โŒ

Normal view

There are new articles available, click to refresh the page.
Yesterday โ€” 5 December 2025Main stream

CIOs take note: talent will walk without real training and leadership

5 December 2025 at 05:00

Tech talent, especially with advanced and specialized skills, remains elusive. Findings from a recent IT global HR trends report by Gi Group show a 47% enterprise average struggles with sourcing and retaining talent. As a consequence, turnover remains high.

Another international study by Cegos highlights that 53% of 200 directors or managers of information systems in Italy alone say the difficulty of attracting and retaining IT talent is something they face daily.ย Cybersecurityย is the most relevant IT problem but a majority, albeit slight, feels confident of tackling it. Conversely, however, only 8% think theyโ€™ll be able to solve the IT talent problem. IT team skills development and talent retention are the next biggest issues facing CIOs in Italy, and only 24% and 9%, respectively, think they can successfully address it.

โ€œTalents arenโ€™t rare,โ€ says Cecilia Colasanti, CIO of Istat, the National Institute of Statistics. โ€œTheyโ€™re there but theyโ€™re not valued. Thatโ€™s why, more often, they prefer to go abroad. For me, talent is the right person in the right place. Managers, including CIOs, must have the ability to recognize talents, make them understand theyโ€™ve been identified, and enhance them with the right opportunities.โ€

The CIO as protagonist of talent management

Colasanti has very clear ideas on how to manage her talents to create a cohesive and motivated group. โ€œThe goal I set myself as CIO was to release increasingly high-quality products for statistical users, both internal and external,โ€ she says. โ€œI want to be concrete and close the projects weโ€™ve opened, to ensure the institution continues to improve with the contribution of IT, which is a driver of statistical production. I have the task of improving the IT function, the quality of the products released, the relevance of the management, and the well-being of people.โ€

Istatโ€™s IT department currently has 195 people, and represents about 10% of the instituteโ€™s entire staff. Colasantiโ€™s first step after her CIO appointment in October 2023 was to personally meet with all the resources assigned to management for an interview.

โ€œIโ€™ve been working at Istat since 2001 and almost everyone knows each other,โ€ she says. โ€œIโ€™ve held various roles in the IT department, and in my latest role as CIO, I want to listen to everyone to gather every possible viewpoint. Because how well we know each other, I feel my colleagues have a high expectation of our work together. Thatโ€™s why I try to establish a frank dialogue and avoid ambiguity. But I make it clear that listening doesnโ€™t mean delegating responsibility. I accept some proposals, reject others, and try to justify choices.โ€

Another move was to reinstate the two problems, two solutions initiative launched in Istat many years ago. Colasanti asked staff, on a voluntary basis, to identify two problems and propose two solutions. She then processed the material and shared the results in face-to-face meetings, commenting on the proposals, and evaluating those to be followed up.

โ€œIโ€™ve been very vocal about this initiative,โ€ she says, โ€œBut I also believe itโ€™s been an effective way to cement the relationship of trust with my colleagues.โ€

Some of the inquiries related to career opportunities and technical issues, but the most frequent pain points that emerged were internal communication and staff shortages. Colasanti spoke with everyone, clarifying which points she could or couldnโ€™t act on. Career paths and hiring in the public sector, for example, follow precise procedures where little could be influenced.

โ€œI tried to address all the issues from a proactive perspective,โ€ she says. โ€œWhere I perceived a generic resistance to change rather than a specific problem, I tried to focus on intrinsic motivation and peopleโ€™s commitment. Itโ€™s important to explain the strategies of the institution and the role of each person to achieve objectives. After all, people need and have the right to know the context in which they operate, and be aware of how their work affects the bigger picture.โ€

Engagement must be built day by day, so Colasanti regularly meets with staff including heads of department and service managers.

Small enterprise, big concerns

The case of Istat stands out for the size of its IT department, but in SMEs, IT functions can be just a handful of people, including the CIO, and much of the work is done by external consultants and suppliers. Itโ€™s a structure that has to be worked with, dividing themselves between coordinating various resources across different projects, and the actual IT work. Outsourcing to the cloud is an additional support but CIOs would generally like to have more in-house expertise rather than depend on partners to control supplier products.

โ€œAttracting and retaining talent is a problem, so things are outsourced,โ€ says the CIO of a small healthcare company with an IT team of three. โ€œYou offload the responsibility and free up internal resources at the risk of losing know-how in the company. But at the moment, we have no other choice. We canโ€™t offer the salaries of a large private group, and IT talent changes jobs every two years, so keeping people motivated is difficult. We hire a candidate, go through the training, and see them grow only to see them leave. But our sector is highly specialized and the necessary skills are rare.โ€

The sirens of the market are tempting for those with the skills to command premium positioning, and the private sector is able to attract talent more easily than public due to its hiring flexibility and career paths.

โ€œThe public sector offers the opportunity to research, explore and deepen issues that private companies often donโ€™t invest in because they donโ€™t see the profit,โ€ says Colasanti. โ€œThe public has the good of the community as its mission and can afford long-term investments.โ€

Training builds resource retention

To meet demand, CIOs are prioritizing hiring new IT profiles and training their teams, according to the Cegos international barometer. Offering reskilling and upskilling are effective ways to overcome the pitfalls of talent acquisition and retention.

โ€œThe market is competitive, so retaining talent requires barriers to exit,โ€ says Emanuela Pignataro, head of business transformation and execution at Cegos Italia. โ€œIf an employer creates a stimulating and rewarding environment with sufficient benefits, people are less likely to seek other opportunities or get caught up in the competition. Many feel theyโ€™re burdened with too many tasks they canโ€™t cope with on their own, and these are people with the most valuable skills, but who often work without much support. So if the company spends on training or onboarding new people who support these people, they create reassurance, which generates loyalty.โ€

In fact, Colasanti is a staunch supporter of life-long learning, and the experience that brings balance and management skills. But she doesnโ€™t have a large budget for IT training, yet solutions in response to certain requests are within reach.

โ€œIn these cases, I want serious commitment,โ€ she says. โ€œThe institution invests and the course must give a result. A higher budget would be useful, of course, especially for an ever-evolving subject like cybersecurity.โ€

The need for leadership

CIOs also recognize the importance of following people closely, empowering them, and giving them a precise and relevant role that enhances motivation. Itโ€™s also essential to collaborate with the HR function to develop tools for welfare and well-being.

According to the Gi Group study, the factors that IT candidates in Italy consider a priority when choosing an employer are, in descending order, salary, a hybrid job offer, work-life balance, the possibility of covering roles that donโ€™t involve high stress levels, and opportunities for career advancement and professional growth.

But thereโ€™s another aspect that helps solve the age-old issue of talent management. CIOs need to recognize more of the role of their leadership. At the moment, Italian IT directors place it at the bottom of their key qualities. In the Cegos study, technical expertise, strategic vision, and ability to innovate come first, while leadership came a distant second. But the leadership of the CIO is a founding basis, even when thereโ€™s disagreement with choices.

โ€œI believe in physical presence in the workplace,โ€ says Colasanti. โ€œIstat has a long tradition of applying teleworking and implementing smart working, which everyone can access if they wish. Personally, I prefer to be in the office, but I respect the need to reconcile private life and work, and I have no objection to agile working. Iโ€™m on site every day, though. My colleagues know Iโ€™m here.โ€

Before yesterdayMain stream

Building tech leaders who think like CEOs (and deliver like operators)

4 December 2025 at 10:19

So your newly promoted CTO walks into their first executive meeting, armed with deep technical expertise and genuine enthusiasm for transformation. Six months later, theyโ€™re frustrated, your digital initiatives have stalled and your board is questioning the technology leadership strategy.

This isnโ€™t a story about hiring the wrong person. Itโ€™s a story about building the wrong environment.

Hereโ€™s the truth your consultants wonโ€™t share: When technical leaders fail, itโ€™s rarely a failure of intelligence. Itโ€™s a failure of integration.

Charles Sims notes this in his analysis of C-suite dynamics, โ€œIf youโ€™re seated in the โ€˜big chair,โ€™ you canโ€™t expect people to intuit where they need to go. You need to build the bridge.โ€

The organizations winning the transformation race arenโ€™t just hiring better CTOs; theyโ€™re creating fundamentally different conditions for technology leadership to thrive.

The hidden architecture of failure

Before we dive into solutions, letโ€™s diagnose whatโ€™s actually broken.

The problem isnโ€™t individual competence, itโ€™s institutional design.

Most C-suite structures were established when technology was viewed as a cost center, rather than a competitive weapon. The processes, meeting rhythms and decision-making frameworks assume technology comes after strategy, not during it.

This creates what I call the integration gap, the space between where technology leaders sit and where they need to be to drive real transformation.

Deloitte research on resilient technology functions reveals a telling insight: High-performing โ€œtech vanguardโ€ businesses fundamentally differ in how they structure technology leadership.

As Khalid Kark and Anh Nguyen Phillips point out, these organizations embrace โ€œjoint accountabilityโ€ and โ€œestablish sensing mechanisms that help anticipate business change.โ€

Translation: They donโ€™t just include technology in business strategy, they integrate it.

The strategic exclusion problem

Hereโ€™s the most expensive mistake organizations make: bringing technology leaders into strategy validation, not strategy formation.

Iโ€™ve watched this pattern across dozens of transformations. The business leadership team spends months crafting the digital strategy. They debate market positioning, customer experience and competitive responses. Then, in the final act, they bring in the CTO to confirm technical feasibility.

This isnโ€™t collaboration, itโ€™s a recipe for execution failure.

CIO advisor Isaac Sacolick sums it up nicely, โ€œWhat the risk here for CIOs is to get something out there on paper and start communicating. Letting your business partners know that youโ€™re going to be the center point of putting a strategy together.

โ€œBeing able to do blue sky planning with business leaders, with technologists and data scientists on a very frequent basis to say, โ€˜is our strategy aligned or do we need a pivotโ€™ or do we need to add I think thatโ€™s really the goal for a CIO now is to continually do that over the course of how this technology is changing.โ€

When technologists inherit fully formed strategies, they inherit the constraints, assumptions and blind spots of non-technical decision-making. The result? Strategies that sound compelling in PowerPoint but break down in reality.

The integration solution: As Sims emphasizes, successful businesses bring technology leaders in โ€œwhen the goals are still being shaped.โ€ Technology leaders become co-architects of strategy, not just implementers of it.

The translation challenge

Every business talks about wanting CTOs who can โ€œtranslate technical complexity into business value.โ€

But most create conditions that make effective translation impossible.

The problem isnโ€™t that technology leaders canโ€™t communicate. Itโ€™s that business leaders structure every interaction to discourage strategic thinking. Fifteen-minute slots for infrastructure decisions. โ€œHigh-level onlyโ€ constraints on technical briefings. Interruptions when discussions get into architectural details.

Sims captures the real need perfectly: โ€œAsk them to explain how tech can enable outcomes, not just avoid outages.โ€ But enabling outcomes requires time, context and genuine dialogue โ€” not rapid-fire status updates.

The integration solution: Create forums for substantive technical dialogue. Allocate time for technology leaders to educate business counterparts on possibilities, constraints and trade-offs.

The four pillars of technology leadership integration

The rebel leaders Iโ€™ve studied donโ€™t just talk about integration, they systematically engineer it. Here are the four pillars that separate transformation winners from digital theater performers.

Pillar one: Strategic co-creation

Instead of: Bringing technology leaders in for feasibility validation.

Rebels: Include them in strategic formation from day one.

The breakthrough insight is simple: Technology constraints and possibilities should shape strategy, not just constrain it. When technologists participate in strategic formation, they help identify opportunities that pure business thinking might miss.

Actionable implementation:

  • Include your CTO in quarterly business reviews, not just technology reviews
  • Require technology input before major strategic initiatives get funded
  • Create joint business-technology planning sessions for all transformation efforts
  • Give technology leaders access to the same market intelligence and customer feedback as other executives

Pillar two: Outcome-driven accountability

Instead of: Asking for deliverables and timelines.

Rebels: Define success in business outcomes and measure accordingly.

This shift eliminates the translation problem entirely. When success is defined in business terms from the beginning, technology leaders naturally think about impact, not just implementation.

The Deloitte study talks about โ€œvalue-based investmentsโ€ aligned with โ€œiterative Agile sprints.โ€ But the real innovation isnโ€™t methodological, itโ€™s definitional. Success gets measured by business value delivered, not features completed.

Actionable implementation:

  • Replace project status meetings with outcome review sessions
  • Tie technology leader compensation to business metrics, not just technical ones
  • Create shared dashboards that track business impact of technology initiatives
  • Require business case updates, not just project updates

Pillar three: Information symmetry

Instead of: Functional hierarchy with information silos.

Rebels: Ensure technology leaders have the same strategic context as business leaders.

Sims makes a crucial point: โ€œTechnology touches every department. The org chart should reflect that.โ€ But organizational design goes beyond reporting structures; itโ€™s about information flow and decision rights.

The Deloitte research highlights the need for โ€œsensing mechanisms that help anticipate business change.โ€ But sensing requires access to information, not just responsibility for reaction.

Actionable implementation:

  • Include technology leaders in customer advisory boards and market research reviews
  • Share competitive intelligence and industry analysis with the entire C-suite, not just business functions
  • Create cross-functional intelligence-sharing sessions where every leader contributes market insights
  • Ensure technology leaders participate in customer meetings and strategic partnerships

Pillar four: Translation excellence

Instead of: Expecting natural translation ability.

Rebels: Systematically develop two-way translation competence.

Hereโ€™s where most organizations get it backwards. They expect CTOs to be great translators but provide no development, feedback or support for this critical skill.

As Sims notes, โ€œThe best CTOs turn complexity into clarity. They make everyone around them smarter. Thatโ€™s the leadership skill we should be measuring.โ€

But translation is a two-way street. Business leaders also need to develop competence in asking strategic questions that unlock technological insight.

Actionable implementation:

  • Create monthly translation labs where technology leaders practice explaining complex concepts to different audiences
  • Train business leaders to ask better questions: โ€œWhat are the trade-offs?โ€ instead of โ€œIs this feasible?โ€
  • Establish technology education sessions for non-technical executives
  • Reward and recognize technology leaders who effectively educate their peers

Better leadership means faster business

When you get technology leadership integration right, the impact extends far beyond individual performance. You create what the Deloitte research calls enterprise agility: the ability to โ€œnimbly strategize and operateโ€ in response to constant change.

The data reveals so much: businesses with integrated technology leadership outperform peers across every meaningful metric. Revenue growth, profit margins, customer satisfaction, employee engagement and market share all improve when business and technology leadership truly collaborate.

But the most significant impact might be speed. Integrated organizations move faster because they eliminate the handoff delays, translation loops and rework cycles that plague siloed structures.

The competitive reality

While youโ€™re optimizing technology leadership integration, your competitors are making a choice. Some will continue the old patterns: hiring smart technologists, giving them business requirements and wondering why transformation is hard.

Others will join the integration revolution. Theyโ€™ll create conditions where technology leaders thrive. Theyโ€™ll build strategic collaboration into their organizational DNA. Theyโ€™ll accelerate past competitors while others struggle with digital theater.

The study reveals that tech vanguard organizations are already pulling away from baseline performers. The gap isnโ€™t just technical: itโ€™s structural, cultural and strategic.

Ready to ramp up?

The path forward isnโ€™t about your next technology hire, itโ€™s about the environment you create for technology leadership to succeed.

Week one: Audit your current integration points. Where does your CTO participate in strategic decision-making? Where are they excluded? Map the information flows and decision rights.

Month one: Redesign your leadership meeting rhythms. Include technology leaders in strategic formation, not just implementation planning. Create forums for substantive business-technology dialogue.

Month two: Implement outcome-based accountability. Replace deliverable tracking with business impact measurement. Align technology leader success metrics with business results.

Month three: Launch translation competence development. Create systematic programs for both business-to-technology and technology-to-business communication improvement.

Month six: Measure integration velocity. How quickly do business insights flow into technology decisions? How rapidly do technological possibilities inform business strategy?

The businesses that systematically build technology leadership integration wonโ€™t just transform their trajectory; theyโ€™ll transform their markets. Theyโ€™ll set the pace while competitors struggle to keep up.

The choice is yours: Continue with traditional technology leadership models or build the integration capabilities that drive real transformation.

The rebels are already deciding. What about you?

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

From oversight to intelligence: AIโ€™s impact on project management and business transformation

4 December 2025 at 05:00

For CIOs, the conversation around AI has moved from innovation to orchestration, and project management, long a domain of human coordination and control, is rapidly becoming the proving ground for how intelligent systems can reshape enterprise delivery and accelerate transformation.

In boardrooms across industries, CIOs face the same challenge of how to quantify AIโ€™s promise in operational terms: shorter delivery cycles, reduced overhead, and greater portfolio transparency. A 2025 Georgia Institute of Technology-sponsored study of 217 project management professionals and C-level tech leaders revealed that 73% of organizations have adopted AI in some form of project management.

Yet amid the excitement, the question of how AI will redefine the role of the project manager (PM) remains, as does how will the future framework for the business transformation program be defined.

A shift in the PMโ€™s role, not relevance

Across industries, project professionals are already seeing change. Early adopters in the study report project efficiency gains of up to 30%, but success depends less on tech and more on how leadership governs its use. The overwhelming majority found it highly effective in improving efficiency, predictive planning, and decision-making. But what does that mean for the associates running these projects?

Roughly one-third of respondents believed AI would allow PMs to focus more on strategic oversight, shifting from day-to-day coordination to guiding long-term outcomes. Another third predicted enhanced collaboration roles, where managers act as facilitators who interpret and integrate AI insights across teams. The rest envisioned PMs evolving into supervisors of AI systems themselves, ensuring that algorithms are ethical, accurate, and aligned with business goals.

These perspectives converge on a single point: AI will not replace PMs, but it will redefine their value. The PM of the next decade wonโ€™t simply manage tasks, theyโ€™ll manage intelligence and translate AI-driven insights into business outcomes.

Why PMOs canโ€™t wait

For project management offices (PMOs), the challenge is no longer whether to adopt AI but how. AI adoption is accelerating, with most large enterprises experimenting with predictive scheduling, automated risk reporting, and gen AI for documentation. But the integration is uneven.

Many PMOs still treat AI as an add-on, a set of tools rather than its strategic capability. This misses the point since AI is about augmenting judgment and automation. The organizations gaining a real competitive advantage are those embedding AI into their project methodologies, governance frameworks, and performance metrics with this five-point approach in mind.

1. Begin with pilot projects

Think small, scale fast. The most successful AI integrations begin with targeted use cases that automate project status reports, predict schedule slippage, or identify resource bottlenecks. These pilot projects create proof points, generate enthusiasm, and expose integration challenges early.

2. Measure value, not just activity

One common pitfall is adopting AI without clear performance metrics. PMOs should set tangible KPIs such as reduction in manual reporting time, improved accuracy in risk forecasts, shorter project cycle times, and higher stakeholder satisfaction. Communicating these outcomes across the organization is just as important as achieving them. Success stories build momentum, foster buy-in, and demystify AI for skeptical teams.

3. Upskill PMs

AI will only be as valuable as the people who use it. Nearly half of the surveyed professionals cited lack of a skilled workforce as a barrier to AI integration. Project managers donโ€™t need to become data scientists, but they must understand AI fundamentals, how algorithms work, where biases emerge, and what data quality means. In this evolving landscape, the most effective PMs will combine data literacy with human-centered leadership, including critical thinking, emotional intelligence, and communication.

4. Strengthen governance and ethics

Increasing AI raises pressing ethical questions, especially when algorithms influence project decisions. PMOs must take the lead in establishing AI governance frameworks that emphasize transparency, fairness, and human oversight. Embedding these principles into the PMOโ€™s charter doesnโ€™t just mitigate risk, it builds trust.

5. Evolve from PMO to BTO

The traditional PMO focuses on execution through scope, schedule, and cost. But AI-driven organizations are shifting toward business transformation offices (BTOs), which align projects directly with strategic value creation through process improvement in parallel. A PMO ensures projects are done right. A BTO ensures the right projects are done. A crucial element of this framework is the transition from a Waterfall to an Agile mindset. The evolution of project management has shifted from rigid plans to iterative, customer-centric, and collaborative methods, with hybrid methodologies becoming increasingly common. This Agile approach is vital for adapting to the rapid changes brought by AI and digital disruption.

The new PM career path

By 2030, AI could manage most routine project tasks, such as status updates, scheduling, and risk flagging, while human leaders focus on vision, collaboration, and ethics. This shift mirrors past revolutions in project management from the rise of Agile to digital transformation, but at an even faster pace. But as organizations adopt AI, the risk of losing the human element persists. Project management has always been about people and aligning interests, resolving conflicts, and inspiring teams. However, while AI can predict a delay, it canโ€™t motivate a team to overcome it. The PMโ€™s human ability to interpret nuance, build trust, and foster collaboration remains irreplaceable.

A call to action

AI represents the next frontier in enterprise project delivery, and the next decade will test how well PMOs, executives, and policymakers can navigate the evolution of transformation. To thrive, organizations must invest in people as much as in platforms, adopt ethical, transparent governance, foster continuous learning and experimentation, and measure success by outcomes rather than hype.

For CIOs, the mandate is clear: lead with vision, govern with integrity, and empower teams with intelligent tools. AI, after all, isnโ€™t a threat to the project management profession. Itโ€™s a catalyst for its reinvention, and when executed responsibly, AI-driven project management will not only deliver operational gains but also build more adaptive, human-centered organizations ready for the challenges ahead. By embracing it thoughtfully, PMs can elevate their roles from administrators to architects of change.

La checklist del CIO per ottenere dallโ€™intelligenza artificiale un ROI positivo

4 December 2025 at 00:00

Allโ€™inizio di questโ€™anno, il MIT ha fatto notizia perchรฉ, in unย rapporto [in inglese], ha rilevato che il 95% delle aziende non sta ottenendo alcun ritorno dallโ€™intelligenza artificiale, nonostante investimenti sostanziosi. Ma perchรฉ cosรฌ tante iniziative di intelligenza artificiale non riescono a garantire un ROI positivo? Perchรฉ spesso mancano di un chiaro collegamento al valore aziendale, afferma Neal Ramasamy, CIO globale di Cognizant, una societร  di consulenza IT.

โ€œQuesto porta a progetti tecnicamente impressionanti, ma che non risolvono unโ€™esigenza reale nรฉ creano un vantaggio tangibileโ€, aggiunge. I tecnologi spesso seguono lโ€™entusiasmo del momento, immergendosi a capofitto nei test sullโ€™intelligenza artificiale senza considerare i risultati aziendali. โ€œMolti iniziano con modelli e progetti pilota piuttosto che partire da ciรฒ che vogliono ottenereโ€, osserva Saket Srivastava, CIO di Asana, unโ€™applicazione per il project management.ย 

โ€œI team eseguono demo in modo isolato, senza riprogettare il flusso di lavoro sottostante o assegnare un responsabile dei profitti e delle perditeโ€.

La combinazione di una mancanza di pensiero iniziale sul prodotto, pratiche di dati sottostanti inadeguate, governance inesistente e incentivi culturali minimi allโ€™adozione dellโ€™AI puรฒ produrre risultati negativi. Quindi, per evitare esiti scadenti, molte delle tecniche si riducono a una migliore gestione del cambiamento. โ€œSenza una revisione dei processi, lโ€™intelligenza artificiale accelera le inefficienze odierneโ€, aggiunge spiega.

Qui di seguito esaminiamo cinque modi per il change management allโ€™interno di unโ€™azienda che i CIO possono mettere in pratica oggi stesso. Seguendo questa checklist, le imprese dovrebbero iniziare a invertire la tendenza del ROI negativo dellโ€™AI, imparare dagli anti-modelli e scoprire quali tipi di metriche convalidano le iniziative di intelligenza artificiale di successo a livello aziendale.

1. Allineare la leadership in anticipo comunicando gli obiettivi aziendali e guidando lโ€™iniziativa di AI

Le iniziative di intelligenza artificiale richiedono il sostegno dei dirigenti e una visione chiara di come possono migliorare il business. โ€œUna leadership forte รจ essenziale per tradurre gli investimenti nellโ€™AI in risultatiโ€, dichiara Adam Lopez, presidente e leadvCIO del managed IT support provider CMIT Solutions. โ€œIl sostegno dei dirigenti e la supervisione dei programmi di intelligenza artificiale, idealmente a livello di CEO o di consiglio di amministrazione, sono correlati a un ROI piรน elevatoโ€.

Per esempio, nella societร  di servizi IT e consulenza Xebia, un sottogruppo di dirigenti guida le attivitร  interne di AI. Presieduto dal CIO globale Smit Shanker, il team comprende il CFO globale e i responsabili dellโ€™intelligenza artificiale, dellโ€™automazione, dellโ€™infrastruttura IT, della sicurezza e delle operation aziendali.

Una volta costituita la leadership di livello piรน alto, la responsabilitร  diventa fondamentale. โ€œIniziate assegnando la titolaritร  dellโ€™attivitร โ€, consiglia Srivastava.ย 

โ€œOgni caso dโ€™uso dellโ€™AI necessita di un leader responsabile con un obiettivo legato a traguardi e risultati chiaveโ€. Raccomanda, poi, di istituire unย PMO [in inglese]ย interfunzionale per definire casi dโ€™uso di riferimento, fissare obiettivi di successo, applicare misure di sicurezza e comunicare regolarmente i progressi compiuti.

Tuttavia, anche con una leadership in atto, molti dipendenti avranno bisogno di una guida pratica per applicare lโ€™intelligenza artificiale nel loro lavoro quotidiano. โ€œPer la maggior parte delle persone, anche se si forniscono loro gli strumenti, non sanno da dove iniziareโ€, commenta Orla Daly, CIO di Skillsoft, un sistema di gestione dellโ€™apprendimento. Il manager raccomanda di identificare chi, in azienda, puรฒ far emergere casi dโ€™uso significativi e condividere consigli pratici, come ottenere il massimo da strumenti come Copilot. Coloro che hanno curiositร  e volontร  di imparare faranno i progressi maggiori, sostiene.

Infine, i dirigenti devono investire in infrastrutture, talenti e formazione. โ€œI leader devono promuovere una cultura basata sui dati e una visione chiara di come lโ€™AI risolverร  i problemi aziendaliโ€, afferma Ramasamy di Cognizant. Ciรฒ richiede una stretta collaborazione tra la prima linea del management, i data scientist e lโ€™IT per eseguire e misurare i progetti pilota prima di passare alla fase di scalabilitร .

2. Evolversi modificando il quadro dei talenti e investendo nellโ€™aggiornamento delle competenze

Le imprese devono essere aperte a modificare il loro quadro dei talenti e a riprogettare i ruoli. โ€œI CIO dovrebbero adattare le loro strategie di gestione dei talenti per garantire il successo dellโ€™adozione dellโ€™AI e del ROIโ€, afferma Ramasamy. โ€œCiรฒ potrebbe comportare la creazione di nuove figure e percorsi di carriera per i professionisti che si occupano di AI, come i data scientist e i prompt engineer, aggiornando, al contempo, le competenze dei dipendenti esistentiโ€.

I CIO dovrebbero anche considerare il talento come una pietra miliare di qualsiasi strategia di AI, aggiunge Lopez di CMIT. โ€œInvestendo nelle persone attraverso la formazione, la comunicazione e nuovi ruoli specialistici, i CIO possono essere certi che i dipendenti adotteranno gli strumenti di intelligenza artificiale e ne determineranno il successoโ€. Aggiunge che gli hackathon interni e le sessioni di formazione spesso producono notevoli miglioramenti nelle competenze e nella fiducia.

Lโ€™aggiornamento delle competenze, per esempio, dovrebbe soddisfare le esigenze dei dipendenti, quindi Srivastava di Asana raccomanda percorsi a piรน livelli: tutto il personale ha bisogno di una formazione di base sulla prompt literacy e sulla sicurezza, mentre gli utenti esperti richiedono una conoscenza piรน approfondita della progettazione del flusso di lavoro e della creazione di agenti. โ€œAbbiamo adottato lโ€™approccio di sondare la forza lavoro, puntare sullโ€™abilitazione e rimisurare per confermare che la maturitร  si muovesse nella giusta direzioneโ€, sottolinea.

Tuttavia, la valutazione dellโ€™attuale struttura dei talenti va oltre le competenze umane. Significa anche rivalutare il lavoro da svolgere e i compiti di ciascuno al suo interno. โ€œรˆ essenziale rivedere i processi aziendali per individuare opportunitร  di rifattorizzazione, date le nuove capacitร  offerte dallโ€™AIโ€, dichiara Scott Wheeler, responsabile delle attivitร  cloud della societร  di consulenza Asperitas Consulting.

Per Daly di Skillsoft, lโ€™era dellโ€™AI odierna richiede un quadro di gestione dei talenti moderno che bilanci abilmente le quattro B:ย build, buy, borrow e bots [in inglese]. In altre parole, i leader dovrebbero considerare la loro azienda come un insieme di competenze e applicare il giusto mix di personale interno, software, partner o automazione in base alle necessitร . โ€œCiรฒ richiede di suddividere le attivitร  in lavori o compiti da svolgere e di considerare lโ€™attivitร  di tutti in modo piรน frammentatoโ€, rileva Daly.

Per esempio, il suo team ha utilizzato GitHub Copilot per codificare rapidamente un portale di apprendimento per un determinato cliente. Il progetto ha evidenziato come lโ€™abbinamento di sviluppatori umani con assistenti AI possa accelerare notevolmente la consegna, sollevando nuove domande sulle competenze necessarie agli altri sviluppatori per essere altrettanto produttivi ed efficienti.

Tuttavia, poichรฉ gliย agenti AIย assumono sempre piรน compiti di routine, i leader devono dissipare i timori che lโ€™intelligenza artificiale sostituisca completamente i posti di lavoro. โ€œComunicare il motivo alla base delle iniziative di AI puรฒ alleviare i timori e dimostrare come questi strumenti possano potenziare i ruoli umaniโ€, fa notare Ramasamy. Srivastava รจ dโ€™accordo. โ€œIl filo conduttore รจ la fiduciaโ€, afferma, โ€œMostrate alle persone come lโ€™AI elimina la fatica e aumenta lโ€™impatto; mantenete gli esseri umani nel ciclo decisionale e lโ€™adozione seguirร โ€.

3. Adattare i processi organizzativi per sfruttare appieno i vantaggi dellโ€™intelligenza artificiale

Cambiare lโ€™organico รจ solo lโ€™inizio: le aziende devono anche riprogettare i processi fondamentali. โ€œSfruttare appieno il valore dellโ€™intelligenza artificiale richiede, spesso, una riprogettazione del funzionamento dellโ€™aziendaโ€, dichiara Lopez di CMIT, che esorta a integrare lโ€™AI nelle operazioni quotidiane e a supportarla con una sperimentazione continua, piuttosto che trattarla come unโ€™aggiunta statica.

A tal fine, un adattamento necessario รจ quello che consiste nel trattare i flussi di lavoro interni basati sullโ€™intelligenza artificiale come prodotti e codificare i modelli in tutta lโ€™azienda, afferma Srivastava. โ€œStabilire un rigoroso sistema di gestione dei prodotti per lโ€™acquisizione, la definizione delle prioritร  e la pianificazione dei casi dโ€™uso dellโ€™AI, con responsabili chiari, descrizioni dei problemi e ipotesi di valoreโ€, sottolinea.

In Xebia, un comitato di governance supervisiona questo rigore attraverso un processo in tre fasi che consiste nellโ€™identificare e misurare il valore, garantire lโ€™accettazione da parte dellโ€™azienda e poi passare allโ€™IT per il monitoraggio e il supporto. โ€œUn gruppo centrale รจ responsabile della semplificazione organizzativa e funzionale di ogni caso dโ€™usoโ€, spiega Shanker. โ€œCiรฒ incoraggia i processi interfunzionali e aiuta ad abbattere i silosโ€.

Allo stesso modo, per Ramasamy, lโ€™ostacolo piรน grande รจ la resistenza organizzativa. โ€œMolte aziende sottovalutano la gestione del cambiamento necessaria per unโ€™adozione di successoโ€, dice. โ€œIl cambiamento piรน critico รจ il passaggio da un processo decisionale compartimentato a un approccio incentrato sui dati. I processi aziendali dovrebbero integrare perfettamente i risultati dellโ€™AI, automatizzando le attivitร  e fornendo ai dipendenti informazioni basate sui datiโ€.

Identificare le aree giuste da automatizzare dipende anche dalla visibilitร . โ€œรˆ qui che la maggior parte delle aziende fallisce perchรฉ non dispone di processi validi e documentatiโ€, afferma Daly di Skillsoft, che raccomanda di coinvolgere esperti in materia di tutte le linee di business per esaminare i flussi di lavoro e ottimizzarli. โ€œรˆ importante nominare persone allโ€™interno dellโ€™azienda che si occupino di capire come integrare lโ€™intelligenza artificiale nel flusso di lavoroโ€, precisa.

Una volta identificate le unitร  di lavoro comuni a tutte le funzioni che lโ€™AI puรฒ semplificare, il passo successivo รจ renderle visibili e standardizzarne lโ€™applicazione. Skillsoft sta facendo questo attraverso un registro degli agenti che documenta le loro capacitร , le misure di sicurezza e i processi di gestione dei dati. โ€œStiamo formalizzando un framework di AI aziendale in cui lโ€™etica e la governance fanno parte del modo in cui gestiamo il portafoglio di casi dโ€™usoโ€, aggiunge.

Le imprese dovrebbero quindi anticipare gli ostacoli e creare strutture di supporto per aiutare gli utenti. โ€œUna strategia per raggiungere questo obiettivo รจ quella di disporre di team SWAT di intelligenza artificiale, il cui scopo รจ facilitare lโ€™adozione e rimuovere gli ostacoliโ€, osserva Wheeler di Asperitas.

4. Misurare i progressi per convalidare il ritorno sullโ€™investimento

Per valutare il ROI, i CIO devono stabilire una linea di base pre-AI e fissare in anticipo dei parametri di riferimento. I leader raccomandano di assegnare la responsabilitร  di metriche quali il time-to-value, i risparmi sui costi, i risparmi di tempo, il lavoro gestito dagli agenti umani e le nuove opportunitร  di guadagno generate.

โ€œLe misurazioni di riferimento dovrebbero essere stabilite prima di avviare i progetti di intelligenza artificialeโ€, argomenta Wheeler, che consiglia di integrare gli indicatori predittivi delle singole unitร  aziendali nelle regolari revisioni delle prestazioni da parte della leadership. Un errore comune, afferma, รจ quello di misurare solo i KPI tecnici come lโ€™accuratezza del modello, la latenza o la precisione, senza collegarli ai risultati aziendali, come i risparmi, i ricavi o la riduzione dei rischi.

Pertanto, il passo successivo รจ definire obiettivi chiari e misurabili che dimostrino un valore tangibile. โ€œIncorporare la misurazione nei progetti fin dal primo giornoโ€, dichiara Lopez di CMIT. โ€œI CIO dovrebbero definire una serie di KPI rilevanti per ogni iniziativa di intelligenza artificiale. Per esempio, un tempo di elaborazione piรน veloce del 20% o un aumento del 15% della soddisfazione dei clientiโ€. Iniziare con piccoli progetti pilota che producono risultati rapidi e quantificabili, aggiunge.

Una misura chiara รจ il risparmio di tempo.

Per esempio, Eamonn Oโ€™Neill, CTO di Lemongrass, un fornitore di servizi basati su software, racconta di aver visto clienti documentare manualmente lo sviluppo SAP, un processo che puรฒ richiedere molto tempo. โ€œLโ€™utilizzo dellโ€™IA generativa per creare questa documentazione comporta una chiara riduzione dello sforzo umano, che puรฒ essere misurato e tradotto in un ROI in modo abbastanza sempliceโ€, commenta. La riduzione del lavoro umano per attivitร  รจ un altro segnale chiave.ย 

โ€œSe lโ€™obiettivo รจ ridurre il numero di chiamate al servizio di assistenza gestite da operatori umani, i leader dovrebbero stabilire una metrica chiara e monitorarla in tempo realeโ€, illustra Ram Palaniappan, CTO di TEKsystems, fornitore di servizi tecnologici full-stack. Aggiunge, inoltre, che lโ€™adozione dellโ€™AI puรฒ anche far emergere nuove opportunitร  di guadagno.

Alcuni CIO monitorano piรน KPI granulari nei singoli casi dโ€™uso e adeguano le strategie in base ai risultati. Srivastava di Asana, per esempio, monitora lโ€™efficienza ingegneristica controllando i tempi di ciclo, la produttivitร , la qualitร , il costo per transazione e gli eventi di rischio. Misura anche la percentuale di esecuzioni assistite da agenti, gli utenti attivi, lโ€™accettazione da parte degli esseri umani e le escalation delle eccezioni. Lโ€™analisi di questi dati, spiega, aiuta a mettere a punto i prompt e le misure di sicurezza in tempo reale.

Il punto fondamentale รจ stabilire le metriche fin dallโ€™inizio e non cadere nellโ€™errore di non monitorare i segnali o il valore ottenuto. โ€œSpesso la misurazione viene aggiunta in un secondo momento, quindi i leader non sono in grado di dimostrare il valore o decidere cosa scalareโ€, dichiara Srivastava. โ€œLa soluzione รจ iniziare con una metrica di missione specifica, stabilirne la linea di base e integrare lโ€™AI direttamente nel flusso di lavoro, in modo che le persone possano concentrarsi su giudizi di valore piรน elevatoโ€.

5. Governare la cultura dellโ€™AI per evitare violazioni e instabilitร 

Gli strumenti di AI generativa sono ormai comuni, ma molti dipendenti non hanno ancora ricevuto una formazione adeguata per utilizzarli in modo sicuro. Per esempio, secondo uno studio delย 2025 di SmallPDF [in inglese], quasi un dipendente su cinque negli Stati Uniti ha inserito le proprie credenziali di accesso in strumenti di AI. โ€œUna buona leadership implica la creazione di governance e guardrailโ€, afferma Lopez. Ciรฒ include la definizione di politiche per impedire che dati sensibili e riservati vengano inseriti in strumenti come ChatGPT.

