐ์—…์€ ํ”„๋กœ์ ํŠธ ํšจ์œจ์„ฑ์ด ์ตœ๋Œ€ 30%๊นŒ์ง€ ํ–ฅ์ƒ๋๋‹ค๊ณ  ๋ณด๊ณ ํ–ˆ์ง€๋งŒ, ์„ฑ๊ณต ์—ฌ๋ถ€๋Š” ๊ธฐ์ˆ  ์ž์ฒด๋ณด๋‹ค ๋ฆฌ๋”์‹ญ์ด AI ํ™œ์šฉ์„ ์–ด๋–ป๊ฒŒ ํ†ต์ œํ•˜๋А๋ƒ์— ๋” ํฌ๊ฒŒ ์ขŒ์šฐ๋๋‹ค. ์‘๋‹ต์ž์˜ ์••๋„์  ๋‹ค์ˆ˜๋Š” AI๊ฐ€ ํšจ์œจ์„ฑ, ์˜ˆ์ธก ๊ธฐ๋ฐ˜ ๊ณ„ํš, ์˜์‚ฌ๊ฒฐ์ • ๊ฐœ์„ ์— ๋งค์šฐ ํšจ๊ณผ์ ์ด์—ˆ๋‹ค๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ํ”„๋กœ์ ํŠธ๋ฅผ ์‹ค์ œ๋กœ ์šด์˜ํ•˜๋Š” ์‹ค๋ฌด์ž์—๊ฒŒ ์ด ๋ณ€ํ™”๋Š” ๋ฌด์—‡์„ ์˜๋ฏธํ• ๊นŒ?

์‘๋‹ต์ž์˜ ์•ฝ 1/3์€ AI ๋•๋ถ„์— PM์ด ์ผ์ƒ์ ์ธ ์ผ์ •ยท์—…๋ฌด ์กฐ์ •์—์„œ ๋ฒ—์–ด๋‚˜ ์žฅ๊ธฐ์ ์ธ ์„ฑ๊ณผ๋ฅผ ์ด๋„๋Š” ์ „๋žต์  ์ด๊ด„ ์—ญํ• ์— ๋” ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ์˜ˆ์ƒํ–ˆ๋‹ค. ๋˜ ๋‹ค๋ฅธ 1/3์€ PM์ด ํŒ€ ์ „๋ฐ˜์—์„œ AI ์ธ์‚ฌ์ดํŠธ๋ฅผ ํ•ด์„ํ•ด ํ†ตํ•ฉํ•˜๋Š” ์ด‰์ง„์ž ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ํ˜‘์—…์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ™”ํ•  ๊ฒƒ์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค. ๋‚˜๋จธ์ง€ ์‘๋‹ต์ž๋Š” PM์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์œค๋ฆฌ์„ฑ, ์ •ํ™•๋„, ๋น„์ฆˆ๋‹ˆ์Šค ๋ชฉํ‘œ ์ •๋ ฌ ์—ฌ๋ถ€๋ฅผ ๊ด€๋ฆฌยท๊ฐ๋…ํ•˜๋Š” AI ์‹œ์Šคํ…œ ๊ฐ๋…์ž๋กœ ๋ณ€๋ชจํ•  ๊ฒƒ์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์ด๋Ÿฐ ์‹œ๊ฐ์€ ํ•˜๋‚˜์˜ ๊ฒฐ๋ก ์œผ๋กœ ๋ชจ์ธ๋‹ค. AI๊ฐ€ PM์„ ๋Œ€์ฒดํ•˜์ง€๋Š” ์•Š์ง€๋งŒ, PM์˜ ๊ฐ€์น˜๋ฅผ ์žฌ์ •์˜ํ•  ๊ฒƒ์ด๋ผ๋Š” ์ ์ด๋‹ค. ์•ž์œผ๋กœ ๋“ฑ์žฅํ•  PM์€ ์—…๋ฌด ๋ชฉ๋ก๋งŒ ๊ด€๋ฆฌํ•˜๋Š” ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๋ผ ์ง€๋Šฅ์„ ๊ด€๋ฆฌํ•˜๊ณ , AI ๊ธฐ๋ฐ˜ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ๋กœ ๋ฒˆ์—ญํ•˜๋Š” ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.

PMO๊ฐ€ ์„œ๋‘˜๋Ÿฌ์•ผ ํ•˜๋Š” ์ด์œ 

PMO(Project Management Office)์—๊ฒŒ ๊ณผ์ œ๋Š” ๋” ์ด์ƒ AI๋ฅผ ๋„์ž…ํ• ์ง€ ์—ฌ๋ถ€๊ฐ€ ์•„๋‹ˆ๋ผ ์–ด๋–ป๊ฒŒ ๋„์ž…ํ• ์ง€์ด๋‹ค. ๋Œ€๊ธฐ์—…์ด๋ผ๋ฉด ๋Œ€๋ถ€๋ถ„ ์ผ์ • ์˜ˆ์ธก, ์ž๋™ ๋ฆฌ์Šคํฌ ๋ณด๊ณ , ๋ฌธ์„œ ์ž‘์„ฑ์„ ์œ„ํ•œ ์ƒ์„ฑํ˜• AI ๋“ฑ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ ์ด๋ฏธ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ์–ด AI ์ฑ„ํƒ ์†๋„๋Š” ๋นจ๋ผ์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ ํ†ตํ•ฉ ์ˆ˜์ค€์€ ๊ธฐ์—…๋งˆ๋‹ค ๋“ค์ญ‰๋‚ ์ญ‰ํ•˜๋‹ค.

์—ฌ์ „ํžˆ ๋งŽ์€ PMO๊ฐ€ AI๋ฅผ ์ „๋žต ์—ญ๋Ÿ‰์ด ์•„๋‹Œ ๋„๊ตฌ ๋ชจ์Œ ์ˆ˜์ค€์˜ ๋ถ€๊ฐ€ ๊ธฐ๋Šฅ ์ •๋„๋กœ ์ทจ๊ธ‰ํ•œ๋‹ค. ํ•˜์ง€๋งŒ AI์˜ ํ•ต์‹ฌ์€ ํŒ๋‹จ ์ฆ๊ฐ•๊ณผ ์ž๋™ํ™”์— ์žˆ๋‹ค. ์ง„์ •ํ•œ ๊ฒฝ์Ÿ์šฐ์œ„๋ฅผ ํ™•๋ณดํ•˜๋Š” ๊ธฐ์—…์€ AI๋ฅผ ํ”„๋กœ์ ํŠธ ๋ฐฉ๋ฒ•๋ก , ๊ฑฐ๋ฒ„๋„Œ์Šค ํ”„๋ ˆ์ž„์›Œํฌ, ์„ฑ๊ณผ ์ง€ํ‘œ์— ๊นŠ์ด ๋‚ด์žฌํ™”ํ•˜๊ณ , ๋‹ค์Œ ๋‹ค์„ฏ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์—ผ๋‘์— ๋‘๊ณ  ์›€์ง์ธ๋‹ค.

1. ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋ผ

์ž‘๊ฒŒ ์‹œ์ž‘ํ•ด ๋น ๋ฅด๊ฒŒ ํ™•์žฅํ•˜๋ผ. ๊ฐ€์žฅ ์„ฑ๊ณต์ ์ธ AI ํ†ตํ•ฉ์€ ํ”„๋กœ์ ํŠธ ์ƒํƒœ ๋ณด๊ณ  ์ž๋™ํ™”, ์ผ์ • ์ง€์—ฐ ์˜ˆ์ธก, ์ž์› ๋ณ‘๋ชฉ ์‹๋ณ„ ๊ฐ™์€ ๋ช…ํ™•ํ•œ ์‚ฌ์šฉ๋ก€๋ฅผ ๊ฒจ๋ƒฅํ•œ ์†Œ๊ทœ๋ชจ ์‹œ๋ฒ” ์ ์šฉ์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ์ด๋Ÿฐ ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ๋Š” ๋ˆˆ์— ๋ณด์ด๋Š” ์„ฑ๊ณผ๋ฅผ ๋งŒ๋“ค๊ณ  ์กฐ์ง ๋‚ด ๊ธฐ๋Œ€๊ฐ์„ ๋†’์ด๋ฉฐ, ํ†ตํ•ฉ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ธฐ์ˆ ๊ณผ ํ”„๋กœ์„ธ์Šค ๋ฌธ์ œ๋ฅผ ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ๋“œ๋Ÿฌ๋‚ด ์ค€๋‹ค.

