Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

NASA’s Pandora Satellite, CubeSats to Explore Exoplanets, Beyond

9 January 2026 at 09:40

6 min read

NASA’s Pandora Satellite, CubeSats to Explore Exoplanets, Beyond

Editor’s Note, Jan. 11, 2026: NASA’s Pandora and the NASA-sponsored BlackCAT and SPARCS missions lifted off at 8:44 a.m. EST (5:44 a.m. PST) Sunday, Jan. 11.

A new NASA spacecraft called Pandora is awaiting launch ahead of its journey to study the atmospheres of exoplanets, or worlds beyond our solar system, and their stars.

Along for the ride are two shoebox-sized satellites called BlackCAT (Black Hole Coded Aperture Telescope) and SPARCS (Star-Planet Activity Research CubeSat), as NASA innovates with ambitious science missions that take low-cost, creative approaches to answering questions like, “How does the universe work?” and “Are we alone?”

All three missions are set to launch Jan. 11 on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The launch window opens at 8:19 a.m. EST (5:19 a.m. PST). SpaceX will livestream the event.

The Pandora spacecraft with an exoplanet and two stars in the background
Artist’s concept of NASA’s Pandora mission, which will help scientists untangle the signals from the atmospheres of exoplanets — worlds beyond our solar system — and their stars.
NASA’s Goddard Space Flight Center/Conceptual Image Lab

“Pandora’s goal is to disentangle the atmospheric signals of planets and stars using visible and near-infrared light,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This information can help astronomers determine if detected elements and compounds are coming from the star or the planet — an important step as we search for signs of life in the cosmos.”

BlackCAT and SPARCS are small satellites that will study the transient, high-energy universe and the activity of low-mass stars, respectively.

Pandora will observe planets as they pass in front of their stars as seen from our perspective, events called transits.

As starlight passes through a planet’s atmosphere, it interacts with substances like water and oxygen that absorb characteristic wavelengths, adding their chemical fingerprints to the signal.

But while only a small fraction of the star’s light grazes the planet, telescopes also collect the rest of the light emitted by the star’s facing side. Stellar surfaces can sport brighter and darker regions that grow, shrink, and change position over time, suppressing or magnifying signals from planetary atmospheres. Adding a further complication, some of these areas may contain the same chemicals that astronomers hope to find in the planet’s atmosphere, such as water vapor.

All these factors make it difficult to be certain that important detected molecules come from the planet alone.

Pandora will help address this problem by providing in-depth study of at least 20 exoplanets and their host stars during its initial year. The satellite will look at each planet and its star 10 times, with each observation lasting a total of 24 hours. Many of these worlds are among the over 6,000 discovered by missions like NASA’s TESS (Transiting Exoplanet Survey Satellite).

Pandora, fully integrated, with blue-lit background
This view of the fully integrated Pandora spacecraft was taken May 19, 2025, following the mission’s successful environmental test campaign at Blue Canyon Technologies in Lafayette, Colorado. Visible are star trackers (center), multilayer insulation blankets (white), the end of the telescope (top), and the solar panel (right) in its launch configuration.
NASA/BCT

Pandora will collect visible and near-infrared light using a novel, all-aluminum 17-inch-wide (45-centimeter) telescope jointly developed by Lawrence Livermore National Laboratory in California and Corning Incorporated in Keene, New Hampshire. Pandora’s near-infrared detector is a spare developed for NASA’s James Webb Space Telescope.

Each long observation period will capture a star’s light both before and during a transit and help determine how stellar surface features impact measurements.

“These intense studies of individual systems are difficult to schedule on high-demand missions, like Webb,” said engineer Jordan Karburn, Pandora’s deputy project manager at Livermore. “You also need the simultaneous multiwavelength measurements to pick out the star’s signal from the planet’s. The long stares with both detectors are critical for tracing the exact origins of elements and compounds scientists consider indicators of potential habitability.”

Pandora is the first satellite to launch in the agency’s Astrophysics Pioneers program, which seeks to do compelling astrophysics at a lower cost while training the next generation of leaders in space science.

After launching into low Earth orbit, Pandora will undergo a month of commissioning before embarking on its one-year prime mission. All the mission’s data will be publicly available.