Un uso intensivo dellโ€™intelligenza artificiale amplia anche la superficie di attacco dellโ€™azienda. La leadership deve ora considerare seriamente aspetti quali le vulnerabilitร  di sicurezza nei browser basati sullโ€™AI, lโ€™AI shadow e le hallucination [in inglese]ย LLM. Man mano che lโ€™AI agentica diventa sempre piรน coinvolta neiย processi critici per il business [in inglese], unโ€™adeguata autorizzazione e controlli di accesso sono essenziali per prevenire lโ€™esposizione di dati sensibili o lโ€™ingresso dannoso nei sistemi IT.

Dal punto di vista dello sviluppo software, il rischio di fuga di password, chiavi e token attraverso gli agenti di codifica AI รจ molto reale. Gli ingegneri hanno adottato iย server MCP [in inglese]ย per consentire agli agenti di codifica AI di accedere a dati, strumenti e API esterni, ma unaย ricerca di Wallarm [in inglese]ย ha rilevato un aumento del 270% delle vulnerabilitร  legate agli MCP dal secondo al terzo trimestre del 2025, insieme a un aumento delle vulnerabilitร  delle API.

Trascurare lโ€™identitร  degli agenti, le autorizzazioni e le tracce di audit รจ una trappola comune in cui spesso cadono i CIO con lโ€™AI aziendale, afferma Srivastava. โ€œIntrodurre la gestione dellโ€™identitร  e dellโ€™accesso degli agenti in modo che questi ultimi ereditino le stesse autorizzazioni e la stessa verificabilitร  degli esseri umani, compresi la registrazione e le approvazioniโ€, dice.

Nonostante i rischi, la supervisione rimane debole. Un rapporto di AuditBoard ha rilevato che, mentre lโ€™82% delle imprese sta implementando lโ€™intelligenza artificiale, solo il 25% ha implementato programmi di governance completi. Con violazioni dei dati che ora costano in media quasi 4,5 milioni di dollari ciascuna, secondo IBM, eย IDC che riferisce [in inglese]ย che le organizzazioni che sviluppano unโ€™intelligenza artificiale affidabile hanno il 60% di probabilitร  in piรน di raddoppiare il ROI dei progetti basati su di essa, i vantaggi commerciali dellaย governance dellโ€™intelligenza artificiale [in inglese]ย sono evidenti. โ€œAbbinate lโ€™ambizione a solide misure di protezione: ciclo di vita dei dati e controlli di accesso chiari, valutazione e red teaming, e checkpoint con intervento umano nei casi in cui la posta in gioco รจ altaโ€, afferma Srivastava.ย 

โ€œIntegrate la sicurezza, la privacy e la governance dei dati nellโ€™SDLC in modo che la distribuzione e la sicurezza procedano di pari passo, senza scatole nere per la provenienza dei dati o il comportamento dei modelliโ€.

Non รจ magia

Secondoย BCG [in inglese], solo il 22% delle aziende ha portato la propria AI oltre la fase di POC e solo il 4% sta creando un valore sostanziale. Tenendo presenti queste statistiche che fanno riflettere, i CIO non dovrebbero nutrire aspettative irrealistiche in termini di ritorno sullโ€™investimento.

Ottenere un ROI dallโ€™intelligenza artificiale richiederร  uno sforzo iniziale significativo e necessiterร  di cambiamenti fondamentali nei processi organizzativi. Come ha affermato George Maddaloni, CTO delle operazioni di Mastercard, in una recente intervista con Runtime, lโ€™adozione delle app di GenAI riguarda, in gran parte, la gestione del cambiamento e lโ€™adozione.

Le insidie dellโ€™AI sono pressochรฉ infinite ed รจ comune che le imprese inseguano lโ€™hype piuttosto che il valore, lancino prodotti senza una chiara strategia sui dati, scalino troppo rapidamente e implementino la sicurezza come un ripensamento. Molti programmi di intelligenza artificiale semplicemente non dispongono del sostegno esecutivo o della governance necessari per raggiungere gli obiettivi prefissati. In alternativa, รจ facile credere allโ€™hype dei fornitori sui guadagni in termini di produttivitร  e spendere troppo, oppure sottovalutare la difficoltร  di integrare le piattaforme di intelligenza artificiale con lโ€™infrastruttura IT legacy.

Guardando al futuro, per massimizzare lโ€™impatto dellโ€™AI sul business, i leader raccomandano di investire nellโ€™infrastruttura dati e nelle capacitร  della piattaforma necessarie per scalare, e di concentrarsi su uno o due casi dโ€™uso ad alto impatto che possano eliminare il lavoro umano e aumentare chiaramente i ricavi o lโ€™efficienza.

รˆ necessario fondare lโ€™entusiasmo per lโ€™intelligenza artificiale su principi fondamentali e comprendere la strategia aziendale che si intende perseguire per avvicinarsi al ROI.ย 

Senza una leadership solida e obiettivi chiari, infatti, lโ€™AI รจ solo una tecnologia affascinante con un ritorno economico che rimane sempre fuori portata.

ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฎCIOใŒ่ชžใ‚‹ใ€ŒCIOใฎๅฝนๅ‰ฒใ‚„้ญ…ๅŠ›ใ€ใจใฏ

3 December 2025 at 16:33

ใ‚ญใƒฃใƒชใ‚ขใฎ็พ…้‡็›คใ‚’ๅค‰ใˆใŸๅ ดๆ‰€๏ผšๆฐดๅณถใ‹ใ‚‰ใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใ€ใใ—ใฆ็ตŒๅ–ถใฎๆœ€ๅ‰็ทšใธ

1989ๅนดใ€็งใฏไธ‰่ฑๅŒ–ๆˆ๏ผˆ็พใƒปไธ‰่ฑใ‚ฑใƒŸใ‚ซใƒซ๏ผ‰ใซ็”Ÿ็”ฃๆŠ€่ก“ใฎใ‚จใƒณใ‚ธใƒ‹ใ‚ขใจใ—ใฆๆ–ฐๅ’ๅ…ฅ็คพใ—ใพใ—ใŸใ€‚้…ๅฑžๅ…ˆใฏๅฒกๅฑฑ็œŒๅ€‰ๆ•ทๅธ‚ใฎๆฐดๅณถไบ‹ๆฅญๆ‰€โ”€โ”€็Ÿณๆฒนใ‚ณใƒณใƒ“ใƒŠใƒผใƒˆใฎ็พๅ ดใงใ€ใƒ•ใ‚ฃใƒผใƒซใƒ‰ใ‚จใƒณใ‚ธใƒ‹ใ‚ขใƒชใƒณใ‚ฐใซๅพ“ไบ‹ใ™ใ‚‹ๆ—ฅใ€…ใŒๅง‹ใพใ‚Šใพใ—ใŸใ€‚

่ปขๆฉŸใŒ่จชใ‚ŒใŸใฎใฏ1996ๅนดใ€‚ใ‚ขใƒกใƒชใ‚ซๆฑๆตทๅฒธใฎใƒœใ‚นใƒˆใƒณใŠใ‚ˆใณ่ฅฟๆตทๅฒธใฎใ‚ตใƒณใƒ•ใƒฉใƒณใ‚ทใ‚นใ‚ณใซๆ–ฐใŸใชๆ‹ ็‚นใ‚’็ซ‹ใกไธŠใ’ใ‚‹ใจใ„ใ†่ฉฑใŒใ‚ใ‚Šใ€็งใฏใใฎ่ฅฟๆตทๅฒธใฎ็ซ‹ใกไธŠใ’ใƒกใƒณใƒใƒผใจใ—ใฆใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใซ้งๅœจใ™ใ‚‹ใ“ใจใซใชใ‚Šใพใ—ใŸใ€‚ๅฝ“ๆ™‚ใฏWindows 95ใฎ็™ปๅ ดใ€ใ‚คใƒณใ‚ฟใƒผใƒใƒƒใƒˆใฎๆฐ‘ไธปๅŒ–ใ€ใใ—ใฆeใƒ“ใ‚ธใƒใ‚นใฎ้ปŽๆ˜ŽๆœŸใ€‚ๅ…จ็ฑณใฎๆŠ•่ณ‡ใฎ็ด„3ๅˆ†ใฎ1ใŒ้›†ใพใ‚‹ใจใ„ใ†ใ€ไธ–็•Œๆœ€ๅ…ˆ็ซฏใฎๆŠ€่ก“ใจ่ณ‡ๆœฌใŒไบคๅทฎใ™ใ‚‹ๅ ดๆ‰€ใซ่บซใ‚’็ฝฎใใ“ใจใซใชใฃใŸใฎใงใ™ใ€‚

3ๅนด้–“ใฎ้งๅœจใ‚’็ต‚ใˆใฆๆฐดๅณถใซๆˆปใ‚Šใ€ๅ†ใณ็”Ÿ็”ฃๆŠ€่ก“ใฎๆฅญๅ‹™ใซๅพ“ไบ‹ใ—ใพใ—ใŸใŒใ€็งใฏใ€Œใ„ใ‘ใชใ„ใ‚‚ใฎใ‚’่ฆ‹ใฆใ—ใพใฃใŸใ€ใจใ„ใ†ๆ„Ÿ่ฆšใซ่ฅฒใ‚ใ‚Œใพใ—ใŸใ€‚ใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใงไฝ“้จ“ใ—ใŸใ‚นใƒ”ใƒผใƒ‰ๆ„Ÿใ€้ฉๆ–ฐๆ€งใ€ใใ—ใฆๆœชๆฅใธใฎๆŒ‘ๆˆฆโ”€โ”€ใใ‚Œใ‚‰ใ‚’็Ÿฅใฃใฆใ—ใพใฃใŸไปŠใ€ๅพ“ๆฅใฎไป•ไบ‹ใซๆˆปใ‚‹ใ“ใจใฏใงใใพใ›ใ‚“ใงใ—ใŸใ€‚

ใใ“ใง็งใฏ่‡ชใ‚‰ๅฟ—้ก˜ใ—ใ€ๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ้ƒจ้–€ใธ่ปขๅฑžใ—ใพใ—ใŸใ€‚ไปฅ้™ใ€DXใ‚’ๅซใ‚€ๅคšใใฎใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใซ้–ขใ‚ใ‚Šใ€ๆŠ€่ก“ใจ็ตŒๅ–ถใฎๆฉ‹ๆธกใ—ใ‚’ๆ‹…ใ†ใ‚ˆใ†ใซใชใ‚Šใพใ—ใŸใ€‚ใใ—ใฆ2021ๅนดใ€ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฎๅŸท่กŒๅฝนๅ“กCIOใจใ—ใฆ่ปข่ทใ€‚็พๅœจใฏใ€ไผๆฅญใฎใƒ‡ใ‚ธใ‚ฟใƒซๆˆฆ็•ฅใ‚’็‰ฝๅผ•ใ™ใ‚‹็ซ‹ๅ ดใงใ€ๆœชๆฅใ‚’่ฆ‹ๆฎใˆใŸๆŒ‘ๆˆฆใ‚’็ถšใ‘ใฆใ„ใพใ™ใ€‚

ใ€ŒERPๅ†ๅปบ่ซ‹่ฒ ไบบใ€๏ผš3ๅบฆใฎ้€†่ปขๅЇใŒๆ•™ใˆใฆใใ‚ŒใŸใ€้€ƒใ’ใšใซๅ‘ใๅˆใ†ๅŠ›

็งใฎใ‚ญใƒฃใƒชใ‚ขใฎไธญใงๆœ€ใ‚‚ๅคงใใชๆŒ‘ๆˆฆใ ใฃใŸใฎใฏใ€ใ‚„ใฏใ‚ŠERPใฎๅฎŸ่ฃ…ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใงใ™ใ€‚ๅฎŸใฏใ“ใ‚Œใพใงใซ3ๅ›žใ€ERPใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใฎๅ†ๅปบใ‚’็ตŒ้จ“ใ—ใฆใใพใ—ใŸใ€‚

ใ„ใšใ‚Œใ‚‚ใ€ๅ‰ไปป่€…ใŒ่กŒใ่ฉฐใพใ‚Šใ€ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใŒ้ “ๆŒซใ—ใŸ็Šถๆ…‹ใ‹ใ‚‰ๅผ•ใ็ถ™ใŽใ€็ซ‹ใฆ็›ดใ—ใฆใ‚ดใƒผใƒซใธๅฐŽใใจใ„ใ†ใ‚‚ใฎใงใ—ใŸใ€‚้‡‘้ก็š„ใซใ‚‚่ฆๆจก็š„ใซใ‚‚้žๅธธใซๅคงใใชใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใงใ‚ใ‚Šใ€็งใฎCIOใจใ—ใฆใฎ่€ƒใˆๆ–นใ‚„่กŒๅ‹•ใฎ่ปธใ‚’ๅฝขๆˆใ™ใ‚‹ๆฅตใ‚ใฆ้‡่ฆใช็ตŒ้จ“ใจใชใ‚Šใพใ—ใŸใ€‚

็งใฎใ‚ชใƒชใ‚ธใƒŠใƒชใƒ†ใ‚ฃใŒใ‚ใ‚‹ใจใ™ใ‚Œใฐใ€ใใ‚Œใฏ็”Ÿ็”ฃๆŠ€่ก“ใ‹ใ‚‰ITใธใจใ‚ญใƒฃใƒชใ‚ขใ‚’่ปขๆ›ใ—ใŸใ“ใจใ€ใใ—ใฆใ‚ทใƒชใ‚ณใƒณใƒใƒฌใƒผใฎใฉ็œŸใ‚“ไธญใงๅƒใ„ใŸ็ตŒ้จ“ใซใ‚ใ‚‹ใจ่€ƒใˆใฆใ„ใพใ™ใ€‚ใ•ใ‚‰ใซใ€ๅธฐๅ›ฝๅพŒใฏไผๆฅญๅ†…ใฎๆฅญๅ‹™ใซ็•™ใพใ‚‰ใšใ€ๆฅญ็•Œๆจชๆ–ญใฎๆดปๅ‹•ใซใ‚‚็ฉๆฅต็š„ใซ้–ขใ‚ใฃใฆใใพใ—ใŸใ€‚

ไพ‹ใˆใฐใ€็ŸณๆฒนๅŒ–ๅญฆๅทฅๆฅญๅ”ไผšใงใฎITๆดปๅ‹•ใ‚„ใ€ไผๆฅญ้–“ๅ–ๅผ•ใฎ้›ปๅญๅŒ–๏ผˆEDI๏ผ‰ใ€ๅ›ฝๅ†…ๅค–ใฎๅคงๆ‰‹ๅŒๆฅญไป–็คพ22็คพใŒ้›†ใพใฃใŸใ‚ฐใƒญใƒผใƒใƒซใชๅŒ–ๅญฆๅ“ใ‚คใƒผใ‚ณใƒžใƒผใ‚นใ‚ตใ‚คใƒˆใฎ็ซ‹ใกไธŠใ’ใชใฉใ€ๆฅญ็•Œๅ…จไฝ“ใ‚’ๅทปใ่พผใ‚“ใ ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใซใ‚‚ๆบใ‚ใ‚Šใพใ—ใŸใ€‚

็พๅ ดใจใ‚ชใƒ•ใ‚ฃใ‚นใ€ๅ›ฝๅ†…ใจๆตทๅค–ใ€ๆฅญๅ‹™ใจITโ”€โ”€ใ“ใฎๆง˜ใชๅขƒ็•Œใ‚’่ถŠใˆใฆไป•ไบ‹ใ‚’ใ—ใฆใใŸ็ตŒ้จ“ใŒใ€็พๅœจใฎCIOใจใ—ใฆใฎ่ฆ–้‡Žใจๅˆคๆ–ญๅŠ›ใซใคใชใŒใฃใฆใ„ใพใ™ใ€‚

็งใŒๅคงๅˆ‡ใซใ—ใฆใ„ใ‚‹ใฎใฏใ€ใ€Œ็›ฎใฎๅ‰ใฎใ“ใจใซ้›†ไธญใ—ใฆใ€ๅ…จๅŠ›ใ‚’ๅฐฝใใ™ใ€ใจใ„ใ†ๅงฟๅ‹ขใงใ™ใ€‚่‡ชๅˆ†่‡ช่บซใฎ็›ฎๆจ™ใ‚’็ซ‹ใฆใ™ใŽใ‚‹ใ“ใจใงใ€ๅฐ†ๆฅใฎๅฏ่ƒฝๆ€งใ‚’็‹ญใ‚ใฆใ—ใพใ†ใฎใงใฏใชใ„ใ‹ใจใ„ใ†่€ƒใˆใ‹ใ‚‰ใ€ใ‚ใˆใฆๆ˜Ž็ขบใช็›ฎๆจ™ใ‚’ๅฎšใ‚ใšใ€ไปŠใ“ใฎ็žฌ้–“ใซๅ…จๅŠ›ใ‚’ๆณจใใ“ใจใ‚’ๅฟƒใŒใ‘ใฆใ„ใพใ™ใ€‚

ERPใฎใ‚ˆใ†ใชๅคง่ฆๆจกใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใงใฏใ€ๅ›ฐ้›ฃใ‚„ไบˆๆœŸใ›ใฌ่ชฒ้กŒใŒๆฌกใ€…ใจ็พใ‚Œใพใ™ใ€‚ใใ†ใ„ใฃใŸ็Šถๆณใงใ‚‚ใ€Œ้€ƒใ’ใชใ„ใ€ใ€ใ€Œ่ฒฌไปปใ‚’ๆŒใฃใฆๆœ€ๅพŒใพใงใ‚„ใ‚Š้‚ใ’ใ‚‹ใ€ใจใ„ใ†ๅงฟๅ‹ขใ‚’่ฒซใ„ใฆใใพใ—ใŸใ€‚็ตŒ้จ“ใ‚’็ฉใฟ้‡ใญใ€่‡ชๅˆ†ใง่€ƒใˆใ€่‡ชๅˆ†ใฎ่ปธใ‚’ๆŒใฃใฆๆ–ฝ็ญ–ใ‚’ๆ‰“ใคโ”€โ”€ใใ‚ŒใŒใ€็งใฎใƒชใƒผใƒ€ใƒผใ‚ทใƒƒใƒ—ใฎๆ นๅนนใงใ™ใ€‚

ใใ—ใฆไฝ•ใ‚ˆใ‚Šใ€ใ€Œๆตทๅค–ใ‚’็Ÿฅใ‚‹ใ“ใจใงๆ—ฅๆœฌใ‚’็Ÿฅใ‚‹ใ€ใ€ใ€Œไป–็คพใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ช็คพใ‚’็Ÿฅใ‚‹ใ€ใ€ใ€Œไบบใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใ€โ”€โ”€ใ“ใฎๆฐ—ใฅใใ“ใใŒใ€็งใซใจใฃใฆๆœ€ๅคงใฎ่ฒก็”ฃใงใ‚ใ‚Šใ€CIOใจใ—ใฆใฎๅŽŸๅ‹•ๅŠ›ใซใชใฃใฆใ„ใพใ™ใ€‚

ใƒˆใƒƒใƒ—ใƒ€ใ‚ฆใƒณใ ใ‘ใงใฏๅ‹•ใ‹ใชใ„๏ผš็พๅ ดใŒไธปๅฝนใซใชใ‚‹ใ‚ฌใƒใƒŠใƒณใ‚นใฎๅ†ๅฎš็พฉ

57ๆญณใงใฎ่ปข่ทโ”€โ”€ใใ‚Œใฏๆฑบใ—ใฆๆ—ฉใ„ใ‚ฟใ‚คใƒŸใƒณใ‚ฐใงใฏใ‚ใ‚Šใพใ›ใ‚“ใงใ—ใŸใ€‚ใ—ใ‹ใ—ใ€่ปข่ทใ—ใฆๅˆใ‚ใฆ่ฆ‹ใˆใฆใใŸใ“ใจใŒๆ•ฐๅคšใใ‚ใ‚Šใพใ—ใŸใ€‚็‰นใซๅฐ่ฑก็š„ใ ใฃใŸใฎใฏใ€ITๆˆฆ็•ฅใซใŠใ‘ใ‚‹ใ€Œใ‚ฌใƒใƒŠใƒณใ‚นใ€ใจใ€Œใ‚ทใƒŠใ‚ธใƒผใ€ใจใ„ใ†2ใคใฎใ‚ญใƒผใƒฏใƒผใƒ‰ใงใ™ใ€‚

ๅ‰่ทใงใฏใ€่ค‡ๆ•ฐใฎไธŠๅ ดๅญไผš็คพใ‚’ๅซใ‚€ๅคง่ฆๆจกใ‚ฐใƒซใƒผใƒ—ใฎๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ใ‚’็ตฑๆ‹ฌใ™ใ‚‹ใจใ„ใ†ใƒŸใƒƒใ‚ทใƒงใƒณใ‚’ๆ‹…ใ„ใพใ—ใŸใ€‚็‹ฌ็ซ‹ๆ€งใฎๅผทใ„ๅ„็คพใ‚’ๆŸใญใ‚‹ใซใฏใ€ๅ˜ใชใ‚‹ใ‚ฌใƒใƒŠใƒณใ‚นใฎๆŠผใ—ไป˜ใ‘ใงใฏใชใใ€ใ€Œใใฎๆ–ฝ็ญ–ใŒ็พๅ ดใซใจใฃใฆใฉใ‚“ใชใƒกใƒชใƒƒใƒˆใ‚’ใ‚‚ใŸใ‚‰ใ™ใฎใ‹ใ€ใ‚’ไธๅฏงใซไผใˆใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ—ใŸใ€‚

ใ‚ฌใƒใƒŠใƒณใ‚นใฎๅ…ˆใซใ‚ทใƒŠใ‚ธใƒผใŒ็”Ÿใพใ‚Œใ€ๅพ“ๆฅญๅ“กไธ€ไบบใฒใจใ‚ŠใŒ็ดๅพ—ใ—ใฆๅ‹•ใๅ‡บใ™โ”€โ”€ใใฎไป•็ต„ใฟใฅใใ‚Šใ“ใใŒใ€ๆŒ็ถšๅฏ่ƒฝใชITๆˆฆ็•ฅใฎ้ตใ ใจๅฎŸๆ„Ÿใ—ใพใ—ใŸใ€‚

ใพใŸใ€DXใฎๆŽจ้€ฒใซใŠใ„ใฆใ‚‚ใ€ใƒˆใƒƒใƒ—ใƒ€ใ‚ฆใƒณใจใƒœใƒˆใƒ ใ‚ขใƒƒใƒ—ใฎไธกๆ–นใŒ้‡่ฆใงใ‚ใ‚‹ใ“ใจใ‚’ๅญฆใณใพใ—ใŸใ€‚ใƒˆใƒƒใƒ—ใƒ€ใ‚ฆใƒณใงใฏๅ…จ็คพ็š„ใชใ‚คใƒณใƒ‘ใ‚ฏใƒˆใ‚’็”Ÿใฟๅ‡บใ™ไธ€ๆ–นใ€ใƒœใƒˆใƒ ใ‚ขใƒƒใƒ—ใงใฏ็พๅ ดใฎ่‹ฅๆ‰‹ใŒ่‡ชๅˆ†ใ”ใจใจใ—ใฆๆŒ‘ๆˆฆใ—ใ€่‚ฒๆˆใซใ‚‚ใคใชใŒใ‚‹ใ€‚ไธก่€…ใŒ้€ฃๅ‹•ใ™ใ‚‹ใ“ใจใงใ€DXใฏ็ต„็น”ๅ…จไฝ“ใซๅบƒใŒใฃใฆใ„ใใฎใงใ™ใ€‚

CIOใฏใ€Œ็ตŒๅ–ถ่€…ใ€ใซใชใ‚Œใ‚‹ใ‹๏ผŸโ”€โ”€37ๅนดใฎใ‚ญใƒฃใƒชใ‚ขใŒๅฐŽใ„ใŸ2ใคใฎใ‚ฟใ‚คใƒ—่ซ–

ใใ—ใฆไปŠใ€CIOใจใ—ใฆใฎๅฝนๅ‰ฒใ‚’ๆŒฏใ‚Š่ฟ”ใ‚‹ใจใ€2ใคใฎใ‚ฟใ‚คใƒ—ใŒใ‚ใ‚‹ใจๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚ไธ€ใคใฏใ€Œๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ใ‚’็ตฑๆ‹ฌใ™ใ‚‹CIOใ€ใ€ใ‚‚ใ†ไธ€ใคใฏใ€Œ็ตŒๅ–ถใฎไธ€็ฟผใ‚’ๆ‹…ใ†CIOใ€ใงใ™ใ€‚

็งใฏๅพŒ่€…ใ‚’็›ฎๆŒ‡ใ—ใฆใใพใ—ใŸใ€‚ITใฎๅฐ‚้–€ๆ€งใซใจใฉใพใ‚‰ใšใ€ๅค–ใฎไธ–็•Œใ‚’็Ÿฅใ‚Šใ€ๆฅญ็•Œใ‚’่ถŠใˆใ€็พๅ ดใจ็ตŒๅ–ถใ‚’ใคใชใโ”€โ”€ใใ‚“ใช่ฆ–็‚นใŒใ€CIOใฎๅฏ่ƒฝๆ€งใ‚’ๅบƒใ’ใ‚‹ใจไฟกใ˜ใฆใ„ใพใ™ใ€‚

ใใฎใŸใ‚ใซ็งใŒ้‡่ฆ–ใ—ใฆใ„ใ‚‹ใฎใŒใ€ใ€Œใƒชใƒ™ใƒฉใƒซใ‚ขใƒผใƒ„๏ผไบบ้กžใŒ่“„็ฉใ—ใŸๅกๆ™บใ€ใงใ™ใ€‚

ๆ–ฐใ—ใ„ใ‚‚ใฎใฏใ‚ผใƒญใ‹ใ‚‰็”Ÿใพใ‚Œใ‚‹ใฎใงใฏใชใใ€ๆง˜ใ€…ใชๅกๆ™บใฎ็ต„ใฟๅˆใ‚ใ›ใ‹ใ‚‰ๅ‰ต็™บใ•ใ‚Œใ‚‹ใ‚‚ใฎใงใ™ใ€‚็”ŸๆˆAIใฎ็™ปๅ ดใซใ‚ˆใฃใฆใ€็งใŸใกใฏใ“ใ‚ŒใพใงไปฅไธŠใซๅ‰ต้€ ็š„ใชไพกๅ€คใ‚’็”Ÿใฟๅ‡บใ™ใƒใƒฃใƒณใ‚นใ‚’ๆ‰‹ใซใ—ใฆใ„ใพใ™ใ€‚

ๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ้ƒจ้–€ใฎ็š†ใ•ใ‚“ใซใฏใ€ใœใฒใ“ใฎ่ฆ–็‚นใ‚’ๆŒใฃใฆใ„ใŸใ ใใŸใ„ใจๆ€ใ„ใพใ™ใ€‚ๆ™‚ใซใฏๅฐ‚้–€้ ˜ๅŸŸใ‹ใ‚‰่ถŠๅขƒใ—ใ€็พๅ ดใซๅฏ„ใ‚Šๆทปใ„ใ€็ตŒๅ–ถใจๅฏพ่ฉฑใ™ใ‚‹โ”€โ”€ใใฎๅ…ˆใซใ€CIOใจใ—ใฆใฎๆ–ฐใ—ใ„ๅฏ่ƒฝๆ€งใŒๅบƒใŒใฃใฆใ„ใ‚‹ใจใ€็งใฏ็ขบไฟกใ—ใฆใ„ใพใ™ใ€‚

ใ‚ˆใ‚Šๅ…ทไฝ“็š„ใชCIOใฎไป•ไบ‹่ฆณใ€ใ‚„ใ‚ŠใŒใ„ใ‚„้ญ…ๅŠ›ใซ็„ฆ็‚นใ‚’ๅฝ“ใฆใ€ใƒชใƒผใƒ€ใƒผใ‚ทใƒƒใƒ—ใ‚„ITใƒชใƒผใƒ€ใƒผใธใฎๅŠนๆžœ็š„ใชใ‚ขใƒ‰ใƒใ‚คใ‚นใชใฉใ€ๆฟ้‡Žๆฐใซ่ฉฑใ‚’่žใใพใ—ใŸใ€‚่ฉณ็ดฐใซใคใ„ใฆใฏใ€ใ“ใกใ‚‰ใฎใƒ“ใƒ‡ใ‚ชใ‚’ใ”่ฆงใใ ใ•ใ„ใ€‚

็ตŒๅ–ถใฎ่ปธใ‚’ๆŒใคCIOใธ๏ผš้‹็”จใƒปไฟๅฎˆใฎไพกๅ€คใจไบบใ‚’ๅ‹•ใ‹ใ™ๅŠ›

57ๆญณใงใฎ่ปข่ทใ‹ใ‚‰4ๅนดโ”€โ”€็งใฏ็พๅœจใ€ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฎCIOใจใ—ใฆใ€็ตŒๅ–ถ่ฆ–็‚นใงITใจDXใ‚’ๆ‰ใˆใ€็คพๆฅญใซใฉใ†่ฒข็Œฎใ™ใ‚‹ใ‹ใ‚’ๆ—ฅใ€…่€ƒใˆใ€ๅฎŸ่กŒใ—ใฆใ„ใพใ™ใ€‚

CIOใฎๅฝนๅ‰ฒใฏใ€ๆ–ฐใ—ใ„ๆŠ€่ก“ใ‚’ๅฐŽๅ…ฅใ™ใ‚‹ใ“ใจใ ใ‘ใงใฏใ‚ใ‚Šใพใ›ใ‚“ใ€‚

ใ‚€ใ—ใ‚ใ€ๅฐŽๅ…ฅใ—ใŸไป•็ต„ใฟใŒๅฎ‰ๅฎšใ—ใฆ้‹็”จใ•ใ‚Œใ€ไฟๅฎˆใ•ใ‚Œใ€ใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใŒ็ขบไฟใ•ใ‚ŒใŸ็Šถๆ…‹ใงๅˆใ‚ใฆไพกๅ€คใŒ็”Ÿใพใ‚Œใ‚‹ใ€‚ๅ…จไฝ“ใŒใ€ŒๅฎŒ็ตใ€ใ—ใฆใ“ใใ€็ตŒๅ–ถใซ่ฒข็Œฎใงใใ‚‹ใฎใงใ™ใ€‚

ใ“ใฎ4ๅนด้–“ใงใ€็งใŸใกใฏใ€ŒMMCใ‚ฐใƒซใƒผใƒ— IT WAYใ€ใจใ„ใ†ๅ…จ็คพใƒปใ‚ฐใƒซใƒผใƒ—ๆจชๆ–ญใฎITๆˆฆ็•ฅใ‚’ๆŽฒใ’ใ€ใ‚ฌใƒใƒŠใƒณใ‚นใจใ‚ทใƒŠใ‚ธใƒผใ‚’่ปธใซใ€็ต„็น”ใƒปไบบๆใƒปไบˆ็ฎ—ใฎๆœ€้ฉๅŒ–ใ‚’้€ฒใ‚ใฆใใพใ—ใŸใ€‚ๆƒ…ๅ ฑใ‚ทใ‚นใƒ†ใƒ ้ƒจ้–€ใฏใ€ใƒฆใƒผใ‚ถใƒผใซๅฏ„ใ‚Šๆทปใ„ใชใŒใ‚‰ใ‚‚ใ€ๆ ธใจใชใ‚‹ๆฉŸ่ƒฝใ‚’้›†็ด„ใ—ใ€ๅ…จไฝ“ๆœ€้ฉใ‚’็›ฎๆŒ‡ใ™ไฝ“ๅˆถใธใจ้€ฒๅŒ–ใ—ใฆใ„ใพใ™ใ€‚

ERPๅฐŽๅ…ฅใ€้›†ไธญ่ณผ่ฒทใ€ใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใฎ็ตฑๅˆใ€ใใ—ใฆใƒฌใ‚ฌใ‚ทใƒผใ‚ทใ‚นใƒ†ใƒ ใฎใƒขใƒ€ใƒŠใ‚คใ‚ผใƒผใ‚ทใƒงใƒณโ”€โ”€ใ“ใ‚Œใ‚‰ใฎๆ–ฝ็ญ–ใฏใ€ๅ˜ใชใ‚‹ๆŠ€่ก“ๆ›ดๆ–ฐใงใฏใชใใ€็ตŒๅ–ถใฎๆ„ๆ€ใจ็พๅ ดใฎๅฎŸ่กŒๅŠ›ใ‚’ใคใชใไป•็ต„ใฟใจใ—ใฆ่จญ่จˆใ•ใ‚Œใฆใ„ใพใ™ใ€‚้Žๅบฆใชๅˆทๆ–ฐใงใฏใชใใ€ๅฟ…่ฆใช้ƒจๅˆ†ใ‚’่ฆ‹ๆฅตใ‚ใฆ้ฉๅˆ‡ใซ้ธใณใ€ๅค‰ใˆใ‚‹ใ€‚ใใ‚ŒใŒใ€็งใŸใกใฎใƒขใƒ€ใƒŠใ‚คใ‚ผใƒผใ‚ทใƒงใƒณใฎๅŸบๆœฌๅงฟๅ‹ขใงใ™ใ€‚

ใ“ใฎใ‚ˆใ†ใช่ฒฌไปปใฎ้‡ใ•ใฏใ€ๅŒๆ™‚ใซๅคงใใชใƒขใƒใƒ™ใƒผใ‚ทใƒงใƒณใจใ‚„ใ‚ŠใŒใ„ใซใ‚‚ใคใชใŒใฃใฆใ„ใพใ™ใ€‚ITใŒ็ตŒๅ–ถใฎไธ€็ฟผใ‚’ๆ‹…ใ†ๆ™‚ไปฃใซใŠใ„ใฆใ€CIOใฏๅ˜ใชใ‚‹ๆŠ€่ก“็ตฑๆ‹ฌ่€…ใงใฏใชใใ€็ตŒๅ–ถ่€…ใจใ—ใฆใฎ่ฆ–ๅบงใ‚’ๆŒใกใ€ๅ…จไฝ“ใ‚’ๅฎŒ็ตใ•ใ›ใ‚‹ๅญ˜ๅœจใงใ‚ใ‚‹ในใใ ใจใ€็งใฏๅผทใๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚

ใ‚ฐใƒญใƒผใƒใƒซใ‚’็Ÿฅใ‚Šใ€ๆ—ฅๆœฌใ‚’็Ÿฅใ‚‹๏ผšCIOใŒ่ชžใ‚‹ใ€Œๆœฌ่ณช็š„ใชใƒชใƒผใƒ€ใƒผๅƒใ€

37ๅนดใซใ‚ใŸใ‚‹ใƒ“ใ‚ธใƒใ‚นไบบ็”Ÿใฎไธญใงใ€็งใŒๆœ€ใ‚‚ๅผทใๆ„Ÿใ˜ใฆใ„ใ‚‹ใฎใฏใ€ใ€Œไบบใ‚’ใฉใ†ๅ‹•ใ‹ใ™ใ‹ใ€ใจใ„ใ†ใ“ใจใฎ้‡่ฆๆ€งใงใ™ใ€‚ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆใ€้ƒจไธ‹ใ€ๅŒๅƒšใ€้–ขไฟ‚่€…ใ€ใใ—ใฆไธŠๅธโ”€โ”€ใ‚ใ‚‰ใ‚†ใ‚‹ไบบใจใฎ้–ขไฟ‚ใฎไธญใงใ€ๆœ€ใ‚‚้›ฃใ—ใใ€ๆœ€ใ‚‚ไพกๅ€คใŒใ‚ใ‚‹ใฎใฏใ€ใ€Œ็ตŒๅ–ถใ‚’ใฉใ†ๅ‹•ใ‹ใ™ใ‹ใ€ใจใ„ใ†ใ“ใจใงใ™ใ€‚

ใใฎใŸใ‚ใซใฏใพใšใ€่‡ชๅˆ†่‡ช่บซใŒไฝ•ใ‚’ใ—ใŸใ„ใฎใ‹ใ€ไฝ•ใ‚’ไผใˆใŸใ„ใฎใ‹ใจใ„ใ†่ปธใ‚’ๆŒใคใ“ใจใŒไธๅฏๆฌ ใงใ™ใ€‚่ปธใŒใถใ‚Œใฆใ—ใพใˆใฐใ€ไบบใฏใคใ„ใฆใใพใ›ใ‚“ใ€‚ใใ—ใฆใ€ใใฎ่ปธใ‚’่จ€่ชžๅŒ–ใ™ใ‚‹ๅŠ›ใŒๅฟ…่ฆใงใ™ใ€‚่จ€่‘‰ใซใ—ใชใ‘ใ‚Œใฐใ€ๆ€ใ„ใฏไผใ‚ใ‚Šใพใ›ใ‚“ใ€‚

่จ€่‘‰ใŒไผใ‚ใ‚‹ใŸใ‚ใซใฏใ€ไฟก้ ผ้–ขไฟ‚ใŒๅ‰ๆใจใชใ‚Šใพใ™ใ€‚ไฟก้ ผใŒใ‚ใ‚Œใฐใ€็›ธๆ‰‹ใฏๅ…ฑๆ„Ÿใ—ใ€่กŒๅ‹•ๅค‰ๅฎนใŒ่ตทใ“ใ‚Šใพใ™ใ€‚ใ“ใฎไธ€้€ฃใฎใƒ—ใƒญใ‚ปใ‚นโ”€โ”€่ปธใ‚’ๆŒใกใ€่จ€่ชžๅŒ–ใ—ใ€ไฟก้ ผใ‚’็ฏ‰ใใ€ๅ…ฑๆ„Ÿใ‚’ๅพ—ใฆใ€่กŒๅ‹•ใ‚’ไฟƒใ™โ”€โ”€ใ“ใ‚Œใ‚’ใ„ใ‹ใซ็พŽใ—ใๅ›žใ™ใ‹ใŒใ€ใƒชใƒผใƒ€ใƒผใจใ—ใฆใฎๆœ€ๅคงใฎ่ชฒ้กŒใ ใจๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚

ใใฎใŸใ‚ใซใฏใ€่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใจใฏใ€ๅ“ฒๅญฆ็š„ใงใ‚ใ‚Šใ€็ฐกๅ˜ใงใฏใ‚ใ‚Šใพใ›ใ‚“ใ€‚ใ—ใ‹ใ—ใ€ใ€Œๆตทๅค–ใ‚’็Ÿฅใ‚‹ใ“ใจใงๆ—ฅๆœฌใ‚’็Ÿฅใ‚Šใ€ๆ—ฅๆœฌใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ช็คพใ‚’็Ÿฅใ‚Šใ€่‡ช็คพใ‚’็Ÿฅใ‚‹ใ“ใจใง่‡ชๅˆ†ใ‚’็Ÿฅใ‚‹ใ€โ”€โ”€ใ“ใฎๅพช็’ฐใŒใ€ใƒชใƒผใƒ€ใƒผใจใ—ใฆใฎ่ฆ–ๅบงใ‚’้ซ˜ใ‚ใฆใใ‚Œใพใ™ใ€‚

ใพใŸใ€ๆ—ฅๆœฌใฎITๆฅญ็•Œใฎๆง‹้€ ็š„ใช็‰นๅพดใจใ—ใฆใ€SEใฎ็ด„7ๅ‰ฒใŒๅค–้ƒจใƒ‘ใƒผใƒˆใƒŠใƒผใซๆ‰€ๅฑžใ—ใฆใ„ใ‚‹ใจใ„ใ†็พๅฎŸใŒใ‚ใ‚Šใพใ™ใ€‚ๅ†…่ฃฝๅŒ–ใŒๅซใฐใ‚Œใ‚‹ไธญใงใ€้™็•Œใ‚‚ใ‚ใ‚‹ใ€‚ใ ใ‹ใ‚‰ใ“ใใ€ใƒ™ใƒณใƒ€ใƒผใ‚„ใ‚ณใƒณใ‚ตใƒซใ‚ฟใƒณใƒˆใจใ€Œๆˆฆๅ‹ใ€ใจใ—ใฆๅ…ฑใซๆˆฆใ†้–ขไฟ‚ๆ€งใ‚’็ฏ‰ใใ“ใจใŒๅฟ…่ฆใงใ™ใ€‚

็™บๆณจ่€…ใจใ—ใฆๆŒ‡็คบใ™ใ‚‹ใ ใ‘ใงใฏใชใใ€่ฌ™่™šใซๅญฆใณๅˆใ„ใ€็Ÿฅๆตใ‚’ๅ‡บใ—ๅˆใ†้–ขไฟ‚ๆ€งใ‚’็ฏ‰ใใ“ใจใ€‚ใใ‚ŒใŒใ€ใ“ใ‚Œใ‹ใ‚‰ใฎITใƒปDXใฎไธ–็•Œใงใ€็œŸใซไพกๅ€คใ‚ใ‚‹ๆˆๆžœใ‚’็”Ÿใฟๅ‡บใ™ใŸใ‚ใฎ้ตใ ใจ่€ƒใˆใฆใ„ใพใ™ใ€‚

ITใฏไบบใ‚’ๅนธใ›ใซใ™ใ‚‹ใŸใ‚ใซใ‚ใ‚‹๏ผšCIOใŒ่ฆ‹ใคใ‘ใŸใ€Œไบบ้–“ไธญๅฟƒใ€ใฎ็ตŒๅ–ถๅ“ฒๅญฆ

ๅ€‹ไบบ็š„ใชใƒขใƒƒใƒˆใƒผใจใ—ใฆใ€21ไธ–็ด€ใฎไบบ้กžใŒ็ตถๅฏพใซๅคงไบ‹ใซใ—ใชใ„ใจใ„ใ‘ใชใ„ใจๆ€ใ†2ใคใฎใ‚ญใƒผใƒฏใƒผใƒ‰ใŒใ‚ใ‚Šใพใ™ใ€‚

ใ€Œใ‚ขใ‚ฆใ‚งใ‚ขใƒใ‚น๏ผˆๆฐ—ใฅใใƒปๆ„่ญ˜๏ผ‰ใ€ใจใ€Œใ‚ณใƒณใƒ‘ใƒƒใ‚ทใƒงใƒณ๏ผˆๅˆฉไป–ใƒปๆ€ใ„ใ‚„ใ‚Š๏ผ‰ใ€ใงใ™ใ€‚

ไบบ้กžใŒใ“ใ‚Œใ‹ใ‚‰ใฎๆ™‚ไปฃใซใŠใ„ใฆๅคงๅˆ‡ใซใ™ในใไพกๅ€ค่ฆณใจใ—ใฆใ€็งใฏใ€Œใ‚ขใ‚ฆใ‚งใ‚ขใƒใ‚นใ€ใจใ€Œใ‚ณใƒณใƒ‘ใƒƒใ‚ทใƒงใƒณใ€ใฎ2ใคใ‚’ๅผทใๆ„่ญ˜ใ—ใฆใ„ใพใ™ใ€‚

ใ“ใฎ่€ƒใˆๆ–นใฏใ€็งใŒไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใซCIOใจใ—ใฆ่ฟŽใˆใ‚‰ใ‚ŒใŸ้š›ใ€ไผš็คพใซๅฏพใ—ใฆๆžœใŸใ™ในใ่ฒฌๅ‹™ใจใ€ๆ—ฅๆœฌใฎ่ฃฝ้€ ๆฅญๅ…จไฝ“ใ‚’ๅผทใใ—ใŸใ„ใจใ„ใ†ๆƒณใ„ใฎไธก้ขใซใŠใ„ใฆใ€ๅธธใซ่ปธใจใชใฃใฆใใพใ—ใŸใ€‚

ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใงใฏใ€Œไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใ‚ฐใƒซใƒผใƒ— IT Wayใ€ใจใ„ใ†ๆŒ‡้‡ใ‚’็ขบ็ซ‹ใ—ใ€ใ“ใ‚Œใ‚’ๅŸบ็›คใซITๆ–ฝ็ญ–ใ‚’ๆŽจ้€ฒใ—ใฆใ„ใพใ™ใ€‚

็พๅœจใ€็”ŸๆˆAIใฏ้ฟใ‘ใฆ้€šใ‚Œใชใ„ใƒ†ใƒผใƒžใจใชใฃใฆใŠใ‚Šใ€ใ„ใ‹ใซไบบใŒใใ‚Œใ‚’ไฝฟใ„ใ“ใชใ™ใ‹ใŒๅ•ใ‚ใ‚Œใฆใ„ใพใ™ใ€‚้‡่ฆใชใฎใฏใ€็”ŸๆˆAIใŒไฝ•ใ‹ใ‚’็”Ÿใฟๅ‡บใ™ใฎใงใฏใชใใ€ใ€ŒไบบใŒ็”ŸๆˆAIใ‚’ไฝฟใฃใฆไฝ•ใ‹ใ‚’็”Ÿใฟๅ‡บใ™ใ€ใจใ„ใ†้–ขไฟ‚ๆ€งใงใ™ใ€‚

็”ŸๆˆAIใฏใ‚ใใพใงITใƒ„ใƒผใƒซใฎไธ€ใคใงใ‚ใ‚Šใ€ไฝฟใ†ไธปไฝ“ใฏไบบ้–“ใงใ™ใ€‚็งใฏๅธธใซใ€Œไบบใ‚’ไธญๅฟƒใซใ™ใ‚‹ใ€ใจใ„ใ†่€ƒใˆๆ–นใ‚’็คพๅ†…ๅค–ใซไผใˆ็ถšใ‘ใฆใŠใ‚Šใ€ใ“ใฎๆ€ๆƒณใ‚’ใ‚‚ใจใซๆง˜ใ€…ใชๆ–ฝ็ญ–ใ‚’ๅฑ•้–‹ใ—ใฆใ„ใพใ™ใ€‚

ๆ—ฅๆœฌใฎ่ฃฝ้€ ๆฅญใ‚’ๅผทใใ™ใ‚‹ใซใฏใ€ไผๆฅญใฎๆž ใ‚’่ถ…ใˆใŸ้€ฃๆบใจๅฏพ่ฉฑใŒไธๅฏๆฌ ใงใ™ใ€‚็งใฏ่ปข่ทๅ‰ใ‹ใ‚‰็พๅœจใพใงใฎ็ด„5ๅนด้–“ใงใ€็ด„70็คพใƒป6,000ไบบไปฅไธŠใฎๆ–นใ€…ใจๅ‹‰ๅผทไผšใ‚„่ฌ›ๆผ”ไผšใ‚’้€šใ˜ใฆๅฏพ่ฉฑใ‚’้‡ใญใฆใใพใ—ใŸใ€‚

ใใฎไธญใงใ€่‡ชๅˆ†ใฎ่€ƒใˆใซๅ…ฑๆ„Ÿใ—ใฆใใ ใ•ใ‚‹ๆ–นใ€…ใจใฎๅ‡บไผšใ„ใŒใ‚ใ‚Šใ€ใใ“ใ‹ใ‚‰ๅพ—ใ‚‰ใ‚Œใ‚‹ๅญฆใณใซใ‚ˆใฃใฆใ€็ง่‡ช่บซใ‚‚ๆˆ้•ทใ—ใฆใ„ใ‚‹ใจๆ„Ÿใ˜ใฆใ„ใพใ™ใ€‚ใ“ใ†ใ—ใŸ็Ÿฅใฎ้›†็ฉใŒใ€ๆ–ฐใ—ใ„ๆ–ฝ็ญ–ใ‚„ๅ–ใ‚Š็ต„ใฟใ‚’็”Ÿใฟๅ‡บใ™ๅŽŸๅ‹•ๅŠ›ใซใชใ‚‹ใจไฟกใ˜ใฆใ„ใพใ™ใ€‚

็งใŒ็š†ใ•ใ‚“ใซๆœ€ใ‚‚ไผใˆใŸใ„ใƒกใƒƒใ‚ปใƒผใ‚ธใฏใ€ใ€Œใ™ในใฆใฎใƒ†ใ‚ฏใƒŽใƒญใ‚ธใƒผใฏไบบใ‚’ๅนธใ›ใซใ™ใ‚‹ใ‚‚ใฎใงใชใ‘ใ‚Œใฐใชใ‚‰ใชใ„ใ€ใจใ„ใ†ใ“ใจใงใ™ใ€‚100ๅนดๅพŒใ€200ๅนดๅพŒใฎๆœชๆฅใซใŠใ„ใฆใ€็งใŸใกใฎๅญๅญซใŒใ€Œใ‚ใฎๆ™‚ไปฃใ‹ใ‚‰ไฝ•ใ‹ใŒๅค‰ใ‚ใฃใŸใ€ใจ่ช่ญ˜ใ™ใ‚‹ใจใ™ใ‚Œใฐใ€ใใ‚Œใฏใ‚คใƒณใ‚ฟใƒผใƒใƒƒใƒˆใฎใ‚ˆใ†ใชๅคงใใชๅค‰้ฉใงใ‚ใ‚Šใ€ไปŠใพใ•ใซ้€ฒ่กŒใ—ใฆใ„ใ‚‹็”ŸๆˆAIใ‚‚ใใฎไธ€ใคใงใ™ใ€‚

ใใ—ใฆใ‚‚ใ†ไธ€ใคใ€็งใŸใกใŒไปŠใƒใƒฃใƒฌใƒณใ‚ธใ™ในใใ“ใจใฏใ€ใ€Œๅœฐ็ƒ็’ฐๅขƒใ‚’ๅฎˆใ‚ŠใชใŒใ‚‰ใƒ“ใ‚ธใƒใ‚นใŒใงใใ‚‹ใ‚ˆใ†ใซใชใฃใŸใ€ใจๆœชๆฅใซ่ชžใ‚‰ใ‚Œใ‚‹ใ“ใจใงใ™ใ€‚ไธ‰่ฑใƒžใƒ†ใƒชใ‚ขใƒซใฏ่ณ‡ๆบๅพช็’ฐใ‚’ๆŽจ้€ฒใ™ใ‚‹ไผๆฅญใงใ‚ใ‚Šใ€ใใฎๅงฟๅ‹ขใฏใพใ•ใซใ“ใฎๆœชๆฅๅƒใ‚’ๅ…ท็พๅŒ–ใ—ใ‚ˆใ†ใจใ—ใฆใ„ใพใ™ใ€‚

ใƒ“ใ‚ธใƒใ‚นใฎไธ–็•Œใงใฏใ€Œ็”˜ใ„ใ“ใจใ‚’่จ€ใฃใฆใฏใ„ใ‘ใชใ„ใ€ใจใ•ใ‚ŒใŒใกใงใ™ใŒใ€ๅœฐ็ƒ็’ฐๅขƒใ‚’ๅฎˆใ‚‹ใจใ„ใ†่ฆ–็‚นใซใŠใ„ใฆใฏใ€ใ‚ณใƒณใƒ‘ใƒƒใ‚ทใƒงใƒณ๏ผˆๅˆฉไป–ใƒปๆ€ใ„ใ‚„ใ‚Š๏ผ‰ใŒไธๅฏๆฌ ใงใ™ใ€‚ใ“ใ‚Œใฏไบบ้กžๅ…จไฝ“ใŒใ‚‚ใฃใจๆ„่ญ˜ใ™ในใใ‚ญใƒผใƒฏใƒผใƒ‰ใ ใจ่€ƒใˆใฆใ„ใพใ™ใ€‚

CIOใซใฏๅฐ‚้–€้ ˜ๅŸŸใซๅผทใ„ๆ–นใŒๅคšใใ€็ตŒๅ–ถๅฑคใจๅŒ็ญ‰ใฎใƒฌใƒ™ใƒซใง่ญฐ่ซ–ใงใใ‚‹ใ“ใจใŒๆฑ‚ใ‚ใ‚‰ใ‚Œใพใ™ใ€‚

ใ—ใ‹ใ—ใ€ITใฎ้ ˜ๅŸŸใ ใ‘ใงใฏ่ถณใ‚Šใพใ›ใ‚“ใ€‚ๆตทๅค–ใฎ็Ÿฅ่ฆ‹ใ€ๆฅญ็•Œใฎๅ‹•ๅ‘ใ€ใใ—ใฆใƒชใƒ™ใƒฉใƒซใ‚ขใƒผใƒ„ใชใฉใ€ITไปฅๅค–ใฎๅˆ†้‡Žใซใ‚‚็›ฎใ‚’ๅ‘ใ‘ใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚ใใ‚Œใžใ‚Œใฎไผๆฅญใ‚„ๆฅญ็จฎใซใ‚ˆใฃใฆ็Šถๆณใฏ็•ฐใชใ‚Šใพใ™ใŒใ€ITใ ใ‘ใ‚’่€ƒใˆใฆใ„ใฆใฏๆœฌ่ณช็š„ใช่ชฒ้กŒ่งฃๆฑบใซใฏ่‡ณใ‚Šใพใ›ใ‚“ใ€‚ใ ใ‹ใ‚‰ใ“ใใ€่‡ชๅˆ†ใฎๅพ—ๆ„้ ˜ๅŸŸใ‚’ๆดปใ‹ใ—ใชใŒใ‚‰ใ€่ค‡ๅˆ็š„ใซๅ–ใ‚Š็ต„ใ‚€ใ“ใจใŒใ€ใ“ใ‚Œใ‹ใ‚‰ใฎCIOใซๆฑ‚ใ‚ใ‚‰ใ‚Œใ‚‹ๅงฟๅ‹ขใ ใจ็งใฏ่€ƒใˆใฆใ„ใพใ™ใ€‚

โ€œ๋ฐ”์ด๋ธŒ ๋Ÿฌ๋‹๊ณผ AI ๋ฆฌ๋”์‹ญโ€ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ž„์›์ด ๋˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๊ฒƒ

3 December 2025 at 00:24

์—ฌ๋Ÿฌ ๋””์ง€ํ„ธ ์ „ํ™˜ ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋Œ๊ณ  ์žฌ๋ฌด ์„ฑ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด๋ƒˆ๋‹ค. ๊ฒฝ์˜์ง„์€ ๊ณ ๊ฐ๊ณผ ์ง์› ๊ฒฝํ—˜์„ ๋ชจ๋‘ ๊ฐœ์„ ํ•œ ๋ณ€ํ™” ๋ฆฌ๋”์‹ญ ์—ญ๋Ÿ‰์„ ๋†’๊ฒŒ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ฃผ๋„์ ์œผ๋กœ ๊ตฌํ˜„ํ•œ ์•„ํ‚คํ…์ฒ˜๋Š” ์ด์ œ ํ”Œ๋žซํผ ํ‘œ์ค€์ด ๋๊ณ , ์กฐ์ง์˜ ๋ฐ์ดํ„ฐ์™€ AI ์ „๋žต์„ ๋– ๋ฐ›์น˜๋Š” ๊ธฐ๋ฐ˜์ด ๋๋‹ค.

์ด ๋‹จ๊ณ„์—์„œ ๋งŽ์€ IT ์ฑ…์ž„์ž๊ฐ€ ์ด์ œ CIO๋‚˜ ๋ฐ์ดํ„ฐ, ๋””์ง€ํ„ธ, ๋ณด์•ˆ ๋ถ„์•ผ์˜ ๋‹ค๋ฅธ C ๋ ˆ๋ฒจ ์ž๋ฆฌ์— ๋„์ „ํ•  ์ž๊ฒฉ์ด ์žˆ๋Š”์ง€ ์ž๋ฌธํ•œ๋‹ค.

CIO.com์˜ ์—ฐ๋ก€ CIO ํ˜„ํ™ฉ(State of the CIO) ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, CIO์˜ 80% ์ด์ƒ์ด ์—ญํ• ์ด ์ ์  ๋” ๋””์ง€ํ„ธ๊ณผ ํ˜์‹  ์ค‘์‹ฌ์œผ๋กœ ๋ฐ”๋€Œ๊ณ  ์žˆ๊ณ  ๋””์ง€ํ„ธ ์ „ํ™˜์„ ์ด๋„๋Š” ๋ฐ ๋” ๊นŠ์ด ๊ด€์—ฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, CIO๊ฐ€ ๋ณ€ํ™”์˜ ์ด‰๋งค ์—ญํ• ์„ ๋งก๊ณ  ์žˆ๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค. ์ด ์กฐ๊ฑด์„ ์ถฉ์กฑํ•˜๊ณ  ์žˆ๋‹ค๋ฉด, C ๋ ˆ๋ฒจ ์ž๋ฆฌ์— ์–ด๋–ป๊ฒŒ ์˜ฌ๋ผ์„ค ์ˆ˜ ์žˆ์„์ง€ ๊ณ ๋ฏผํ•ด์•ผ ํ•œ๋‹ค.

๋””์ง€ํ„ธ ํ˜์‹  ์ฑ…์ž„์ž๋Š” ํ›Œ๋ฅญํ•œ C ๋ ˆ๋ฒจ ํ›„๋ณด

๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜ ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋„๋Š” ๊ฒฝํ—˜์€ C ๋ ˆ๋ฒจ ์ž๋ฆฌ์— ์˜ค๋ฅด๊ธฐ ์œ„ํ•œ ์ค‘์š”ํ•œ ์ „์ œ ์กฐ๊ฑด์ด๋‹ค. ํ•˜์ง€๋งŒ C ๋ ˆ๋ฒจ ์ž„์›์ด ๋˜๋ฉด, ๋ชจ๋“  IT ํ”„๋กœ์ ํŠธ๋Š” ๋ฌผ๋ก , ์šด์˜ ์ „๋ฐ˜์˜ ์„ฑ๊ณผ์™€ ๋ฆฌ์Šคํฌ์— ๋Œ€ํ•ด ์ฑ…์ž„์„ ์ง€๋ฉด์„œ ์—ญํ• ๊ณผ ์ฑ…์ž„์ด ํฌ๊ฒŒ ํ™•๋Œ€๋œ๋‹ค. C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ž„์›์€ CEO์™€ CFO๊ฐ€ ๊ณต๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ์ „๋žต์„ ์ˆ˜๋ฆฝํ•ด์•ผ ํ•˜๊ณ , ๋Š์ž„์—†์ด ์ง„ํ™”ํ•˜๋Š” ๋””์ง€ํ„ธ ์šด์˜ ๋ชจ๋ธ์„ ์ด๊ด„ํ•ด์•ผ ํ•œ๋‹ค.

์›Œํฌ๋ฐ์ด(Workday)์˜ CIO ๋ผ๋‹ˆ ์กด์Šจ์€ โ€œ๋ฆฌ๋”๋กœ ์„ฑ์žฅํ•˜๊ณ ์ž ํ•˜๋Š” ๊ธฐ์ˆ  ์ฑ…์ž„์ž๋Š” ํ”„๋กœ์ ํŠธ ๊ธฐ๋ฐ˜ ๋ณ€ํ™” ์‹คํ–‰์„ ๊ด€๋ฆฌํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๊ธฐ์—… ์ „์ฒด์˜ ๊ธฐ์ˆ , ์•„ํ‚คํ…์ฒ˜, IT ์ „๋žต์— ๋Œ€ํ•ด ์™„์ „ํ•œ ์†Œ์œ ๊ถŒ๊ณผ ์ฑ…์ž„์„ ์ ธ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์กด์Šจ์€ โ€œIT ์ธํ”„๋ผ, ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ, AI ํ”Œ๋žซํผ, ํ•ต์‹ฌ ์‹œ์Šคํ…œ ์šด์˜, ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ณ  ์‹ค๋ฌด์ ์ธ ์ „๋ฌธ์„ฑ์„ ์Œ“์•„์•ผ ํ•œ๋‹ค. ๊ธฐ์ˆ  ์ „๋žต์„ ์•ˆ์ •์ ์œผ๋กœ ์šด์˜ํ•˜๋ฉด์„œ๋„ ์ง€์†์ ์ธ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋กœ ์—ฐ๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์—ญ๋Ÿ‰์„ ๋ณด์—ฌ์ค˜์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

C ๋ ˆ๋ฒจ ์—ญํ• ์„ ์ค€๋น„ํ•˜๋ ค๋Š” IT ๋ฆฌ๋”๋Š” ํ‰์ƒ ํ•™์Šต ํ”„๋กœ๊ทธ๋žจ์„ ์„ค๊ณ„ํ•ด ์ „๋ฌธ์„ฑ์„ ํ‚ค์šฐ๊ณ  ์ž์‹ ๊ฐ์„ ์Œ“์•„์•ผ ํ•œ๋‹ค. 70-20-10 ํ•™์Šต ๋ชจ๋ธ์€ ์—…๋ฌด ๊ฒฝํ—˜ 70%, ๋™๋ฃŒ์™€์˜ ์†Œ์…œ ๋Ÿฌ๋‹ 20%, ์ •๊ทœ ๊ต์œก 10%์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ๋””์ง€ํ„ธ ํ˜์‹ ์„ ์ด๋„๋Š” ๋ฆฌ๋”๋Š” ์ด ๋ชจ๋ธ์„ C ๋ ˆ๋ฒจ ๊ธฐํšŒ๋ฅผ ํ–ฅํ•œ ์—ฌ์ •์— ์–ด๋–ป๊ฒŒ ์ ์šฉํ•˜๋Š”์ง€ ์•Œ์•„๋ณด์ž.

์ „๋ฌธ๊ฐ€์—์„œ โ€˜๋น„์ „๋ฌธ ์˜์—ญโ€™์˜ ์ธํ”Œ๋ฃจ์–ธ์„œ๋กœ ์ „ํ™˜ํ•˜๋Š” ๊ฒฝํ—˜

๋งŽ์€ ๋””์ง€ํ„ธ ํ˜์‹  ๋ฆฌ๋”๊ฐ€ ์—ฌ๋Ÿฌ ํ•ด์— ๊ฑธ์นœ ์ „์‚ฌ ์ฐจ์›์˜ ์ „๋žต ํ”„๋กœ์ ํŠธ๊นŒ์ง€ ํฌํ•จํ•ด ์ž์‹ ์ด ๋งก์€ ํ”„๋กœ๊ทธ๋žจ ์ „๋ฐ˜์— ๋Œ€ํ•œ ์ „๋ฌธ์„ฑ์„ ํ™•๋ณดํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•œ๋‹ค. ์šฐ์„ ์ˆœ์œ„๋ฅผ ์กฐ์ •ํ•˜๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด ์• ์ž์ผ ํ”„๋กœ๊ทธ๋žจ์˜ ๋ชจ๋“  ์ƒํ™ฉ์„ ๋“ค์—ฌ๋‹ค๋ณด๋ ค๋Š” ๋ฆฌ๋”๋„ ๋งŽ๋‹ค.

ํ•˜์ง€๋งŒ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ฑ…์ž„์ž๋Š” ๋ชจ๋“  ์ „๋žต ํ”„๋กœ์ ํŠธ์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ๊นŒ์ง€ ๊ด€์—ฌํ•  ์‹œ๊ฐ„๋„ ์—†๊ณ , ๊ธฐ์ˆ  ๊ตฌํ˜„์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์— ๋Œ€ํ•ด ์ตœ๊ณ ์˜ ์ „๋ฌธ๊ฐ€๋„ ์•„๋‹ˆ๋‹ค. C ๋ ˆ๋ฒจ ์ž„์›์ด ๋˜๊ณ ์ž ํ•˜๋Š” IT ๋ฆฌ๋”๊ฐ€ ์ฑ„์›Œ์•ผ ํ•  70%์˜ ์—…๋ฌด ๊ฒฝํ—˜์€ ์ „๋ฌธ์„ฑ๊ณผ ์ฑ…์ž„ ๋ฒ”์œ„๋ฅผ ๋„˜์–ด์„œ๋Š” ์˜์—ญ์— ๊ณผ๊ฐํ•˜๊ฒŒ ๋ฐœ์„ ๋“ค์—ฌ๋†“๋Š” ๋ฐ์„œ ๋‚˜์˜จ๋‹ค.

ํ”„๋ฆฐ์‹œํŽ„(Principal)์˜ CIO ์บ์‹œ ์ผ€์ด๋Š” โ€œC ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ์ž„์› ์—ญํ• ๋กœ ์˜ฌ๋ผ์„œ๋Š” ๋ฐ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ชจ๋“  ๋‹ต์„ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ชจํ˜ธํ•จ๊ณผ ๋ณต์žก์„ฑ ์†์—์„œ ๋ฆฌ๋”์‹ญ์„ ๋ฐœํœ˜ํ•˜๋Š” ๋ฒ•์„ ๋ฐฐ์šฐ๋Š” ๊ฒƒ์ด๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์ผ€์ด๋Š” โ€œ๊ฐ€์žฅ ๊ฐ’์ง„ ์„ฑ์žฅ์€ ์ŠคํŠธ๋ ˆ์น˜ ๊ณผ์ œ๋ฅผ ๋งก๊ณ , ์ž„ํŒฉํŠธ๊ฐ€ ํฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ฉด์„œ, IT ์กฐ์ง ๋‚ด๋ถ€์—๋งŒ ๋จธ๋ฌผ์ง€ ์•Š๊ณ  ์ „์‚ฌ ์ฐจ์›์—์„œ ์˜ํ–ฅ๋ ฅ์„ ๋ฐœํœ˜ํ•˜๋Š” ๊ณผ์ •์„ ํ†ตํ•ด ์ด๋ค„์ง„๋‹ค. ์ด๋Ÿฐ ๊ฒฝํ—˜์ด ๊ฐ•๋ ฅํ•œ ๋ฉ˜ํ† ์™€ ๋™๋ฃŒ์˜ ์กฐ์–ธ๊ณผ ๊ฒฐํ•ฉ๋˜๋ฉด ์˜ค๋ž˜ ๊ฐ€๋Š” ๋ฆฌ๋”์‹ญ ๊ธฐ๋ฐ˜์ด ๋งŒ๋“ค์–ด์ง„๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋‹ค์Œ์€ ์—…๋ฌด ํ˜„์žฅ์—์„œ ์ฐพ์•„์•ผ ํ•  ๊ฒฝํ—˜์— ๋Œ€ํ•œ ๋ช‡ ๊ฐ€์ง€ ์กฐ์–ธ์ด๋‹ค.

  • ์˜์—… ๋ฐ ๋งˆ์ผ€ํŒ… ์ฑ…์ž„์ž์™€ ํ•จ๊ป˜ ๊ณ ๊ฐ์„ ๋ฐฉ๋ฌธํ•˜๊ณ  ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ๊ฐ์„ ๊ธฐ๋ฅด๊ณ  ๊ตฌ๋งค์ž์˜ ๋‹ˆ์ฆˆ๋ฅผ ์ดํ•ดํ•˜๊ณ , ๊ณ ๊ฐ์˜ ์—”๋“œ ํˆฌ ์—”๋“œ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์ง์ ‘ ๊ฒ€ํ† ํ•œ๋‹ค.
  • ๋‹ค๋ฅธ ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋„๋Š” ๋ฆฌ๋”๋ฅผ ๋ฉ˜ํ† ๋งํ•ด, ์ „๋ฌธ ์˜์—ญ ๋ฐ–์— ์žˆ๋Š” ์‚ฌ์•ˆ์— ๋Œ€ํ•ด์„œ๋„ ์กฐ์–ธ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ์ž์‹ ๊ฐ์„ ํ‚ค์šด๋‹ค.
  • ์›Œํฌ์ˆ์„ ์ง์ ‘ ์ฃผ๊ด€ํ•œ๋‹ค. ํŠนํžˆ ์ค‘๊ฐ„์— ๊ฐˆ๋“ฑ์ด๋‚˜ ๋…ผ์Ÿ์ด ํ„ฐ์ง€๋Š” ์ƒํ™ฉ์„ ์ž˜ ์ˆ˜์Šตํ•ด๋‚ธ๋‹ค๋ฉด, ๊ฒฝ์˜์ง„ ์œ„์›ํšŒ๋‚˜ ์ด์‚ฌํšŒ ์•ž์—์„œ ๋ฐœํ‘œํ•˜๋Š” ํ›Œ๋ฅญํ•œ ์‹ค์ „ ๊ฒฝํ—˜์„ ์Œ“์„ ์ˆ˜ ์žˆ๋‹ค.
  • ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ๋„์ž…์— ๋ถ€์ •์ ์ธ ๋ถ€์„œ ๋ฆฌ๋”๋ฅผ ์ฐพ์•„ ํ˜„ ์ƒํƒœ์— ์•ˆ์ฃผํ•˜๋Š” ์‚ฌ๊ณ ๋ฅผ ๊นจ๋œจ๋ฆด ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๋ชจ์ƒ‰ํ•œ๋‹ค.
  • ์˜์‚ฌ๊ฒฐ์ •์— ๋ฐ์ดํ„ฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ณ  ํšจ์œจ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ AI ๋„์ž…์—์„œ ๋’ค์ฒ˜์ง„ ์šด์˜ ์กฐ์ง์„ ๊ณจ๋ผ ํ˜‘๋ ฅํ•˜๋ฉด์„œ ๋ณ€ํ™”์˜ ์ด‰๋งค ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

๋‘ ๋ฒˆ์งธ๋กœ ํ‚ค์›Œ์•ผ ํ•  ์—ญ๋Ÿ‰์€ ๊ฒฝ์ฒญํ•˜๊ณ  ๋„์ „ํ•˜๊ณ  ์ ์‘ํ•˜๊ณ , ๋ฐฉํ–ฅ์„ ์ „ํ™˜ํ•˜๋Š” ๋Šฅ๋ ฅ์ด๋‹ค. ์„ฑ๊ณต์ ์ธ C ๋ ˆ๋ฒจ ๋ฆฌ๋”๋Š” ๋น„์ „์„ ์ œ์‹œํ•˜๊ณ  ์ง€์†์ ์œผ๋กœ ๊ณ„ํš์„ ์„ธ์›Œ์•ผ ํ•˜์ง€๋งŒ, ์‹œ์žฅ๊ณผ ๊ณ ๊ฐ, ํˆฌ์ž์ž, ์ดํ•ด๊ด€๊ณ„์ž์˜ ์š”๊ตฌ๊ฐ€ ๋ฐ”๋€Œ์–ด ๋ชฉํ‘œ๋ฅผ ์žฌ์กฐ์ •ํ•ด์•ผ ํ•  ๋•Œ๋ฅผ ๊ฐ์ง€ํ•  ์ค„๋„ ์•Œ์•„์•ผ ํ•œ๋‹ค.

๋ฉ”๊ฐ€ํฌํŠธ(Megaport)์˜ CTO ์นด๋ฉ”๋ก  ๋‹ค๋‹ˆ์—˜์€ โ€œ์ƒˆ๋กœ์šด ๊ธฐ์ˆ , ๋น„์ฆˆ๋‹ˆ์Šค ์šฐ์„ ์ˆœ์œ„ ๋ณ€ํ™”, ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๋ณ€์ˆ˜๋Š” ์ž˜ ์„ค๊ณ„๋œ ๊ณ„ํš๋„ ๋‹จ์ˆจ์— ๋ฌด๋ ฅํ™”ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋‹ค๋‹ˆ์—˜์€ โ€œ์„ฑ๊ณต์ ์ธ ๋ฆฌ๋”๋Š” ๋ณ€ํ™”๊ฐ€ ๋ฒŒ์–ด์กŒ์„ ๋•Œ ๊ทธ๋•Œ๊ทธ๋•Œ ๋Œ€์‘ํ•˜๋Š” ์ˆ˜์ค€์— ๋จธ๋ฌผ์ง€ ์•Š๋Š”๋‹ค. ๋ณ€ํ™”๋ฅผ ๋ฏธ๋ฆฌ ์˜ˆ์ธกํ•˜๊ณ , ์กฐ์ง์ด ๋ณ€ํ™”์— ๋Œ€๋น„ํ•ด ์ค€๋น„๋˜๊ณ  ๋ฌด์žฅ๋ผ ์žˆ๋„๋ก ๋งŒ๋“ ๋‹ค. CTO๋Š” ์ด๋Ÿฐ ์ ์‘๋ ฅ์˜ ์ด ์„ค๊ณ„์ž๋กœ์„œ, ์†”๋ฃจ์…˜์ด ํ˜์‹ ์˜ ์†๋„๋ฅผ ๋”ฐ๋ผ ๋ฐœ์ „ํ•˜๋ฉด์„œ๋„ ๋น„์ฆˆ๋‹ˆ์Šค ์˜ํ–ฅ๊ณผ ์ „๋žต์  ๋ชฉํ‘œ๋ฅผ ๊ณ„์† ๋‹ฌ์„ฑํ•˜๋„๋ก ์ฑ…์ž„์ ธ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

AI์™€ ์‹ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์†Œ์…œ ๋Ÿฌ๋‹์— ์ง‘์ค‘

์ƒ์„ฑํ˜• AI์™€ ์ธ๊ณต ์ผ๋ฐ˜ ์ง€๋Šฅ์ด ์–ธ์ œ ๋“ฑ์žฅํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ๊ณผ๋Œ€๊ด‘๊ณ ๊ฐ€ ๋„˜์ณ๋‚˜๋Š” ์ƒํ™ฉ์ด๋‹ค. ์ด์‚ฌํšŒ์™€ ๊ฒฝ์˜์ง„์€ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ๋ฆฌ๋”๊ฐ€ ์ด๋Ÿฐ ์†Œ์Œ์„ ๊ฑธ๋Ÿฌ๋‚ด๊ณ  AI ์ „๋žต์„ ์ด๋Œ๊ณ , ๋ฐ์ดํ„ฐ์™€ AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ํ™•๋ฆฝํ•ด ์ฃผ๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค.

๋ณด๋„์ž๋ฃŒ์™€ ์†Œ๊ทœ๋ชจ PoC๋งŒ์œผ๋กœ๋Š” ํ˜„์‹ค์ ์ธ AI ๋น„์ „๊ณผ ๋‹จ๊ธฐ์ ์ธ ํˆฌ์ž ์ˆ˜์ต์„ ๋งŒ๋“ค ์ˆ˜ ์—†๋‹ค. C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ๋ฆฌ๋”๋Š” ๋™๋ฃŒ์™€ ๋„คํŠธ์›Œํฌ๋ฅผ ๋„“ํžˆ๊ณ  ์ปค๋ฎค๋‹ˆํ‹ฐ์— ์ฐธ์—ฌํ•ด ๋‹ค๋ฅธ ์กฐ์ง์ด ์–ด๋””์— ํˆฌ์žํ•˜๊ณ  AI ๊ธฐ๋ฐ˜ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ๋ฅผ ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค๊ณ  ์žˆ๋Š”์ง€ ๋ฐฐ์šฐ๋ฉด์„œ ์ง€์‹์„ ํ™•์žฅํ•œ๋‹ค.

์ตœ๊ทผ ์—ด๋ฆฐ โ€˜์ปคํ”ผ ์œ„๋“œ ๋””์ง€ํ„ธ ํŠธ๋ ˆ์ผ๋ธ”๋ ˆ์ด์ €(Coffee With Digital Trailblazers)โ€™์—์„œ๋Š” ๋ณ€ํ™” ๋ฆฌ๋”๊ฐ€ C ๋ ˆ๋ฒจ ๋ฆฌ๋”์‹ญ์˜ ๋ฐ”ํ†ต์„ ์–ด๋–ป๊ฒŒ ์ด์–ด๋ฐ›์„ ์ˆ˜ ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์†Œ์…œ ๋Ÿฌ๋‹์„ ์‚ฌ๋‚ด์—์„œ ์–ด๋–ป๊ฒŒ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๋…ผ์˜ํ–ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, ์ปจํ‹ฐ๋‰ด์—„ ์ŠคํŠธ๋ž˜ํ‹ฐ์ง€(Continuums Strategies)์˜ ์„ค๋ฆฝ์ž์ด์ž vCISO์ธ ๋ฐ๋ฆญ ๋ฒ„์ธ ๋Š” AI ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ํƒ์ง€์™€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ AI ๊ธฐ๋ฐ˜ ์ž๋™ํ™” ๊ณต๊ฒฉ์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ํŒ€์— ํ•ฉ๋ฅ˜ํ•  ๊ฒƒ์„ ์ œ์•ˆํ–ˆ๋‹ค. ์„ฑ์žฅ ์ „๋žต๊ฐ€์ด์ž ํ”„๋ž™์…”๋„ CIO์ธ ์กฐ ํ‘ธ๊ธ€๋ฆฌ์‹œ๋Š” AI๋ฅผ ๊ธฐํšŒ๋กœ ์‚ผ๋Š” ์—ด์‡ ๋กœ ํ˜ธ๊ธฐ์‹ฌ๊ณผ ๋Š์ž„์—†๋Š” ์งˆ๋ฌธ์„ ๊ผฝ์•˜๋‹ค.