2. ํ™œ๋™๋Ÿ‰์ด ์•„๋‹ˆ๋ผ ๊ฐ€์น˜๋ฅผ ์ธก์ •ํ•˜๋ผ

AI๋ฅผ ๋„์ž…ํ•˜๋ฉด์„œ๋„ ๋ช…ํ™•ํ•œ ์„ฑ๊ณผ ์ง€ํ‘œ ์—†์ด ์ถ”์ง„ํ•˜๋Š” ์‹ค์ˆ˜๊ฐ€ ์ž์ฃผ ๋ฐœ์ƒํ•œ๋‹ค. PMO๋Š” ์ˆ˜๋™ ๋ณด๊ณ  ์‹œ๊ฐ„ ๊ฐ์†Œ, ๋ฆฌ์Šคํฌ ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ, ํ”„๋กœ์ ํŠธ ์‚ฌ์ดํด ๋‹จ์ถ•, ์ดํ•ด๊ด€๊ณ„์ž ๋งŒ์กฑ๋„ ์ œ๊ณ  ๊ฐ™์€ ๊ตฌ์ฒด์ ์ธ KPI๋ฅผ ์„ค์ •ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ๊ฒฐ๊ณผ๋ฅผ ์กฐ์ง ์ „์ฒด์— ๊ณต์œ ํ•˜๋Š” ์ผ๋„ ์„ฑ๊ณผ ๋ชป์ง€์•Š๊ฒŒ ์ค‘์š”ํ•˜๋‹ค. ์„ฑ๊ณต ์‚ฌ๋ก€๋ฅผ ์ ๊ทน์ ์œผ๋กœ ์•Œ๋ฆฌ๋ฉด ๋ชจ๋ฉ˜ํ…€์„ ํ‚ค์šฐ๊ณ  ๋™์˜๋ฅผ ์ด๋Œ์–ด ๋‚ด๊ณ , AI์— ํšŒ์˜์ ์ธ ํŒ€์˜ ์ธ์‹์„ ๋ฐ”๊พธ๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค.

3. PM ์—ญ๋Ÿ‰์„ ์—…๊ทธ๋ ˆ์ด๋“œํ•˜๋ผ

AI์˜ ๊ฐ€์น˜๋Š” ๊ฒฐ๊ตญ ๊ทธ๊ฒƒ์„ ํ™œ์šฉํ•˜๋Š” ์‚ฌ๋žŒ์˜ ์—ญ๋Ÿ‰์— ๋‹ฌ๋ ค ์žˆ๋‹ค. ์„ค๋ฌธ์— ์‘๋‹ตํ•œ ์ „๋ฌธ๊ฐ€์˜ ๊ฑฐ์˜ ์ ˆ๋ฐ˜์€ ์ˆ™๋ จ ์ธ๋ ฅ ๋ถ€์กฑ์„ AI ํ†ตํ•ฉ์˜ ์ฃผ์š” ์žฅ๋ฒฝ์œผ๋กœ ๊ผฝ์•˜๋‹ค. ํ”„๋กœ์ ํŠธ ๋งค๋‹ˆ์ €๊ฐ€ ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๊ฐ€ ๋  ํ•„์š”๋Š” ์—†์ง€๋งŒ, AI์˜ ๊ธฐ๋ณธ ๊ฐœ๋…, ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ž‘๋™ํ•˜๋Š” ๋ฐฉ์‹, ํŽธํ–ฅ์ด ๋ฐœ์ƒํ•˜๋Š” ์ง€์ , ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์˜ ์˜๋ฏธ ์ •๋„๋Š” ์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค. ์•ž์œผ๋กœ ๊ฐ€์žฅ ์˜ํ–ฅ๋ ฅ์ด ํฐ PM์€ ๋ฐ์ดํ„ฐ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ์™€ ํ•จ๊ป˜ ๋น„ํŒ์  ์‚ฌ๊ณ , ๊ฐ์ • ์ง€๋Šฅ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๊ฐ™์€ ์ธ๊ฐ„ ์ค‘์‹ฌ ๋ฆฌ๋”์‹ญ์„ ๊ฒธ๋น„ํ•œ ์ธ์žฌ๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.

4. ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ์œค๋ฆฌ๋ฅผ ๊ฐ•ํ™”ํ•˜๋ผ

AI ํ™œ์šฉ์ด ๋Š˜์–ด๋‚ ์ˆ˜๋ก ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํ”„๋กœ์ ํŠธ ์˜์‚ฌ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๋•Œ ์œค๋ฆฌ์  ๋ฌธ์ œ๊ฐ€ ๋Œ€๋‘๋œ๋‹ค. PMO๋Š” ํˆฌ๋ช…์„ฑ, ๊ณต์ •์„ฑ, ์ธ๊ฐ„์˜ ์ตœ์ข… ๊ฐ๋…์„ ๊ฐ•์กฐํ•˜๋Š” AI ๊ฑฐ๋ฒ„๋„Œ์Šค ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ˆ˜๋ฆฝํ•˜๋Š” ๋ฐ ์•ž์žฅ์„œ์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ์›์น™์„ PMO์˜ ํ—Œ์žฅ๊ณผ ํ”„๋กœ์„ธ์Šค์— ๋…น์—ฌ๋‘๋ฉด ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ด๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ  ํ”„๋กœ์ ํŠธ ์ดํ•ด๊ด€๊ณ„์ž ์‚ฌ์ด์— ์‹ ๋ขฐ๋ฅผ ์Œ“๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•  ์ˆ˜ ์žˆ๋‹ค.

5. PMO์—์„œ BTO๋กœ ์ง„ํ™”ํ•˜๋ผ

์ „ํ†ต์ ์ธ PMO๋Š” ๋ฒ”์œ„, ์ผ์ •, ๋น„์šฉ ๊ด€์ ์—์„œ ํ”„๋กœ์ ํŠธ ์‹คํ–‰์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ํ•˜์ง€๋งŒ AI๋ฅผ ์ ๊ทน ํ™œ์šฉํ•˜๋Š” ๊ธฐ์—…์€ ํ”„๋กœ์ ํŠธ๋ฅผ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜ ์ฐฝ์ถœ๊ณผ ์ง์ ‘ ์—ฐ๊ฒฐํ•˜๋Š” BTO(Business Transformation Office)๋กœ ์ง„ํ™”ํ•˜๋Š” ์ถ”์„ธ๋‹ค. PMO๊ฐ€ ํ”„๋กœ์ ํŠธ๋ฅผ โ€˜์ œ๋Œ€๋กœโ€™ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘”๋‹ค๋ฉด, BTO๋Š” โ€˜์˜ฌ๋ฐ”๋ฅธโ€™ ํ”„๋กœ์ ํŠธ๋ฅผ ์„ ํƒํ•ด ์„ฑ๊ณผ๋ฅผ ๋‚ด๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘”๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ ์š”์†Œ๋Š” ์›Œํ„ฐํด ๋ฐฉ์‹์—์„œ ์• ์ž์ผ ๋งˆ์ธ๋“œ์…‹์œผ๋กœ์˜ ์ „ํ™˜์ด๋‹ค. ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ๊ฒฝ์ง๋œ ๊ณ„ํš ์ค‘์‹ฌ์—์„œ ๋ฐ˜๋ณต์ ์ด๊ณ  ๊ณ ๊ฐ ์ค‘์‹ฌ์ด๋ฉฐ ํ˜‘์—…์ ์ธ ๋ฐฉ์‹์œผ๋กœ ์ด๋™ํ–ˆ๊ณ , ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ฐฉ๋ฒ•๋ก ์ด ์ ์  ์ผ๋ฐ˜์ ์ธ ์„ ํƒ์ด ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ์• ์ž์ผ ์ ‘๊ทผ๋ฒ•์€ AI์™€ ๋””์ง€ํ„ธ ํ˜์‹ ์ด ์ด‰๋ฐœํ•˜๋Š” ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋ฅผ ๋”ฐ๋ผ๊ฐ€๊ธฐ ์œ„ํ•ด ํ•„์ˆ˜์ ์ธ ์กฐ๊ฑด์ด๋‹ค.

ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ์ž๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ฒฝ๋ ฅ ๊ฐœ๋ฐœ

2030๋…„ ๋ฌด๋ ต์ด ๋˜๋ฉด ์ƒํƒœ ์—…๋ฐ์ดํŠธ, ์ผ์ • ์ˆ˜๋ฆฝ, ๋ฆฌ์Šคํฌ ๊ฒฝ๊ณ ์ฒ˜๋Ÿผ ๋ฐ˜๋ณต์ ์ธ ํ”„๋กœ์ ํŠธ ์—…๋ฌด ์ƒ๋‹น ๋ถ€๋ถ„์„ AI๊ฐ€ ์ฒ˜๋ฆฌํ•˜๊ณ , ์ธ๊ฐ„ ์ฑ…์ž„์ž๋Š” ๋น„์ „, ํ˜‘์—…, ์œค๋ฆฌ์— ์ง‘์ค‘ํ•˜๋Š” ๊ทธ๋ฆผ์ด ํ˜„์‹ค์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฐ ๋ณ€ํ™”๋Š” ์• ์ž์ผ ํ™•์‚ฐ๊ณผ ๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜์ฒ˜๋Ÿผ ๊ณผ๊ฑฐ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ํ˜์‹  ํ๋ฆ„์„ ๋‹ฎ์•˜์ง€๋งŒ, ์ „๊ฐœ ์†๋„๋Š” ํ›จ์”ฌ ๋น ๋ฅด๋‹ค.