“The Pandora mission is a bold new chapter in exoplanet exploration,” said Daniel Apai, an astronomy and planetary science professor at the University of Arizona in Tucson where the mission’s operations center resides. “It is the first space telescope built specifically to study, in detail, starlight filtered through exoplanet atmospheres. Pandora’s data will help scientists interpret observations from past and current missions like NASA’s Kepler and Webb space telescopes. And it will guide future projects in their search for habitable worlds.”

Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
NASA’s Goddard Space Flight Center

The BlackCAT and SPARCS missions will take off alongside Pandora through NASA’s Astrophysics CubeSat program, the latter supported by the Agency’s CubeSat Launch Initiative.

CubeSats are a class of nanosatellites that come in sizes that are multiples of a standard cube measuring 3.9 inches (10 centimeters) across. Both BlackCAT and SPARCS are 11.8 by 7.8 by 3.9 inches (30 by 20 by 10 centimeters). CubeSats are designed to provide cost-effective access to space to test new technologies and educate early career scientists and engineers while delivering compelling science.

The BlackCAT mission will use a wide-field telescope and a novel type of X-ray detector to study powerful cosmic explosions like gamma-ray bursts, particularly those from the early universe, and other fleeting cosmic events. It will join NASA’s network of missions that watch for these changes. Abe Falcone at Pennsylvania State University in University Park, where the satellite was designed and built, leads the mission with contributions from Los Alamos National Laboratory in New Mexico. Kongsberg NanoAvionics US provided the spacecraft bus.

The SPARCS CubeSat will monitor flares and other activity from low-mass stars using ultraviolet light to determine how they affect the space environment around orbiting planets. Evgenya Shkolnik at Arizona State University in Tempe leads the mission with participation from NASA’s Jet Propulsion Laboratory in Southern California. In addition to providing science support, JPL developed the ultraviolet detectors and the associated electronics. Blue Canyon Technologies fabricated the spacecraft bus.

Pandora is led by NASA Goddard. Livermore provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The near-infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and performed spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Facebook logo
Instagram logo

NASA’s Fermi Spots Young Star Cluster Blowing Gamma-Ray Bubbles

18 December 2025 at 10:15

4 min read

NASA’s Fermi Spots Young Star Cluster Blowing Gamma-Ray Bubbles

For the first time, astronomers using NASA’s Fermi Gamma-ray Space Telescope have traced a budding outflow of gas from a cluster of young stars in our galaxy — insights that help us understand how the universe has evolved as NASA explores the secrets of the cosmos for the benefit of all.

The cluster, called Westerlund 1, is located about 12,000 light-years away in the southern constellation Ara. It’s the closest, most massive, and most luminous super star cluster in the Milky Way. The only reason Westerlund 1 isn’t visible to the unaided eye is because it’s surrounded by thick clouds of dust. Its outflow extends below the plane of the galaxy and is filled with high-speed, hard-to-study particles called cosmic rays.

“Understanding cosmic ray outflows is crucial to better comprehending the long-term evolution of the Milky Way,” said Marianne Lemoine-Goumard, an astrophysicist at the University of Bordeaux in France. “We think these particles carry a large amount of the energy released within clusters. They could help drive galactic winds, regulate star formation, and distribute chemical elements within the galaxy.”

A paper detailing the results published Dec. 9 in Nature Communications. Lemoine-Goumard led the research with Lucia Härer and Lars Mohrmann, both at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany.

A cluster of multicolored stars
This image of super star cluster Westerlund 1 was captured with the Near-InfraRed Camera on NASA’s James Webb’s Space Telescope. The cluster is largely hidden at visible wavelengths by dust clouds, which infrared light penetrates. Westerlund 1’s large, dense, and diverse stellar population of massive stars has no other known counterpart in the Milky Way.
ESA/Webb, NASA & CSA, M. Zamani (ESA/Webb), M. G. Guarcello (INAF-OAPA) and the EWOCS team

Super star clusters like Westerlund 1 contain more than 10,000 times our Sun’s mass. They are also more luminous and contain higher numbers of rare, massive stars than other clusters.