ํ‘ธ๊ธ€๋ฆฌ์‹œ๋Š” โ€œํ˜ธ๊ธฐ์‹ฌ์ด ์—†๊ณ  ์ผ์ด ์™œ ๊ทธ๋ ‡๊ฒŒ ์ง„ํ–‰๋˜๋Š”์ง€ ๋ฟŒ๋ฆฌ๊นŒ์ง€ ํŒŒ๊ณ ๋“ค์ง€ ์•Š์œผ๋ฉด, ๊ณ ๊ฐ ๋งŒ์กฑ๋„๋ฅผ ์ƒˆ๋กœ์šด ์ˆ˜์ค€์œผ๋กœ ๋Œ์–ด์˜ฌ๋ฆฌ๊ณ , ์ƒˆ๋กœ์šด ์ œํ’ˆ์„ ๋งŒ๋“ค๊ณ , ์ƒˆ๋กœ์šด ๋งค์ถœ์›์„ ์—ด๊ณ , ๋น„์šฉ์„ ์ค„์ด๋Š” ๋” ์ƒˆ๋กญ๊ณ , ๋” ๋น ๋ฅด๊ณ , ๋” ๋˜‘๋˜‘ํ•˜๊ณ , ๋” ์ €๋ ดํ•œ ๋ฐฉ๋ฒ•์„ ์ ˆ๋Œ€ ๋ฐœ๋ช…ํ•˜์ง€ ๋ชปํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์†Œ์…œ ๋Ÿฌ๋‹์—์„œ ๋˜ ํ•˜๋‚˜ ์ง‘์ค‘ํ•ด์•ผ ํ•  ์˜์—ญ์€ ๋น„์ฆˆ๋‹ˆ์Šค ์šด์˜์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋๊นŒ์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ํ˜„์—… ์ „๋ฌธ๊ฐ€์™€์˜ ๋งŒ๋‚จ์ด๋‹ค. ํ€€ํ…์‚ฌ(Quantexa)์˜ CTO ์ œ์ด๋ฏธ ํ—ˆํŠผ์€ โ€œ์—์ด์ „ํ‹ฑ AI๊ฐ€ ํ˜„์‹ค๋กœ ๋‹ค๊ฐ€์˜ค๋ฉด์„œ ๋ฐ์ดํ„ฐ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ๋Š” ํ•ต์‹ฌ ๋ฆฌ๋”์‹ญ ์—ญ๋Ÿ‰์ด ๋˜๊ณ  ์žˆ๋‹ค. ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋””์—์„œ ์™”๋Š”์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋‹ค๋ฉด, ๊ทธ ์œ„์— AI๋ฅผ ์ฑ…์ž„๊ฐ ์žˆ๊ฒŒ ์˜ฌ๋ฆด ์ˆ˜ ์—†๋‹ค. ์‚ฌ๋žŒ๊ณผ AI ์—์ด์ „ํŠธ๊ฐ€ ๋‚˜๋ž€ํžˆ ์ผํ•˜๋Š” ์‹œ๋Œ€๋Š” ๋งŽ์€ ์‚ฌ๋žŒ์ด ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋นจ๋ฆฌ ์˜จ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

โ€˜์™œโ€™๋ผ๋Š” ์งˆ๋ฌธ์„ ๋˜์ง€๋Š” ์†Œ์…œ ๋Ÿฌ๋‹, AI ๋ณด์•ˆ ์ด์Šˆ์— ๋Œ€์‘ํ•˜๋Š” ๋ณด์•ˆํŒ€๊ณผ์˜ ๋ฏธํŒ…, ๋น„์ฆˆ๋‹ˆ์Šค ์šด์˜ ๋ฐ์ดํ„ฐ ๊ฒ€ํ† ๋Š” AI๊ฐ€ ํฐ ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ์˜์—ญ์— ๋Œ€ํ•œ ์•„์ด๋””์–ด๋ฅผ ์ •๋ฆฌํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค€๋‹ค. ์ธ์‚ฌ์ดํŠธ(Insight) ๊ณ„์—ด์‚ฌ SADA์˜ CTO ๋งˆ์ผ์Šค ์›Œ๋“œ๋Š” โ€œC ๋ ˆ๋ฒจ์— ๊ฐ€์žฅ ๋นจ๋ฆฌ ๋‹ค๊ฐ€๊ฐ€๋Š” ๊ธธ์€ ํšŒ์‚ฌ์˜ ๋ช…์šด์ด ๊ฑธ๋ฆฐ ๋ฌธ์ œ๋ฅผ ์ง์ ‘ ์ฐพ์•„ ๋‚˜์„œ๋Š” ๊ฒƒ์ด๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ •๊ทœ ๊ต์œก์„ ๋ฒ„๋ฆฌ์ง€ ๋ง๋ผ

๋งŽ์€ C ๋ ˆ๋ฒจ ๋ฆฌ๋”๋Š” ์—…๋ฌด๊ฐ€ ๋„ˆ๋ฌด ๋ฒ…์ฐจ๊ณ  ์‹œ๊ฐ„์ด ๋ถ€์กฑํ•˜๋‹ค๋Š” ์ด์œ ๋กœ ์ •์‹ ํ•™์Šต ํ™œ๋™์„ โ€˜์žˆ์œผ๋ฉด ์ข‹์€ ๊ฒƒโ€™ ์ •๋„๋กœ ์ทจ๊ธ‰ํ•œ๋‹ค. ํ‰์ƒ ํ•™์Šต์ž๋Š” ๋…์„œ, ์ฒญ์ทจ, ์‹œ์ฒญ, ์˜จ๋ผ์ธ ๊ฐ•์˜, ๊ธฐํƒ€ ํ•™์Šต ๊ฒฝํ—˜์— 10% ์ •๋„ ์‹œ๊ฐ„์„ ํˆฌ์žํ•˜๋ฉด ์‚ฌ๊ณ ์˜ ํญ์ด ๋„“์–ด์ง€๊ณ  ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ ‘ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ดํ•ดํ•˜๊ณ  ์žˆ๋‹ค. ํ•™์Šต์€ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰ ๊ฐœ๋ฐœ์— ๊ทธ์น˜์ง€ ์•Š๋Š”๋‹ค.

์˜ํŠธ์ŠคํŒŸ(ThoughtSpot)์˜ ์ตœ๊ณ  ๋ฐ์ดํ„ฐยทAI ์ „๋žต ์ฑ…์ž„์ž์ธ ์‹ ๋”” ํ•˜์šฐ์Šจ์€ โ€œํ˜์‹  ์†๋„๊ฐ€ ๋น ๋ฅธ ์ง€๊ธˆ์€ 70-20-10 ๊ทœ์น™์ด ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ •์‹ ํ•™์Šต ํ™œ๋™์— ํ•ด๋‹นํ•˜๋Š” 10%๋Š” ๋” ๋Š˜๋ ค์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์ œ์•ˆํ–ˆ๋‹ค. ๋˜, โ€œ์ง‘์ค‘์ ์ธ ํ•ธ์ฆˆ์˜จ ๋ฏธ๋‹ˆ ํด๋ž˜์Šค์™€ ์ตœ์‹  AI ํ˜์‹  ์ตœ์ „์„ ์— ์žˆ๋Š” ๋ฆฌ๋”์™€์˜ ํ”ผ์–ด ๋„คํŠธ์›Œํฌ๊ฐ€ ๊ฒฐํ•ฉ๋œ ์‹œ์˜์ ์ ˆํ•œ ์„œ๋ฐ‹์„ ํ™œ์šฉํ•˜๋Š” โ€˜๋ฐ”์ด๋ธŒ ๋Ÿฌ๋‹(Vibe Learning)โ€™ ๋ฐฉ์‹์ด ํšจ๊ณผ์ ์ด๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค๋ฅธ ํ•™์Šต ๊ธฐํšŒ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜ ํ•„๋…์„œ ๋ชฉ๋ก, CIO ์ถ”์ฒœ ๋„์„œ, CIO๋ฅผ ์œ„ํ•œ ํ•„๋…์„œ 40์„  ๊ฐ™์€ ์ฑ…์„ ์ฝ๋Š”๋‹ค.
  • CIO ๋ฆฌ๋”์‹ญ ๋ผ์ด๋ธŒ(CIO Leadership Live), CXOํ† ํฌ(CXOTalk), ํ”ผํ„ฐ ํ•˜์ด์˜ ํ…Œํฌ๋…ธ๋ฒ ์ด์…˜(Technovation with Peter High), CIO ์ธ ๋” ๋…ธ์šฐ(CIO in the Know) ๊ฐ™์€ ์ธ๊ธฐ CIO ํŒŸ์บ์ŠคํŠธ๋ฅผ ์ž์ฃผ ์ฒญ์ทจํ•œ๋‹ค.
  • ๋งํฌ๋“œ์ธ์˜ ์ด๊ทธ์ œํํ‹ฐ๋ธŒ ๋ฆฌ๋”์‹ญ ๊ณผ์ •๊ณผ CIO ๋Œ€์ƒ ์œ ๋ฐ๋ฏธ(Udemy) ๊ฐ•์˜ ๊ฐ™์€ ์˜จ๋ผ์ธ ํ•™์Šต ๊ธฐํšŒ๋ฅผ ๊ฒ€ํ† ํ•œ๋‹ค.
  • ๋” ํฐ ํˆฌ์ž๋ฅผ ํ•œ๋‹ค๋ฉด ๋ฒ„ํด๋ฆฌ๋‚˜ ์นด๋„ค๊ธฐ ๋ฉœ๋Ÿฐ ๋Œ€ํ•™๊ต, ์™€ํŠผ ๋“ฑ ๊ต์œก๊ธฐ๊ด€์—์„œ ์ œ๊ณตํ•˜๋Š” CTO ๋Œ€์ƒ ํ•™์œ„ ํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, C ๋ ˆ๋ฒจ ์—ญํ• ์ด ๋ชจ๋“  ์‚ฌ๋žŒ์—๊ฒŒ ๋งž๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. CIO ํ˜„ํ™ฉ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, CIO์˜ 43%๋Š” ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€์„ 1~10์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ๋•Œ 8์  ์ด์ƒ์ด๋ผ๊ณ  ๋‹ตํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ C ๋ ˆ๋ฒจ ์ž๋ฆฌ๋ฅผ ์˜ค๋ฅด๊ณ ์ž ํ•œ๋‹ค๋ฉด, ๊ฒฝ๋ ฅ ๋ชฉํ‘œ๋ฅผ ์„ธ์šฐ๊ธฐ ์ „์— ์—ญํ• ์„ ์ถฉ๋ถ„ํžˆ ์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค.
dl-ciokorea@foundryco.com

What it takes to step into a C-level technology role

2 December 2025 at 05:01

Youโ€™ve led several digital transformation initiatives and delivered financial impacts. Executives recognize your change leadership competencies, having improved both customer and employee experiences. The architectures you helped roll out are now platform standards and are foundational to your organizationโ€™s data and AI strategies.

Now, youโ€™re asking whether youโ€™re ready for a CIO role, or another C-level role in data, digital, or security.ย 

CIO.comโ€™s 24th annual State of the CIO reports that over 80% of CIOs say their role is becoming more digital- and innovation-focused, that they are more involved in leading digital transformation, and that the CIO is becoming a changemaker. If youโ€™re checking these boxes, you should be asking how you can step up into a C-level job.

Transformation leaders are excellent C-level candidates

Leading transformation initiatives is an important prerequisite for C-level roles, but itโ€™s not sufficient. Thereโ€™s a significant step up in responsibilities when you become accountable for outcomes and managing risks across all IT initiatives and operations. C-level technology leaders must define a strategy that the CEO and CFO buy into and they must oversee an evolving digital operating model.

โ€œAspiring leaders need to shift from managing project-based change execution to taking full ownership and accountability for enterprise technology, architecture, and IT strategy,โ€ says Rani Johnson, CIO of Workday. โ€œThey should develop deep, hands-on expertise in IT infrastructure, cybersecurity, AI platforms, core system operations, and data governance. They must demonstrate the ability to translate technical strategy into sustained business value whilst ensuring operational stability.โ€

To prepare for C-level roles, leaders should develop a lifelong learning program to develop expertise and build confidence. The 70-20-10 learning model is one approach that focuses 70% of efforts on on-the-job experiences, 20% on social learning from peers, and 10% on formal education. Hereโ€™s how digital trailblazers can apply the model in their quest for C-level opportunities.

Experience transitioning to the non-expert influencer

Many transformation leaders try to develop expertise across the full scope of their programs, even multi-year enterprise-wide strategic initiatives. Some leaders aim for full visibility into their agile programs to help steer priorities and mitigate risks.

But C-level leaders donโ€™t have the time to get into the weeds on every strategic initiative and are generally not experts on the technology implementation details. The 70% of job experiences that transformation leaders should target require stepping into areas outside their expertise and responsibilities.

โ€œStepping into a C-level technology role is less about having all the answers and more about learning to lead through ambiguity and complexity,โ€ says Kathy Kay, CIO of Principal. โ€œSome of the most valuable growth comes from taking on stretch assignments, solving high-impact business problems, and building the ability to influence across the enterprise, not just within IT. When that experience is paired with the guidance of strong mentors and peers, it creates a lasting foundation for leadership.โ€

Here are some tips for on-the-job experiences to seek out.

  • Visit customers with leaders from sales and marketing to develop business acumen, understand buyer needs, and review customersโ€™ end-to-end workflows.
  • Mentor leaders on other initiatives to build confidence in providing advice in areas outside of your expertise.
  • Facilitate a workshop because itโ€™s a great experience for presenting to executive committees and boards, especially if you successfully navigate a blow-up moment.
  • Identify department leaders who are detractors to adopting new technologies and find ways to break through their status-quo thinking.
  • Become a change agent by partnering with select operations teams that lag in using data for decision-making and in adopting AI to drive efficiencies.

A second area to develop is the skills to listen, challenge, adapt, and pivot. Successful C-level leaders have to sell a vision and continuously plan, but also sense when market, customer, investor, and stakeholder needs require a reset of objectives.

โ€œNew technologies, shifting business priorities, and unexpected challenges can render even the best-laid plans obsolete overnight,โ€ says Cameron Daniel, CTO of Megaport. โ€œSuccessful leaders donโ€™t just respond to change as it happens; they anticipate it and make sure their teams are prepared and equipped to handle it. As CTO, you serve as the chief architect of this adaptability, ensuring that your solution evolves alongside innovation while continuing to drive business impact and strategic goals.โ€

Focus social learning on AI and emerging technologies

Thereโ€™s a lot of hype around generative AI and when artificial generative intelligence will emerge. Boards and executive leaders expect C-level leaders to filter the noise, lead the AI strategy, and establish data and AI governance.

C-level technical leaders canโ€™t rely on press releases and small POCs to develop realistic AI visions that can deliver near-term ROI. Top C-level leaders expand their knowledge by networking with peers and joining communities to learn where others are investing and how they are delivering AI business outcomes.ย 

Communities to consider joining include:

Many of these communities are open to tech leaders aspiring to C-level roles.

At a recent Coffee With Digital Trailblazers, we discussed how transformation leaders prepare to take the C-level leadership baton and how social learning can happen inside the company as well. For example, Derrick Butts, founder and vCISO at Continuums Strategies, suggested joining the team working on AI threat detection and triaging different types of AI-enabled automated attacks.

Joe Puglisi, growth strategist and fractional CIO, added that being curious and asking many โ€œwhyโ€ questions is key to unlocking AI opportunities: โ€œIf youโ€™re not curious and donโ€™t get to the root of the reason things are done the way theyโ€™re done, youโ€™ll never invent that new, better, faster, smarter, cheaper way thatโ€™s going to bring new customer satisfaction levels, new products to your customers, new revenue sources, or cost reductions.โ€

One more area to focus on for social learning about AI opportunities is meeting with subject-matter experts who can fully explain the data underlying a business operation. Jamie Hutton, CTO of Quantexa, says, โ€œAs agentic AI becomes a reality, data literacy becomes a core leadership skill. If you canโ€™t explain where your data comes from, you canโ€™t responsibly deploy AI on top of it. Humans and AI agents will be working side by side much sooner than most realize.โ€

Social learning by asking โ€œwhyโ€ questions, meeting security teams that respond to AI security issues, and reviewing data from business operations can help formulate ideas on where AI can deliver sizable benefits. โ€œThe fastest path to C-level is by seeking out โ€˜bet-the-companyโ€™ problems,โ€ says Miles Ward, CTO of SADA, an Insight company.

Donโ€™t eliminate formal learning

Many C-level leaders find the job too demanding and time-consuming, and leave formal learning activities as a nice-to-have. Lifelong learners recognize that a 10% commitment to reading, listening, viewing, coursework, and other learning experiences can expand their mindsets and expose them to new concepts. Learning is not just about skill development.

โ€œIn a time of rapid innovation, the 70-20-10 rule is inadequate, and that 10% formal education needs to increase,โ€ suggests Cindi Howson, chief data and AI strategy officer atย  ThoughtSpot. โ€œHowever, itโ€™s critical to look for the right formal education as executive training is rapidly out of date.โ€

Howson recommends โ€œvibe learningโ€ with hands-on mini classes and timely summits featuring peer-to-peer network from leaders at the cutting edge of AI innovation.

Other learning opportunities include:

A bigger commitment is to consider CTO degree programs from academic institutions such as Berkeley, Carnegie Mellon University, Wharton, and others.

C-level roles are not for everyone. On a scale of 1-10, 43% of CIOs rated the job 8 or higher on a stress level scale in CIO.comโ€™s State of the CIO. So, for those aspiring to C-level roles, make sure to thoroughly understand the role before making it a career objective.

CISO์™€ CIO์˜ ๊ด€๊ณ„๊ฐ€ ํ”๋“ค๋ฆด ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” 12๊ฐ€์ง€ ๊ฒฝ๊ณ  ์‹ ํ˜ธ

2 December 2025 at 01:39

๋ณด์•ˆ๊ณผ IT ๊ฐ„ ํ˜‘์—…์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์€ ๋ถ„๋ช…ํ•˜์ง€๋งŒ, CISO์™€ CIO์˜ ๊ด€๊ณ„๋Š” ๊ทธ๋ฆฌ ์ˆœํƒ„ํ•˜์ง€ ์•Š๋‹ค. ์ด๋Š” ์ƒˆ๋กœ ์ž„๋ช…๋œ CISO๋“ค์ด ์—ญํ• ์„ ์žก์•„๊ฐ€๋Š” ๊ณผ์ •์—์„œ ๊ฒช๋Š” ์ ์‘ ๋ฌธ์ œ๋งŒ๋„ ์•„๋‹ˆ๋‹ค.

๊ฐ€ํŠธ๋„ˆ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด ์žฌ์ง ๊ธฐ๊ฐ„์ด 2๋…„ ๋ฏธ๋งŒ์ธ CISO์˜ ์•ฝ 3๋ถ„์˜ 1์ด ์ฃผ์š” ๋ณด์•ˆ ๊ด€๋ จ ์‚ฌ์•ˆ์—์„œ CIO์™€ ๊ฐˆ๋“ฑ์„ ๊ฒช๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ 5๋…„ ์ด์ƒ ๊ฒฝ๋ ฅ์„ ๊ฐ€์ง„ CISO์˜ ์ ˆ๋ฐ˜์ด ์กฐ์ง์˜ ์‚ฌ์ด๋ฒ„ ํšŒ๋ณต๋ ฅ ๊ฐ•ํ™”๋‚˜ ๊ธฐ์—… ์ „์ฒด์˜ ์‚ฌ์ด๋ฒ„ ๋ฆฌ์Šคํฌ ํ—ˆ์šฉ ๋ฒ”์œ„ ์กฐ์œจ ๋“ฑ๊ณผ ๊ฐ™์€ ํ•ต์‹ฌ ๋ถ„์•ผ์—์„œ ๋™์ผํ•œ ๊ฐˆ๋“ฑ์„ ๊ฒฝํ—˜ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋‹ตํ•œ ์ ์€ ๋”์šฑ ๋ˆˆ์— ๋ˆ๋‹ค.

๊ฐ€ํŠธ๋„ˆ ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋ฆฌ์„œ์น˜ํŒ€์˜ ์—ฐ๊ตฌ ๋ฐ ์ฝ˜ํ…์ธ  ์ด๊ด„ ๋ถ€์‚ฌ์žฅ ํฌ๋ฆฌ์Šคํ‹ด ๋ฆฌ๋Š” ๊ฐˆ๋“ฑ์ด CISO์™€ CIO์˜ ๊ด€๊ณ„ ์ด์ƒ์„ ๋ณด์—ฌ์ฃผ๋Š” ์‹ ํ˜ธ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ•˜๋ฉด์„œ๋„, ๊ฐˆ๋“ฑ ๊ทธ ์ž์ฒด๊ฐ€ ํ•ญ์ƒ ๋ฌธ์ œ๋ฅผ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์—ฐ๊ตฌ์ง„๊ณผ ๊ฒฝํ—˜ ๋งŽ์€ ์ž„์›, ๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ ๊ฒฝ์˜ ์ž๋ฌธ๊ฐ€๋“ค์€ ์‹ค์ œ๋กœ CIO์™€ CISO๊ฐ€ ์กฐ์œจ๋˜์ง€ ์•Š์€ ์ฑ„ ๋”ฐ๋กœ ์›€์ง์ด๊ณ  ์žˆ์Œ์„ ๋“œ๋Ÿฌ๋‚ด๋Š” ๋” ๋šœ๋ ทํ•œ ์ง•ํ›„๋“ค์ด ์กด์žฌํ•œ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค.

๋ฌธ์ œ์˜ ์ง•ํ›„

๋ณด์•ˆ ์ฑ…์ž„์ž์™€ ์ž๋ฌธ๊ฐ€๋“ค์€ CISO๊ฐ€ CIO์™€์˜ ๊ด€๊ณ„์—์„œ ์ ๊ฒ€ํ•ด์•ผ ํ•  ์œ„ํ—˜ ์‹ ํ˜ธ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‚ฌ๋ก€๋“ค์„ ์ œ์‹œํ–ˆ๋‹ค.

1. CIO๊ฐ€ CISO์˜ ๊ถŒ๊ณ ๋‚˜ ๊ฒฐ์ •์„ ๋ฌด์‹œํ•˜๊ฑฐ๋‚˜ ๋ฒˆ๋ฒˆ์ด ๋’ค์ง‘๋Š”๋‹ค.
ํ…Œํฌ ๊ธฐ์—… ํŠธ๋žœ์„ผ๋“œ์˜ ์ƒ์ฃผ CISO์ด์ž ์œ ๋‚˜์ดํ‹ฐ๋“œํ—ฌ์Šค๊ทธ๋ฃน์˜ ์ „ CISO์ธ ์—์ด๋ฏธ ์นด๋“œ์›ฐ์€ ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ CIO๊ฐ€ โ€œ์˜๊ฒฌ ๊ณ ๋ง™์ง€๋งŒ, ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋ ค๋Š” ๋Œ€๋กœ ์ง„ํ–‰ํ•˜๊ฒ ๋‹คโ€๋ผ๊ณ  ๋งํ•˜๋Š” ์‹์œผ๋กœ ์ „๊ฐœ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

2. CIO์™€ CISO๊ฐ€ ๊ฐˆ๋“ฑ์„ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•œ๋‹ค.
์กฐ์ง์ด ๋ฐœ์ „ํ•˜๋ ค๋ฉด ์ผ์ • ์ˆ˜์ค€์˜ ๊ฐˆ๋“ฑ์€ ํ•„์š”ํ•˜๋‹ค. ๋‹ค์–‘ํ•œ ์‹œ๊ฐ๊ณผ ์˜๊ฒฌ์€ ์ตœ๊ณ ๊ฒฝ์˜์ง„์—๊ฒŒ ์ƒˆ๋กœ์šด ์„ ํƒ์ง€๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์กฐ์ง ์ „์ฒด์— ์ด์ต์ด ๋˜๋Š” ์ ˆ์ถฉ์ ์„ ์ฐพ๋„๋ก ๋•๋Š”๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ CIO์™€ CISO๊ฐ€ ๊ฐˆ๋“ฑ์„ ์ƒ๊ธ‰ ๊ฒฝ์˜์ง„๊นŒ์ง€ ๋Œ์–ด์˜ฌ๋ฆฌ์ง€ ์•Š๊ณ ๋Š” ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•œ๋‹ค๋ฉด ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๊ฐ€ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค๋Š” ์‹ ํ˜ธ์ผ ์ˆ˜ ์žˆ๋‹ค. ์นด๋“œ์›ฐ์€ โ€œ์–ด๊นจ๋ฅผ ๋‚˜๋ž€ํžˆ ํ•˜๊ณ  ์žˆ๋Š”๊ฐ€, ์•„๋‹ˆ๋ฉด ์ฝ”๋ฅผ ๋งž๋Œ€๊ณ  ์žˆ๋Š”๊ฐ€๋ฅผ ๋ด์•ผ ํ•œ๋‹ค. ๋งŒ์•ฝ ์ฝ”๋ฅผ ๋งž๋Œ€๊ณ  ์žˆ๋‹ค๋ฉด ๊ทธ๊ฑด ์ •๋ ฌ๋˜์ง€ ์•Š์•˜๋‹ค๋Š” ๋œปโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๊ฐ€ํŠธ๋„ˆ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด ๊ฒฝํ—˜ ๋งŽ์€ CISO์˜ 87%๊ฐ€ CIO์™€์˜ ๊ฐˆ๋“ฑ ํ•ด๊ฒฐ ์ˆ˜์ค€์„ โ€˜์ข‹๋‹คโ€™ ๋˜๋Š” โ€˜๋งค์šฐ ์ข‹๋‹คโ€™๋ผ๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ฐ€ํŠธ๋„ˆ์˜ ํฌ๋ฆฌ์Šคํ‹ด ๋ฆฌ๋Š” ์ด ์ˆ˜์น˜๊ฐ€ ๊ฐˆ๋“ฑ ๊ทธ ์ž์ฒด๊ฐ€ ๊ด€๊ณ„ ์ด์ƒ์„ ์˜๋ฏธํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๋ณด์—ฌ์ค€๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์˜คํžˆ๋ ค โ€œ์ง„์ „์„ ์ด๋ฃจ๊ฑฐ๋‚˜ ํ•ฉ์˜์— ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์ด CIO-CISO ๊ด€๊ณ„๊ฐ€ ๊นจ์กŒ๋‹ค๋Š” ์‹ ํ˜ธโ€๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

3. CIO๊ฐ€ ์ •๋ณด๋ฅผ ๊ณต์œ ํ•˜์ง€ ์•Š๋Š”๋‹ค.
ํŠธ๋žœ์„ผ๋“œ์˜ ์นด๋“œ์›ฐ์€ โ€œ์ด๊ฑด ๋งค์šฐ ํฐ ๊ฒฝ๊ณ  ์‹ ํ˜ธโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

4. CIO๊ฐ€ CISO์˜ ์ด์‚ฌํšŒ ๋ณด๊ณ  ๋‚ด์šฉ์„ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜ ๋ง‰๋Š”๋‹ค.
CISO๊ฐ€ ์ด์‚ฌํšŒ์— ์ •๊ธฐ์ ์œผ๋กœ ์ง์ ‘ ๋ณด๊ณ ํ•˜์ง€ ์•Š๋Š” ๊ฒƒ๋„ ๋ฌธ์ œ์ง€๋งŒ, ์นด๋“œ์›ฐ์€ CIO๊ฐ€ CISO๊ฐ€ ์ด์‚ฌํšŒ์— ๋ฐ˜๋“œ์‹œ ์ „๋‹ฌํ•ด์•ผ ํ•œ๋‹ค๊ณ  ํŒ๋‹จํ•œ ๋‚ด์šฉ์„ ๋ฐ”๊พธ๋Š” ๊ฒƒ์€ ๋”์šฑ ์‹ฌ๊ฐํ•œ ์ƒํ™ฉ์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๊ทธ๋Š” โ€œ์ด๋Š” โ€˜์ข€ ๋” ํ‘œํ˜„์„ ๋‹ค๋“ฌ์žโ€™๊ฑฐ๋‚˜ โ€˜์Šคํ† ๋ฆฌ๋ฅผ ๋” ์ž˜ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹คโ€™๋Š” ์กฐ์–ธ ์ˆ˜์ค€์„ ๋„˜์–ด์„ ๋‹ค. ์‚ฌ์‹ค์„ ์‚ญ์ œํ•˜๊ฑฐ๋‚˜, ์œค๋ฆฌ์  ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ๋‚ด์šฉ์„ ๋ฐ”๊พธ๋Š” ๊ฒƒ์€ ๋‹จ์ˆœํ•œ ์ฝ”์นญ์ด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

5. CIO๊ฐ€ ์ด์‚ฌํšŒ๋‚˜ ๋‹ค๋ฅธ ์ž„์› ์•ž์—์„œ CISO์˜ ์˜์ œ๋ฅผ ํ›ผ์†ํ•œ๋‹ค.
๋ฆฌ ์—ญ์‹œ โ€œCIO๊ฐ€ CISO์˜ ์‹ ๋ขฐ๋„๋‚˜ ์˜๊ฒฌ์„ ์ ๊ทน์ ์œผ๋กœ ๊นŽ์•„๋‚ด๋ฆฌ๊ฑฐ๋‚˜, CISO์™€ ์ด์‚ฌํšŒยท์ž„์›์ง„ ๊ฐ„์˜ ๋ชจ๋“  ๋Œ€ํ™”๋ฅผ ์ค‘์žฌํ•˜๋ ค ๋“ ๋‹ค๋ฉด ์ด๋Š” ๋ถ„๋ช… ์ข‹์ง€ ์•Š์€ ์‹ ํ˜ธโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.
์—ฌ๊ธฐ์—๋Š” ์ค‘์š”ํ•œ ํšŒ์˜๋‚˜ ์กฐ์ง์˜ IT ์ „๋žต ๋…ผ์˜์—์„œ CISO์˜ ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋Œ€๋ณ€ํ•˜์ง€ ์•Š๋Š” ํ–‰๋™๋„ ํฌํ•จ๋œ๋‹ค.

6. IT๊ฐ€ ๊ด€๋ จ๋œ ๋น„์ฆˆ๋‹ˆ์Šค ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ์—์„œ CISO๊ฐ€ ๋ฐฐ์ œ๋œ๋‹ค.
์˜ฌ๋ฐ”๋ฅธ ํŒŒํŠธ๋„ˆ์‹ญ์ด๋ผ๋ฉด ๋ชจ๋“  IT ํ”„๋กœ์ ํŠธ์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ CIO์™€ CISO๊ฐ€ ํ•จ๊ป˜ ์›€์ง์ด๋Š” ๊ฒƒ์ด ์ž์—ฐ์Šค๋Ÿฝ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ CISO๊ฐ€ ์ค‘์š”ํ•œ ๊ธฐ์ˆ  ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ ํ›„๋ฐ˜๋ถ€์— ์™€์„œ์•ผ ์•Œ๊ฒŒ ๋˜๊ฑฐ๋‚˜, ์ง‘์š”ํ•˜๊ฒŒ ์งˆ๋ฌธํ•ด์•ผ๋งŒ ์ •๋ณด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋ฉด ๊ด€๊ณ„๋ฅผ ์žฌ์ •๋น„ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋œป์ด๋‹ค.

์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ์—… ๋ ˆ๊ทธ์Šค์ผ€์ผ์˜ CISO ๋ฐ์ผ ํ˜ธํฌ๋Š” โ€œ์ƒˆ ํ”„๋กœ์ ํŠธ๋‚˜ ๋ฒค๋”, ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜ ์ด์•ผ๊ธฐ๊ฐ€ ๋‚˜์˜ค๋Š”๋ฐ CISO๊ฐ€ ์•„๋ฌด๊ฒƒ๋„ ๋ชจ๋ฅธ๋‹ค๋ฉด ์ด๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋‹ค. ์ด๋Ÿฐ ๊ฒฝ์šฐ ๋ณด์•ˆ์€ ๊ฒฐ๊ตญ โ€˜์‚ฌํ›„ ๋ถ€์ฐฉโ€™๋˜๋Š” ์ˆ˜์ค€์— ๊ทธ์นœ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๊ทธ๋Š” ์ด์–ด โ€œ์ข‹์€ ๊ด€๊ณ„์—์„œ๋Š” ๋†€๋ž„ ์ผ์ด ์—†์œผ๋ฉฐ, ์ง€์†์ ์ธ ์†Œํ†ต๊ณผ ๋Œ€์‹œ๋ณด๋“œ ๊ณต์œ ๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ด๋ฃจ์–ด์ง„๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

7. ์ผ๋Œ€์ผ ๋Œ€ํ™”๊ฐ€ ์—†๋‹ค.
๋ ˆ๋ฒจ๋ธ”๋ฃจ์˜ CIO ๋งˆ๋ฆฌ์•„ ์นด๋„์šฐ๋Š” CIO์™€ CISO๊ฐ€ ์ด๋ฉ”์ผ, ๊ทธ๋ฃน ํšŒ์˜, ์–‘์ธก์˜ ํŒ€์›์„ ํ†ตํ•œ ๊ฐ„์ ‘ ์ „๋‹ฌ(์ •๋ณด๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์œ„๋กœ ์˜ฌ๋ผ์˜ฌ ๊ฒƒ์ด๋ผ๋Š” ๊ธฐ๋Œ€)์—๋งŒ ์˜์กดํ•œ๋‹ค๋ฉด ์ด๋Š” ๊ฑด๊ฐ•ํ•œ ๊ด€๊ณ„๋ผ๊ณ  ๋ณด๊ธฐ ์–ด๋ ต๋‹ค๊ณ  ๋งํ–ˆ๋‹ค.

์นด๋„์šฐ๋Š” โ€œ์šฐ๋ฆฌ๋Š” ์„œ๋กœ ์ง์ ‘ ๋Œ€ํ™”ํ•˜์ง€ ์•Š๊ธฐ์—๋Š” ๋‹ค๋ค„์•ผ ํ•  ์ •๋ณด๊ฐ€ ๋„ˆ๋ฌด ๋งŽ๋‹ค. ์ •๊ธฐ์ ์ด๋“  ํ•„์š”์— ๋”ฐ๋ฅธ ์ฆ‰์„ ๋Œ€ํ™”๋“ , ์ด๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์‹์€ ์—†๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

8. CIO์™€ CISO๊ฐ€ ์„œ๋กœ์˜ ์šฐ์„ ์ˆœ์œ„ยท๊ณผ์ œยท์ „๋žต ๋“ฑ์„ ์•Œ์ง€ ๋ชปํ•œ๋‹ค.
์นด๋„์šฐ๋Š” โ€œCIO๋ผ๋ฉด CISO๊ฐ€ ๋ฌด์—‡์„ ์šฐ๋ คํ•˜๋Š”์ง€ ์ž˜ ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•˜๊ณ , CISO ์—ญ์‹œ CIO์˜ ์„ธ๊ณ„์—์„œ ์–ด๋–ค ์ผ์ด ๋ฒŒ์–ด์ง€๊ณ  ์žˆ๋Š”์ง€ ํŒŒ์•…ํ•˜๊ณ  ์žˆ์–ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

9. CISO์™€ CIO๊ฐ€ ์—ญํ•  ๋ถ„๋‹ด์„ ๋‘๊ณ  ์ถฉ๋Œํ•œ๋‹ค.
๋˜ ๋‹ค๋ฅธ ๋ฌธ์ œ์˜ ์‹ ํ˜ธ๋Š” ๊ณต๋™ ์ฑ…์ž„์ด ์žˆ๋Š” ์˜์—ญ์—์„œ ์–ด๋А ํ•œ์ชฝ์ด ๋ฐœ์ƒํ•œ ๋ถ€์กฑํ•จ์„ ์ƒ๋Œ€๋ฐฉ ํƒ“์œผ๋กœ ๋Œ๋ฆฌ๋Š” ๊ฒฝ์šฐ๋‹ค.

10. ํ•œ์ชฝ์ด ์ด๋ฏธ ์ƒ๋Œ€๋ฐฉ์ด ๋ณด์œ ํ•œ ์—ญ๋Ÿ‰์„ ๊ฐ€์ง„ ๊ธฐ์ˆ ์„ ์ค‘๋ณต ๊ตฌ๋งคํ•œ๋‹ค.
์ด ๋ฌธ์ œ๋Š” ์–ด๋А ์ชฝ์—์„œ๋“  ์ƒ๊ธธ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ด€๋ จํ•ด ๋” ํฐ ๋ฌธ์ œ๋Š” CIO๊ฐ€ CISO์—๊ฒŒ ๊ตฌ๋งคํ•ด์•ผ ํ•  ์ œํ’ˆ์ด๋‚˜ ์‚ฌ์šฉํ•ด์•ผ ํ•  ๋ฒค๋”ยท์„œ๋น„์Šค ์ œ๊ณต์—…์ฒด๋ฅผ ์ผ๋ฐฉ์ ์œผ๋กœ ์ง€์‹œํ•˜๋Š” ์ƒํ™ฉ์ด๋‹ค.