ํ•˜์ง€๋งŒ ๊ธฐ์—…์ด ์ ์  ๋” ๋งŽ์€ AI๋ฅผ ๋„์ž…ํ•˜๋ฉด ํ• ์ˆ˜๋ก ์ธ๊ฐ„์  ์š”์†Œ๋ฅผ ์žƒ์„ ์œ„ํ—˜๋„ ์ปค์ง„๋‹ค. ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ์–ธ์ œ๋‚˜ ์‚ฌ๋žŒ์— ๊ด€ํ•œ ์ผ์ด๊ณ , ์ดํ•ด๊ด€๊ณ„๋ฅผ ๋งž์ถ”๊ณ  ๊ฐˆ๋“ฑ์„ ํ•ด๊ฒฐํ•˜๋ฉฐ ํŒ€์— ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. AI๋Š” ์ผ์ • ์ง€์—ฐ์„ ์˜ˆ์ธกํ•  ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ์ง€์—ฐ์„ ๋งŒํšŒํ•˜๋„๋ก ํŒ€์„ ๊ฒฉ๋ คํ•  ์ˆ˜๋Š” ์—†๋‹ค. ๋‰˜์•™์Šค๋ฅผ ํ•ด์„ํ•˜๊ณ  ์‹ ๋ขฐ๋ฅผ ๊ตฌ์ถ•ํ•˜๋ฉฐ, ํ˜‘์—…์„ ์ด‰์ง„ํ•˜๋Š” PM์˜ ์ธ๊ฐ„์  ๋Šฅ๋ ฅ์€ ์—ฌ์ „ํžˆ ๋Œ€์ฒด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค.

์ด์ œ ํ–‰๋™์— ์ฐฉ์ˆ˜ํ•ด์•ผ ํ•  ์‹œ๊ฐ„

AI๋Š” ๊ธฐ์—… ํ”„๋กœ์ ํŠธ ์ง„ํ–‰ ๋ฐ ์„ฑ๊ณผ์˜ ์ฒจ๋ณ‘์ด ๋  ๊ฒƒ์ด๋‹ค. ์•ž์œผ๋กœ 10๋…„์€ PMO์™€ ๊ฒฝ์˜์ง„, ์ •์ฑ… ์ž…์•ˆ์ž๊ฐ€ ์ด๋Ÿฐ ์ง„ํ™”๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ๊ด€๋ฆฌํ•˜๋Š”์ง€ ์‹œํ—˜ํ•˜๋Š” ์‹œ๊ฐ„์ด ๋  ๊ฒƒ์ด๋‹ค. ์„ฑ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์—…์€ ํ”Œ๋žซํผ๋งŒํผ ์‚ฌ๋žŒ์— ํˆฌ์žํ•˜๊ณ , ์œค๋ฆฌ์ ์ด๊ณ  ํˆฌ๋ช…ํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ์ฑ„ํƒํ•˜๋ฉฐ, ์ง€์†์ ์ธ ํ•™์Šต๊ณผ ์‹คํ—˜ ๋ฌธํ™”๋ฅผ ์กฐ์„ฑํ•˜๊ณ , ๊ณผ๋Œ€๊ด‘๊ณ ๊ฐ€ ์•„๋‹Œ ์‹ค์ œ ์„ฑ๊ณผ๋กœ ์„ฑ๊ณต ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•ด์•ผ ํ•œ๋‹ค.

CIO์—๊ฒŒ๋Š” ์ด๋ฏธ ๋ถ„๋ช…ํ•œ ๊ณผ์ œ๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค. ๋น„์ „์œผ๋กœ ์ด๋Œ๊ณ  ๋†’์€ ์œค๋ฆฌ ๊ธฐ์ค€์œผ๋กœ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ง€๋Šฅํ˜• ๋„๊ตฌ๋กœ ํŒ€์— ํž˜์„ ์‹ค์–ด์ค˜์•ผ ํ•œ๋‹ค. AI๋Š” ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ์ง๋ฌด๋ฅผ ์œ„ํ˜‘ํ•˜๋Š” ์กด์žฌ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ทธ ์—ญํ• ์„ ์žฌํƒ„์ƒ์‹œํ‚ค๋Š” ์ด‰๋งค์ œ๋‹ค. ์ฑ…์ž„ ์žˆ๊ฒŒ ์‹คํ–‰ํ•  ๊ฒฝ์šฐ AI ๊ธฐ๋ฐ˜ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ์šด์˜ ํšจ์œจ์„ ๋†’์ด๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ๋ณ€ํ™”์— ๋ฏผ์ฒฉํ•˜๊ฒŒ ๋Œ€์‘ํ•˜๋ฉด์„œ๋„ ์‚ฌ๋žŒ ์ค‘์‹ฌ ๊ฐ€์น˜๋ฅผ ์œ ์ง€ํ•˜๋Š” ๊ธฐ์—…์„ ๋งŒ๋“œ๋Š” ๊ธฐ๋ฐ˜์ด ๋œ๋‹ค. ์ด๋Ÿฐ ๋ณ€ํ™”๋ฅผ ์‹ ์ค‘ํ•˜๊ฒŒ ์ˆ˜์šฉํ•˜๋ฉด PM์€ ๋‹จ์ˆœํ•œ ๊ด€๋ฆฌ์ž๋ฅผ ๋„˜์–ด ๋ณ€ํ™”์˜ ์„ค๊ณ„์ž๋กœ ๋„์•ฝํ•  ์ˆ˜ ์žˆ๋‹ค.
dl-ciokorea@foundryco.com

โ€œ๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ, ๋ณด์•ˆ ๋ชจ๋ธ์˜ ์ƒˆ๋กœ์šด ํ•ต์‹ฌ ์ถ•โ€ ํฌํ‹ฐ๋„ท, 2026 ์‚ฌ์ด๋ฒ„ ์œ„ํ˜‘ ์ „๋ง ๋ณด๊ณ ์„œ

7 December 2025 at 19:48

ํฌํ‹ฐ๋„ท์ด ์ž์‚ฌ ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค ์กฐ์ง์ธ ํฌํ‹ฐ๊ฐ€๋“œ ๋žฉ์Šค(FortiGuard Labs)๋ฅผ ํ†ตํ•ด โ€˜2026 ์‚ฌ์ด๋ฒ„ ์œ„ํ˜‘ ์ „๋ง ๋ณด๊ณ ์„œ(Fortinet Cyberthreat Predictions Report for 2026)โ€™๋ฅผ ๊ณต๊ฐœํ–ˆ๋‹ค. ๋ณด๊ณ ์„œ๋Š” ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„๊ฐ€ AI์™€ ์ž๋™ํ™”, ์ „๋ฌธํ™”๋œ ๊ณต๊ธ‰๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋น ๋ฅด๊ฒŒ ์‚ฐ์—…ํ™”ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, 2026๋…„์—๋Š” ํ˜์‹  ์ž์ฒด๋ณด๋‹ค ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค๋ฅผ ์–ผ๋งˆ๋‚˜ ๋น ๋ฅด๊ฒŒ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š”์ง€, ์ฆ‰ ์ฒ˜๋ฆฌ ์†๋„๊ฐ€ ๊ณต๊ฒฉ๊ณผ ๋ฐฉ์–ด์˜ ์„ฑํŒจ๋ฅผ ์ขŒ์šฐํ•˜๋Š” ํ•ต์‹ฌ ๊ธฐ์ค€์ด ๋  ๊ฒƒ์œผ๋กœ ๋ถ„์„ํ–ˆ๋‹ค.

๋ณด๊ณ ์„œ๋Š” ์นจํ•ด ๊ณผ์ •์ด AI์™€ ์ž๋™ํ™” ๋„๊ตฌ๋กœ ์ธํ•ด ํฌ๊ฒŒ ๋‹จ์ถ•๋˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ณต๊ฒฉ์ž๋“ค์€ ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ๋งŒ๋“ค๊ธฐ๋ณด๋‹ค ์ด๋ฏธ ํšจ๊ณผ๊ฐ€ ์ž…์ฆ๋œ ๊ณต๊ฒฉ ๊ธฐ๋ฒ•์„ ์ž๋™ํ™”ยท๊ณ ๋„ํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํšจ์œจ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. AI ์‹œ์Šคํ…œ์€ ์ •์ฐฐ, ์นจํˆฌ ๊ฐ€์†, ๋ฐ์ดํ„ฐ ๋ถ„์„, ํ˜‘์ƒ ๋ฉ”์‹œ์ง€ ์ƒ์„ฑ๊นŒ์ง€ ๊ณต๊ฒฉ ๊ณผ์ • ์ „๋ฐ˜์„ ์ž๋™ํ™”ํ•˜๋ฉฐ, ๋‹คํฌ์›น์—๋Š” ์ตœ์†Œ ๊ฐœ์ž…๋งŒ์œผ๋กœ ์ผ๋ จ์˜ ๊ณต๊ฒฉ ์ ˆ์ฐจ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž์œจํ˜• ๋ฒ”์ฃ„ ์—์ด์ „ํŠธ๊นŒ์ง€ ๋“ฑ์žฅํ•˜๊ณ  ์žˆ๋‹ค.