Scientists think that supernova explosions and stellar winds within star clusters push ambient gas outward, propelling cosmic rays to near light speed. About 90% of these particles are hydrogen nuclei, or protons, and the remainder are electrons and the nuclei of heavier elements.

Because cosmic ray particles are electrically charged, they change course when they encounter magnetic fields. This means scientists can’t trace them back to their sources. Gamma rays, however, travel in a straight line. Gamma rays are the highest-energy form of light, and cosmic rays produce gamma rays when they interact with matter in their environment.

Most gamma-ray observations of stellar clusters have limited resolution, so astronomers effectively see them as indistinct areas of emission. Because Westerlund 1 is so close and bright, however, it’s easier to study.

A top-down view of the Milky Way galaxy
Westerlund 1 is located closer to the center of the Milky Way than our Sun, as shown in this artist’s concept. Westerlund 1 is one of only a few known super star clusters in our galaxy and is the closest, brightest, and most massive one discovered so far.
NASA’s Goddard Space Flight Center/Conceptual Image Lab
A view of the underside of the Milky Way galaxy
This artist’s concept shows the location of Westerlund 1 relative to our Sun as seen from the underside of our Milky Way galaxy. The magenta bubble illustrates what the nascent outflow might look like in gamma rays. Westerlund 1 is located slightly below the middle of the galactic disk, so stellar activity pushes gas preferentially along a path of lower density beneath the disk.
NASA’s Goddard Space Flight Center/Conceptual Image Lab

In 2022, scientists using a group of telescopes in Namibia operated by the Max Planck Institute called the High Energy Spectroscopic System detected a distinct ring of gamma rays around Westerlund 1 with energies trillions of times higher than visible light.

Lemoine-Goumard, Härer, and Mohrmann wondered if the cluster’s unique properties might allow them to see other details by looking back through nearly two decades of Fermi data at slightly lower energies — millions to billions of times the energy of visible light.

Fermi’s sensitivity and resolution allowed the researchers to filter out other gamma-ray sources like rapidly spinning stellar remnants called pulsars, background radiation, and Westerlund 1 itself.

What was left was a bubble of gamma rays extending over 650 light-years from the cluster below the plane of the Milky Way. That means the outflow is about 200 times larger than Westerlund 1 itself.

Fermi and Webb data of Westerlund 1 and its early outflow
Data from NASA’s Fermi Gamma-ray Space Telescope reveal the budding gas bubble of star cluster Westerlund 1. Brighter colors indicate a stronger likelihood that gamma rays arise from specific types of point sources, notably two pulsars located at center and in the brightest portion of the image. Pink contours denote steep changes in likelihood. An underlying orange-magenta feature extends down the image, starting from the cluster’s location, and represents the nascent outflow. The grey lines indicate distance below the galactic plane. The bubble is over 650 light-years long and angles slightly away from us. Westerlund 1’s stellar activity more easily pushes gas outward into lower-density regions of the galaxy’s disk.
NASA’s Goddard Space Flight Center/Lemoine-Goumard et al. 2025; ESA/Webb, NASA & CSA, M. Zamani (ESA/Webb), M. G. Guarcello (INAF-OAPA) and the EWOCS team

The researchers call this a nascent, or early stage, outflow because it was likely recently produced by massive young stars within the cluster and hasn’t yet had time to break out of the galactic disk. Eventually it will stream into the galactic halo, the hot gas surrounding the Milky Way.

Westerlund 1 is located slightly below the galactic plane, so the researchers think the gas expanded asymmetrically, following the path of least resistance into a zone of lower density below the disk.

“One of the next steps is to model how the cosmic rays travel across this distance and how they create a changing gamma-ray energy spectrum,” Härer said. “We’d also like to look for similar features in other star clusters. We got very lucky with Westerlund 1, though, since it’s so massive, bright, and close. But now we know what to look for, and we might find something even more surprising.”

“Since it started operations 17 years ago, Fermi has continued to advance our understanding of the universe around us,” said Elizabeth Hays, Fermi’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “From activity in distant galaxies to lightning storms in our own atmosphere, the gamma-ray sky continues to astound us.”

By Jeanette Kazmierczak
NASA’s
Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Facebook logo
Instagram logo
❌
❌