EY ๋ฏธ์ฃผ์ง€์—ญ ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ์—ญ๋Ÿ‰ ์ด๊ด„ ์•„์–€ ๋กœ์ด๋Š” โ€œ์ผ๋ถ€ ๊ฒฝ์šฐ์—๋Š” CIO์˜ ์„ ํƒ์ด ๋ณด์•ˆ ๊ด€์ ์—์„œ ๋งž๋Š” ๋‹ต์ผ ์ˆ˜๋„ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ๋ ‡์ง€ ์•Š์€ ๊ฒฝ์šฐ๋„ ์žˆ๋‹ค. ์ค‘์š”ํ•œ ๊ฑด ์ผ๋ฐฉ์ ์ธ ์ง€์‹œ๋Š” ์ถฉ๋ถ„ํ•œ ๋ถ„์„์ด ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค๋Š” ๋œปโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด์–ด โ€œCIO๋Š” CISO๊ฐ€ ์ ์ ˆํ•œ ์†”๋ฃจ์…˜์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋„๋ก ์žฌ๋Ÿ‰์„ ๋ถ€์—ฌํ•ด์•ผ ํ•œ๋‹ค. CISO๋Š” ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์ตœ์ ์˜ ์„ ํƒ์„ ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

11. CIO๊ฐ€ ์‚ฌ์ด๋ฒ„ ์œ„์ƒ(cyber hygiene)์„ ์šฐ์„ ์ˆœ์œ„๋กœ ๋‘์ง€ ์•Š๋Š”๋‹ค.
๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋Š” ๋ณด์•ˆํŒ€์ด ์‹œ๊ธ‰ํ•œ ์กฐ์น˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ํŒ๋‹จํ•ด ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋งค๊ธด ์ทจ์•ฝ์ ์„ ํŒจ์น˜ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ํŒจ์น˜๋ฅผ ๋ฏธ๋ฃจ๋Š” ๊ฒฝ์šฐ๋‹ค.

12. ๊ธฐ์ˆ  ์ œํ’ˆ์ด ๋ณด์•ˆ ๊ฒฐํ•จ์ด๋‚˜ ํ†ต์ œ ๊ณต๋ฐฑ์„ ์•ˆ์€ ์ฑ„ ์ถœ์‹œ๋œ๋‹ค.
๊ธ€๋กœ๋ฒŒ ๊ฒฐ์ œยทํ™˜์ „ ๊ธฐ์—… ์ปจ๋ฒ ๋ผ์˜ CISO ์‚ฌ๋ผ ๋งค๋“ ์€ โ€œ์ด ๊ฒฝ์šฐ ๊ฐ€์žฅ ๋จผ์ € ๋˜์ ธ์•ผ ํ•˜๋Š” ์งˆ๋ฌธ์€ โ€˜์™œ ์ œํ’ˆ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์ด๋ฅผ ๋ฐœ๊ฒฌํ•˜์ง€ ๋ชปํ–ˆ๋Š”๊ฐ€โ€™์ด๋ฉฐ, ๊ทธ ๋‹ต์€ ๋Œ€์ฒด๋กœ IT์™€ ๋ณด์•ˆ์˜ ํ˜‘์—… ๋ถ€์กฑ์— ์žˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

CIO-CISO ๊ด€๊ณ„์˜ ์ค‘์š”์„ฑ

์ปจ์„คํŒ… ๊ธฐ๊ด€ ์•„ํฌ์ง€ ๊ธ€๋กœ๋ฒŒ RMS(Apogee Global RMS)์˜ ์„ค๋ฆฝ์ž์ด์ž ๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ CISO ์˜คํ”ผ์Šค์˜ ์ „ ์ž„์›์ธ MK ํŒ”๋ชจ์–ด๋Š” CIO์™€ CISO๊ฐ€ ์„ฑ๊ณตํ•˜๋ ค๋ฉด ๋‘ ์—ญํ•  ๊ฐ„ ๊ด€๊ณ„๊ฐ€ ๊ฐ•ํ•˜๊ฒŒ ๊ตฌ์ถ•๋ผ ์žˆ์–ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํŒ”๋ชจ์–ด๋Š” โ€œ๋‘ ์ง์ฑ…์— ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์ด ์„œ๋กœ ์›๋งŒํ•  ๋ฟ ์•„๋‹ˆ๋ผ ํ˜‘๋ ฅ์ ์ด์–ด์•ผ ํ•œ๋‹ค. ๊ฐ์ž ๋งก์€ ์˜์—ญ๊ณผ ๋ชฉํ‘œ๊ฐ€ ์žˆ์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ์„œ๋กœ ์—†์ด๋Š” ์ผ์„ ์™„์ˆ˜ํ•  ์ˆ˜ ์—†๋‹คโ€๋ผ๋ฉฐ โ€œ๋”ฐ๋ผ์„œ ์„œ๋กœ๋ฅผ ์˜์ง€ํ•ด์•ผ ํ•˜๊ณ , ์„œ๋กœ๋ฅผ ์˜์ง€ํ•ด์•ผ ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ธ์ง€ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํ˜‘๋ ฅ์  ๊ด€๊ณ„๊ฐ€ ๋ถ€์กฑํ•˜๋ฉด ํ”ผํ•ด๋ฅผ ๋ณด๋Š” ๊ฒƒ์€ CIO์™€ CISO๋งŒ์ด ์•„๋‹ˆ๋‹ค. ํŒ”๋ชจ์–ด๋ฅผ ๋น„๋กฏํ•œ ์—ฌ๋Ÿฌ ์ „๋ฌธ๊ฐ€๋Š” CIO-CISO ๊ด€๊ณ„๊ฐ€ ํ‹€์–ด์ง€๋ฉด ์–‘์ชฝ ์กฐ์ง๊ณผ ๊ธฐ์—… ์ „์ฒด์—๋„ ๋ถ€์ •์  ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค.
๋ถ€ํ‚น๋‹ท์ปด์˜ CSO ๋งˆ๋‹ˆ ์œŒํ‚น์€ โ€œ๊ฐˆ๋“ฑ์ด ์‹ฌํ•œ CIO-CISO ๊ด€๊ณ„๋Š” ๋ชฉํ‘œยท์šฐ์„ ์ˆœ์œ„ยท์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์—์„œ ๋ถˆ์ผ์น˜๋กœ ๋‚˜ํƒ€๋‚œ๋‹คโ€๋ผ๋ฉฐ โ€œ๊ธฐ์ˆ ยท๋ณด์•ˆ ๋ฆฌ๋”๊ฐ€ ๊ฐ™์€ ๋ฐฉํ–ฅ์„ ๋ณด์ง€ ๋ชปํ•˜๋ฉด ์šด์˜๊ณผ ์„ฑ๊ณผ ๋ชจ๋‘์—์„œ ๋ฌธ์ œ๊ฐ€ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ํ”„๋กœ์ ํŠธ ๋งˆ๊ฐ์ด ์ง€์—ฐ๋˜๊ฑฐ๋‚˜ ์ทจ์•ฝ์ ์ด ์ฆ๊ฐ€ํ•˜๋Š” ์‹โ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ด€๊ณ„๋ฅผ ์•…ํ™”์‹œํ‚ค๋Š” ์š”์ธ์€ ๋‹ค์–‘ํ•˜๋‹ค. ์šฐ์„  ์นด๋“œ์›ฐ์€ ์—ฌ์ „ํžˆ ๋ณด์•ˆ ๋ถ€์„œ๊ฐ€ โ€˜์•ˆ ๋œ๋‹คโ€™๊ณ  ๋งํ•˜๋Š” ๋ถ€์„œ๋กœ ์ธ์‹๋˜๊ฑฐ๋‚˜ ์‹ค์ œ๋กœ ๊ทธ๋ ‡๊ฒŒ ํ–‰๋™ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œCIO๋Š” โ€˜์•ˆ ๋œ๋‹คโ€™๊ณ  ๋งํ•  ์—ฌ์œ ๊ฐ€ ์—†๋‹ค. CIO์˜ ์—ญํ• ์€ ๋น„์ฆˆ๋‹ˆ์Šค๊ฐ€ ํ•˜๋ ค๋Š” ์ผ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ฐ ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ๋”ฐ๋ผ์„œ CISO ์—ญ์‹œ โ€˜๋น„์ฆˆ๋‹ˆ์Šค๊ฐ€ ์›ํ•˜๋Š” ๋ฐ”๋ฅผ ์–ด๋–ป๊ฒŒ ์‹คํ˜„ํ•  ์ˆ˜ ์žˆ์„๊นŒโ€™๋ฅผ ์ค‘์‹ฌ์— ๋‘ฌ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ณด์•ˆ ๋ถ€์„œ๊ฐ€ โ€˜์•ˆ ๋œ๋‹คโ€™๊ณ ๋งŒ ํ•˜์ง€ ์•Š๋”๋ผ๋„, ์นด๋“œ์›ฐ์€ CISO๊ฐ€ โ€˜๋œ๋‹คโ€™๋Š” ๋‹ต์— ๋„๋‹ฌํ•˜๊ธฐ๊นŒ์ง€ ์ง€๋‚˜์น˜๊ฒŒ ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋Š” ๊ฒƒ๋„ ๋ฌธ์ œ๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๊ทธ๋Š” โ€œ๋ฌธ์ œ ์œ ํ˜•์— ๋”ฐ๋ผ ๋น ๋ฅด๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ์ˆ˜์‹ญ ๊ฐ€์ง€๊ฐ€ ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œCISO๋ผ๋ฉด ๋‹ค์–‘ํ•œ ๊ฐ€๊ฒฉ๋Œ€ยท์ผ์ •ยท์žฅ๋‹จ์ ยท๋ณด์•ˆ ์ ์ˆ˜๋ฅผ ๊ฐ–์ถ˜ ์—ฌ๋Ÿฌ ์˜ต์…˜์„ CIO์™€ ๋น„์ฆˆ๋‹ˆ์Šค์— ์ œ์‹œํ•ด ์ƒํ™ฉ์— ๋งž๋Š” ์„ ํƒ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๊ด€๊ณ„๋ฅผ ์•…ํ™”์‹œํ‚ค๋Š” ๋˜ ๋‹ค๋ฅธ ์ด์œ ๋กœ ํŒ”๋ชจ์–ด๋Š” CIO๊ฐ€ ๋ณด์•ˆ์„ ์ถฉ๋ถ„ํžˆ ์šฐ์„ ์ˆœ์œ„์— ๋‘์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๋ฅผ ๋“ค์—ˆ๋‹ค.
๊ทธ๋Š” โ€œ๋•Œ๋กœ๋Š” CISO๊ฐ€ ๋ณด์•ˆ์—๋งŒ ์ง‘์ค‘ํ•ด ๋น„์ฆˆ๋‹ˆ์Šค ์ง€์› ๊ด€์ ์ด ๋ถ€์กฑํ•˜๊ฑฐ๋‚˜, ๋ฐ˜๋Œ€๋กœ CIO๊ฐ€ ๋ณด์•ˆ์—๋Š” ๊ด€์‹ฌ์ด ์—†๊ณ  ๋น„์ฆˆ๋‹ˆ์Šค ์ถ”์ง„์—๋งŒ ์ง‘์ค‘ํ•˜๋Š” ๊ฒฝ์šฐ๋„ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ด ๋ฐ–์—๋„ CIO๊ฐ€ IT ์ „๋ฐ˜์— ๋Œ€ํ•œ ํ†ต์ œ ๊ถŒํ•œ์„ ๊ฐ•ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ ค ํ•˜๋ฉด์„œ ๋ณด์•ˆ์„ ๋ฐฐ์ œํ•˜๊ฑฐ๋‚˜, ๊ทธ ๋ฐ˜๋Œ€์˜ ์ƒํ™ฉ๋„ ๋ฐœ์ƒํ•œ๋‹ค.

๋ ˆ๋ฒจ๋ธ”๋ฃจ์˜ ์ตœ๊ณ ๋ณด์•ˆ์ฑ…์ž„์ž์ด์ž ์‹ ๋ขฐ ์ฑ…์ž„์ž์ธ ์ฝ”๋ฆฌ ๋‹ค๋‹ˆ์—˜์Šค๋Š” โ€œ์ผ๋ถ€ ๋ณด์•ˆ ๋ฆฌ๋”๋Š” ์ž์‹ ๋งŒ์ด ๋ณด์•ˆ์„ ์ฑ…์ž„์ง„๋‹ค๊ณ  ์ƒ๊ฐํ•ด ๊ณ ๋ฆฝ๋œ ์„ฌ์ฒ˜๋Ÿผ ํ–‰๋™ํ•˜๊ณ , ๋Œ์•„๊ฐˆ ๋ฐฐ๋„ ์—†๋Š” ์ƒํƒœ์— ์Šค์Šค๋กœ ๋†“์ด๊ธฐ๋„ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ „๋ฌธ๊ฐ€๋“ค์€ ๊ด€๊ณ„ ์•…ํ™”์˜ ๋ฐฐ๊ฒฝ์—๋Š” ๊ตฌ์กฐ์  ์š”์ธ๋„ ์กด์žฌํ•œ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ์œŒํ‚น์€ โ€œ์—ญํ• ๊ณผ ์ฑ…์ž„์ด ๋ช…ํ™•ํ•˜์ง€ ์•Š์œผ๋ฉด ์ฑ…์ž„ ๊ณต๋ฐฑ์ด๋‚˜ ์ค‘๋ณต์ด ์ƒ๊ฒจ ๋ถˆํ•„์š”ํ•œ ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์นด๋„์šฐ๋Š” ์—ฌ๊ธฐ์— ๋”ํ•ด โ€œ์กฐ์ง์˜ ์˜ˆ์‚ฐ ๋ฐฐ๋ถ„ ๋ฐฉ์‹์ด CIO์™€ CISO๋ฅผ ๊ฐ™์€ ์˜ˆ์‚ฐ์„ ๋‘๊ณ  ๊ฒฝ์Ÿํ•˜๋Š” ๊ด€๊ณ„๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ด๋Ÿฌํ•œ ๋ฌธ์ œ์˜ ์ƒ๋‹น์ˆ˜๋Š” ์œŒํ‚น์ด ๋งํ•˜๋Š” โ€œ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๋ฆฌ์Šคํฌ์— ๋Œ€ํ•œ ๊ณต์œ ๋œ ๋งฅ๋ฝ๊ณผ ์ •๋ ฌ ๋ถ€์กฑโ€์—์„œ ๋น„๋กฏ๋œ๋‹ค.

๊ทธ๋Š” โ€œCIO๋Š” ๊ฐ€๋™ ์‹œ๊ฐ„, ํ™•์žฅ์„ฑ, ๋ฏผ์ฒฉ์„ฑ์œผ๋กœ ํ‰๊ฐ€๋ฐ›๊ณ , CISO๋Š” ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ, ์ปดํ”Œ๋ผ์ด์–ธ์Šค ์ค€์ˆ˜, ์œ„ํ˜‘ ์™„ํ™”๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ‰๊ฐ€๋ฐ›๋Š”๋‹ค. ์ด ๋‘ ์šฐ์„ ์ˆœ์œ„๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ต์ฐจํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊ณตํ†ต๋œ ๊ด€์ ์ด ์—†๋‹ค๋ฉด ๋‘ ์—ญํ• ์€ ์ถฉ๋Œํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ด์–ด โ€œ๋ณด์•ˆ์€ ๋„ˆ๋ฌด ์ž์ฃผ โ€˜๋ฌธ์„ ์ง€ํ‚ค๋Š” ์—ญํ• โ€™๋กœ ์ทจ๊ธ‰๋˜์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ์ „๋žต์  ํŒŒํŠธ๋„ˆ์—ฌ์•ผ ํ•œ๋‹ค. ํ˜‘์—…์ด ๊ฑฐ๋ž˜์  ๊ด€๊ณ„๋กœ ๋А๊ปด์ง€๋Š” ์ด์œ ๋„ ์—ฌ๊ธฐ์— ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋˜ํ•œ โ€œ๋ถ€ํ‚น๋‹ท์ปด์—์„œ๋Š” ์‚ฌ์ด๋ฒ„๋ณด์•ˆ์„ ๋น„์ฆˆ๋‹ˆ์Šค ์ „๋žต์˜ ์ถœ๋ฐœ์ ๋ถ€ํ„ฐ ํ†ตํ•ฉํ•ด ์ œํ’ˆ ์„ค๊ณ„, ๋ฐ์ดํ„ฐ, ๊ณ ๊ฐ ์‹ ๋ขฐ๋ฅผ ๋…ผ์˜ํ•˜๋Š” ๋ชจ๋“  ๊ณผ์ •์— ํฌํ•จ์‹œํ‚ค๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

๊ด€๊ณ„๊ฐ€ ์•…ํ™”๋์„ ๋•Œ ๊ฐœ์„  ๋ฐฉ๋ฒ•

CIO์™€ CISO ๋ชจ๋‘ ๊ด€๊ณ„๊ฐ€ ๋‚˜๋น ์กŒ์„ ๋•Œ ์ด๋ฅผ ๊ฐœ์„ ํ•ด์•ผ ํ•  ๋ถ„๋ช…ํ•œ ๋™๊ธฐ๊ฐ€ ์žˆ๋‹ค. ๋ฆฌ๋Š” โ€œCIO-CISO ๊ด€๊ณ„๋Š” ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ๋‘ ์—ญํ•  ๋ชจ๋‘ ์กฐ์ง์˜ ๊ธฐ์ˆ ยท์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ํšจ๊ณผ์ ์œผ๋กœ ํ˜‘๋ ฅํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ โ€œ๋ชจ๋“  ๊ธฐ์ˆ ์—๋Š” ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋…ธ์ถœ์ด ๋”ฐ๋ฅด๋ฉฐ, ์ด๋Š” ๊ธฐ์ˆ  ๋„์ž…๊ณผ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ์ค€๋‹ค. ๊ทธ๋ž˜์„œ CIO๋Š” ๋ณด์•ˆ์— ๊ด€์‹ฌ์„ ๊ฐ€์ ธ์•ผ ํ•˜๊ณ , CISO๋Š” ๋ณด์•ˆ์ด ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ๋ฅผ ์œ„ํ•œ ๊ฒƒ์ž„์„ ์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค. ๋‘ ์—ญํ• ์€ ์„œ๋กœ์˜ ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ํ•จ๊ป˜ ์›€์ง์—ฌ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

CISO๋Š” CIO์™€์˜ ๊ด€๊ณ„๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ํ™•์‚ฐ, ๊ฒฝ์ œ์  ๋ถˆํ™•์‹ค์„ฑ ๋“ฑ ๋ณ€ํ™”๊ฐ€ ํฐ ํ˜„์žฌ ํ™˜๊ฒฝ์„ ๊ด€๊ณ„๋ฅผ ์ ๊ฒ€ํ•˜๊ณ  ์ดˆ๊ธฐํ™”ํ•˜๋ฉฐ, ํ˜‘์—…์„ ๋ง‰์•„์˜จ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๊ธฐํšŒ๋กœ ํ™œ์šฉํ•ด์•ผ ํ•œ๋‹ค.

CISO๊ฐ€ ์ทจํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผ์š” ๋‹จ๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

โ€ข ์กฐ์ง์˜ ๋ฆฌ์Šคํฌ ๊ด€์ ์— ๋Œ€ํ•ด CIO๋Š” ๋ฌผ๋ก  C-๋ ˆ๋ฒจ ๊ฒฝ์˜์ง„๊ณผ ์ด์‚ฌํšŒ์™€๋„ ๋ช…ํ™•ํ•œ ๊ณต๊ฐ๋Œ€๋ฅผ ํ˜•์„ฑํ•˜๊ธฐ

โ€ข ๋ณด์•ˆ ์ „๋žต์ด ์กฐ์ง์˜ ์ „์ฒด ์ „๋žต๊ณผ IT ๋กœ๋“œ๋งต๊ณผ ์ผ์น˜ํ•˜๋„๋ก ์กฐ์ •ํ•˜๊ธฐ
ํŠธ๋žœ์„ผ๋“œ์˜ ์นด๋“œ์›ฐ์€ โ€œCISO๋Š” โ€˜CIO๊ฐ€ ํ›Œ๋ฅญํ•œ ๋ฐฉํ–ฅ์„ ์žก์•˜๋‹ค. ์ด๋ฅผ ์–ด๋–ป๊ฒŒ ์•ˆ์ „ํ•˜๊ฒŒ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์„๊นŒโ€™๋ฅผ ๊ณ ๋ฏผํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

โ€ข CIO์™€ CISO ๊ฐ๊ฐ์˜ ์ฑ…์ž„ ๋ฒ”์œ„๋ฅผ ๋ช…ํ™•ํžˆ ํ•˜๊ธฐ
๋ ˆ๋ฒจ๋ธ”๋ฃจ์˜ ๋‹ค๋‹ˆ์—˜์Šค๋Š” โ€œ์—ญํ• ์˜ ๊ฒฝ๊ณ„๊ฐ€ ์–ด๋””์— ์žˆ๋Š”์ง€ ๋ถ„๋ช…ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

โ€ข ์ •๊ธฐ์ ยท๋น„์ •๊ธฐ์ ์œผ๋กœ CIO์™€ ์ง์ ‘ ์†Œํ†ตํ•˜๋Š” ์ผ์„ ์ตœ์šฐ์„  ๊ณผ์ œ๋กœ ๋‘๊ธฐ

โ€ข ๊ด€๊ณ„ ๊ด€๋ฆฌ์— ์ง‘์ค‘ํ•˜๊ธฐ
๋‹ค๋‹ˆ์—˜์Šค๋Š” โ€œ๋Œ€ํ™”ํ•˜๊ณ , ๋งŒ๋‚  ์ค€๋น„๋ฅผ ํ•˜๊ณ , ์–‘์ธก ํŒ€์ด ํ•จ๊ป˜ ํ˜‘์—…ํ•˜๋„๋ก ๋งŒ๋“ค๊ณ , ์‹ ๋ขฐ๋ฅผ ์Œ“์•„์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

โ€ข CIO์˜ ์šฐ์„ ์ˆœ์œ„, ๋™๊ธฐ, ๊ณผ์ œ ๋“ฑ์„ ์ดํ•ดํ•˜๊ณ  ์ž์‹ ์˜ ๊ฒƒ๋„ ๊ณต์œ ํ•˜๊ธฐ
๋‹ค๋‹ˆ์—˜์Šค๋Š” โ€œ์ƒ๋Œ€์˜ ์ž…์žฅ์—์„œ ํ•œ ๊ฑธ์Œ ๊ฑธ์–ด๋ณด๋Š” ๋ฐฉ์‹์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

โ€ข ๋น„์ฆˆ๋‹ˆ์Šค ์ง€์› ์ค‘์‹ฌ์˜ ์‚ฌ๊ณ ๋ฐฉ์‹์œผ๋กœ ์ „ํ™˜ํ•˜๊ธฐ
๋ ˆ๊ทธ์Šค์ผ€์ผ์˜ CISO ๋ฐ์ผ ํ˜ธํฌ๋Š” โ€œ์ฒ˜์Œ๋ถ€ํ„ฐ โ€˜์•ˆ ๋œ๋‹คโ€™๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์•ˆ์ „ํ•˜๊ฒŒ ์ด ๋ชฉํ‘œ์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ์„๊นŒโ€™๋ผ๋Š” ์งˆ๋ฌธ์œผ๋กœ ์ ‘๊ทผํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

ํ˜ผ์ž ๋‚˜์„œ๋Š” ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž์˜ ์„ฑ๊ณต ์ „๋žต 5๊ฐ€์ง€

2 December 2025 at 01:09

ํ”„๋ฆฌ๋žœ์„œ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์ž๋กœ ์„ฑ๊ณตํ•˜๋ ค๋ฉด ์ถฉ๋ถ„ํ•œ ์ค€๋น„์™€ ๊พธ์ค€ํ•œ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋ฉฐ, ์ผ์ • ๋ถ€๋ถ„ ์šด๋„ ๋”ฐ๋ผ์ค˜์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฏธ๊ตญ ํ”„๋กœ์•ผ๊ตฌ ๊ฒฝ์˜์ธ ๋ธŒ๋žœ์น˜ ๋ฆฌํ‚ค์˜ ๋ง์ฒ˜๋Ÿผ, โ€˜์šด์€ ๊ฒฐ๊ตญ ์น˜๋ฐ€ํ•œ ๊ณ„์‚ฐ์—์„œ ๋น„๋กฏ๋œ ๊ฒฐ๊ณผโ€™์ด๊ธฐ๋„ ํ•˜๋‹ค.

ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž์˜ ์ˆ˜์ž…์€ ๊ฑฐ์ฃผ ์ง€์—ญ, ๊ฒฝ๋ ฅ, ์—ญ๋Ÿ‰, ํ”„๋กœ์ ํŠธ ์œ ํ˜• ๋“ฑ ์—ฌ๋Ÿฌ ์š”์†Œ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค. ์ง‘๋ฆฌํฌ๋ฃจํ„ฐ(ZipRecruiter) ์ตœ์‹  ์ž๋ฃŒ์— ๋”ฐ๋ฅด๋ฉด ๋ฏธ๊ตญ ๋‚ด ๋‹จ๊ธฐ ๊ณ„์•ฝ์ง ๊ฐœ๋ฐœ์ž์˜ ํ‰๊ท  ์—ฐ๊ฐ„ ์ˆ˜์ž…์€ ์•ฝ 11๋งŒ 1,800๋‹ฌ๋Ÿฌ์ด๋ฉฐ, ์ƒ์œ„ ๊ฐœ๋ฐœ์ž๋Š” 15๋งŒ 1,000๋‹ฌ๋Ÿฌ๋ฅผ ๋„˜๊ธฐ๊ธฐ๋„ ํ•œ๋‹ค.

์ด๋Š” ๋ฏธ๊ตญ ๋…ธ๋™ํ†ต๊ณ„๊ตญ์ด ๋ฐœํ‘œํ•œ 2024๋…„ ๊ธฐ์ค€ ๊ฐœ๋ฐœ์ž ์ง๊ตฐ์˜ ์—ฐ๋ด‰ ์ค‘์œ„๊ฐ’๊ณผ๋„ ๋น„์Šทํ•œ ์ˆ˜์ค€์ด๋‹ค.

๊ทธ๋ ‡๋‹ค๋ฉด ๊ธฐ์ˆ  ์—…๊ณ„์—์„œ ํ”„๋ฆฌ๋žœ์„œ๋กœ ์„ฑ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์กฐ๊ฑด์€ ๋ฌด์—‡์ผ๊นŒ? ์ „ํ˜„์ง ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž 5๋ช…์˜ ์˜๊ฒฌ์„ ์ „ํ•œ๋‹ค.

1. ๋น„์ฆˆ๋‹ˆ์Šค ํ˜•ํƒœ ๊ฐ–์ถ”๊ธฐ

๊ณต์‹์ ์ธ ๋น„์ฆˆ๋‹ˆ์Šค ํ˜•ํƒœ๋ฅผ ๊ฐ–์ถ”๋Š” ์ผ์€ ์‹ ๊ทœ ๊ณ ๊ฐ์„ ํ™•๋ณดํ•˜๊ณ  ๊ธฐ์กด ๊ณ ๊ฐ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ด๋‹ค.

K-12 ํ•™๊ต๋ฅผ ์œ„ํ•œ ๋ชจ๊ธˆ ํ”Œ๋žซํผ ํ“จ์ฒ˜ํŽ€๋“œ์˜ CEO์ด์ž ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด์ธ ๋‹ค๋ฆฌ์•ˆ ์‹œ๋ฏธ๋Š” โ€œํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž๋กœ ์„ฑ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ฐฉ๋ฒ•์€ ์ž์‹ ์„ ํ•˜๋‚˜์˜ ์‚ฌ์—…์ฒด๋กœ ์ธ์‹ํ•˜๋Š” ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์‹œ๋ฏธ๋Š” โ€œ์ด๋ฅผ ์œ„ํ•ด ๊ฐœ์ธ ์‚ฌ์—…์ž๋ฅผ ์„ค๋ฆฝํ•˜๊ณ , ๊ฐœ์ธ ์ž๊ธˆ๊ณผ ์‚ฌ์—… ์ž๊ธˆ์„ ๊ตฌ๋ถ„ํ•˜๋ฉฐ, ์„ธ๊ธˆ๊ณผ ์†ก์žฅ์„ ํšจ์œจ์ ์œผ๋กœ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•ด ๊ทœ์ œ ์ค€์ˆ˜๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ด€๋ฆฌํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ฒ˜์Œ์—๋Š” ๊ณผ๋„ํ•˜๊ฑฐ๋‚˜ ๋ถˆํ•„์š”ํ•œ ์—…๋ฌด์ฒ˜๋Ÿผ ๋А๊ปด์งˆ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด๋Ÿฐ ๊ตฌ์กฐ๊ฐ€ ๊ณ ๊ฐ์˜ ์‹ ๋ขฐ๋ฅผ ๋†’์—ฌ์ฃผ๊ณ  ์žฅ๊ธฐ์ ์œผ๋กœ ์—ฌ๋Ÿฌ ๋ฌธ์ œ๋ฅผ ํ”ผํ•˜๊ฒŒ ํ•ด์ค€๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํ”„๋ฆฌ๋žœ์„œ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด ๊ฒฝ๋ ฅ 20๋…„ ์ด์ƒ์ธ ์†Œ๋ˆ„ ์นดํ‘ธ์–ด๋„ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ด๋Ÿฐ ๊ตฌ์กฐ์˜ ๊ฐ€์น˜๋ฅผ ๊ณผ์†Œํ‰๊ฐ€ํ•œ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๊ทธ๋Š” ์”จํ‹ฐ๊ทธ๋ฃน ๊ธ€๋กœ๋ฒŒ ํŠธ๋ ˆ์ด๋”ฉ ํ”Œ๋žซํผ ํ”„๋ก ํŠธ์—”๋“œ ์„ค๊ณ„, ์•„๋ฉ”๋ฆฌ์นธ ์–ดํŒจ๋Ÿด์˜ RFID ํ†ตํ•ฉ, ์†Œ๋‹ˆ๋ฎค์งํผ๋ธ”๋ฆฌ์‹ฑ๊ณผ ์‹œ์Šค์ฝ”์˜ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์Šคํƒ ํ˜„๋Œ€ํ™” ์ž‘์—… ๋“ฑ์„ ์ˆ˜ํ–‰ํ•ด ์™”๋‹ค.

์นดํ‘ธ์–ด๋Š” โ€œํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž๊ฐ€ ์†Œ๊ทœ๋ชจ ํ”„๋กœ์ ํŠธ์— ๊ทธ์น ์ง€ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ๊ธ‰ ์ž‘์—…์œผ๋กœ ํ™•์žฅํ• ์ง€๋Š” ๊ฒฐ๊ตญ โ€˜์–ด๋–ป๊ฒŒ ๋ณด์ด๋А๋ƒโ€™์— ๋‹ฌ๋ ค์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œํ”„๋ฆฌ๋žœ์„œ ์ดˆ๊ธฐ๋ถ€ํ„ฐ ๋ฒ•์ธ์„ ๋“ฑ๋กํ•˜๊ณ  ์žฌ์ •์„ ๋ถ„๋ฆฌํ•˜๋ฉฐ, ํ€ต๋ถ์Šค(QuickBooks)์™€ ํ—ˆ๋ธŒ์Šคํฟ(HubSpot) ๊ฐ™์€ ์ „๋ฌธ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•ด ์—…๋ฌด๋ฅผ ํšŒ์‚ฌ์ฒ˜๋Ÿผ ๊ด€๋ฆฌํ–ˆ๋‹ค. ์‹ค์งˆ์ ์ธ ์ „ํ™˜์ ์€ ์”จํ‹ฐ๊ทธ๋ฃน๊ณผ ์†Œ๋‹ˆ๋ฎค์งํผ๋ธ”๋ฆฌ์‹ฑ ๊ฐ™์€ ๊ธฐ์—…์˜ ์ฃผ์š” ์˜์‚ฌ๊ฒฐ์ •๊ถŒ์ž๋“ค๊ณผ ๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•œ ๊ฒƒ์ด์—ˆ๋‹ค. ๋Œ€๊ธฐ์—…์€ ๊ฐœ์ธ์„ ์ง์ ‘ ๊ณ ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๊ฑฐ์˜ ์—†์œผ๋ฉฐ, ๋Œ€๋ถ€๋ถ„ ๋ฒค๋”๋ฅผ ํ†ตํ•ด ๊ณ„์•ฝ์ด ์ด๋ค„์ง„๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์นดํ‘ธ์–ด๋Š” ์˜์‚ฌ๊ฒฐ์ •๊ถŒ์ž์™€์˜ ๋„คํŠธ์›Œํฌ ํ˜•์„ฑ์— ์ง‘์ค‘ํ•˜๋ฉฐ, ๊ณผ๊ฑฐ ์ˆ˜ํ–‰ํ•œ ํ”„๋กœ์ ํŠธ์™€ ๊ธฐ์ˆ ์  ๊ด€์ ์„ ํ†ตํ•ด ์ž์‹ ์˜ ์‹ ๋ขฐ๋„๋ฅผ ์ฆ๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ฒด๊ณ„ํ™”๋œ ์—…๋ฌด ๊ตฌ์กฐ์™€ ๋„คํŠธ์›Œํฌ์˜ ์กฐํ•ฉ์€ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰๋งŒ์œผ๋กœ๋Š” ์—ด๋ฆฌ์ง€ ์•Š๋Š” ๋ฌธ์„ ์—ด์–ด์คฌ๋‹ค. ํ”„๋กœ์„ธ์Šค, ๊ด€๊ณ„, ์ „๋ฌธ์„ฑ์„ ๊ฐ–์ถ˜ ๋น„์ฆˆ๋‹ˆ์Šค๋กœ ํ”„๋ฆฌ๋žœ์„œ ์—…๋ฌด๋ฅผ ๋Œ€ํ•˜๋ฉด์„œ ์ง€์†์ ์ธ ํŒŒํŠธ๋„ˆ์‹ญ์„ ๋ฐœ๊ตดํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ ๊ทœ๋ชจ๊ฐ€ ํฐ ํšŒ์‚ฌ์ธ ์ฒ™ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ํฐ ํšŒ์‚ฌ์™€ ๋™์ผํ•œ ์‹ ๋ขฐ์„ฑ๊ณผ ์ฒด๊ณ„๋ฅผ ๊ฐ–์ถฐ ์šด์˜ํ•˜๋Š” ์ผโ€์ด๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

2. ์ „๋ฌธ ๋ถ„์•ผ๋ฅผ ์ฐพ๊ธฐ

๊ฐœ๋ฐœ ๋ถ„์•ผ์—์„œ ์—ฌ๋Ÿฌ ๊ธฐ์ˆ ์„ ๋‘๋ฃจ ๋‹ค๋ฃจ๋Š” ์ผ์€ ๊ด‘๋ฒ”์œ„ํ•œ ํ”„๋กœ์ ํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•  ๋•Œ ๋„์›€์ด ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „๋ฌธํ™”๋ฅผ ํ†ตํ•ด ์„ฑ๊ณผ๋ฅผ ์–ป๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ๋‹ค.

์นดํ‘ธ์–ด๋Š” โ€œ์—ฌ๋Ÿฌ ํ”„๋ ˆ์ž„์›Œํฌ์— ์—ญ๋Ÿ‰์„ ๋ถ„์‚ฐ์‹œํ‚ค์ง€ ์•Š๊ณ  ์•ต๊ทค๋Ÿฌ(Angular)์— ์™„์ „ํžˆ ์ง‘์ค‘ํ•˜๊ธฐ๋กœ ๊ฒฐ์ •ํ•œ ๊ฒƒ์ด ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ ๊ฒฝ๋ ฅ์˜ ๊ฐ€์žฅ ํฐ ๋„์•ฝ์ด์—ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” ์—ญ๋Ÿ‰ ์ง‘์ค‘์ด ์ž์‹ ์˜ ์ „๋ฌธ ์ •์ฒด์„ฑ์„ ์ƒˆ๋กญ๊ฒŒ ๊ตฌ์ถ•ํ•˜๋Š” ๊ณ„๊ธฐ๊ฐ€ ๋๋‹ค๋ฉด์„œ, ๊ตฌ๊ธ€ ํ•ต์‹ฌ ํŒ€๊ณผ ์ง์ ‘ ํ˜‘์—…ํ•˜๋Š” ์ „ ์„ธ๊ณ„ 11๋ช…์˜ ์•ต๊ทค๋Ÿฌ ํ˜‘๋ ฅ ๊ทธ๋ฃน์— ์ดˆ์ฒญ๋๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ดํ›„ ์นดํ‘ธ์–ด๋Š” ๊ตฌ๊ธ€ ๊ฐœ๋ฐœ์ž ์ „๋ฌธ๊ฐ€(Google Developer Expert)๋กœ ์ธ์ •๋ฐ›์œผ๋ฉฐ ๊ฐ•์—ฐ๊ณผ ์ปจ์„คํŒ…, ๊ธ€๋กœ๋ฒŒ ํ™œ๋™ ๊ธฐํšŒ๋ฅผ ์–ป์—ˆ๋‹ค. ํŠนํžˆ ๋‰ด์š• ํƒ€์ž„์Šคํ€˜์–ด ํ†ฑ๋ฉ”์ดํŠธ ๊ด‘๊ณ ํŒ์— ๊ทธ์˜ ์•ต๊ทค๋Ÿฌ ๋ฐ AI ๊ด€๋ จ ํ™œ๋™์ด ์†Œ๊ฐœ๋˜๋ฉด์„œ ์ด๋ฆ„์„ ๋”์šฑ ์•Œ๋ฆฌ๊ฒŒ ๋๋‹ค.

๊ทธ๋Š” ์ „๋ฌธ์„ฑ์˜ ๊นŠ์ด๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ƒˆ๋กœ์šด ๊ธฐํšŒ๋ฅผ ๋ถˆ๋Ÿฌ์™”๋‹ค๊ณ  ํ–ˆ๋‹ค. ๊ฐœ๋ฐœ์ž ์ถœํŒ ๋ถ„์•ผ์—์„œ ๊ธฐ์ˆ  ํŽธ์ง‘์ž์™€ ๊ธฐ๊ณ ์ž๋กœ ํ™œ๋™ํ•˜๋˜ ๊ทธ์˜ ์ž‘์—…์„ ๋ณธ ์—์ดํ”„๋ ˆ์Šค(Apress)๊ฐ€ ์•ต๊ทค๋Ÿฌ ์‹œ๊ทธ๋„์„ ์ฃผ์ œ๋กœ ํ•œ ์ฑ… ์ง‘ํ•„์„ ์ œ์•ˆํ•œ ๊ฒƒ์ด๋‹ค.