์ด๋กœ ์ธํ•ด ๊ณต๊ฒฉ ์ฒ˜๋ฆฌ๋Ÿ‰์€ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ์–‘์ƒ์„ ๋ณด์ธ๋‹ค. ๊ณผ๊ฑฐ ๋ช‡ ๊ฑด์˜ ๋žœ์„ฌ์›จ์–ด๋งŒ ์šด์˜ํ•˜๋˜ ๋ฒ”์ฃ„์ž๊ฐ€ ์ด์ œ๋Š” ์ˆ˜์‹ญ ๊ฑด์˜ ๋ณ‘๋ ฌ ๊ณต๊ฒฉ์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋์œผ๋ฉฐ, ์นจํ•ด ๋ฐœ์ƒ๋ถ€ํ„ฐ ์‹ค์ œ ํ”ผํ•ด๊นŒ์ง€ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„๋„ ๋ฉฐ์น ์—์„œ ๋ช‡ ๋ถ„ ๋‹จ์œ„๋กœ ์ถ•์†Œ๋˜๊ณ  ์žˆ๋‹ค. ๋ณด๊ณ ์„œ๋Š” ์ด ๊ฐ™์€ ๊ณต๊ฒฉ ์†๋„ ๊ทธ ์ž์ฒด๊ฐ€ 2026๋…„ ๊ธฐ์—…์ด ์ง๋ฉดํ•  ๊ฐ€์žฅ ํฐ ์œ„ํ—˜ ์š”์†Œ๊ฐ€ ๋  ๊ฒƒ์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, ์ž๊ฒฉ ์ฆ๋ช… ํƒˆ์ทจ, ํšก์  ์ด๋™, ๋ฐ์ดํ„ฐ ์ˆ˜์ตํ™” ๋“ฑ ๊ณต๊ฒฉ ์ฒด์ธ์˜ ํ•ต์‹ฌ ๋‹จ๊ณ„๋ฅผ ์ž๋™ํ™”ํ•˜๋Š” ์ „๋ฌธ AI ์—์ด์ „ํŠธ๋„ ๋‘๋“œ๋Ÿฌ์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ์‹œ์Šคํ…œ์€ ํƒˆ์ทจํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๊ณ , ํ”ผํ•ด์ž ์šฐ์„ ์ˆœ์œ„๋ฅผ ์‚ฐ์ •ํ•˜๋ฉฐ, ๊ฐœ์ธํ™”๋œ ํ˜‘๋ฐ• ๋ฉ”์‹œ์ง€๋ฅผ ์ƒ์„ฑํ•ด ๋ฐ์ดํ„ฐ๊ฐ€ ๋””์ง€ํ„ธ ์ž์‚ฐ์ฒ˜๋Ÿผ ๋น ๋ฅด๊ฒŒ ๊ธˆ์ „ํ™”๋˜๋Š” ํ™˜๊ฒฝ์„ ๋งŒ๋“ค์–ด๋‚ธ๋‹ค.

์ง€ํ•˜ ๋ฒ”์ฃ„ ์‹œ์žฅ ์—ญ์‹œ ๋”์šฑ ๊ตฌ์กฐํ™”๋˜๋Š” ํ๋ฆ„์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์‚ฐ์—…ยท์ง€์—ญยท์‹œ์Šคํ…œ ํ™˜๊ฒฝ์— ๋งž์ถ˜ ๋งž์ถคํ˜• ์ ‘๊ทผ ๊ถŒํ•œ ํŒจํ‚ค์ง€๊ฐ€ ์œ ํ†ต๋˜๊ณ  ๋ฐ์ดํ„ฐ ๋ณด๊ฐ•๊ณผ ์ž๋™ํ™”๋ฅผ ํ†ตํ•ด ๊ฑฐ๋ž˜ ์ •๊ตํ™”๊ฐ€ ์ด๋ค„์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณ ๊ฐ์ง€์›ยทํ‰ํŒ ์ ์ˆ˜ยท์ž๋™ ์—์Šคํฌ๋กœ ๋“ฑ ํ•ฉ๋ฒ• ์‚ฐ์—…์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋Š” ์š”์†Œ๊ฐ€ ๋„์ž…๋˜๋ฉด์„œ ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„์˜ ์‚ฐ์—…ํ™”๊ฐ€ ํ•œ์ธต ๊ฐ€์†ํ™”๋˜๊ณ  ์žˆ๋‹ค.

์ด ๊ฐ™์€ ๊ณต๊ฒฉ ๊ณ ๋„ํ™” ์†์—์„œ ํฌํ‹ฐ๋„ท์€ ๊ธฐ์—…์ด โ€˜๋จธ์‹  ์†๋„ ๋ฐฉ์–ด(machine-speed defense)โ€™ ์ฒด๊ณ„๋ฅผ ๊ฐ–์ถ”๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋จธ์‹  ์†๋„ ๋ฐฉ์–ด๋Š” ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค ์ˆ˜์ง‘ยท๊ฒ€์ฆยท๊ฒฉ๋ฆฌ ๊ณผ์ •์„ ์—ฐ์†์ ์œผ๋กœ ์ž๋™ํ™”ํ•ด ํƒ์ง€์™€ ๋Œ€์‘ ์‹œ๊ฐ„์„ ์‹œ๊ฐ„ ๋‹จ์œ„์—์„œ ๋ถ„ ๋‹จ์œ„๋กœ ์••์ถ•ํ•˜๋Š” ์šด์˜ ๋ชจ๋ธ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด CTEM(์ง€์†์  ์œ„ํ˜‘ ๋…ธ์ถœ ๊ด€๋ฆฌ), MITRE ATT&CK ํ”„๋ ˆ์ž„์›Œํฌ ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ๋งคํ•‘, ์‹ค์‹œ๊ฐ„ ๋ณต๊ตฌ ์šฐ์„ ์ˆœ์œ„ํ™” ๋“ฑ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์—ฐ์† ์šด์˜ ์ฒด๊ณ„๊ฐ€ ์š”๊ตฌ๋œ๋‹ค.

๋˜ํ•œ ์กฐ์ง ๋‚ด๋ถ€์—์„œ AI ์‹œ์Šคํ…œยท์ž๋™ํ™” ์—์ด์ „ํŠธยท๋จธ์‹  ๊ฐ„ ํ†ต์‹ ์ด ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ โ€˜๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ(Non-Human Identity)โ€™ ๊ด€๋ฆฌ๊ฐ€ ๋ณด์•ˆ ์šด์˜์˜ ์ƒˆ๋กœ์šด ํ•ต์‹ฌ ์ถ•์œผ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค. ์‚ฌ๋žŒ๋ฟ ์•„๋‹ˆ๋ผ ์ž๋™ํ™”๋œ ํ”„๋กœ์„ธ์Šค์™€ ๊ธฐ๊ณ„ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ๊นŒ์ง€ ์ธ์ฆยทํ†ต์ œํ•ด์•ผ ๋Œ€๊ทœ๋ชจ ๊ถŒํ•œ ์ƒ์Šน ๋ฐ ๋ฐ์ดํ„ฐ ๋…ธ์ถœ์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์˜๋ฏธ๋‹ค.

ํฌํ‹ฐ๋„ท์€ ๊ตญ์ œ ๊ณต์กฐ ์—ญ์‹œ ํ•„์ˆ˜ ์š”์†Œ๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ธํ„ฐํด์˜ ์„ธ๋ ๊ฒŒํ‹ฐ 2.0(Operation Serengeti 2.0)๊ณผ ํฌํ‹ฐ๋„ทโ€“ํฌ๋ผ์ž„์Šคํ†ฑํผ์Šค(Fortinetโ€“Crime Stoppers) ๊ตญ์ œ ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„ ํ˜„์ƒ๊ธˆ ํ”„๋กœ๊ทธ๋žจ์€ ๋ฒ”์ฃ„ ์ธํ”„๋ผ๋ฅผ ์‹ค์ œ๋กœ ๋ฌด๋ ฅํ™”ํ•˜๊ณ  ์œ„ํ˜‘ ์‹ ๊ณ  ์ฒด๊ณ„๋ฅผ ๊ฐ•ํ™”ํ•œ ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ฒญ์†Œ๋…„ยท์ทจ์•ฝ ๊ณ„์ธต์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๊ต์œกยท์˜ˆ๋ฐฉ ํ™œ๋™ ํ™•๋Œ€๋„ ์žฅ๊ธฐ์  ๊ด€์ ์—์„œ ์ค‘์š”ํ•˜๋‹ค.

์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„ ๊ทœ๋ชจ๋Š” 2027๋…„์ด๋ฉด ํ•ฉ๋ฒ• ์‚ฐ์—…์— ๋ฒ„๊ธˆ๊ฐˆ ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค. ๊ณต๊ฒฉ์ž๋Š” ๋‹ค์ˆ˜์˜ AI ์—์ด์ „ํŠธ๊ฐ€ ๊ตฐ์ง‘์ฒ˜๋Ÿผ ํ˜‘๋ ฅํ•˜๋Š” ์Šค์›œ(swarm) ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๋ฅผ ํ™œ์šฉํ•ด ๋ฐฉ์–ด์ž ํ–‰๋™์— ์ ์‘ํ•˜๋ฉฐ ๊ณต๊ฒฉ์„ ์ „๊ฐœํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ, AIยท์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์„ ๊ฒจ๋ƒฅํ•œ ๊ณต๊ธ‰๋ง ๊ณต๊ฒฉ๋„ ๋”์šฑ ์ •๊ตํ•ด์งˆ ์ „๋ง์ด๋‹ค. ์ด์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐฉ์–ด์ž๋Š” ์˜ˆ์ธก ์ธํ…”๋ฆฌ์ „์Šคยท์ž๋™ํ™”ยท๋…ธ์ถœ ๊ด€๋ฆฌ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•ด ๊ณต๊ฒฉ์ž์˜ ์›€์ง์ž„์„ ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ํŒŒ์•…ํ•˜๊ณ  ์กฐ๊ธฐ ์ฐจ๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ์ฒด๊ณ„๋กœ ์ง„ํ™”ํ•ด์•ผ ํ•œ๋‹ค.