์นดํ‘ธ์–ด๋Š” โ€œ์ด๋Š” ์ฝ”๋”ฉ ์‹ค๋ ฅ์„ ๋„˜์–ด, ๊ฐœ๋ฐœ์ž๋“ค์ด ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ๋ฐฐ์šฐ๋Š” ๋ฐฉ์‹์„ ์„ค๊ณ„ํ•˜๋Š” ์˜์—ญ์œผ๋กœ ๊ฒฝ๋ ฅ์ด ํ™•์žฅ๋œ ์ˆœ๊ฐ„์ด์—ˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ „๋ฌธํ™”๋Š” ๊ณง ์ •์ฒด์„ฑ์„ ๋งŒ๋“ ๋‹ค. ์ „๋ฌธ์„ฑ์ด ํŠน์ • ๋ถ„์•ผ์˜ ๋ฐœ์ „๊ณผ ๋งž๋ฌผ๋ฆฌ๊ธฐ ์‹œ์ž‘ํ•˜๋ฉด ํ”„๋กœ์ ํŠธ, ๋ฏธ๋””์–ด, ์ถœํŒ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐํšŒ๊ฐ€ ์Šค์Šค๋กœ ์ฐพ์•„์˜จ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

ํ“จ์ฒ˜ํŽ€๋“œ์˜ ์‹œ๋ฏธ ์—ญ์‹œ ๋น„์Šทํ•œ ๊ฒฝํ—˜์„ ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ดˆ๊ธฐ์—๋Š” ์ •๋ง ๋ชจ๋“  ๊ณ ๊ฐ์—๊ฒŒ ๋ชจ๋“  ๊ฒƒ์„ ์ œ๊ณตํ•˜๋ ค ํ–ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์ด์–ด โ€œ๋งŽ์€ ๊ฐœ๋ฐœ ์—์ด์ „์‹œ๊ฐ€ ๋น„์Šทํ•œ ๊ณ ๋ฏผ์„ ํ•œ๋‹ค. ํ•œ๋‘ ๋ถ„์•ผ๋กœ ์ „๋ฌธํ™”ํ• ์ง€, ์•„๋‹ˆ๋ฉด ๋‹ค์„ฏ์—ฌ์„ฏ ๋ถ„์•ผ์—์„œ ๊ทธ๋Ÿญ์ €๋Ÿญ ํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ค€์„ ์ง€ํ–ฅํ• ์ง€ ๊ฒฐ์ •ํ•ด์•ผ ํ•œ๋‹ค. ์ „๋ฌธํ™”๋Š” ๊ฒฝ์Ÿ ์†์—์„œ ๋‹๋ณด์ด๊ฒŒ ๋งŒ๋“ค๊ณ , ํ‰ํŒ์„ ํ˜•์„ฑํ•˜๋ฉฐ, ๋” ์‰ฝ๊ฒŒ ์ถ”์ฒœ์„ ๋ฐ›๋„๋ก ํ•œ๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

3. ๋ˆˆ์— ๋ณด์ด๋Š” ์ž‘์—…์œผ๋กœ ์ „๋ฌธ์„ฑ์„ ์ฆ๋ช…

์นดํ‘ธ์–ด๋Š” ์˜คํ”ˆ์†Œ์Šค ์ž‘์—…์„ ๊ณต๊ฐœํ•˜๊ณ  ๊ธฐ์ˆ  ๋‹ด๋ก ์œผ๋กœ ์ด๋ฆ„์„ ์•Œ๋ฆฌ๋Š” ๊ฒƒ์ด ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž์—๊ฒŒ ์ƒˆ๋กœ์šด ๊ธฐํšŒ๋ฅผ ์—ด์–ด์ค„ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๊ฒฝ๋ ฅ ์ดˆ๊ธฐ โ€˜๋‹ท๋„ท์Šฌ๋ž˜์ปค์Šค(DotNetSlackers)โ€™๋ผ๋Š” ๊ธฐ์ˆ  ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ๋งŒ๋“ค์—ˆ๋Š”๋ฐ, ์กฐํšŒ ์ˆ˜๊ฐ€ 3,300๋งŒ ํšŒ๋ฅผ ๋„˜์–ด์„œ๋ฉฐ ๋‹ท๋„ท(.NET) ๊ด€๋ จ ์ฝ˜ํ…์ธ ๋ฅผ ์ฐพ๋Š” ์ด๋“ค์—๊ฒŒ ํฐ ์ฃผ๋ชฉ์„ ๋ฐ›์•˜๋‹ค. ๋‹น์‹œ์—๋Š” ๋ชฐ๋ž์ง€๋งŒ ์ด ์ •๋„์˜ ๋„๋‹ฌ๋ ฅ์€ ์–ด๋–ค ๋งˆ์ผ€ํŒ… ์ˆ˜๋‹จ๋ณด๋‹ค ๊ฐ•๋ ฅํ–ˆ๋‹คโ€๋ผ๊ณ  ํšŒ์ƒํ–ˆ๋‹ค.

๊ทธ ๊ฒฐ๊ณผ ๊ธฐ์—… CTO์™€ ์—”์ง€๋‹ˆ์–ด๋ง ๋งค๋‹ˆ์ €๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ทธ์˜ ์ž‘์—…์„ ๋ฐœ๊ฒฌํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ฒซ ์ฃผ์š” ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ณ„์•ฝ์€ ๋ช‡ ๋‹ฌ ๋™์•ˆ ๊ธ€์„ ์ฝ์–ด์˜จ ๊ณ ๊ฐ์œผ๋กœ๋ถ€ํ„ฐ ์ œ์•ˆ๋๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

์นดํ‘ธ์–ด๋Š” ์•ต๊ทค๋Ÿฌ๋กœ ์ „๋ฌธ ์˜์—ญ์„ ์˜ฎ๊ธด ์ดํ›„์—๋„ ๊ฐ™์€ ์›์น™์„ ์ ์šฉํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์˜คํ”ˆ์†Œ์Šค ํ™œ๋™์„ ํ†ตํ•ด 1๋…„ ๋™์•ˆ ์•ต๊ทค๋Ÿฌ ์ €์žฅ์†Œ์— 100๊ฑด ์ด์ƒ์˜ ์ฝ”๋“œ ๋ณ€๊ฒฝ์„ ๊ธฐ์—ฌํ–ˆ๋‹ค. ํŠนํžˆ ์•ต๊ทค๋Ÿฌ ์—ญ์‚ฌ์ƒ ๊ฐ€์žฅ ๋งŽ์€ ์ถ”์ฒœ์„ ๋ฐ›์€ ๊ธฐ๋Šฅ ์š”์ฒญ์ธ โ€˜ํƒ€์ž…๋“œ ํผ(Typed Forms)โ€™์— ๊ธฐ์—ฌํ•œ ์ž‘์—…์ด ๊ธ€๋กœ๋ฒŒ ๊ฐœ๋ฐœ์ž ์ปค๋ฎค๋‹ˆํ‹ฐ์— ๋…ธ์ถœ๋๊ณ , ์ด๋Š” ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ MVP์™€ ์ดํ›„ ๊ตฌ๊ธ€ ๊ฐœ๋ฐœ์ž ์ „๋ฌธ๊ฐ€ ์„ ์ •์œผ๋กœ ์ด์–ด์กŒ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

์นดํ‘ธ์–ด๋Š” ์˜คํ”ˆ์†Œ์Šค ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ, ๊ธฐ์ˆ  ์ปจํผ๋Ÿฐ์Šค ๋ฐœํ‘œ, CODE ๋งค๊ฑฐ์ง„ ๊ธฐ๊ณ  ๋“ฑ ๋ˆˆ์— ๋ณด์ด๋Š” ๋ชจ๋“  ์ž‘์—…์ด ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž์˜ ์‹ ๋ขฐ๋ฅผ ์Œ“๋Š” ์ž์‚ฐ์ด ๋œ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๊ฐœ๋ฐœ์ž๋Š” ๋ฌธ์„œํ™”๋œ ํ•˜๋‚˜์˜ ์•„์ด๋””์–ด๊ฐ€ ์–ผ๋งˆ๋‚˜ ๋ฉ€๋ฆฌ ํผ์งˆ ์ˆ˜ ์žˆ๋Š”์ง€ ์ข…์ข… ๊ณผ์†Œํ‰๊ฐ€ํ•œ๋‹ค. ํ•œ ํŽธ์˜ ๋ธ”๋กœ๊ทธ ๊ธ€์ด ๋ช‡ ๋…„ ๋’ค ์ƒˆ๋กœ์šด ๊ณ ๊ฐ์„ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜๋„ ์žˆ๋‹ค. ๋‚ด ๊ฒฝ์šฐ, ์ดˆ๊ธฐ์˜ ์ž‘์€ ๋…ธ๋ ฅ๋“ค์ด ์‹œ๊ฐ„์ด ์ง€๋‚˜๋„ ๊ณ„์† ๋ฏธ๋””์–ด ๋…ธ์ถœ, ์ปจ์„คํŒ… ๊ธฐํšŒ, ๊ธฐ์ˆ ์  ์ธ์ •์œผ๋กœ ์ด์–ด์ง€๋Š” ์„ ์ˆœํ™˜์„ ๋งŒ๋“ค์—ˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

4. ๊ด€๊ณ„ ๊ตฌ์ถ•์˜ ํ•ต์‹ฌ์€ โ€˜์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜โ€™

ํ”„๋ฆฌ๋žœ์„œ๋Š” ์–ด๋–ค ๋ถ„์•ผ์—์„œ๋“  ๊ธ€์“ฐ๊ธฐ๋‚˜ ๋Œ€ํ™”๋ฅผ ํ†ตํ•ด ํšจ๊ณผ์ ์œผ๋กœ ์†Œํ†ตํ•˜๋Š” ๋Šฅ๋ ฅ์ด ์ค‘์š”ํ•˜๋‹ค. ๋›ฐ์–ด๋‚œ ๊ฐœ๋ฐœ์ž๋ผ ํ•˜๋”๋ผ๋„ ์†Œํ†ต์ด ๋ถ€์กฑํ•˜๋ฉด ์ƒˆ๋กœ์šด ์ผ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ค์›Œ์ง„๋‹ค.

์›น ๋””์ž์ธยท๊ฐœ๋ฐœยทํ˜ธ์ŠคํŒ… ์„œ๋น„์Šค ์—…์ฒด 18a์˜ CEO ๋ฆฌ์‚ฌ ํ”„๋ฆฌ๋จผ์€ โ€œ์ˆ˜๋…„๊ฐ„ ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž๋กœ ์ผํ•˜๊ณ , ์ง€๊ธˆ์€ ๊ฐœ๋ฐœ ์—์ด์ „์‹œ๋ฅผ ์šด์˜ํ•˜๋Š” ์ž…์žฅ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์กฐ์–ธ์€ ์–ธ์ œ๋‚˜ ๋ช…ํ™•ํ•˜๊ณ  ์ถฉ๋ถ„ํ•˜๊ฒŒ ์†Œํ†ตํ•˜๋Š” ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํ”„๋ฆฌ๋จผ์€ โ€œ์ผ๋ถ€ ๊ณ ๊ฐ๊ณผ 10๋…„ ๋„˜๊ฒŒ ํ˜‘์—…์„ ์ด์–ด์˜จ ๋น„๊ฒฐ์ด ๋ฐ”๋กœ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์— ์žˆ๋‹ค. ๊ฒฝ์Ÿ์ด ์น˜์—ดํ•œ ์š”์ฆ˜์€ ์ƒˆ๋กœ์šด ๊ณ ๊ฐ์„ ๋งค๋ฒˆ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ๊ธฐ์กด ๊ณ ๊ฐ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ํ›จ์”ฌ ์ˆ˜์›”ํ•˜๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํ”„๋ฆฌ๋จผ์€ ๊ณ ๊ฐ๊ณผ์˜ ๊ด€๊ณ„๊ฐ€ ์ฝ”๋“œ ์ž์ฒด๋งŒํผ์ด๋‚˜ ์ค‘์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๋ถˆํ•„์š”ํ•˜๊ณ  ๋ณต์žกํ•œ ์„ค๋ช…์œผ๋กœ ํ˜ผ๋ž€์„ ์ฃผ์ง€ ๋ง๊ณ , ์™œ ๊ทธ๋Ÿฐ ๋ฐฉ์‹์œผ๋กœ ์ž‘์—…ํ–ˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ์„ค๋ช…ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

ํ”„๋ฆฌ๋จผ์€ ๋งŽ์€ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋†“์น˜๊ธฐ ์‰ฌ์šด ๋ถ€๋ถ„์œผ๋กœ โ€˜์ž์‹ ์ด ์ด๋ฃฌ ๊ฐ€์น˜โ€™๋ฅผ ๋ช…ํ™•ํžˆ ์ „๋‹ฌํ•˜์ง€ ์•Š๋Š” ์ ์„ ๊ผฝ๋Š”๋‹ค. ๊ทธ๋Š” โ€œ๊ณ ๊ฐ์ด ํŠน์ • ๊ธฐ๋Šฅ์„ ์š”์ฒญํ•œ ๋’ค, ๊ฐœ๋ฐœ์ž๊ฐ€ ํ–ฅํ›„ ์—…๋ฌด๋ฅผ ๋” ๋น ๋ฅด๊ฒŒ ํ•˜๊ฑฐ๋‚˜ ๋‹ค๋ฅธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ธฐ๋ฐ˜๊นŒ์ง€ ๋งˆ๋ จํ–ˆ๋‹ค๋ฉด ๋ฐ˜๋“œ์‹œ ์•Œ๋ ค์•ผ ํ•œ๋‹ค. ์‚ฌ์†Œํ•ด ๋ณด์—ฌ๋„ ์ด๋Ÿฐ ๋ถ€๊ฐ€์ ์ธ ๋…ธ๋ ฅ์ด ๊ณ ๊ฐ์˜ ์ธ์‹์— ๊ธ์ •์ ์ธ ์ธ์ƒ์„ ๋‚จ๊ธฐ๊ณ , ๋‹ค์‹œ ์ฐพ๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒฐ์ •์  ์š”์ธ์ด ๋œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

2022๋…„๋ถ€ํ„ฐ ์ „์—… ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž๋กœ ํ™œ๋™ ์ค‘์ธ ๋ฏธ์•„ ์ฝ”ํƒˆ๋ฆญ์€ ์ข‹์€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์˜ ํ•ต์‹ฌ์ด ๊ธฐ์ˆ ์  ์šฉ์–ด๋ฅผ ๋” ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ์–ธ์–ด๋กœ โ€˜๋ฒˆ์—ญโ€™ํ•˜๋Š” ๋Šฅ๋ ฅ์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์ฝ”ํƒˆ๋ฆญ์€ โ€œ๊ธฐ์ˆ  ์šฉ์–ด๋ฅผ ๋‚˜์—ดํ•ด ๋น„์ „๋ฌธ๊ฐ€์ธ ๊ณ ๊ฐ์„ ์••๋„ํ•ด์„œ๋Š” ์‹ ๋ขฐ๋ฅผ ์–ป์„ ์ˆ˜ ์—†๋‹ค. ์ด๋Š” ๊ณ ๊ฐ์„ ์œ„์ถ•์‹œํ‚ค๊ณ  ๋Œ€ํ™”๋ฅผ ํ”ผํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋จผ์ € ๋น„๊ธฐ์ˆ ์ ์œผ๋กœ ๊ฐœ๋…์„ ์„ค๋ช…ํ•˜๊ณ , ์ดํ›„ ํ•ต์‹ฌ ์šฉ์–ด๋ฅผ ์งง๊ณ  ๋ช…ํ™•ํ•œ ์ •์˜์™€ ํ•จ๊ป˜ ์ œ์‹œํ•˜๋ฉด ๊ณ ๊ฐ์€ ๋ถ€๋‹ด ์—†์ด ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ์ด์–ด ๊ทธ๋Š” โ€œ์ด ๋Šฅ๋ ฅ์ด ๊ฐ•๋ ฅํ•œ ์ฐจ๋ณ„ํ™” ์š”์†Œ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ณ ๊ฐ์€ ๊ณ„ํš์„ ์ดํ•ดํ•˜๊ณ , ์กด์ค‘๋ฐ›๊ณ  ์žˆ๋‹ค๊ณ  ๋А๋ผ๋ฉฐ, ๋™์‹œ์— ๊ฐœ๋ฐœ์ž๊ฐ€ ๊ธฐ์ˆ ์ ์œผ๋กœ๋„ ์ถฉ๋ถ„ํžˆ ํƒ„ํƒ„ํ•˜๋‹ค๊ณ  ์ธ์‹ํ•œ๋‹ค. ํ”„๋ฆฌ๋žœ์„œ์—๊ฒŒ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์—ญ๋Ÿ‰์ด๋ผ๊ณ  ํ•ด๋„ ๊ณผ์–ธ์ด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

5. ์ž‘์—… ํฌํŠธํด๋ฆฌ์˜ค ๊ตฌ์ถ•

ํฌํŠธํด๋ฆฌ์˜ค๋Š” ๊ฐœ๋ฐœ์ž๊ฐ€ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์น˜๋ฅผ ๊ฐ€์žฅ ๋ช…ํ™•ํ•˜๊ฒŒ ๋ณด์—ฌ์ฃผ๋Š” ์ž๋ฃŒ๋‹ค. ๊ธฐ์ˆ  ์—ญ๋Ÿ‰๊ณผ ๊ฒฝํ—˜์„ ์ฆ๋ช…ํ•˜๋Š” ํ•ต์‹ฌ ๋„๊ตฌ์ด์ž, ์ƒˆ๋กœ์šด ๊ณ ๊ฐ๊ณผ ํ”„๋กœ์ ํŠธ๋ฅผ ์œ ์น˜ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ž˜ ๊ตฌ์„ฑ๋œ ํฌํŠธํด๋ฆฌ์˜ค๋Š” ์ด๋ ฅ์„œ์™€ ํ•จ๊ป˜ ๊ฐœ๋ฐœ์ž์˜ ์‹ค๋ ฅ์„ ์ž…์ฆํ•˜๋Š” ์ž๋ฃŒ๊ฐ€ ๋œ๋‹ค.

๋งž์ถคํ˜• ๋””์ง€ํ„ธ ์ œํ’ˆ ๊ฐœ๋ฐœ์‚ฌ ์ธ์ŠคํŒŒ์ด์–ด๋ง์•ฑ์Šค(InspiringApps)์˜ ์„ค๋ฆฝ์ž์ด์ž, ๊ณผ๊ฑฐ 12๋…„ ๋™์•ˆ ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž๋กœ ํ™œ๋™ํ–ˆ๋˜ ๋ธŒ๋ž˜๋“œ ์›จ๋ฒ„๋Š” โ€œํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž์—๊ฒŒ ์˜๋ขฐํ•˜๋Š” ๊ฒƒ ์ž์ฒด๊ฐ€ ๊ณ ๊ฐ์—๊ฒŒ๋Š” ์ผ์ข…์˜ ์œ„ํ—˜ ๋ถ€๋‹ดโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์›จ๋ฒ„๋Š” โ€œ๊ณ ๊ฐ์˜ ๋ถˆ์•ˆ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ ˆํผ๋Ÿฐ์Šค๋กœ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์‚ฌ ํ”„๋กœ์ ํŠธ๋ฅผ ๊ฐ–์ถ”๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ํ”„๋ฆฌ๋žœ์„œ ์ดˆ๊ธฐ์—๋Š” ํฌํŠธํด๋ฆฌ์˜ค ๋ถ€์กฑ์œผ๋กœ ์–ด๋ ค์›€์„ ๊ฒช์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด ๊ฒฝ์šฐ ์ง€์ธ, ๊ฐ€์กฑ, ๋น„์˜๋ฆฌ ๋‹จ์ฒด๋ฅผ ์œ„ํ•ด ๋ฌด๋ฃŒ ๋˜๋Š” ๋งค์šฐ ๋‚ฎ์€ ๋น„์šฉ์œผ๋กœ ์ž‘์—…ํ•˜๋Š” ๋ฐฉ์‹์ด ํšจ๊ณผ์ ์ด์—ˆ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

์ฝ”ํƒˆ๋ฆญ์€ ์ฒ˜์Œ ์‹œ์ž‘ํ•˜๋Š” ํ”„๋ฆฌ๋žœ์„œ ๊ฐœ๋ฐœ์ž๊ฐ€ ํฌํŠธํด๋ฆฌ์˜ค๋ฅผ ์Œ“๊ธฐ ์œ„ํ•ด ๊ณ ๊ฐ์„ ๊ธฐ๋‹ค๋ฆด ํ•„์š”๋„ ์—†๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์—ฌ์œ  ์‹œ๊ฐ„์— ์•ฑ์ด๋‚˜ ์›น์‚ฌ์ดํŠธ๋ฅผ ์ง์ ‘ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๋‚ด ๊ฒฝ์šฐ ์ฒซ ๋ฒˆ์งธ ๊ฐœ์ธ ํ”„๋กœ์ ํŠธ๋Š” ์™„์ „ํžˆ ๋ฌด๋ฃŒ๋กœ ๋งŒ๋“ค์—ˆ์ง€๋งŒ, ๋‘ ๋ฒˆ์งธ ์ทจ๋ฏธ ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ํ•  ๋•Œ์ฏค ์œ ๋ฃŒ ๊ณ ๊ฐ์ด ๋จผ์ € ์—ฐ๋ฝ์„ ๋ณด๋‚ด์˜ค๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

โ€˜AI๋Š” ์ œ2์˜ PC ๋Šฅ๋ ฅโ€™ยทยทยทIT ์ฑ„์šฉ 78%๊ฐ€ AI ์—ญ๋Ÿ‰ ์š”๊ตฌ

2 December 2025 at 01:07

AI๊ฐ€ ์ปค๋ฆฌ์–ด์— ๋ฏธ์น  ๋ณ€ํ™”๋ฅผ ์ธ์ •ํ•˜์ง€ ์•Š๋Š” IT ์ข…์‚ฌ์ž๋ผ๋ฉด, ๋‹ค์‹œ ๊ณ ๋ฏผํ•ด๋ณผ ์‹œ์ ์ด๋‹ค. ์‹œ์Šค์ฝ”๊ฐ€ ์ด๋„๋Š” AI ์›Œํฌํฌ์Šค ์ปจ์†Œ์‹œ์—„(AI Workforce Consortium)์˜ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด, AI ํ™•์‚ฐ์œผ๋กœ IT ์ฑ„์šฉ ์‹œ์žฅ์€ ์ง€๊ธˆ๊นŒ์ง€ ๊ฒฝํ—˜ํ•˜์ง€ ๋ชปํ•œ ๋ณ€ํ™”๋ฅผ ๊ฒช๊ณ  ์žˆ์œผ๋ฉฐ AI ์—ญ๋Ÿ‰์€ IT ์ธ์žฌ์—๊ฒŒ ํ•„์ˆ˜์ ์ธ ํ•ต์‹ฌ ์—ญ๋Ÿ‰์œผ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค.

์ด๋ฒˆ ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋Š” 2024๋…„ 7์›”๋ถ€ํ„ฐ 2025๋…„ 6์›”๊นŒ์ง€ ์บ๋‚˜๋‹ค, ํ”„๋ž‘์Šค, ๋…์ผ, ์ดํƒˆ๋ฆฌ์•„, ์ผ๋ณธ, ์˜๊ตญ, ๋ฏธ๊ตญ ๋“ฑ G7 ๊ตญ๊ฐ€์—์„œ ์ธ์žฌ ๊ต์œก ๋ฐ ๊ด€๋ฆฌ ํ”Œ๋žซํผ ์ฝ”๋„ˆ์Šคํ†ค๊ณผ ์ฑ„์šฉ ํ”Œ๋žซํผ ์ธ๋””๋“œ์˜ ๊ตฌ์ธ ๊ณต๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•ด ๋„์ถœํ•œ ๊ฒƒ์ด๋‹ค.

AI๋Š” ์ด๋ฏธ โ€˜๊ธฐ๋ณธ ์—ญ๋Ÿ‰โ€™

์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด ์ „์ฒด IT ์ฑ„์šฉ ๊ณต๊ณ ์˜ 78%์—์„œ AI ์—ญ๋Ÿ‰์ด ๋ช…์‹œ์ ์œผ๋กœ ์š”๊ตฌ๋˜๊ณ  ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ G7 ๊ตญ๊ฐ€์—์„œ ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ์„ฑ์žฅํ•˜๋Š” IT ์ง๋ฌด 10๊ฐœ ์ค‘ 7๊ฐœ๋Š” ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด, AIยทML ๊ฐœ๋ฐœ์ž, ํด๋ผ์šฐ๋“œ ์—”์ง€๋‹ˆ์–ด, ๋ฐ์ดํ„ฐ ์—”์ง€๋‹ˆ์–ด ๋“ฑ AI์™€ ์ง์ ‘ ์—ฐ๊ด€๋œ ๋ถ„์•ผ์˜€๋‹ค.

๋™์‹œ์— ์†Œํ†ต, ํ˜‘์—…, ๋ฆฌ๋”์‹ญ ๊ฐ™์€ ์†Œํ”„ํŠธ ์Šคํ‚ฌ ์—ญ์‹œ ์ฑ…์ž„ ์žˆ๋Š” AI ํ™œ์šฉ์„ ์œ„ํ•ด ์ ์  ๋” ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ๋‹ค.

์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์€ IT ์ข…์‚ฌ์ž๋งŒ์ด ์•„๋‹ˆ๋‹ค. ์ง์žฅ ๋‚ด AI ํ™œ์šฉ์„ ์—ฐ๊ตฌํ•˜๋Š” ๊ต์ˆ˜ ์•ผ์Šค๋ฏผ ๋ฐ”์ด์Šค๋Š” ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋ฅผ ์ ‘ํ•œ ๋’ค โ€œ2030๋…„์ฏค์ด ๋˜๋ฉด AI ์—ญ๋Ÿ‰์€ ์ง€๊ธˆ์˜ PC ํ™œ์šฉ ๋Šฅ๋ ฅ๋งŒํผ ๋‹น์—ฐํ•œ ๊ธฐ๋ณธ ์š”๊ฑด์ด ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ฐ”์ด์Šค๋Š” ์ด์–ด โ€œ2030๋…„์— ์ง€์‹ ๋…ธ๋™ ์ง๊ตฐ์— ์ง€์›ํ•˜๋ฉด์„œ AI ์—ญ๋Ÿ‰์„ ์ถฉ๋ถ„ํžˆ ๋ณด์—ฌ์ฃผ์ง€ ๋ชปํ•œ๋‹ค๋ฉด, ์˜ค๋Š˜๋‚  PC๋ฅผ ๋‹ค๋ฃจ์ง€ ๋ชปํ•˜๋Š” ์ง€์›์ž๋งŒํผ์ด๋‚˜ ๋งค๋ ฅ์ ์ด์ง€ ์•Š์€ ์ธ์žฌ๋กœ ํ‰๊ฐ€๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

์œ„ํ—˜ํ•œ ๋ถˆ๊ท ํ˜•

๋ฐ”์ด์Šค๋Š” ์„ธ๊ณ„๊ฒฝ์ œํฌ๋Ÿผ(WEF)์ด 2027๋…„๊นŒ์ง€ ์ž๋™ํ™”๋กœ 8,300๋งŒ ๊ฐœ์˜ ์ผ์ž๋ฆฌ๊ฐ€ ์‚ฌ๋ผ์ง€๊ณ  6์–ต 9,800๋งŒ ๊ฐœ์˜ ์ƒˆ๋กœ์šด ์ผ์ž๋ฆฌ๊ฐ€ ์ฐฝ์ถœ๋  ๊ฒƒ์ด๋ผ๋Š” ์ „๋ง์ด ์™„์ „ํžˆ ํ‹€๋ฆฐ ์˜ˆ์ธก์€ ์•„๋‹ˆ๋ผ๊ณ  ๋ณธ๋‹ค. ์„ ์ง„๊ตญ์˜ ์ธ๊ตฌ ๊ตฌ์กฐ ๋ณ€ํ™”, ์ฆ‰ ๋ฒ ์ด๋น„๋ถ ์„ธ๋Œ€์˜ ์€ํ‡ด ํ๋ฆ„์„ ๊ณ ๋ คํ•˜๋ฉด ์ „์ฒด์ ์œผ๋กœ๋Š” ๊ท ํ˜•์ด ๋งž๋Š”๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋ฌธ์ œ๋Š” AI๋‚˜ ๋‹ค๋ฅธ ๊ธฐ์ˆ ๋กœ ์ธํ•ด ์ผ์ž๋ฆฌ๋ฅผ ์žƒ๊ฒŒ ๋˜๋Š” ์‚ฌ๋žŒ๋“ค์ด ์ƒˆ๋กœ ์ƒ๊ฒจ๋‚˜๋Š” ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•  ์ž๊ฒฉ์„ ๊ฐ–์ถ”์ง€ ๋ชปํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค๋Š” ์ ์ด๋ผ๊ณ  ๋ฐ”์ด์Šค๋Š” ์ง€์ ํ–ˆ๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ๋‹จ์ˆœํ•œ ์—ญ๋Ÿ‰ ํ–ฅ์ƒ๋งŒ์œผ๋กœ๋Š” ๋ถ€์กฑํ•˜๋ฉฐ, ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์ตํžˆ๋Š” โ€˜์ „ํ™˜ ๊ต์œก(reskilling)โ€™์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

๋ฐ”์ด์Šค๋Š” โ€œ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณผ๊ฑฐ ์‚ฌ๋ฌด์ง ์ข…์‚ฌ์ž๊ฐ€ ๋‹จ๊ธฐ๊ฐ„์— ์‚ฌ์ด๋ฒ„ ํฌ๋ Œ์‹ ์ „๋ฌธ๊ฐ€๋กœ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ˜„์‹ค์ ์ธ ์˜๋ฌธ์ด ์ƒ๊ธด๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋ฐ”์ด์Šค๋Š” ์ด์–ด ๊ธฐ์ˆ ์  ์ž๊ฒฉ๋ฟ ์•„๋‹ˆ๋ผ ์‚ฌ๊ณ ๋ฐฉ์‹์˜ ๊ทผ๋ณธ์ ์ธ ๋ณ€ํ™”๊ฐ€ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์•ž์œผ๋กœ ์‚ฌ๋žŒ๋“ค์€ ์ƒ์•  ์ „๋ฐ˜์— ๊ฑธ์ณ ํ›จ์”ฌ ๋” ์ž์ฃผ ์„œ๋กœ ๋‹ค๋ฅธ ์ง์—…์  ์ •์ฒด์„ฑ์„ ์˜ค๊ฐ€๊ฒŒ ๋  ๊ฒƒ์ด๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ ์‘๋ ฅ, ํ•™์Šต ๋Šฅ๋ ฅ, ๋ณ€ํ™”์— ๋Œ€ํ•œ ๊ฐœ๋ฐฉ์„ฑ ๊ฐ™์€ ๋ฉ”ํƒ€ ์—ญ๋Ÿ‰์ด ํฌ๊ฒŒ ๊ฐ•ํ™”๋ผ์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์—ญ๋Ÿ‰์ด ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š” ๋…ธ๋™ ์‹œ์žฅ์—์„œ ์„ฑ๊ณต์„ ์ขŒ์šฐํ•˜๋Š” ๊ธฐ๋ฐ˜์ด ๋œ๋‹ค๋Š” ๋ถ„์„์ด๋‹ค.

์‹œ์Šค์ฝ” EMEA ์„œ๋น„์Šคยท์ „๋žตยท๊ธฐํš ์ด๊ด„ ํฌ๋ฆฌ์Šคํ‹ฐ์•ˆ ์ฝ”๋ฅดํ”„๋Š” ์˜์–ด๊ถŒ ๊ตญ๊ฐ€์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ํ•™์Šตยท๊ต์œก ๊ฐœ๋ฐœ ์ง๋ฌด ์ฑ„์šฉ์ด ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰ ์ค‘์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋ฐ˜๋ฉด ์œ ๋Ÿฝ, ํŠนํžˆ ๋…์ผ์€ ๊ต์œกยทํ›ˆ๋ จ ํˆฌ์ž์™€ ์ธ๋ ฅ ์ „ํ™˜์„ ์œ„ํ•œ ์ง€์›์—์„œ ์—ฌ์ „ํžˆ ๋’ค์ฒ˜์ ธ ์žˆ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๋ฐ”์ด์Šค๋Š” ์‹ค์ œ ๊ฐ•์˜ ํ˜„์žฅ์—์„œ์˜ ๊ฒฝํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ, AI๊ฐ€ ์ด๋Ÿฌํ•œ ์ „ํ™˜์„ ์ด๋„๋Š” ๋„๊ตฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํ•™์ƒ๋“ค์€ ์ฑ—๋ด‡ ๋“ฑ ๋””์ง€ํ„ธ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•ด ๋”์šฑ ๊ฐœ์ธํ™”๋œ ๋ฐฉ์‹์œผ๋กœ ํ•™์Šตํ•˜๊ณ  ์ง„๋กœ๋ฅผ ๊ณ ๋ฏผํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋์œผ๋ฉฐ, ์ด๋Š” ๊ณผ๊ฑฐ์—๋Š” ์กด์žฌํ•˜์ง€ ์•Š๋˜ ๊ธฐํšŒ์˜€๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค.

โ€˜์žƒ์–ด๋ฒ„๋ฆฐ ์„ธ๋Œ€โ€™๊ฐ€ ๋‹ค๊ฐ€์˜ค๋Š”๊ฐ€

๋‹ค๋งŒ ๋กœํŽŒ, ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ์—…, ์ปจ์„คํŒ… ๊ธฐ์—… ๋“ฑ์—์„œ ์ €์—ฐ์ฐจ ์ฑ„์šฉ ๊ณต๊ณ ๊ฐ€ ๊ฐ์†Œํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ๋ถ€์ธํ•  ์ˆ˜ ์—†๋‹ค. ์ด๋Š” ์ฒญ๋…„์ธต์˜ ์ผ์ž๋ฆฌ ์ „๋ง์„ ์•ฝํ™”์‹œํ‚ค๊ณ , ๋‚˜์•„๊ฐ€ โ€˜์žƒ์–ด๋ฒ„๋ฆฐ ์„ธ๋Œ€โ€™๋กœ ์ด์–ด์ง€๋Š” ๊ฒƒ ์•„๋‹ˆ๋ƒ๋Š” ์šฐ๋ ค๋กœ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์‹œ์Šค์ฝ”์˜ ํฌ๋ฆฌ์Šคํ‹ฐ์•ˆ ์ฝ”๋ฅดํ”„๋Š” ์ด๋Ÿฌํ•œ ๋น„๊ด€์  ์ „๋ง์— ๋™์˜ํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋Š” ๊ธฐ์—…๋“ค์ด ํ˜„์žฌ ์‹ ๊ธฐ์ˆ  ๋„์ž…์„ ๋น ๋ฅด๊ฒŒ ์ถ”์ง„ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ™๋ จ ์ธ์žฌ ํ™•๋ณด์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ์ง€๋งŒ, ๋™์‹œ์— ์ƒ๋‹น์ˆ˜์˜ ๊ณ ์—ฐ๋ น ์ง์›๋“ค์ด ์€ํ‡ด ์‹œ๊ธฐ์— ๊ฐ€๊นŒ์›Œ์ง€๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ฝ”๋ฅดํ”„๋Š” ์‹œ์Šค์ฝ”์™€ ์ „์ฒด IT ์—…๊ณ„์—์„œ ํ–ฅํ›„ 5~7๋…„ ์‚ฌ์ด์— ์ Š์€ ์ธ์žฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐํšŒ๊ฐ€ ๋Œ€๊ฑฐ ์—ด๋ฆด ๊ฒƒ์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์‹œ์Šค์ฝ”๋Š” ์„ธ๋Œ€ ์ „ํ™˜์„ ์ฃผ๋„์ ์œผ๋กœ ์ค€๋น„ํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ๋‹ˆ์–ด ํ”„๋กœ๊ทธ๋žจ๊ณผ ์‚ฌ๋‚ด ์•„์นด๋ฐ๋ฏธ์— ์ ๊ทน ํˆฌ์žํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Š” โ€œ์‹œ์Šค์ฝ”์— ์ž…์‚ฌํ•˜๋Š” ์ Š์€ ์ธ์žฌ๋“ค์€ ๊ต์œก ์ˆ˜์ค€์ด ๋†’๊ณ  ํ—Œ์‹ ์ ์ด์–ด์„œ, ๊ฒฐ์ฝ” โ€˜์žƒ์–ด๋ฒ„๋ฆฐ ์„ธ๋Œ€โ€™๋ผ๊ณ  ๋ณผ ์ˆ˜ ์—†๋‹คโ€๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

๋ฐ”์ด์Šค๋„ ๋กœํŽŒ ๋“ฑ ์ผ๋ถ€ ๋ถ„์•ผ์—์„œ ์ €์—ฐ์ฐจ ์ง๋ฌด๊ฐ€ ์ž๋™ํ™”์˜ ์˜ํ–ฅ์„ ํฌ๊ฒŒ ๋ฐ›๊ณ  ์žˆ๋‹ค๋Š” ์ ์€ ์ธ์ •ํ–ˆ๋‹ค. ๊ณผ๊ฑฐ ์ €์—ฐ์ฐจ ์ง์›์ด ์ˆ˜ํ–‰ํ•˜๋˜ ์—…๋ฌด ์ƒ๋‹น์ˆ˜๊ฐ€ ์ด์ œ AI๋กœ ๋Œ€์ฒด ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋˜ํ•œ ๊ณผ๊ฑฐ ์˜ค๋žœ ๊ธฐ๊ฐ„ ์ถ•์ ํ•ด์•ผ ํ–ˆ๋˜ ๋„๋ฉ”์ธ ์ง€์‹๋„ AI ๋•๋ถ„์— ํ›จ์”ฌ ๋น ๋ฅด๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋๋‹ค. ๋”ฐ๋ผ์„œ ์ €์—ฐ์ฐจ ์ง๋ฌด ์ž์ฒด๋ฅผ ์žฌ์ •์˜ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๊ณ  ๋ฐ”์ด์Šค๋Š” ์„ค๋ช…ํ–ˆ๋‹ค.