๋ณด๊ณ ์„œ ์ง‘ํ•„ํŒ€์€ โ€œ์†๋„์™€ ๊ทœ๋ชจ๊ฐ€ ์•ž์œผ๋กœ์˜ 10๋…„์„ ๊ทœ์ •ํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ•˜๋ฉฐ, ์ธํ…”๋ฆฌ์ „์Šค์™€ ์ž๋™ํ™”, ๋ณด์•ˆ ์ธ๋ ฅ์˜ ์—ญ๋Ÿ‰์„ ํ•˜๋‚˜์˜ ๋ฐ˜์‘ํ˜• ์ฒด๊ณ„๋กœ ํ†ตํ•ฉํ•œ ๊ธฐ์—…๋งŒ์ด ๋ฏธ๋ž˜ ์œ„ํ˜‘ ํ™˜๊ฒฝ์—์„œ ์ฃผ๋„๊ถŒ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฒฐ๋ก ์ง€์—ˆ๋‹ค.

ํฌํ‹ฐ๋„ท์€ ์˜ค๋Š” 16์ผ ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„ ์ƒํƒœ๊ณ„์™€ ์•ž์œผ๋กœ ๋‹ค๊ฐ€์˜ฌ ํŠธ๋ Œ๋“œ์— ๋Œ€ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๊ณต์œ ํ•˜๋Š” ์›จ๋น„๋‚˜๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. ํฌํ‹ฐ๊ฐ€๋“œ ๋žฉ์˜ ๋””๋ ‰ํ„ฐ์ธ ์š”๋‚˜์Šค ์›Œ์ปค๊ฐ€ ์—ฐ์‚ฌ๋กœ ์ฐธ์—ฌํ•œ๋‹ค.
dl-ciokorea@foundryco.com

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจไบบ้–“ใฎๅ”่ชฟ่จญ่จˆโ”€โ”€ใฉใ“ใพใงไปปใ›ใ€ใฉใ“ใงไป‹ๅ…ฅใ™ในใใ‹

7 December 2025 at 07:20

ไบบ้–“ใฎๅฝนๅ‰ฒใ‚’ๅ‰ๆใซใ—ใŸใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ่จญ่จˆ

ใพใšๅคงๅ‰ๆใจใ—ใฆใ€LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏไบบ้–“ใฎไปฃใ‚ใ‚Šใงใฏใชใใ€ใ‚ใใพใงๅ”ๅƒใƒ‘ใƒผใƒˆใƒŠใƒผใจใ—ใฆ่จญ่จˆใ•ใ‚Œใ‚‹ในใใงใ™ใ€‚ไบบ้–“ใฎๅผทใฟใฏใ€ไพกๅ€คๅˆคๆ–ญใ‚„่ฒฌไปปใฎ่ฒ ๆ‹…ใ€็ต„็น”ใ‚„ๅ€‹ไบบใฎๆ–‡่„ˆใ‚’่ธใพใˆใŸๆ„ๆ€ๆฑบๅฎšใซใ‚ใ‚Šใพใ™ใ€‚้€†ใซใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅผทใฟใฏใ€ๆƒ…ๅ ฑใฎๆŽข็ดขใจๆ•ด็†ใ€็นฐใ‚Š่ฟ”ใ—ไฝœๆฅญใฎ้ซ˜้€Ÿๅ‡ฆ็†ใ€ๅคšๆ•ฐใฎ้ธๆŠž่‚ขใฎๆคœ่จŽใจใ„ใฃใŸ้ƒจๅˆ†ใงใ™ใ€‚ใฉใกใ‚‰ใ‹ไธ€ๆ–นใซๅ…จ้ข็š„ใซๅฏ„ใ›ใ‚‹ใฎใงใฏใชใใ€้•ทๆ‰€ใฎ็ต„ใฟๅˆใ‚ใ›ใ‚’ๆ„่ญ˜ใ™ใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚

ใใฎใŸใ‚ใซใฏใ€ใพใšๅฏพ่ฑกใจใชใ‚‹ๆฅญๅ‹™ใ‚’ๅˆ†่งฃใ—ใ€ใ€Œๅˆคๆ–ญใŒ้‡ใ„ใ‚นใƒ†ใƒƒใƒ—ใ€ใจใ€Œไบ‹ๅ‹™็š„ใชใ‚นใƒ†ใƒƒใƒ—ใ€ใ‚’่ฆ‹ๆฅตใ‚ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ใŸใจใˆใฐใ€้กงๅฎขใ‚ฏใƒฌใƒผใƒ ใธใฎๅฏพๅฟœใงใ‚ใ‚Œใฐใ€ไบ‹ๅฎŸ้–ขไฟ‚ใฎๆ•ด็†ใ‚„้ŽๅŽปใ‚ฑใƒผใ‚นใฎๆคœ็ดขใ€ๆ–‡้ขใฎใƒ‰ใƒฉใƒ•ใƒˆไฝœๆˆใชใฉใฏใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใ‚„ใ™ใ„้ ˜ๅŸŸใงใ™ใ€‚ไธ€ๆ–นใงใ€็„กๅ„Ÿๅฏพๅฟœใฎ็ฏ„ๅ›ฒใ‚’ใฉใ“ใพใง่ชใ‚ใ‚‹ใ‹ใ€ไปŠๅพŒใฎ้–ขไฟ‚ๆ€งใธใฎๅฝฑ้Ÿฟใ‚’ใฉใ†่€ƒใˆใ‚‹ใ‹ใจใ„ใฃใŸๅˆคๆ–ญใฏใ€ไบบ้–“ใซๆฎ‹ใ™ในใ้ ˜ๅŸŸใซใชใ‚Šใพใ™ใ€‚

ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ่จญ่จˆใงใฏใ€ใ“ใ†ใ—ใŸๆฅญๅ‹™ๅˆ†่งฃใฎ็ตๆžœใ‚’่ธใพใˆใ€ใ€Œใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒ่‡ชๅพ‹็š„ใซๅฎŒ็ตใ—ใฆใ‚ˆใ„็ฏ„ๅ›ฒใ€ใ€Œๅฟ…ใšไบบ้–“ใฎๆ‰ฟ่ชใ‚’่ฆใ™ใ‚‹็ฏ„ๅ›ฒใ€ใ€Œไบบ้–“ใฎๅˆคๆ–ญใฎใŸใ‚ใซๆƒ…ๅ ฑๆ•ด็†ใ ใ‘่กŒใ†็ฏ„ๅ›ฒใ€ใจใ„ใ†ไธ‰ใคใฎใ‚พใƒผใƒณใ‚’ๆ˜Ž็ขบใซๅฎš็พฉใ—ใพใ™ใ€‚ใใฎใ†ใˆใงใ€ๅ„ใ‚พใƒผใƒณใ”ใจใซใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆจฉ้™ใจใ‚คใƒณใ‚ฟใƒผใƒ•ใ‚งใƒผใ‚นใ‚’่ชฟๆ•ดใ™ใ‚‹ใ“ใจใงใ€ๅ”่ชฟใฎๅ‰ๆใŒๆ•ดใฃใฆใ„ใใพใ™ใ€‚

ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใ€Œใƒใƒณใƒ‰ใƒซใ€ใฎใƒ‡ใ‚ถใ‚คใƒณ

ไบบ้–“ใจใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ”่ชฟใ‚’ใ†ใพใๆฉŸ่ƒฝใ•ใ›ใ‚‹ใซใฏใ€ไบบ้–“ๅดใ‹ใ‚‰่ฆ‹ใฆใ€Œใ„ใคใงใ‚‚ไป‹ๅ…ฅใงใใ‚‹ใ€ใจใ„ใ†ๆ„Ÿ่ฆšใŒ้‡่ฆใงใ™ใ€‚ไธ€ๅบฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไป•ไบ‹ใ‚’ๆธกใ—ใŸใ‚‰ๆœ€ๅพŒใ€ๅ†…้ƒจใงไฝ•ใŒ่ตทใใฆใ„ใ‚‹ใ‹ๅˆ†ใ‹ใ‚‰ใšใ€่ชคใฃใŸ็ตๆžœใ ใ‘ใŒ็ช็„ถ่ฟ”ใฃใฆใใ‚‹ใจใ„ใ†็Šถๆ…‹ใงใฏใ€ใƒฆใƒผใ‚ถใƒผใฏๅฎ‰ๅฟƒใ—ใฆไปปใ›ใ‚‹ใ“ใจใŒใงใใพใ›ใ‚“ใ€‚