๊ทธ๋Š” โ€œ๋‹ค๋งŒ ๊ธฐ์—…๋“ค์ด ๋‹จ์ˆœํžˆ ์ผ์ž๋ฆฌ๋ฅผ ๊ฐ์ถ•ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ณด๋‹ค ๋ณต์žกํ•˜๊ณ  ์ง€์‹ ๊ธฐ๋ฐ˜์˜ ์—…๋ฌด์— ์ดˆ์ ์„ ๋‘” ์ƒˆ๋กœ์šด ์—ญํ• ์„ ์ด์ œ ๋ง‰ ์„ค๊ณ„ํ•˜๊ธฐ ์‹œ์ž‘ํ•œ ๋‹จ๊ณ„โ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.
dl-ciokorea@foundryco.com

Las 10 habilidades de TI mรกs demandadas para 2026

1 December 2025 at 05:45

La IA generativa ha transformado el mercado de las habilidades de TI, ya que las empresas se reestructuran para adoptar estrategias de IA y dan prioridad a los candidatos y empleados con habilidades en este รกmbito. Los datos del informe Tech Talent Report 2025 de Indeed muestran que los cuatro puestos mรกs afectados por la reestructuraciรณn relacionada con la IA son los de ingenieros y desarrolladores de software, ingenieros de control de calidad, gestores de productos y gestores de proyectos. Las empresas estรกn centrando ahora sus esfuerzos y sus presupuestos de contrataciรณn en profesionales con habilidades en ciberseguridad, anรกlisis de datos y creaciรณn o gestiรณn de equipos de IA.

Esta reordenaciรณn de prioridades en los puestos de TI tambiรฉn ha provocado un cambio en las habilidades de TI mรกs demandadas que los solicitantes de empleo querrรกn incluir en sus currรญculos. Las organizaciones ahora esperan que los candidatos tengan, como mรญnimo, conocimientos bรกsicos de ingenierรญa de prompts, incluso para puestos de TI de nivel inicial. Y mรกs allรก de eso, buscan profesionales de TI que puedan ayudar a supervisar, implementar, proteger y gestionar herramientas y estrategias de IA.

Los datos de Indeed revelan que estas son las 10 habilidades de TI que mรกs han crecido en demanda entre 2024 y 2025, segรบn el nรบmero de veces que han aparecido como requisito en las ofertas de empleo aรฑo tras aรฑo.

IA

No es de extraรฑar que la IA encabece la lista de las habilidades mรกs demandadas, segรบn el crecimiento de las ofertas de empleo tecnolรณgico publicadas desde 2024. Las empresas se apresuran a adoptar la IA, ya que esta se estรก abriendo paso rรกpidamente en todos los sectores y trayectorias profesionales. En 2024, habรญa algo mรกs de 5 millones de ofertas de empleo que requerรญan habilidades en IA, y en 2025, esa cifra aumentรณ en mรกs de 4 millones. Por lo tanto, ahora se espera que los candidatos, incluso los que trabajan fuera del รกmbito tecnolรณgico, tengan cierto nivel de conocimientos de IA, ya sea en ingenierรญa de prompts, procesamiento del lenguaje natural o uso de la IA para la programaciรณn y la codificaciรณn.

Python

Python es un lenguaje de programaciรณn utilizado en varios campos, como el anรกlisis de datos, el desarrollo web, la programaciรณn de software, la informรกtica cientรญfica y la creaciรณn de modelos de IA y ML. Es un lenguaje versรกtil utilizado por una amplia gama de profesionales de TI, como desarrolladores de software, desarrolladores web, cientรญficos de datos, analistas de datos, ingenieros de ML, analistas de ciberseguridad, ingenieros de nube y muchos mรกs. Su uso generalizado en las empresas lo convierte en una apuesta segura en cualquier lista de habilidades mรกs demandadas. En 2024, habรญa algo mรกs de 15 millones de ofertas de empleo que requerรญan conocimientos de Python, y esa cifra aumentรณ hasta casi 18 millones en 2025. Aunque cada vez mรกs organizaciones confรญan en la IA para la codificaciรณn, siguen necesitando profesionales cualificados que comprendan los lenguajes de programaciรณn clave para escribir cรณdigo mรกs complejo y ayudar con el cรณdigo de respuesta rรกpida y control de calidad escrito por la IA.

Algoritmos

A medida que mรกs empresas adoptan la IA y su capacidad para optimizar la codificaciรณn y la programaciรณn, las organizaciones tambiรฉn dependen cada vez mรกs de los algoritmos para ayudar a guiar y dictar esos procesos. El pensamiento algorรญtmico requiere una comprensiรณn compleja de las bases de datos y la programaciรณn, un pensamiento crรญtico de alto valor y la resoluciรณn de problemas. Las habilidades algorรญtmicas figuraban como requisito en alrededor de 180.000 ofertas de empleo en 2024, cifra que se disparรณ a mรกs de 2 millones en 2025. La IA ha asumido una mayor parte del trabajo de nivel bรกsico, lo que ha llevado a las organizaciones a buscar profesionales mรกs cualificados que puedan ayudar a crear y guiar los sistemas de IA y que comprendan cรณmo crear algoritmos eficientes.

CI/CD

La demanda de habilidades de integraciรณn continua y entrega o implementaciรณn continua ha crecido a raรญz de la implementaciรณn de la IA para ayudar a optimizar el ciclo de vida del desarrollo de software. Los profesionales con habilidades de CI/CD pueden manejar tareas como la creaciรณn de herramientas utilizadas para la automatizaciรณn y la creaciรณn de scripts, y tienen un profundo conocimiento de conceptos como la contenedorizaciรณn, la integraciรณn en la nube y las pruebas automatizadas. En 2024, habรญa algo menos de 7 millones de ofertas de empleo que buscaban habilidades en CI/CD y esa cifra aumentรณ a algo mรกs de 9 millones en 2025.

Google Cloud

Google Cloud es una plataforma muy popular para crear, implementar y gestionar soluciones de TI para una organizaciรณn, con varias certificaciones ofrecidas por Google para acreditar tus habilidades profesionales y conocimientos sobre Google Cloud. Las organizaciones han adoptado la nube en los รบltimos aรฑos, trasladando herramientas, servicios y almacenamiento de datos a soluciones alojadas en los servicios en la nube de Google. Las herramientas en la nube son fundamentales para el desarrollo de la IA, ya que permiten soluciones de almacenamiento mรกs versรกtiles y รกgiles para alojar los grandes conjuntos de datos necesarios para entrenar y ejecutar herramientas de IA. Las habilidades de Google Cloud eran un requisito para alrededor de 3,5 millones de ofertas de empleo en 2024, pero esa cifra aumentรณ a algo mรกs de 5,3 millones en 2025.

AWS

Amazon Web Services es la plataforma en la nube mรกs utilizada en la actualidad. Las habilidades de AWS, fundamentales para las estrategias en la nube de casi todos los sectores, tienen una gran demanda, ya que las organizaciones buscan aprovechar al mรกximo la amplia gama de ofertas de la plataforma. Es una habilidad comรบn para ingenieros de la nube, ingenieros de DevOps, arquitectos de soluciones, ingenieros de datos, analistas de ciberseguridad, desarrolladores de software, administradores de redes y muchos otros puestos de TI. En 2024, las habilidades de AWS seguรญan siendo populares y figuraban como requisito en algo mรกs de 12 millones de ofertas de empleo, cifra que aumentรณ a mรกs de 13,7 millones en 2025.

Habilidades de anรกlisis

La IA ha eliminado gran parte del trabajo bรกsico y rutinario de los profesionales de TI, lo que ha creado mรกs espacio para habilidades de mayor nivel, como el pensamiento analรญtico. Dado que la IA todavรญa no genera resultados perfectos con cada solicitud, las empresas necesitan un ojo humano y una mente analรญtica para detectar las alucinaciones y los errores de la IA, especialmente cuando se trata de nรบmeros y datos. Las habilidades de anรกlisis han sido fundamentales para las organizaciones desde hace tiempo; en 2024, algo mรกs de 19 millones de ofertas de empleo requerรญan habilidades de anรกlisis, una cifra que aumentรณ a algo mรกs de 21 millones en 2025.

Ciberseguridad

La mayor dependencia de la IA ha creado mรกs vulnerabilidades para las organizaciones. A medida que ofrecen mรกs productos y servicios en lรญnea e integran la IA, se crean mรกs oportunidades para los ataques a la seguridad. Las habilidades en ciberseguridad eran un requisito en alrededor de 2,4 millones de ofertas de empleo en 2024, cifra que aumentรณ a algo mรกs de 4 millones en 2025. Tanto si las organizaciones buscan integrar la IA en soluciones de ciberseguridad como si quieren ayudar a prevenir nuevos ataques sofisticados que utilizan la IA para violar los sistemas, la seguridad es una prioridad mรกxima para las organizaciones a medida que avanzan con la IA.

Soluciรณn de problemas de software

Aunque las organizaciones utilizan cada vez mรกs la IA para escribir cรณdigos y scripts bรกsicos con el fin de crear herramientas de software, siguen necesitando profesionales de TI humanos para identificar fallos, problemas de seguridad y otras posibles anomalรญas en el producto final. Las habilidades de resoluciรณn de problemas de software figuraban como requisito en algo mรกs de 9 millones de ofertas de empleo en 2024, pero este aรฑo esa cifra ha aumentado hasta casi 11 millones. Se trata de un รกrea de la informรกtica que requiere habilidades de comunicaciรณn, resoluciรณn de problemas, pensamiento crรญtico y conocimientos tรฉcnicos para identificar problemas de software y resolverlos para los clientes.

Aprendizaje automรกtico

El aprendizaje automรกtico es fundamental para el desarrollo de la IA y requiere una gran experiencia no solo en IA, sino tambiรฉn en el procesamiento del lenguaje natural. Las organizaciones buscan profesionales con habilidades en ML para apoyar las iniciativas de IA y el futuro de la adopciรณn de la IA en la empresa. En 2024, habรญa alrededor de 3,7 millones de ofertas de empleo que buscaban habilidades en ML, mientras que en 2025 esa cifra aumentรณ a mรกs de 5 millones. Los profesionales de TI con habilidades en ML seguirรกn siendo muy demandados, ya que las empresas adoptan procesos de IA y buscan profesionales que les ayuden a dar soporte y mantener los sistemas de IA.

78% of IT job postings already require AI skills

1 December 2025 at 04:30

IT professionals reluctant to accept the impact AI will have on their careers might want to think again. According to a new study from the AI Workforce Consortium, the IT job market is undergoing an unprecedented transformation thanks to AI, and AI skills are becoming a core competency for IT pros.

The findings are based on analysis of job posting data from Cornerstone and Indeed, conducted by the Cisco-led consortium between July 2024 and June 2025 in G7 countries Canada, France, Germany, Italy, Japan, the UK, and the US.

AI is becoming a standard skill

The study revealed that AI skills are already explicitly required in 78% of advertised IT jobs. Furthermore, seven of the 10 fastest-growing IT jobs in G7 countries have a direct AI component, including software engineers, AI/ML developers, cloud engineers, and data engineers.

At the same time, soft skills such as communication, teamwork, and leadership are becoming increasingly important to ensure AI is used responsibly.

But itโ€™s not just IT professionals who will be affected. โ€œLooking a bit into the future, say to 2030, AI skills will be just as much a given as PC skills are today,โ€ explains Yasmin WeiรŸ when presented with the study results.

โ€œAnyone applying for a knowledge worker position in 2030 who can only demonstrate insufficient AI skills will be perceived as just as uninteresting as someone applying today who canโ€™t use a PC,โ€ says WeiรŸ,ย a professor who specializes in AI in the workplace.

Dangerous imbalance

In her view, the World Economic Forum (WEF) isnโ€™t entirely wrong in its prediction that 83 million jobs will likely be lost to automation by 2027, while 698 million new ones will be created.

If you factor out the demographic shift in developed economies โ€” keyword: baby boomers โ€” it roughly balances out, says WeiรŸ. The problem is that the employees whose jobs are being automated by AI or are replaced by other technologies, usually lack the qualifications for newly emerging roles. Simple upskilling is therefore often insufficient; โ€‹โ€‹what is needed is reskilling โ€” i.e., learning entirely new skills.

โ€œThis raises the question of how realistic such retraining programs are โ€” for example, whether a former office worker can become a cyber forensic expert in a short time,โ€ WeiรŸ says.

In addition to technical qualifications, a profound shift in mindset also plays a crucial role, explains WeiรŸ. In the future, people will more frequently assume different professional identities over the course of their lives. For this to happen, meta-competencies such as adaptability, learning ability, and openness to change must be significantly strengthened, as they will form the basis for success in a rapidly changing world of work.

Christian Korff, VP of services, strategy, and planning for EMEA at Cisco, points out that many vacancies for learning development positions are currently being advertised in the English-speaking world to support this transformation. In comparison, Europe, and Germany in particular, still lag behind when it comes to investing in education and training and bringing people along on this journey.

As WeiรŸ reports from her perspective as a lecturer, AI can also act as a driver and enabler in this transformation. For example, students can now learn in a highly individualized way with digital tools โ€” such as chatbots โ€” and reflect on their career prospects. Such opportunities did not exist before.

Is a โ€˜Lost Generationโ€™ looming?

It cannot be denied, however, that the number of job postings for entry-level professionals, particularly in law firms, software companies, or consulting firms, is declining. Does this leave young people without prospects, or does it even threaten a โ€œlost generationโ€?

Cisco manager Korff disagrees with this pessimistic view. While companies are currently focusing on experienced professionals to rapidly advance new technologies, many older employees are also nearing retirement.

In his company, as well as in the entire IT sector, this will create many new opportunities for young talent over the next five to seven years. Cisco is investing heavily in junior programs and an internal academy to actively shape the generational shift.

โ€œAnd incidentally,โ€ he notes, โ€œthe people who start with us are well-educated and dedicated โ€” so anything but a lost generation.โ€

WeiรŸ acknowledges that entry-level positions, particularly in sectors like legal consulting, are currently heavily impacted by automation. Many tasks previously performed by entry-level employees can now be taken over by AI.

Domain knowledge, which used to take a long time to build up, is now more quickly accessible thanks to AI. Therefore, entry-level positions need to be rethought, she explains.

โ€œHowever, companies are only just beginning to develop such new role profiles, which are more focused on complex, knowledge-based tasks, instead of simply cutting jobs,โ€ she concedes.

CIO ์˜ํ–ฅ๋ ฅ์„ ํ‚ค์šฐ๋Š” 5๊ฐ€์ง€ ํ•ต์‹ฌ ๋™๋งน ์ „๋žต

1 December 2025 at 03:08

์ด์ „ ๊ธฐ์‚ฌ์—์„œ๋Š” CIO๊ฐ€ ์กฐ์ง ๋‚ด์—์„œ โ€˜๋ณด์ด์ง€ ์•Š๋Š” ์กด์žฌโ€™๋กœ ์ „๋ฝํ•  ์œ„ํ—˜์— ๋Œ€ํ•ด ๋‹ค๋ค˜๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” ๋™๋งน์ด ์žˆ์„ ๋•Œ์™€ ์—†์„ ๋•Œ์˜ ์ฐจ์ด, ์‹ค๋ฌด์ž๋กœ ๊ตฌ์„ฑ๋œ ์กฐ์ง ํ•˜๋ถ€์—์„œ ์—…๋ฌด๋ฅผ ์ถ”์ง„ํ•˜๋Š” ์ผ๋ช… ๋ฐ”ํ…€์—…(bottom-up) ์ ‘๊ทผ์„ ํ™œ์šฉํ•  ๋•Œ ์—ด๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ๊ธฐํšŒ, ๊ทธ๋ฆฌ๊ณ  ๋™๋งน์„ ๋ฌด๋ ฅํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋ณด์ด์ง€ ์•Š๋Š” ์‹ค์ˆ˜๋ฅผ ์–ด๋–ป๊ฒŒ ํ”ผํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์‚ดํŽด๋ณธ๋‹ค.

1. ์ง€์›์ด ๋ถ€์กฑํ•  ๋•Œ: CIO์—๊ฒŒ ๋Œ์•„์˜ค๋Š” ๋น„์šฉ๊ณผ ์œ„ํ—˜

2020๋…„, ๋‹ค์ž„๋Ÿฌ๋Š” ๋ฏธ๋ž˜ ์ฐจ๋Ÿ‰๊ณผ ๋ชจ๋นŒ๋ฆฌํ‹ฐ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜๋˜ ํ˜์‹  ์ธํ๋ฒ ์ดํ„ฐ โ€˜Lab1886โ€™์„ ๋ถ„์‚ฌํ•˜๊ธฐ๋กœ ๊ฒฐ์ •ํ–ˆ๋‹ค. ์ธ์žฌ๋Š” ์ถฉ๋ถ„ํ–ˆ์ง€๋งŒ, ํ”„๋กœ์ ํŠธ๋ฅผ ์ฑ…์ž„์ง€๊ณ  ๋Œ์–ด๊ฐˆ ์‚ฌ๋‚ด ๋™๋งน์ด ๋ถ€์กฑํ–ˆ๋‹ค. ์กฐ์ง ๋‚ด๋ถ€ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๊ฐ€ ๋ช…ํ™•ํ•˜์ง€ ์•Š์ž ํ”„๋กœ์ ํŠธ๋Š” ์ œ๋Œ€๋กœ ์ด๊ด€๋˜๊ฑฐ๋‚˜ ์‹คํ–‰๋˜์ง€ ๋ชปํ–ˆ๊ณ , ๊ฒฐ๊ตญ ์ด ์กฐ์ง์€ ๊ณ ๋ฆฝ๋˜๊ณ  ๋ง์•˜๋‹ค.

CIO๋„ ๋งˆ์ฐฌ๊ฐ€์ง€ ์ƒํ™ฉ์— ๋†“์ธ๋‹ค. ๋‚ด๋ถ€ ์ง€์›์ด ๋ถ€์กฑํ•˜๋ฉด ์ธ์žฌ์™€ ๋…ธ๋ ฅ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค. ์‹ค์ œ๋กœ ๋Œ€๊ธฐ์—… CIO๋“ค์กฐ์ฐจ ์ œ์•ˆ์„œ๋ฅผ ์ฒ˜์Œ๋ถ€ํ„ฐ ๋‹ค์‹œ ๋ฐฉ์–ดํ•ด์•ผ ํ–ˆ๋‹ค๊ฑฐ๋‚˜, ๋˜๋Š” IT๊ฐ€ ๋ฌธ์ œ๋ฅผ ์‚ฌ์ „์— ํŒŒ์•…ํ•  ๊ธฐํšŒ์กฐ์ฐจ ์—†๋Š” ์ƒํƒœ์—์„œ ๋‹ค๋ฅธ ๋ถ€์„œ์˜ ํ”„๋กœ์ ํŠธ๊ฐ€ โ€˜ํ•„ํ„ฐ๋ง ์—†์ดโ€™ ๋„˜์–ด์˜จ ์ ์ด ์žˆ๋‹ค๊ณ  ๋งํ•œ๋‹ค.

์ด๋Ÿฐ ํ๋ฆ„์ด ๋ฐ˜๋ณต๋˜๋ฉด CIO๊ฐ€ ์กฐ์ง์˜ ์†๋„๋ฅผ ๋Šฆ์ถ”๋Š” ์กด์žฌ๋ผ๋Š” ์ธ์‹์ด ๋งŒ๋“ค์–ด์ง„๋‹ค. CIO์˜ ์˜ํ–ฅ๋ ฅ ํ™•๋Œ€์—๋„ ์ „ํ˜€ ๋„์›€์ด ๋˜์ง€ ์•Š๊ณ , ์˜คํžˆ๋ ค ๋””์ง€ํ„ธ ์ „๋žต์„ ์ด๋„๋Š” ์ž๋ฆฌ์—์„œ ๋ฒ—์–ด๋‚˜ ๋Š์ž„์—†์ด ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ง„ํ™”ํ•˜๋Š” ์—ญํ• ๋กœ ๋– ๋ฐ€๋ฆฌ๊ฒŒ ๋œ๋‹ค.

CIO๋“ค์€ ์ด๋Ÿฌํ•œ ์•…์ˆœํ™˜์ด ์ง€์†๋  ์ˆ˜ ์—†๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ ์  ์ธ์‹ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณด์„ ๊ธฐ์—… ํŒฌ๋„๋ผ์˜ CDO ๊ฒธ CTO ๋ฐ์ด๋น„๋“œ ์™ˆ๋ฆ„์Šฌ๋ฆฌ๋Š” ๋งˆํฌ ์ƒˆ๋ฎค์–ผ์Šค์™€์˜ ์ธํ„ฐ๋ทฐ์—์„œ โ€œ๋””์ง€ํ„ธ ์ „ํ™˜ ์ฒซ๋‚ ๋ถ€ํ„ฐ ๊ฐ•์กฐํ•œ ๊ฒƒ์€, ์šฐ๋ฆฌ๋Š” ์ง€์‹œ๋ฅผ ๋ฐ›๊ธฐ ์œ„ํ•ด ์กด์žฌํ•˜๋Š” ์กฐ์ง์ด ์•„๋‹ˆ๋ผ ๊ฒฌ๊ณ ํ•œ ํ˜‘์—…์„ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ์กด์žฌํ•œ๋‹ค๋Š” ์ โ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

2. ๋™๋งน: CIO์˜ ์ž…์ง€๋ฅผ ๊ฐ•ํ™”ํ•˜๋Š” ํž˜

CIO๋Š” ๋Š์ž„์—†์ด ํ”„๋กœ์ ํŠธ๋ฅผ ์ •๋‹นํ™”ํ•˜๊ฑฐ๋‚˜ ๋‹ค๋ฅธ ๋ถ€์„œ์˜ ๊ณผ์ œ๋ฅผ ๋– ์•ˆ๋Š” ๊ตฌ์กฐ์—์„œ ๋ฒ—์–ด๋‚˜์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ๊ฒƒ์€ ๊ถŒ์œ„๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜๊ณต๊ฐ๋Œ€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ˜‘๋ ฅโ€™์ด๋ฉฐ, ๊ฒฐ๊ตญ ์กฐ์ง ๋‚ด๋ถ€์— ๋™๋งน์„ ๊ตฌ์ถ•ํ•˜๋Š” ์ผ์ด๋‹ค.

๋™๋งน์˜ ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์€ ์ด๋ฏธ ํ™•๋ณด๋œ ์ง€์ง€ ๊ธฐ๋ฐ˜์ด๋ผ๋Š” ์ ์ด๋‹ค. ์ด๋Š” ์Šน์ธ ๊ณผ์ •์„ ์•ž๋‹น๊ธฐ๊ณ , ๋ฐ˜๋ณต๋˜๋Š” ์ •๋‹นํ™” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์†Œ๋ชจ๋ฅผ ์ค„์—ฌ์ค€๋‹ค.

๋™๋งน์ด ์ œ๊ณตํ•˜๋Š” ์ด์ ์€ ์ด๋ฟ๋งŒ์ด ์•„๋‹ˆ๋‹ค. ๋™๋งน์€ ์ž์‹ ์˜ ์‹ ๋ขฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์™„์ถฉ ์—ญํ• ์„ ํ•˜๋ฏ€๋กœ ์กฐ์ง ๋‚ด ๋งˆ์ฐฐ์ด ์ค„์–ด๋“ค๊ณ , ์กฐ์ง ๋‚ด ์—ฐ๊ฒฐ๋ง์„ ํ™•์žฅํ•ด CIO๊ฐ€ ์ง์ ‘ ์ฐธ์„ํ•˜์ง€ ์•Š์€ ์ž๋ฆฌ์—์„œ๋„ ์ƒˆ๋กœ์šด ๋…ผ์˜๋‚˜ ๊ธฐํšŒ๊ฐ€ ์—ด๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ๋˜ํ•œ CIO๊ฐ€ ๋ถ€์žฌํ•œ ์ƒํ™ฉ์—์„œ๋„ ๋™๋งน์ด ํ•ด๋‹น ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋ฅผ ๋Œ€์‹  ์˜นํ˜ธํ•˜๋ฉฐ ์ž์‹ ๋งŒ์˜ ์‹ ๋ขฐ๋„๋ฅผ ๋ณดํƒœ๋Š” ์—ญํ• ์„ ํ•œ๋‹ค.

๊ฒฐ๊ตญ ๋™๋งน์€ CIO์˜ ์ž…์ง€๋ฅผ ๊ฐ•ํ™”ํ•˜๊ณ  ์˜ํ–ฅ๋ ฅ์„ ๋ฐฐ๊ฐ€์‹œํ‚ค๋ฉฐ ๊ณผ๋„ํ•œ ์†Œ๋ชจ๋ฅผ ๋ง‰์•„์ฃผ๋Š” ํ•ต์‹ฌ ์ž์‚ฐ์ด๋‹ค.

3. ๋ฐ”ํ…€์—… ๋ฐฉ์‹์˜ ๋™๋งน ๊ตฌ์ถ•: ํ™•์žฅ๋˜๋Š” ์‹ ๋ขฐ

๋™๋งน์˜ ๊ฐ€์น˜๊ฐ€ ๋ถ„๋ช…ํ•˜์ง€๋งŒ, ๊ทธ๋ ‡๋‹ค๋ฉด ์–ด๋–ป๊ฒŒ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์„๊นŒ. ํ•ญ์ƒ ์ดํ•ด๊ด€๊ณ„๊ฐ€ ์ผ์น˜ํ•˜๊ฑฐ๋‚˜ ํ˜‘๋ ฅ์„ ์‰ฝ๊ฒŒ ๋งŒ๋“œ๋Š” ์กฐ๊ฑด์ด ์ฃผ์–ด์ง€๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์กฐ์ง์—๋Š” ์˜ˆ์‚ฐ๊ณผ ์‹œ๊ฐ„์„ ๊ฐ‰์•„๋จน๋Š” ๋‹ค์–‘ํ•œ ๋ฌธ์ œ๋“ค์ด ์กด์žฌํ•œ๋‹ค. CIO๊ฐ€ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๊ทธ๊ฒƒ์ด ๊ณง ๋™๋งน์˜ ์ถœ๋ฐœ์ ์ด ๋œ๋‹ค.

ํ”ํžˆ ์กฐ์ง์˜ ์ตœ์ƒ์œ„์—์„œ ์ ‘๊ทผํ•˜๋Š” ๊ฒƒ์ด ํ•ฉ๋ฆฌ์ ์œผ๋กœ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ๊ฐ€์žฅ ์–ด๋ ต๊ณ  ๋ฉ€๋ฆฌ ๋Œ์•„๊ฐ€๋Š” ๊ธธ์ผ ์ˆ˜ ์žˆ๋‹ค. ๋‹น์žฅ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋Š” ์ž ์žฌ์  ๋™๋งน์€ ์กฐ์ง ๊ณณ๊ณณ์— ์กด์žฌํ•œ๋‹ค. ์˜ˆ์ปจ๋Œ€ ์žฌ๋ฌดํ†ต์ œ ๋‹ด๋‹น์ž๋Š” ๋А๋ฆฐ ๋งˆ๊ฐ ์ผ์ •๊ณผ ๋ถ€์ •ํ™•ํ•œ ์˜ˆ์ธก์œผ๋กœ ์ธํ•œ ์••๋ฐ•์— ์‹œ๋‹ฌ๋ฆฌ๊ณ , ๊ตฌ๋งค ๋‹ด๋‹น์ž๋Š” ์ค‘๋ณต ๊ณ„์•ฝ์ด๋‚˜ ์˜ค๋ฅ˜๊ฐ€ ๋งŽ์€ ์ˆ˜๊ธฐ ์ธ๋ณด์ด์Šค ์ฒ˜๋ฆฌ ๋ฌธ์ œ์™€ ๋งค์ผ ๋งž์„œ์•ผ ํ•œ๋‹ค.

๊ธฐํšŒ๋Š” ์ด๋ฏธ ์กฐ์ง ์•ˆ์— ์žˆ๋‹ค. ํ•„์š”ํ•œ ๊ฒƒ์€ ์ด ๋ฌธ์ œ๋“ค์ด ๋‚จ๊ธฐ๋Š” ํ”์ ์„ ์ฐพ์•„๋‚ด๋Š” ์ผ์ด๋‹ค. ์ค‘๋ณต ์†ก์žฅ, ๋งค๋‹ฌ ๋ง ํ†ต์ œ ์—†์ด ๊ณต์œ ๋˜๋Š” ์Šคํ”„๋ ˆ๋“œ์‹œํŠธ ๋“ฑ์€ ์•„์ง ๊ด€๋ฆฌ๋˜์ง€ ์•Š์€ ํ”„๋กœ์„ธ์Šค์˜ ์ „ํ˜•์ ์ธ ์ง•ํ‘œ์ด๋ฉฐ, IT๊ฐ€ ๋น ๋ฅด๊ฒŒ ๊ฐœ์„  ํšจ๊ณผ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋Š” ์ง€์ ์ด๋‹ค.

CIO๊ฐ€ ์ด๋Ÿฌํ•œ ์‹ค๋ฌด์ž๋“ค์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ฉด, ๊ทธ ์˜ํ–ฅ๋ ฅ์€ ์˜ˆ์ƒ๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅด๊ฒŒ ์กฐ์ง ์ „์ฒด๋กœ ํ™•์‚ฐ๋œ๋‹ค. ๊ตฌ๋งค ๋ถ€์„œ์˜ ๋ณ‘๋ชฉ์„ ํ•ด์†Œํ•œ ์ž‘์€ ์„ฑ๊ณผ๊ฐ€ ๋ถ€์„œ ํšŒ์˜์—์„œ ์–ธ๊ธ‰๋˜๊ณ , ๊ทธ ์ด์•ผ๊ธฐ๊ฐ€ CFO๊นŒ์ง€ ์ „๋‹ฌ๋˜๋Š” ์‹์ด๋‹ค.

4. ๋™๋งน์„ ๊นจ๋œจ๋ฆฌ๋Š” ๋ณด์ด์ง€ ์•Š๋Š” ์‹ค์ˆ˜๋ฅผ ํ”ผํ•˜๋Š” ๋ฒ•

๊ด€๊ณ„๋ฅผ ์‹œ์ž‘ํ•  ๊ธฐํšŒ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์€ ์ฒซ ๋‹จ๊ณ„์ผ ๋ฟ์ด๋‹ค. ์‹ค์ œ๋กœ ๋™๋งน์˜ ์„ฑํŒจ๋ฅผ ๊ฐ€๋ฅด๋Š” ๊ฒƒ์€ ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋ฅผ ์–ด๋–ป๊ฒŒ ์šด์˜ํ•˜๋А๋ƒ์— ๋‹ฌ๋ ค ์žˆ๋‹ค. ํ˜‘์—…์˜ ์ง€์†์„ฑ์„ ์œ„ํ˜‘ํ•ด CIO๋ฅผ ๋‹ค์‹œ ์›์ ์œผ๋กœ ๋Œ๋ฆด ์ˆ˜ ์žˆ๋Š” โ€˜์กฐ์šฉํ•œ ์œ„ํ—˜ ์š”์†Œโ€™์— ์ฃผ์˜๋ฅผ ๊ธฐ์šธ์—ฌ์•ผ ํ•œ๋‹ค.

์ฒซ ๋ฒˆ์งธ ์œ„ํ—˜์€ ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ โ€˜๋น„์ฆˆ๋‹ˆ์Šค ์–ธ์–ดโ€™๋กœ ๋ฒˆ์—ญ๋˜์ง€ ์•Š์„ ๋•Œ ๋ฐœ์ƒํ•œ๋‹ค. ์ด ์ฃผ์ œ๋งŒ์œผ๋กœ๋„ ๋ณ„๋„์˜ ๋…ผ์˜๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ ์š”์ง€๋Š” ๊ฐ„๋‹จํ•˜๋‹ค. ์ž ์žฌ์  ๋™๋งน์ด ํ•ด๋‹น ํ™œ๋™์„ ์˜จ์ „ํžˆ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜, ๋™๋ฃŒ์—๊ฒŒ ์ž๊ธฐ ์–ธ์–ด๋กœ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋‹ค๋ฉด ๊ทธ ํ”„๋กœ์ ํŠธ๋Š” ์ ˆ๋Œ€ ํ™•์‚ฐ๋˜์ง€ ๋ชปํ•œ๋‹ค.

๋˜ ๋‹ค๋ฅธ ์œ„ํ—˜์€ CIO๊ฐ€ โ€˜์™„์„ฑ๋œโ€™ ์ด์ƒ์ ์ธ ์†”๋ฃจ์…˜์„ ๊ทธ๋Œ€๋กœ ์ œ์‹œํ•  ๋•Œ๋‹ค. ๋™๋งน ํ›„๋ณด๊ฐ€ ์ง์ ‘ ์ฐธ์—ฌํ•ด ์˜๊ฒฌ์„ ๋ณดํƒœ๊ณ  ํ”์ ์„ ๋‚จ๊ธธ ๊ณต๊ฐ„์ด ์—†๋‹ค๋ฉด, ํ”„๋กœ์ ํŠธ๊ฐ€ ์•„๋ฌด๋ฆฌ ์œ ์ตํ•ด๋„ ์ž๊ธฐ ์ผ์ฒ˜๋Ÿผ ๋А๋ผ์ง€ ๋ชปํ•ด ์ ๊ทน์ ์œผ๋กœ ๊ด€์—ฌํ•˜์ง€ ์•Š๋Š”๋‹ค.

๋˜ ํ•˜๋‚˜์˜ ๋œ ๋ณด์ด๋Š” ์žฅ์• ๋ฌผ์€ โ€˜์ฃผ์˜๋ ฅ(Attention)โ€™์ด๋ผ๋Š” ์ž์›์ด๋‹ค. ์‹œ๊ฐ„์€ ๋ชจ๋“  ์กฐ์ง์—์„œ ๊ฐ€์žฅ ํฌ์†Œํ•œ ์ž์›์ด๋‹ค. ํ”„๋กœ์ ํŠธ๋‚˜ ๊ด€๊ณ„ ์ž์ฒด๊ฐ€ ์ง€๋‚˜์น˜๊ฒŒ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ์ง‘์ค‘์„ ์š”๊ตฌํ•˜๋ฉด ๊ทธ ์ž์ฒด๋กœ ์กฐ์ง์— ๋ถ€๋‹ด์ด ๋˜๊ณ  ์ง€์†๋˜๊ธฐ ์–ด๋ ต๋‹ค.

์—ฌ๊ธฐ์— ์ •์น˜์ ์ด์ง€๋งŒ ๋งค์šฐ ์ค‘์š”ํ•œ ๋˜ ๋‹ค๋ฅธ ์œ„ํ—˜์ด ์žˆ๋‹ค. IT๋ฅผ ๋ง‰์„ ์ˆ˜ ์žˆ๋Š” ๊ถŒํ•œ์„ ๊ฐ€์ง„ ์ดํ•ด๊ด€๊ณ„์ž๋ฅผ ๊ฐ„๊ณผํ•˜๋Š” ๊ฒฝ์šฐ๋‹ค. ์ค€๋ฒ•๊ฐ์‹œ ๋‹ด๋‹น์ž, ๋ฒ•๋ฌด ๋‹ด๋‹น์ž, ๊ฐ์ข… ์œ„์›ํšŒ ์ฐธ์„์ž ๋“ฑ์ด ๊ทธ ๋Œ€์ƒ์ด๋‹ค. ์ด๋“ค์„ ์ดˆ๊ธฐ์— ํŒŒ์•…ํ•ด ์˜๊ฒฌ์„ ์ˆ˜๋ ดํ•˜์ง€ ์•Š์œผ๋ฉด, ๋ฐ˜๋Œ€ ์˜๊ฒฌ์ด ๋Šฆ๊ฒŒ ๋“ฑ์žฅํ•ด ๋Œ€์‘ํ•  ์—ฌ์ง€๊ฐ€ ๊ฑฐ์˜ ์—†์–ด์ง€๊ฒŒ ๋œ๋‹ค.

์ด๋Ÿฌํ•œ ์œ„ํ—˜์€ ๋Œ€๋ถ€๋ถ„ ๋ˆˆ์— ์ž˜ ๋„์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋” ์œ„ํ—˜ํ•˜๋‹ค. ์ด๋“ค์ด ๋ณด์—ฌ์ฃผ๋Š” ๋ฉ”์‹œ์ง€๋Š” ๋ถ„๋ช…ํ•˜๋‹ค. ๊ธฐ์ˆ ์  ์™„์„ฑ๋„๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ํ•จ๊ป˜ ์ผํ•˜๋Š” ๊ณผ์ • ์ž์ฒด๊ฐ€ ์‹ ๋ขฐ๋ฅผ ๋งŒ๋“ ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋ ‡๊ฒŒ ํ˜•์„ฑ๋œ ๊ด€๊ณ„์™€ ์†Œํ†ต ๋ฐฉ์‹์ด ํ–ฅํ›„ ํ˜‘๋ ฅ์˜ ๊ธฐ์ค€์ ์œผ๋กœ ์ž๋ฆฌ ์žก๋Š”๋‹ค.

5. ๊ณต๊ณ ํ•ด์ง„ ๋ฏธ์…˜๊ณผ ๋ฏธ๋ž˜๋ฅผ ์œ„ํ•œ ์ •์น˜์  ์ž๋ณธ

CIO์—๊ฒŒ ๋™๋งน์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์€ ๋” ์ด์ƒ ํ˜ผ์ž์„œ ๋ณ€ํ™”๋ฅผ ์ถ”์ง„ํ•˜์ง€ ์•Š์•„๋„ ๋œ๋‹ค๋Š” ์˜๋ฏธ๋‹ค. ์ด๋ฏธ ํ˜•์„ฑ๋œ ์ง€์ง€ ๊ธฐ๋ฐ˜๊ณผ ์ถ•์ ๋œ ์ •์น˜์  ์ž๋ณธ ๋•๋ถ„์— IT ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋ฅผ ์ง€์†์ ์œผ๋กœ ๋ฐฉ์–ดํ•  ํ•„์š”๋„ ์‚ฌ๋ผ์ง„๋‹ค.