ใใ“ใง้ตใซใชใ‚‹ใฎใŒใ€ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใƒใƒณใƒ‰ใƒซใฎใƒ‡ใ‚ถใ‚คใƒณใงใ™ใ€‚ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใฏใ€ใƒฏใƒผใ‚ฏใƒ•ใƒญใƒผใฎไธญใงไบบ้–“ใŒๅฟ…ใš็ขบ่ชใ‚„ๆ‰ฟ่ชใ‚’่กŒใ†ใ‚นใƒ†ใƒƒใƒ—ใฎใ“ใจใงใ‚ใ‚Šใ€ใƒใƒณใƒ‰ใƒซใจใฏไบบ้–“ใŒใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆŒฏใ‚‹่ˆžใ„ใ‚’่ชฟๆ•ดใ™ใ‚‹ใŸใ‚ใฎๆ“ไฝœๆ‰‹ๆฎตใงใ™ใ€‚ๅ…ทไฝ“็š„ใซใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒๆๆกˆใ—ใŸใƒ—ใƒฉใƒณใ‚’ไธ€่ฆงใง่กจ็คบใ—ใ€ใƒฆใƒผใ‚ถใƒผใซใ€ŒๆŽก็”จใ€ใ€Œไฟฎๆญฃใ€ใ€Œๅดไธ‹ใ€ใ‚’้ธใฐใ›ใ‚‹็”ป้ขใ‚„ใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒไฝœๆˆใ—ใŸใƒ‰ใƒฉใƒ•ใƒˆใ‚’็ทจ้›†ใ™ใ‚‹ใ‚จใƒ‡ใ‚ฃใ‚ฟใ€ๅ‡ฆ็†ใ‚’้€”ไธญใงๆญขใ‚ใ‚‹ๅœๆญขใƒœใ‚ฟใƒณใชใฉใŒ่ฉฒๅฝ“ใ—ใพใ™ใ€‚

ใ•ใ‚‰ใซใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒใฉใฎใ‚ˆใ†ใซ่€ƒใˆใฆ่กŒๅ‹•ใ—ใŸใฎใ‹ใ‚’ใ€ใƒฆใƒผใ‚ถใƒผใซๅˆ†ใ‹ใ‚Šใ‚„ใ™ใๆ็คบใ™ใ‚‹ใ“ใจใ‚‚้‡่ฆใงใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ†…้ƒจใง่ตทใใฆใ„ใ‚‹ๆŽจ่ซ–ใƒ—ใƒญใ‚ปใ‚นใ‚’ๅฎŒๅ…จใซๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ใ“ใจใฏ้›ฃใ—ใ„ใซใ—ใฆใ‚‚ใ€ใ€Œใพใš้ŽๅŽปไธ‰ใƒถๆœˆใฎใƒ‡ใƒผใ‚ฟใ‚’้›†่จˆใ—ใ€ใใฎ็ตๆžœใ‚’ใ‚‚ใจใซไบŒใคใฎๆกˆใ‚’ๆฏ”่ผƒใ—ใŸใ€ใจใ„ใฃใŸ็ฐกๆฝ”ใช่ชฌๆ˜Žใ‚’ๆทปใˆใ‚‹ใ ใ‘ใงใ€ใƒฆใƒผใ‚ถใƒผใฎๅฎ‰ๅฟƒๆ„Ÿใฏๅคงใใๅค‰ใ‚ใ‚Šใพใ™ใ€‚ใ“ใฎใ‚ˆใ†ใชใ€Œๆ€่€ƒ้Ž็จ‹ใฎๅค–ๅœจๅŒ–ใ€ใฏใ€ไบบ้–“ใฎๅŒๅƒšใŒๅ ฑๅ‘Šใ™ใ‚‹ใจใใฎไฝœๆณ•ใซ่ฟ‘ใใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ใƒใƒผใƒ ใฎไธ€ๅ“กใจใ—ใฆๆ‰ฑใ†ๆ„Ÿ่ฆšใ‚’่‚ฒใฆใพใ™ใ€‚

ไฟก้ ผใ‚’่‚ฒใฆใ‚‹ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใจใ€Œๆ‰‹ๆ”พใ—้‹่ปขใ€ใฎ็ฏ„ๅ›ฒ

ๅ”่ชฟ่จญ่จˆใฎใ‚ดใƒผใƒซใฏใ€ใƒฆใƒผใ‚ถใƒผใŒใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ๅพใ€…ใซไฟก้ ผใ—ใ€้ฉๅˆ‡ใช็ฏ„ๅ›ฒใงใ€Œๆ‰‹ๆ”พใ—้‹่ปขใ€ใ‚’่จฑๅฎนใงใใ‚‹็Šถๆ…‹ใ‚’ไฝœใ‚‹ใ“ใจใงใ™ใ€‚ใ“ใ“ใง้‡่ฆใชใฎใฏใ€ๆœ€ๅˆใ‹ใ‚‰้ซ˜ใ„่‡ชๅพ‹ๆ€งใ‚’ไธŽใˆใ‚‹ใฎใงใฏใชใใ€ๆฎต้šŽ็š„ใซไฟก้ ผใ‚’็ฉใฟ้‡ใญใ‚‹ใ“ใจใงใ™ใ€‚

ๅˆๆœŸๆฎต้šŽใงใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซใ€Œๆๆกˆใ€ใ‚„ใ€Œใƒ‰ใƒฉใƒ•ใƒˆใ€ใ ใ‘ใ‚’ไปปใ›ใ€ๆœ€็ต‚ๆฑบๅฎšใฏๅฟ…ใšไบบ้–“ใŒ่กŒใ†ๅฝขใŒๆœ›ใพใ—ใ„ใงใ—ใ‚‡ใ†ใ€‚ใ“ใฎใƒ•ใ‚งใƒผใ‚บใงใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆๆกˆใŒใฉใ‚Œใ ใ‘ๆœ‰็”จใ‹ใ€ใฉใฎ็จ‹ๅบฆใฎ้ ปๅบฆใงไฟฎๆญฃใŒๅฟ…่ฆใ‹ใ‚’่ฆณๅฏŸใ—ใ€ใƒฆใƒผใ‚ถใƒผ่‡ช่บซใ‚‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจใฎไป˜ใๅˆใ„ๆ–นใ‚’ๅญฆใ‚“ใงใ„ใใพใ™ใ€‚ใ“ใฎ้Ž็จ‹ใงใ€ใ€Œใ“ใฎ็จฎ้กžใฎไป•ไบ‹ใชใ‚‰ใฐใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใฆใ‚‚ๅคงไธˆๅคซใใ†ใ ใ€ใจใ„ใ†ๆ„Ÿ่ฆšใŒๅฐ‘ใ—ใšใค่‚ฒใฃใฆใ„ใใพใ™ใ€‚

ๆฌกใฎๆฎต้šŽใงใฏใ€ใƒชใ‚นใ‚ฏใฎไฝŽใ„้ ˜ๅŸŸใ‹ใ‚‰่‡ชๅ‹•ๅฎŸ่กŒใฎ็ฏ„ๅ›ฒใ‚’ๅบƒใ’ใฆใ„ใใพใ™ใ€‚ใŸใจใˆใฐใ€ๅ†…้ƒจๅ‘ใ‘ใฎ้€ฑๆฌกใƒฌใƒใƒผใƒˆใฎๆ›ดๆ–ฐใ‚„ใ€ๅฎšๅž‹็š„ใชใƒชใƒžใ‚คใƒณใƒ‰ใƒกใƒผใƒซใฎ้€ไฟกใชใฉใฏใ€่‡ชๅ‹•ๅŒ–ใ—ใ‚„ใ™ใ„้ ˜ๅŸŸใงใ™ใ€‚ไธ€ๆ–นใงใ€ๅฏพๅค–็š„ใชใ‚ณใƒŸใƒฅใƒ‹ใ‚ฑใƒผใ‚ทใƒงใƒณใ‚„ๅฅ‘็ด„้–ข้€ฃใฎๅ‡ฆ็†ใชใฉใฏใ€้•ทใไบบ้–“ใฎใƒฌใƒ“ใƒฅใƒผใŒๅฟ…่ฆใช้ ˜ๅŸŸใจใ—ใฆๆฎ‹ใ‚‹ใ‹ใ‚‚ใ—ใ‚Œใพใ›ใ‚“ใ€‚็ต„็น”ใจใ—ใฆใ€Œใฉใฎใƒฌใƒ™ใƒซใฎใƒชใ‚นใ‚ฏใชใ‚‰ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใฆใ‚ˆใ„ใ‹ใ€ใจใ„ใ†ๆ–น้‡ใ‚’ๅ…ฑๆœ‰ใ—ใ€ใใ‚Œใซๆฒฟใฃใฆๆจฉ้™่จญๅฎšใ‚’่กŒใ†ใ“ใจใŒใ€ๅฅๅ…จใชไฟก้ ผ้–ขไฟ‚ใฎๅ‰ๆใซใชใ‚Šใพใ™ใ€‚

ๆœ€็ต‚็š„ใซใฏใ€ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใใฎใ‚‚ใฎใŒใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใธใฎไฟก้ ผใซๅคงใใชๅฝฑ้Ÿฟใ‚’ไธŽใˆใพใ™ใ€‚่ชคใ‚ŠใŒ่ตทใใŸใจใใซใ€ใฉใ‚Œใ ใ‘็ด ๆ—ฉใๅŽŸๅ› ใ‚’็‰นๅฎšใ—ใ€ไฟฎๆญฃใงใใ‚‹ใ‹ใ€‚ใƒฆใƒผใ‚ถใƒผใŒใ€Œใ“ใฎ็ตๆžœใฏใŠใ‹ใ—ใ„ใ€ใจๆ„Ÿใ˜ใŸใจใใ€ใƒฏใƒณใ‚ฏใƒชใƒƒใ‚ฏใงไบบ้–“ใฎๆ‹…ๅฝ“่€…ใซๅˆ‡ใ‚Šๆ›ฟใˆใ‚‰ใ‚Œใ‚‹ใ‹ใ€‚ใใ†ใ—ใŸใ€Œๅคฑๆ•—ใธใฎๅ‚™ใˆใ€ใŒๆ•ดใฃใฆใ„ใ‚‹ใปใฉใ€ใƒฆใƒผใ‚ถใƒผใฏๅฎ‰ๅฟƒใ—ใฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไป•ไบ‹ใ‚’ไปปใ›ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ไบบ้–“ใจใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ”่ชฟ่จญ่จˆใจใฏใ€ๅ˜ใซๅฝนๅ‰ฒๅˆ†ๆ‹…ใ‚’ๆฑบใ‚ใ‚‹ใ ใ‘ใงใฏใชใใ€ไฟก้ ผใŒๅพใ€…ใซ้†ธๆˆใ•ใ‚Œใ‚‹ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใฎๆตใ‚Œๅ…จไฝ“ใ‚’ใƒ‡ใ‚ถใ‚คใƒณใ™ใ‚‹ๅ–ถใฟใงใ‚‚ใ‚ใ‚Šใพใ™ใ€‚

Before yesterdayCIO

Resops: Turning AI disruption into business momentum

5 December 2025 at 12:23

The world has changed โ€” artificial intelligence (AI) is reshaping business faster than most can adapt


The rise of large language models and agentic AI has created unprecedented scale, speed, and complexity. Enterprises are moving from static infrastructures to hyperplexed, distributed, and autonomous systems. Organizations are pouring more than $400 billion into AI infrastructure, a wave expected to generate more than $2 trillion in new value. But without resilience at the core, that value remains at risk.

As innovation accelerates, new risks emerge just as quickly. Security is lagging behind transformation. Data is exploding, with nearly 40% year-over-year growth across hybrid and multicloud environments. Regulations are tightening, and ransomware and AI-powered attacks are multiplying. The result: Resilience now defines competitive advantage.

Resilience drives velocity

Resilience isnโ€™t just recovery. Itโ€™s also the foundation of sustained innovation. Traditional recovery models were built for yesterdayโ€™s outages, not todayโ€™s AI-driven disruptions, which unfold in milliseconds. In this world, recovery is table stakes. True resilience means that every system runs on clean, verifiable data, and it restores trust when itโ€™s tested.

The most resilient organizations are also the fastest movers. They adopt emerging technologies with confidence, recover with speed and integrity, and innovate at scale. Resilience has evolved from a safety net to the engine of enterprise speed and scalability.

Introducing resops, the model for next-generation resilience

Resops, short for resilience operations, is an operating model that unifies data protection, cyber recovery, and governance into a single intelligent system. It creates an ongoing loop that monitors, validates, and protects data across hybrid and multicloud environments, enabling organizations to detect risks early and recover with confidence.

By integrating resilience into every layer of operations, resops transforms it from an isolated function into a proactive discipline โ€” one that keeps businesses secure, compliant, and ready to adapt in the AI era.

To learn more about ResOps, read โ€œResOps: The future of resilient business in the era of AI.โ€ย 


Vertical AI development agents are the future of enterprise integrations

5 December 2025 at 10:58

Enterprise Application Integration (EAI) and modern iPaaS platforms have become two of the most strategically important โ€“ and resource-constrained โ€“ functions inside todayโ€™s enterprises. As organizations scale SaaS adoption, modernize core systems, and automate cross-functional workflows, integration teams face mounting pressure to deliver faster while upholding strict architectural, data quality, and governance standards.

AI has entered this environment with the promise of acceleration. But CIOs are discovering a critical truth:

Not all AI is built for the complexity of enterprise integrations โ€“ whether in traditional EAI stacks or modern iPaaS environments.

Generic coding assistants such as Cursor or Claude Code can boost individual productivity, but they struggle with the pattern-heavy, compliance-driven reality of integration engineering. What looks impressive in a demo often breaks down under real-world EAI/iPaaS conditions.

This widening gap has led to the rise of a new category: Vertical AI Development Agents โ€“ domain-trained agents purpose-built for integration and middleware development. Companies like CurieTech AI are demonstrating that specialized agents deliver not just speed, but materially higher accuracy, higher-quality outputs, and far better governance than general-purpose tools.

For CIOs running mission-critical integration programs, that difference directly affects reliability, delivery velocity, and ROI.

Why EAI and iPaaS integrations are not a โ€œGeneric Codingโ€ problem

Integrationsโ€”whether built on legacy middleware or modern iPaaS platforms โ€“ operate within a rigid architectural framework:

  • multi-step orchestration, sequencing, and idempotency
  • canonical data transformations and enrichment
  • platform-specific connectors and APIs
  • standardized error-handling frameworks
  • auditability and enterprise logging conventions
  • governance and compliance embedded at every step

Generic coding models are not trained on this domain structure. They often produce code that looks correct, yet subtly breaks sequencing rules, omits required error handling, mishandles transformations, or violates enterprise logging and naming standards.

Vertical agents, by contrast, are trained specifically to understand flow logic, mappings, middleware orchestration, and integration patterns โ€“ across both EAI and iPaaS architectures. They donโ€™t just generate code โ€“ they reason in the same structures architects and ICC teams use to design integrations.

This domain grounding is the critical distinction.

The hidden drag: Context latency, expensive context managers, and prompt fatigue

Teams experimenting with generic AI encounter three consistent frictions:

Context Latency

Generic models cannot retain complex platform context across prompts. Developers must repeatedly restate platform rules, logging standards, retry logic, authentication patterns, and canonical schemas.

Developers become โ€œexpensive context managersโ€

A seemingly simple instructionโ€”โ€œTransform XML to JSON and publish to Kafkaโ€โ€”
quickly devolves into a series of corrective prompts:

  • โ€œUse the enterprise logging format.โ€
  • โ€œAdd retries with exponential backoff.โ€
  • โ€œFix the transformation rules.โ€
  • โ€œApply the standardized error-handling pattern.โ€

Developers end up managing the model instead of building the solution.

Prompt fatigue

The cycle of re-prompting, patching, and enforcing architectural rules consumes time and erodes confidence in outputs.

This is why generic tools rarely achieve the promised acceleration in integration environments.

Benchmarks show vertical agents are about twice as accurate

CurieTech AI recently published comparative benchmarks evaluating its vertical integration agents against leading generic tools, including Claude Code.
The tests covered real-world tasks:

  • generating complete, multi-step integration flows
  • building cross-system data transformations
  • producing platform-aligned retries and error chains
  • implementing enterprise-standard logging
  • converting business requirements into executable integration logic

The results were clear: generic tools performed at roughly half the accuracy of vertical agents.

Generic outputs often looked plausible but contained structural errors or governance violations that would cause failures in QA or production. Vertical agents produced platform-aligned, fully structured workflows on the first pass.

For integration engineering โ€“ where errors cascade โ€“ this accuracy gap directly impacts delivery predictability and long-term quality.

The vertical agent advantage: Single-shot solutioning

The defining capability of vertical agents is single-shot task execution.

Generic tools force stepwise prompting and correction. But vertical agentsโ€”because they understand patterns, sequencing, and governanceโ€”can take a requirement like:

โ€œCreate an idempotent order-sync flow from NetSuite to SAP S/4HANA with canonical transformations, retries, and enterprise logging.โ€

โ€ฆand return:

  • the flow
  • transformations
  • error handling
  • retries
  • logging
  • and test scaffolding

in one coherent output.

This shift โ€“ from instruction-oriented prompting to goal-oriented promptingโ€”removes context latency and prompt fatigue while drastically reducing the need for developer oversight.

Built-in governance: The most underrated benefit

Integrations live and die by adherence to standards. Vertical agents embed those standards directly into generation:

  • naming and folder conventions
  • canonical data models
  • PII masking and sensitive-data controls
  • logging fields and formats
  • retry and exception handling patterns
  • platform-specific best practices

Generic models cannot consistently maintain these rules across prompts or projects.

Vertical agents enforce them automatically, which leads to higher-quality integrations with far fewer QA defects and production issues.

The real ROI: Quality, consistency, predictability

Organizations adopting vertical agents report three consistent benefits:

1. Higher-Quality Integrations

Outputs follow correct patterns and platform rulesโ€”reducing defects and architectural drift.

2. Greater Consistency Across Teams

Standardized logic and structures eliminate developer-to-developer variability.

3. More Predictable Delivery Timelines

Less rework means smoother pipelines and faster delivery.

A recent enterprise using CurieTech AI summarized the impact succinctly:

โ€œFor MuleSoft users, generic AI tools wonโ€™t cut it. But with domain-specific agents, the ROI is clear. Just start.โ€

For CIOs, these outcomes translate to increased throughput and higher trust in integration delivery.

Preparing for the agentic future

The industry is already moving beyond single responses toward agentic orchestration, where AI systems coordinate requirements gathering, design, mapping, development, testing, documentation, and deployment.

Vertical agentsโ€”because they understand multi-step integration workflowsโ€”are uniquely suited to lead this transition.

Generic coding agents lack the domain grounding to maintain coherence across these interconnected phases.

The bottom line

Generic coding assistants provide breadth, but vertical AI development agents deliver the depth, structure, and governance enterprise integrations require.

Vertical agents elevate both EAI and iPaaS programs by offering:

  • significantly higher accuracy
  • higher-quality, production-ready outputs
  • built-in governance and compliance
  • consistent logic and transformations
  • predictable delivery cycles

As integration workloads expand and become more central to digital transformation, organizations that adopt vertical AI agents early will deliver faster, with higher accuracy, and with far greater confidence.

In enterprise integrations, specialization isnโ€™t optionalโ€”it is the foundation of the next decade of reliability and scale.

Learn more about CurieTech AI here.

Agile isnโ€™t just for software. Itโ€™s a powerful way to lead

5 December 2025 at 09:12

In times of disruption, Agile leadership can help CIOs make better, faster decisions โ€” and guide their teams to execute with speed and discipline.

When the first case of COVID hit my home city, it was only two weeks after Iโ€™d become president of The Persimmon Group. For more than a decade, Iโ€™d coached leaders, teams and PMOs to execute their strategy with speed and discipline.

But now โ€” in a top job for the first time โ€” I was reeling.

Every plan we had in motion โ€” strategic goals, project schedules, hiring decisions โ€” was suddenly irrelevant. Clients froze budgets. Team members scrambled to set up remote work for the first time, many while balancing small children and shared spaces.

Within days, we were facing a dozen high-stakes questions about our business, all with incomplete information. Each answer carried massive operational and cultural implications.

We couldnโ€™t just make the right call. We had to make it fast. And often, we were choosing between a bunch of bad options.

From crisis to cadence

At first, we tried to lead the way we always had: gather the facts, debate the trade-offs and pick the best path forward. But in a landscape that changed daily, that rhythm broke down fast.

The information we needed didnโ€™t exist yet. The more we waited for certainty โ€” or gamed out endless hypotheticals โ€” the slower and more reactive we became.

And then something clicked. What if the same principles that helped software teams move quickly and learn in real time could help lead us through uncertainty?

So we started experimenting.

We shortened our time horizons. Made smaller bets. Created fast feedback loops. We became almost uncomfortably transparent, involving the team directly in critical decisions that affected them and their work.

In the months that followed, those experiments became the backbone of how we led through uncertainty โ€” and how we continue to lead today.

An operating system for change

What emerged wasnโ€™t a formal framework. It was a set of small, deliberate habits that brought the same rhythm and focus to leadership that Agile brings to delivery.

Hereโ€™s what that looked like in practice:

Develop a โ€˜fast frameโ€™ to focus decisions

In the first few months of the pandemic, our leadership meetings were a tangle of what-ifs. What if we lost 20% of planned revenue this year? What if we lost 40%? Would we do layoffs? Furloughs? Salary cuts? And when would we do them โ€” preemptively or reactively?

We were so busy living in multiple possible futures that it was difficult to move forward with purpose. To break out of overthinking mode, we built a lightweight framework we now call our fast frame. It centered on five questions:

  1. What do we know for sure?
  2. What can we find out quickly?
  3. What is unknowable right now?
  4. Whatโ€™s the risk of deciding today?
  5. Whatโ€™s the risk of not deciding today?

The fast frame forced us to separate facts from conjecture. It also helped us to get our timing right. When did we need to move fast, even with imperfect information? When could we afford to slow down and get more data points?

The fast frame helped us slash decision latency by 20% to 30%.

It kept us moving when the urge was to stall and it gave us language to talk about uncertainty without letting it rule the room.

Build plans around small, fast experiments

After using our fast frame for a while, we realized something: Our decisions were too big.

In an environment changing by the day, Big Permanent Decisions were impractical โ€” and a massive time sink. Every hour we spent debating a Big Permanent Decision was an hour we werenโ€™t learning something important.

So we replaced them with For-Now Decisions โ€” temporary postures designed to move us forward, fast, while we learned what was real.

Each For-Now Decision had four parts:

  1. The decision itself โ€” the action weโ€™d take based on what we knew at that moment.
  2. A trigger for when to revisit it โ€” either time-based (two weeks from now) or event-based (if a client delays a project).
  3. A few learning targets โ€” what we hoped to discover before the next checkpoint.
  4. An agility signal โ€” how we communicated the decision to the team. Weโ€™d say, โ€œThis is our posture for now, but we may change course if X. Weโ€™ll need your help watching for Y as we learn more.โ€

By framing decisions this way, we removed the pressure to be right. The goal wasnโ€™t to predict the future but to learn from it faster. By abandoning bad ideas early, we saved 300 to 400 hours a year.

Increase cadence and transparency of communication

In those early weeks, we learned that the only thing more dangerous than a bad decision was a silent one. When information moves slower than events, people fill the gaps with assumptions.

So we made communication faster โ€” and flatter. Every morning, our 20-person team met virtually for a 20-minute standup. The format was simple but consistent:

  • Executive push. We shared what the leadership team was working on, what decisions had been made and what input we needed next.
  • Team pull. Anyone could ask questions, raise issues or surface what they were hearing from clients.
  • Needs and lessons. We ended with what people needed to stay productive and what we were learning that others could benefit from.

The goal wasnโ€™t to broadcast information from the top โ€” or make all our decisions democratically. It was to create a shared operating picture. The standup became a heartbeat for the company, keeping everyone synchronized as conditions changed.

Transparency replaced certainty. Even when we didnโ€™t have all the answers, people knew how decisions were being made and what we were watching next. That openness built confidence faster than pretending we had it all figured out.

That transparency paid off.

While many small consulting firms folded in the first 18 months of the pandemic, Agile leadership helped us double revenue in 24 months.

We stayed fully staffed โ€” no layoffs, no pay cuts beyond the executive team. And the small bets we made during the pandemic helped rapidly expand our client base across new industries and international geographies.

Develop precise language to keep the team aligned

As we increased the speed of communication, we discovered something else: agility requires precision. When everything is moving fast, even small misunderstandings can send people sprinting in different directions.

We started tightening our language. Instead of broad discussions about what needed to get done, weโ€™d ask, โ€œWhat part of this can we get done by Friday?โ€ That forced us to think in smaller delivery windows, sustain momentum and get specific about what โ€œdoneโ€ looked like.

We also learned to clarify between two operating modes: planning versus doing. Before leaving a meeting where a direction was discussed, weโ€™d confirm our status:

  • Phase 1 meant we were still exploring, shaping and validating and would need at least one more meeting before implementing anything.
  • Phase 2 meant we were ready to execute.

That small distinction saved us hours of confusion, especially in cross-functional work.

Precise language gave us speed. It eliminated assumptions and kept everyone on the same page about where we were in the process. The more we reduced ambiguity, the faster โ€” and calmer โ€” the team moved.

Protect momentum by insisting on rest

Agility isnโ€™t about moving faster forever โ€” itโ€™s about knowing when to slow down. During the first months of the pandemic, that lesson was easy to forget. Everything felt urgent and everyone felt responsible.

In software, a core idea behind Agile sprints is maintaining a sustainable pace of work. A predictable, consistent level of effort that teams can plan around is far more effective than the heroics often needed in waterfall projects to hit a deadline.

Agile was designed to be human-centered, protecting the well-being and happiness of the team so that performance can remain optimal. We tried to lead the same way.

After the first few frenetic months, I capped my own workday at nine hours. That boundary forced me to get honest about what could actually be done in the time I had โ€” and prioritize ruthlessly. It also set a tone for the team. We adjusted scopes, redistributed work and held one another accountable for disconnecting at dayโ€™s end.

The expectation wasnโ€™t endless effort โ€” it was sustainable effort. That discipline kept burnout low and creativity high, even during our most demanding seasons. The consistency of our rest became as important as the intensity of our work. It gave us a rhythm we could trust โ€” one that protected our momentum long after the crisis passed.

Readiness is the new stability

Now that the pandemic has passed, disruption has simply changed shape โ€” AI, market volatility, new business models and the constant redefinition of โ€œnormal.โ€ What hasnโ€™t changed is the need for leaders who can act with speed and discipline at the same time.

For CIOs, that tension is sharper than ever. Technology leaders are being asked to deliver transformation at pace โ€” without burning out their people or breaking what already works. The pressures that once felt exceptional have become everyday leadership conditions.

But you donโ€™t have to be a Scrum shop or launch an enterprise Agile transformation to lead with agility. Agility is a mindset, not a method. To put the mindset into practice, focus on:

  • Shorter planning horizons
  • Faster, smaller decisions
  • Radical transparency
  • Language that brings alignment and calm
  • Boundaries that protect the energy of the team

These are the foundations of sustainable speed.

We built those practices in crisis, but theyโ€™ve become our default operating system in calmer times. They remind me that agility isnโ€™t a reaction to change โ€” itโ€™s a readiness for it. And in a world where change never stops, that readiness may be a leaderโ€™s most reliable source of stability.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

โŒ
โŒ