๋˜ํ•œ ์ด๋Ÿฌํ•œ ์ง€์› ๋„คํŠธ์›Œํฌ๋Š” CIO ์ „๋žต์˜ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ๊นŒ์ง€ ๋†’์—ฌ์ค€๋‹ค. ์ „๋žต์ด ํŠน์ • ์กฐ์ง๋„์— ์˜ํ–ฅ์„ ํฌ๊ฒŒ ๋ฐ›์ง€ ์•Š์œผ๋ฉฐ, ์กฐ์ง์ด ๊ณต์œ ํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ์šฐ์„ ์ˆœ์œ„ ์œ„์—์„œ ์›€์ง์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๊ถ๊ทน์ ์œผ๋กœ CIO๋Š” ๋” ๋„“์€ ์ „๋žต์  ์—ฌ์ง€๋ฅผ ํ™•๋ณดํ•˜๊ฒŒ ๋œ๋‹ค. ๋Š์ž„์—†์ด ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ง„ํ™”ํ•˜๋Š” ๋ฐ ์—๋„ˆ์ง€๋ฅผ ์†Œ๋ชจํ•˜๋Š” ๋Œ€์‹ , ์ „์ˆ ์  ๊ณผ์ œ๋ฅผ ๋„˜์–ด ๋””์ง€ํ„ธ ์ „๋žต์„ ์„ค๊ณ„ํ•˜๋Š” ๋ณธ์—ฐ์˜ ์—ญํ• ์— ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค.

์ด ๊ธ€์€ ํŒŒ์šด๋“œ๋ฆฌ(Foundry) ์ˆ˜์„ ์• ๋„๋ฆฌ์ŠคํŠธ ์•Œ๋ฒ ๋ฅดํ†  ๋ฒจ๋ ˆ๊ฐ€ ์ž‘์„ฑํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

6 strategies for CIOs to effectively manage shadow AI

28 November 2025 at 05:00

As employees experiment with gen AI tools on their own, CIOs are facing a familiar challenge with shadow AI. Although itโ€™s often well-intentioned innovation, it can create serious risks around data privacy, compliance, and security.

According to 1Passwordโ€™s 2025 annual report, The Access-Trust Gap, shadow AI increases an organizationโ€™s risk as 43% of employees use AI apps to do work on personal devices, while 25% use unapproved AI apps at work.

Despite these risks, experts say shadow AI isnโ€™t something to do away with completely. Rather, itโ€™s something to understand, guide, and manage. Here are six strategies that can help CIOs encourage responsible experimentation while keeping sensitive data safe.

1. Establish clear guardrails with room to experiment

Managing shadow AI begins with getting clear on whatโ€™s allowed and what isnโ€™t. Danny Fisher, chief technology officer at West Shore Home, recommends that CIOs classify AI tools into three simple categories:ย approved, restricted, and forbidden.

โ€œApproved tools are vetted and supported,โ€ he says. โ€œRestricted tools can be used in a controlled space with clear limits, like only using dummy data. Forbidden tools, which are typically public or unencrypted AI systems, should be blocked at the network or API level.โ€

Matching each type of AI use with a safe testing space, such as an internal OpenAI workspace or a secure API proxy, lets teams experiment freely without risking company data, he adds.

Jason Taylor, principal enterprise architect at LeanIX, an SAP company, says clear rules are essential in todayโ€™s fast-moving AI world.

โ€œBe clear which tools and platforms are approved and which ones arenโ€™t,โ€ he says. โ€œAlso be clear which scenarios and use cases are approved versus not, and how employees are allowed to work with company data and information when using AI like, for example, one-time upload as opposed to cut-and-paste or deeper integration.โ€

Taylor adds that companies should also create a clear list that explains which types of data are or arenโ€™t safe to use, and in what situations. A modern data loss prevention tool can help by automatically finding and labeling data, and enforcing least-privilege or zero-trust rules on who can access what.

Patty Patria, CIO at Babson College, notes itโ€™s also important for CIOs to establish specific guardrails for no-code/low-code AI tools and vibe-coding platforms.

โ€œThese tools empower employees to quickly prototype ideas and experiment with AI-driven solutions, but they also introduce unique risks when connecting to proprietary or sensitive data,โ€ she says.

To deal with this, Patria says companies should set up security layers that let people experiment safely on their own but require extra review and approval whenever someone wants to connect an AI tool to sensitive systems.

โ€œFor example, weโ€™ve recently developed clear internal guidance for employees outlining when to involve the security team for application review and when these tools can be used autonomously, ensuring both innovation and data protection are prioritized,โ€ she says. โ€œWe also maintain a list of AI tools we support, and which we donโ€™t recommend if theyโ€™re too risky.โ€

2. Maintain continuous visibility and inventory tracking

CIOs canโ€™t manage what they canโ€™t see. Experts say maintaining an accurate, up-to-date inventory of AI tools is one of the most important defenses against shadow AI.

โ€œThe most important thing is creating a culture where employees feel comfortable sharing what they use rather than hiding it,โ€ says Fisher. His team combines quarterly surveys with a self-service registry where employees log the AI tools they use. IT then validates those entries through network scans and API monitoring.

Ari Harrison, VP of IT at branding manufacturer Bamko, says his team takes a layered approach to maintaining visibility.

โ€œWe maintain a living registry of connected applications by pulling from Google Workspaceโ€™s connected-apps view and piping those events into our SIEM [security information and event management system],โ€ he says. โ€œMicrosoft 365 offers similar telemetry, and cloud access security broker tools can supplement visibility where needed.โ€

That layered approach gives Bamko a clear map of which AI tools are touching corporate data, who authorized them, and what permissions they have.

Mani Gill, SVP of product at cloud-based iPaaS Boomi, argues that manual audits are no longer enough.

โ€œEffective inventory management requires moving beyond periodic audits to continuous, automated visibility across the entire data ecosystem,โ€ he says, adding that good governance policies ensure all AI agents, whether approved or built into other tools, send their data in and out through one central platform. This gives organizations instant, real-time visibility into what each agent is doing, how much data itโ€™s using, and whether itโ€™s following the rules.

Tanium chief security advisor Tim Morris agrees that continuous discovery across every device and application is key. โ€œAI tools can pop up overnight,โ€ he says. โ€œIf a new AI app or browser plugin appears in your environment, you should know about it immediately.โ€

3. Strengthen data protection and access controls

When it comes to securing data from shadow AI exposure, experts point to the same foundation:ย data loss prevention (DLP), encryption, and least privilege.

โ€œUse DLP rules to block uploads of personal information, contracts, or source code to unapproved domains,โ€ Fisher says. He also recommends masking sensitive data before it leaves the organization, and turning on logging and audit trails to track every prompt and response in approved AI tools.

Harrison echoes that approach, noting that Bamko focuses on the security controls that matter most in practice: Outbound DLP and content inspection to prevent sensitive data from leaving; OAuth governance to keep third-party permissions to least privilege; and access limits that restrict uploads of confidential data to only approved AI connectors within its productivity suite.

In addition, the company treats broad permissions, such as read and write access to documents or email, as high-risk and requires explicit approval, while narrow, read-only permissions can move faster, Harrison adds.

โ€œThe goal is to allow safe day-to-day creativity while reducing the chance of a single click granting an AI tool more power than intended,โ€ he says.

Taylor adds that security must be consistent across environments. โ€œEncrypt all sensitive data at rest, in use, and in motion, employ least-privilege and zero-trust policies for data access permissions, and ensure DLP systems can scan for, tag, and protect sensitive data.โ€

He notes that companies should ensure these controls work the same on desktop, mobile, and web, and keep checking and updating them as new situations come up.

4. Clearly define and communicate risk tolerance

Defining risk tolerance is as much about communication as it is about control. Fisher advises CIOs to tie risk tolerance to data classification instead of opinion. His team uses a simple color-coded system: green for low-risk activities, such as marketing content; yellow for internal documents that must use approved tools; and red for customer or financial data that canโ€™t be used with AI systems.

โ€œRisk tolerance should be grounded in business value and regulatory obligation,โ€ says Morris. Like Fisher, Morris recommends classifying AI use into clear categories, whatโ€™s permitted, what needs approval, and whatโ€™s prohibited, and communicating that framework through leadership briefings, onboarding, and internal portals.

Patria says Babsonโ€™s AI Governance Committee plays a key role in this process. โ€œWhen potential risks emerge, we bring them to the committee for discussion and collaboratively develop mitigation strategies,โ€ she says. โ€œIn some cases, weโ€™ve decided to block tools for staff but permit them for classroom use. That balance helps manage risk without stifling innovation.โ€

5. Foster transparency and a culture of trust

Transparency is the key to managing shadow AI well. Employees need to know whatโ€™s being monitored and why.

โ€œTransparency means employees always know whatโ€™s allowed, whatโ€™s being monitored, and why,โ€ Fisher says. โ€œPublish your governance approach on the company intranet and include real examples of both good and risky AI use. Itโ€™s not about catching people. Youโ€™re building confidence that utilizing AI is safe and fair.โ€

Taylor recommends publishing a list of officially sanctioned AI offerings and keeping it updated. โ€œBe clear about the roadmap for delivering capabilities that arenโ€™t yet available,โ€ he says, and provide a process to request exceptions or new tools. That openness shows governance exists to support innovation, not hinder it.

Patria says in addition to technical controls and clear policies, establishing dedicated governance groups, like the AI Governance Committee, can greatly enhance an organizationโ€™s ability to manage shadow AI risks.

โ€œWhen potential risks emerge, such as concerns about tools like DeepSeek and Fireflies.AI, we collaboratively develop mitigation strategies,โ€ she says.

This governance group not only looks at and handles risks, but explains its decisions and the reasons behind them, helping create transparency and shared responsibility, Patria adds.

Morris agrees. โ€œTransparency means there are no surprises. Employees should know which AI tools are approved, how decisions are made, and where to go with questions or new ideas,โ€ he says.

6. Build continuous, role-based AI training

Training is one of the most effective ways to prevent accidental misuse of AI tools. The key is be succinct, relevant, and recurring.

โ€œKeep training short, visual, and role-specific,โ€ says Fisher. โ€œAvoid long slide decks and use stories, quick demos, and clear examples instead.โ€

Patria says Babson integrates AI risk awareness into annual information security training, and sends periodic newsletters about new tools and emerging risks.

โ€œRoutine training sessions are offered to ensure employees understand approved AI tools and emerging risks, while departmental AI champions are encouraged to facilitate dialogue and share practical experiences, highlighting both the benefits and potential pitfalls of AI adoption,โ€ she adds.

Taylor recommends embedding training in-browser, so employees learn best practices directly in the tools theyโ€™re using. โ€œCutting and pasting into a web browser or dragging and dropping a presentation seems innocuous until your sensitive data has left your ecosystem,โ€ he says.

Gill notes that training should connect responsible use with performance outcomes.

โ€œEmployees need to understand that compliance and productivity work together,โ€ he says. โ€œApproved tools deliver faster results, better data accuracy, and fewer security incidents compared with shadow AI. Role-based, ongoing training can demonstrate how guardrails and governance protect both data and efficiency, ensuring that AI accelerates workflows rather than creating risk.โ€

Responsible AI use is good business

Ultimately, managing shadow AI isnโ€™t just about reducing risk, itโ€™s about supporting responsible innovation. CIOs who focus on trust, communication, and transparency can turn a potential problem into a competitive advantage.

โ€œPeople generally donโ€™t try and buck the system when the system is giving them what theyโ€™re looking for, especially when thereโ€™s more friction for the user in taking the shadow AI approach,โ€ says Taylor.

Morris concurs. โ€œThe goal isnโ€™t to scare people but to make them think before they act,โ€ he says. โ€œIf they know the approved path is easy and safe, theyโ€™ll take it.โ€

Thatโ€™s the future CIOs should work toward: a place where people can innovate safely, feel trusted to experiment, and keep data protected because responsible AI use isnโ€™t just compliance, itโ€™s good business.

The AI in oil: GS Caltex empowers LOB teams to build agents

28 November 2025 at 05:00

Caught between change and stability, many companies find themselves hesitating on how to square the two. The pace of change is increasing in the age of AI, and the weight of making inspired choices has only become more critical. GS Caltex, one of Koreaโ€™s leading refining companies, faced the same dilemma and recently embraced a new guiding principle of good risk taking โ€” a phrase reportedly often heard in GS Caltex meetings, and initially proposed by company CEO Hur Sae-hong. โ€œOnce the word โ€˜goodโ€™ was added to โ€˜risk-taking,โ€™ a culture began to spread where people are willing to attempt any challenge,โ€ says CIO, CDO, and DX Center head Lee Eunjoo.

Amid growing uncertainties around crude oil prices and product demand, intensifying competition over production scale, and demographic decline, the value of good risk taking is pushing the company to pursue new opportunities and innovation. And a changing mindset is reshaping the organization from within.

The AI platform changing the enterprise

Even without any top-down mandate, itโ€™s common at GS Caltex to see not just IT but LOB teams in production, sales, finance, legal, PR, and HR building and using AI agents in their day-to-day work. Finance, for instance, recently built an FAQ agent and asked Leeโ€™s team to review it. โ€œItโ€™s incredibly rewarding to see employees actively using the new technologies provided by the DX Center.โ€

So far, theyโ€™ve created more than 50 agents, including ones that support pre-job safety briefings for partner company staff, review crude oil purchase contracts, automate a complex medical expense reimbursement process, and automatically classify and analyze gas station customer feedback.

All of these agents were developed on AiU, the companyโ€™s in-house gen AI service platform launched in June this year, which combines AI with yu, the Korean word for oil, and is also a play on โ€œAI for you,โ€ reflecting its role as AI tailored to each employee.

Lee says AiU is the clearest expression of the companyโ€™s approach to transformation. โ€œItโ€™s not just about DX anymore but DAX, combining digital with AI transformation,โ€ she says. โ€œFrom our production sites to headquarters, weโ€™re rolling out initiatives that let every employee experience it all side by side. Thatโ€™s how weโ€™re reshaping ourselves into an energy company that uses AI broadly and with confidence.โ€

A secret to its rapid success is because no one feels pressured to build a perfect agent. โ€œPeople are much more willing to try things and experiment,โ€ says Lee. From the DX Centerโ€™s standpoint, that mindset has made it possible to support a growing number of AI projects with a relatively small team. โ€œPlus, the AiU playground lets employees build and test agents themselves, which makes AI feel far more approachable and familiar in their day-to-day work,โ€ she adds.

An AI agent platform might sound like something only developers can use, but AiU is designed so non-experts can easily work with it. The experience isnโ€™t very different from ChatGPT as GS Caltex deliberately embedded AiU into the side of core business systems that employees check every day, so theyโ€™d naturally encounter and use AI in their daily workflows. Even if they donโ€™t build agents themselves, employees can still ask the AI questions using internal company data, and search across both external information and internal systems at once.

Itโ€™s only been a few months since AiU officially launched, and around 85% of employees are now regular users, and nearly the entire workforce has tried it at least once. โ€œMost of our production and technical staff work in a mobile-only environment without desktops,โ€ Lee says. โ€œThe fact 95% of them have already used AiU shows just how fast the platform is spreading.โ€

Sowing seeds of success

AiU drew strong interest from employees even during its pilot stage. The DX Center began discussing AI service adoption in 2023, and in 2024, the team built a pilot service on AWS in just a few days. Although it was an early version with only basic UI, more than 300 employees participated and shared the features and requirements they needed. This underscored just how many people were eager to bring AI into their work.

Through this pilot, the DX Center was able to clearly identify what kinds of problems employees wanted to solve with AI, and which capabilities they needed most. The team then considered whether to adopt an external solution or develop one in house. In the end, they chose to build on MISO, the AI transformation platform developed by the GS Group, and add GS Caltexโ€“specific capabilities on top. The entire development took about six months.

In designing AiUโ€™s technical architecture, Lee focused most heavily on minimizing dependence on any single LLM. The platform supports multiple models that employees can choose from, including OpenAI and Anthropic.

โ€œAI moves incredibly fast, so we built the system in a way that lets us easily plug in better technologies as they come along,โ€ she says. โ€œThe AI layer will keep changing, but the internal data and applications underneath it will remain our core assets, which is why weโ€™ve focused on strengthening the underlying infrastructure. Thatโ€™s where our DAX philosophy โ€” advancing digital and AI transformation together โ€” comes into play.โ€

But AiU has done more than speed up AI adoption. Itโ€™s also put new life into existing systems. GS Caltex already had an internal enterprise search platform, but over time, its accuracy and usability declined, and usage dropped. AiU stepped in to augment that system with AI. Employees can now search M365 documents, work rules, and HR information in one go, and have the results summarized for them by the AI.

โ€œAll we really did was layer AI on top of what we already had to make it a little easier to use,โ€ Lee says. โ€œBut in the end, that AI layer ended up reviving a service that was close to being forgotten.โ€

The growth engines behind the projects

Rolling out and scaling new IT technologies like AI across an entire organization isnโ€™t easy. Itโ€™s common to see transformation stall at the slogan stage, held back by resistance to new tools or the simple reality that people are too busy to change how they work.

GS Caltex, however, has avoided treating DX as a one-off initiative. Instead, the company has built three pillars to sustain company-wide change over the long term: culture, performance management, and education.

The first step was to build a bottom-up DX culture. Traditional IT projects often begin with large-scale planning, writing RFPs, and selecting external vendors โ€” a process so long that customer needs frequently change before anything goes live.

GS Caltex chose a different path: a fast-execution model focused on solving customer needs in real time. Even a small app or a single dashboard is recognized as DX, and each attempt is treated as valuable. One example is an app that automatically collects and organizes external news, built by a frontline business team not the IT department.

As these small wins accumulated, a voluntary culture of digital innovation took root. Since the establishment of the DX Center in 2019, GS Caltex has carried out hundreds of projects this way.

Behind this transformation is a high level of organizational acceptance. No matter how well something is built, if colleagues donโ€™t respond favorably, it doesnโ€™t advance. That hasnโ€™t been a problem at GS Caltex, though, largely due to the embedded good risk taking philosophy.

โ€œDX inevitably involves a certain level of risk,โ€ says Lee. โ€œFor good risk taking to really work, you need to understand the level of risk and have leaders actively backing it. We have that kind of culture in place.โ€

After joining GS Caltex, Lee learned a new approach to positive communication. Rather than focusing on fixing problems, the company emphasizes recognizing small achievements, celebrating them together, and then building on that foundation to find areas to improve. โ€œIโ€™ve personally experienced the value of a positive feedback culture,โ€ she says. โ€œA culture that openly recognizes achievements has become a natural driving force encouraging frontline employees to participate in DX.โ€

This philosophy has been embedded into reward and performance management systems, including a performance innovation committee, which selects outstanding DX projects initiated by business teams and presents awards. And presentations are delivered not by team leaders but by the frontline employees who actually led the work. The monthly selected cases are then published on the companyโ€™s internal website, making sure their contributions are visibly acknowledged.

These practices give other employees confidence to do the same, and thus fuels wider voluntary participation. The committee also actively shares failure cases. By openly discussing what was attempted in each project and what could be improved, the company aims to turn failure into an opportunity for learning.

Lee says that GS Caltex only recognizes outcomes that can be proven in financial terms. Common IT metrics such as conversion rates or click-through rates, often used as proxy indicators, arenโ€™t treated as final measures of success. Instead, the company tracks more meaningful indicators such as productivity gains that drive innovation, cost reductions, and improvements in customer satisfaction. These results are all centrally managed through the company-wide performance management system.

But itโ€™s education that the DX Center prioritizes most. Rather than relying on a small group of experts, GS Caltex has chosen a strategy of cultivating hundreds of frontline DX specialists and sees strong results. The more business-side DX experts there are who can use digital tools to directly solve on-site problems, the faster digital adoption spreads. So once technology takes hold in the field, the DX organization provides the necessary development environment and additional support.

This training initiative, called the digital academy, runs as full-day programs ranging from a single day up to three months. It focuses on reskilling and deepening professional expertise to develop DX talent. The curriculum includes low-code developer tracks and in-house DX expert courses, enabling frontline employees to learn technologies themselves and apply them directly to their work. Topics include RPA, Tableau, Python, AI, and data science. Most notably in recent months, every executive has gone through gen AI training themselves, setting the tone from the top and actively championing a culture of continuous learning.

From IT support to proactive DX engine

Two years into her tenure, Lee is now reimagining how DX governance works. Historically, the DX organization operated in reactive mode, fielding requests from business units as they came in. Now, itโ€™s flipping the script. That means taking the lead on company-wide DX priorities, vetting technologies for maturity and feasibility, and consolidating redundant projects.

One clear target is to streamline the system portfolio. Lee also plans to retire underutilized systems and those where operating costs outweigh the value they deliver, cutting waste while boosting efficiency.

At the same time, GS Caltex is leaning into global outsourcing. The company is building a distributed operations model, partnering with offshore teams not just for IT infrastructure, but for internal systems spanning HR, procurement, legal, and beyond. The savings are being funneled back into critical areas, like bolstering disaster recovery capabilities to strengthen business continuity, and reinforcing the DX foundation to deliver more reliable support across the organization.

AI, of course, remains a top priority, and internal demand is surging. โ€œEmployees, especially senior leaders, want services that pull together even more data,โ€ Lee says. โ€œDown the road, Iโ€™d like AiU to evolve to the point where you can ask whatโ€™s been happening with a particular customer lately, and instantly get a unified view of what division A is working on, what division B needs, and live customer inquiries all in one snapshot.โ€

์‹ ์ž„ IT ๋ฆฌ๋”์™€ ๊ด€๋ฆฌ์ž๊ฐ€ ํ”ํžˆ ์ €์ง€๋ฅด๋Š” ์‹ค์ˆ˜ 8๊ฐ€์ง€

27 November 2025 at 23:58

์š”์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ์ƒˆ๋กœ์šด ๊ด€๋ฆฌ์ž๋Š” ๋ฌด๋ฆฌํ•œ ํ–‰๋™์— ๋‚˜์„œ๊ธฐ๋ณด๋‹ค ์ง์› ์ฐธ์—ฌ๋ฅผ ํ†ตํ•ด ๋ณ€ํ™”๋ฅผ ์ถ”์ง„ํ•ด์•ผ ํ•œ๋‹ค.
  • ์กฐ์ง ๋‚ด ์กฐํ™”๋ฅผ ์ง€๋‚˜์น˜๊ฒŒ ์ค‘์‹œํ•˜๋Š” ๋ฆฌ๋”๋Š” ๋Œ€์ฒด๋กœ ๊ฐˆ๋“ฑ์„ ํšŒํ”ผํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์–ด ๋ฌธ์ œ ๋Œ€์‘์ด ๋Šฆ์–ด์งˆ ๋•Œ๊ฐ€ ๋งŽ๋‹ค.
  • ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๋ ค๋ฉด ๊ด€๋ฆฌ์ž๋Š” ์ ์ ˆํ•œ ๊ถŒํ•œ ์œ„์ž„์„ ํ†ตํ•ด ์‹œ๊ฐ„์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค.

์Šน์ง„์„ ํ†ตํ•ด ๋ฆฌ๋”๊ฐ€ ๋œ ๊ฒƒ์€ ๋ถ„๋ช… ์˜๋ฏธ ์žˆ๋Š” ์„ฑ์ทจ๋‹ค. ์ด์ œ ๋ˆˆ์•ž์—๋Š” ํฅ๋ฏธ๋กญ๊ณ ๋„ ๋ฐฐ์›€ ๋งŽ์€ ์‹œ๊ธฐ๊ฐ€ ํŽผ์ณ์ง€๋ฉฐ, ๋™์‹œ์— ๊ณณ๊ณณ์—๋Š” ์‹œํ–‰์ฐฉ์˜ค์™€ ์œ„ํ—˜ ์š”์†Œ๊ฐ€ ๋„์‚ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋งŽ์€ ์‹ ์ž„ ๋ฆฌ๋”์™€ ๊ด€๋ฆฌ์ž๊ฐ€ ์ €์ง€๋ฅด๋Š” ๋‹ค์Œ 8๊ฐ€์ง€ ์‹ค์ˆ˜๋ฅผ ๋ฏธ๋ฆฌ ์ดํ•ดํ•œ๋‹ค๋ฉด, ๊ฑธ๋ฆผ๋Œ์„ ์ถฉ๋ถ„ํžˆ ์˜ˆ์ธกํ•˜๊ณ  ํ”ผํ•  ์ˆ˜ ์žˆ๋‹ค.

์ทจ์ž„ ์ธ์‚ฌ์˜ ์ค‘์š”์„ฑ์„ ๊ณผ์†Œํ‰๊ฐ€ํ•œ๋‹ค

๊ธฐ์กด ๊ตฌ์„ฑ์›๊ณผ ์ด๋ฏธ ํ•จ๊ป˜ ์ผํ•ด์™”๋“  ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์—์„œ ๋ฆฌ๋” ์—ญํ• ์„ ๋งก๊ฒŒ ๋๋“ , ์ง์›๋“ค์€ ์ƒˆ ์ƒ์‚ฌ๋ฅผ ๋นจ๋ฆฌ ๋งŒ๋‚˜๊ณ  ์‹ถ์–ด ํ•œ๋‹ค. ๋ถ€์ž„ ํ›„ ์ดํ‹€ ๋˜๋Š” ์‚ฌํ˜์งธ ๋˜๋Š” ๋‚  ํŒ€์„ ์ดˆ๋Œ€ํ•ด ๊ฐ„๋‹จํ•œ ํ™˜์˜ ์ž๋ฆฌ๋ฅผ ๋งˆ๋ จํ•˜๊ณ , ๊ณต์‹์ ์œผ๋กœ ์ž์‹ ์„ ์†Œ๊ฐœํ•˜๋Š” ๊ฒƒ์ด ์ข‹๋‹ค. ์งง์€ ์ธ์‚ฌ๋ง์—๋Š” ์ž์‹ ์˜ ๊ฒฝ๋ ฅ๊ณผ ์—…๋ฌด ๊ฒฝํ—˜์„ ๊ฐ„๋‹จํžˆ ์†Œ๊ฐœํ•˜๊ณ , ๋ฆฌ๋”์‹ญ ์Šคํƒ€์ผ๊ณผ ๊ฐ€์น˜๊ด€, ์ดˆ๊ธฐ ๋ชฉํ‘œ์— ๋Œ€ํ•œ ์œค๊ณฝ์„ ์ œ์‹œํ•ด์•ผ ํ•œ๋‹ค. ์ง์› ๋ฉด๋‹ด ์ผ์ •๊ณผ ํ˜„์žฅ ๋ฐฉ๋ฌธ, ํ‚ฅ์˜คํ”„ ๋ฏธํŒ… ๊ณ„ํš ๋“ฑ ์ดˆ๊ธฐ ์šด์˜ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ๊ตฌ์ฒด์ ์ธ ์ •๋ณด๋„ ํ•จ๊ป˜ ์ „๋‹ฌํ•˜๋Š” ํŽธ์ด ๋ฐ”๋žŒ์งํ•˜๋‹ค.

์ฃผ์˜ํ•  ์ ๋„ ์žˆ๋‹ค. โ€œํŠผํŠผํ•œ ํ† ๋Œ€๋ฅผ ์œ„ํ•œ ์ตœ๊ณ ์˜ ์ „์ œ ์กฐ๊ฑด์€ ๊ฒฌ๊ณ ํ•œ ๊ธฐ๋ฐ˜์ด๋‹คโ€ ๊ฐ™์€ ๊ณตํ—ˆํ•œ ๋ฌธ๊ตฌ๋Š” ์ƒˆ๋กœ์šด ์—ญํ• ์—์„œ ์ข‹์€ ์ถœ๋ฐœ์„ ๋ง์น  ๋ฟ์ด๋‹ค. ์ด๋Š” ๋…์ผ ์—ฐ๋ฐฉ์˜ํšŒ์—์„œ๋„ ์‹ค์ œ๋กœ ์‚ฌ์šฉ๋œ ํ‘œํ˜„์ธ๋ฐ, ์˜๋ฏธ ์—†๋Š” ์ˆ˜์‚ฌ, ์ง€๋‚˜์น˜๊ฒŒ ๊ธด ์ž๊ธฐ์†Œ๊ฐœ, ์ „์ž„์ž์— ๋Œ€ํ•œ ํ‰๊ฐ€๋‚˜ ๊ธฐ์กด ๋ฐฉ์‹์— ๋Œ€ํ•œ ๋น„ํŒ์€ ์‹ ๋ขฐ๋ฅผ ์–ป๋Š” ๋ฐ ์ „ํ˜€ ๋„์›€์ด ๋˜์ง€ ์•Š๋Š”๋‹ค.

๋ถ€์ž„ ์ดˆ๊ธฐ 100์ผ ๋™์•ˆ ๋ชจ๋“  ๊ฒƒ์„ ๋’ค์ง‘๋Š”๋‹ค

์ƒˆ๋กœ์šด ๊ด€๋ฆฌ์ž๊ฐ€ ์˜ค๋ฉด ์กฐ์ง์€ ๋‹น์—ฐํ•˜๊ฒŒ๋„ ๋ณ€ํ™”๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์ด๋Ÿฐ ๋ถ„์œ„๊ธฐ ์†์—์„œ ์‹ ์ž„ ๊ด€๋ฆฌ์ž๋Š” ๊ณผ๋„ํ•œ ํ™œ๋™์— ๋ชฐ๋‘ํ•˜๋ฉฐ ์ž์‹ ์˜ ์กด์žฌ๊ฐ์„ ์ž…์ฆํ•˜๋ ค๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฐ ๋ชจ์Šต์€ ํŒ€์„ ์ด๋Œ๋ฉฐ ๋ฐฉํ–ฅ์„ ์žก๊ธฐ๋ณด๋‹ค, ์Šค์Šค๋กœ์˜ ์œ„์น˜์™€ ์„ฑ๊ณผ์—๋งŒ ์ง€๋‚˜์น˜๊ฒŒ ์ง‘์ค‘ํ•˜๋Š” ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ๋น„์น  ์ˆ˜ ์žˆ๋‹ค.

์ดˆ๊ธฐ ๋ช‡ ์ฃผ๋Š” ์ง์› ๋ฉด๋‹ด๊ณผ ์—…๋ฌด ํ˜„์žฅ ๋ฐฉ๋ฌธ์— ์ง‘์ค‘ํ•˜๋Š” ํŽธ์ด ํ›จ์”ฌ ํšจ๊ณผ์ ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ตฌ์„ฑ์›์ด ๊ธฐ๋Œ€ํ•˜๋Š” ๋ฐ”, ๋งก๊ณ  ์žˆ๋Š” ์—…๋ฌด, ํ˜‘์—… ๋ฐฉ์‹, ๋‚ด๋ถ€ ํ”„๋กœ์„ธ์Šค, ์ž ์žฌ์  ๋ฌธ์ œ ์ง€์  ๋“ฑ์„ ์ „์ฒด์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ํ‰๊ฐ€์™€ ์ดํ•ด๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ด๋ค„์ง„ ๋’ค์—์•ผ, ์ง์› ์ฐธ์—ฌ๋ฅผ ํ†ตํ•œ ๋ณ€ํ™”๊ฐ€ ๋น„๋กœ์†Œ ์˜๋ฏธ ์žˆ๊ฒŒ ์ถ”์ง„๋  ์ˆ˜ ์žˆ๋‹ค.

์ง์›์—๊ฒŒ ํœ˜๋‘˜๋ฆฐ๋‹ค

๋ฌธ์ œ๊ฐ€ ์ƒ๊ธฐ๋ฉด ์ง์›์€ ๋Œ€์ฒด๋กœ ์ƒ์‚ฌ์˜ ๋„์›€์„ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์ƒ๋ถ€์˜ ์••๋ฐ•์ด๋“ , ์™ธ๋ถ€ ์ดํ•ด๊ด€๊ณ„์ž์™€์˜ ๊ฐˆ๋“ฑ์ด๋“ , ํŒ€ ๋‚ด๋ถ€์˜ ๋ฌธ์ œ์ด๋“  ๋งˆ์ฐฌ๊ฐ€์ง€๋‹ค. ์ƒˆ ๊ด€๋ฆฌ์ž๊ฐ€ ๋ถ€์ž„ํ•˜๋ฉด ์ง์›๋“ค์€ ๊ทธ๋™์•ˆ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์•˜๋˜ ๋ถˆ๋งŒ์ด๋‚˜ ๋ฏธํ•ด๊ฒฐ ์‚ฌ์•ˆ์„ ํ’€์–ด๋‹ฌ๋ผ๋ฉฐ ์ƒˆ๋กœ์šด ์ƒ์‚ฌ๋ฅผ ์ ๊ทน์ ์œผ๋กœ ๋Œ์–ด๋“ค์ด๋ ค ํ•œ๋‹ค. ๋Œ€์™ธ์ ์œผ๋กœ ๋Œ€์‹  ๋ชฉ์†Œ๋ฆฌ๋ฅผ ๋‚ด์ฃผ๊ธธ ๊ธฐ๋Œ€ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์ด๋•Œ ์ฃผ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ๋Š” ์ง์› ๊ฐœ์ธ์˜ ์ฃผ๊ด€์  ํŒ๋‹จ๋งŒ ์ „๋‹ฌ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ์„ฑ๊ธ‰ํ•œ ์•ฝ์†์ด๋‚˜ ์ฆ‰ํฅ์  ๊ฒฐ์ •์„ ํ”ผํ•˜๊ณ , ์šฐ์„  ํ˜„์žฌ ์ƒํ™ฉ๊ณผ ์ฑ…์ž„ ๊ตฌ์กฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.

ํŠน์ • ์ง์›๊ณผ ๊ณผ๋„ํ•˜๊ฒŒ ๊ฐ€๊นŒ์›Œ์ง„๋‹ค

๋™๋ฃŒ ๊ฐ„ ์šฐํ˜ธ์ ์ธ ๋ถ„์œ„๊ธฐ๋Š” ์—…๋ฌด ๋งŒ์กฑ๋„๋ฅผ ๋†’์ด๊ณ , ๊ทผ๋ฌด ์™ธ ์‹œ๊ฐ„์— ๋‚˜๋ˆ„๋Š” ๋Œ€ํ™” ์—ญ์‹œ ๊ธ์ •์ ์ธ ์กฐ์ง ๋ฌธํ™”๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํŠน์ • ์ง์›๊ณผ ๊ฐœ์ธ์  ์นœ๋ถ„์ด ๊นŠ์–ด์ง€๋ฉด, ์ด ๊ด€๊ณ„๊ฐ€ ์—…๋ฌด์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น ์ง€ ์ ๊ฒ€ํ•ด์•ผ ํ•œ๋‹ค. ํŠนํžˆ ์ค‘์š”ํ•œ ์˜์‚ฌ๊ฒฐ์ •์ด๋‚˜ ๊ฐˆ๋“ฑ ์ƒํ™ฉ์—์„œ ๊ณต์ •์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋Š”์ง€, ๋‹ค๋ฅธ ์ง์›ยท๋™๋ฃŒยท์ƒ์‚ฌ๋Š” ์ด๋ฅผ ์–ด๋–ป๊ฒŒ ๋ฐ›์•„๋“ค์ผ์ง€ ์ž๋ฌธํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ฆฌ๋”์™€ ์ง์› ๋ชจ๋‘๋ฅผ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ ์ ˆํ•œ ๊ฑฐ๋ฆฌ๊ฐ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•˜๋‹ค.

ํ•ญ์ƒ ์˜ณ๋‹ค๊ณ  ์ฃผ์žฅํ•˜๊ณ  ์‹ค์ˆ˜๋ฅผ ์ธ์ •ํ•˜์ง€ ์•Š๋Š”๋‹ค

์‹ค์ˆ˜๋ฅผ ์ธ์ •ํ•˜๊ฑฐ๋‚˜ ์ง์›์˜ ๋น„ํŒ์„ ๋ฐ›์•„๋“ค์ด๋Š” ๊ฒƒ์€ ์ข…์ข… ์•ฝ์ ์„ ๋“œ๋Ÿฌ๋‚ด๋Š” ํ–‰๋™์ด๋ผ๊ณ  ํ•ด์„๋˜๊ณค ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ์ •๋ฐ˜๋Œ€๋‹ค. ์ •๋‹นํ•œ ๋น„ํŒ์— ์—ด๋ฆฐ ํƒœ๋„๋ฅผ ๋ณด์ด๊ณ , ํ•„์š”ํ•˜๋‹ค๋ฉด ๊ฒฐ์ •์„ ๋ฐ”๋กœ์žก์œผ๋ ค๋Š” ์ž์„ธ์•ผ๋ง๋กœ ์ง„์ •ํ•œ ๋ฆฌ๋”์‹ญ ์—ญ๋Ÿ‰์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ ํƒœ๋„๋Š” ๋ฆฌ๋”์˜ ์‹ ๋ขฐ๋„๋ฅผ ๋†’์ด๊ณ  ๊ตฌ์„ฑ์›์—๊ฒŒ ๋ชจ๋ฒ”์„ ์ œ์‹œํ•œ๋‹ค. ์Šค์Šค๋กœ ์‹ค์ฒœํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์„ ์ง์›์—๊ฒŒ ์š”๊ตฌํ•  ์ˆ˜๋Š” ์—†๋‹ค.

๊ฐˆ๋“ฑ์„ ํ”ผํ•˜๋ ค ํ•œ๋‹ค

์กฐ์ง ๋‚ด ์กฐํ™”๋ฅผ ์ค‘์‹œํ•˜๋Š” ๋ฆฌ๋”๋Š” ๋Œ€๊ฐœ ๊ฐˆ๋“ฑ์„ ํšŒํ”ผํ•˜๋Š” ์„ฑํ–ฅ์„ ๋ณด์ธ๋‹ค. ๋ฌธ์ œ๊ฐ€ ์ €์ ˆ๋กœ ํ•ด๊ฒฐ๋˜๊ธธ ๋ฐ”๋ผ๋Š” ๋งˆ์Œ์— ์ƒํ™ฉ์ด ์•…ํ™”๋  ๋•Œ๊นŒ์ง€ ๋Œ€์‘์„ ๋ฏธ๋ฃจ๋Š” ๊ฒฝ์šฐ๋„ ํ”ํ•˜๋‹ค. ์ง์›์˜ ๋ถ€์ ์ ˆํ•œ ํ–‰๋™์ด๋“ , ํŒ€ ๋‚ด ๊ฐˆ๋“ฑ์ด๋“ , ๋ฆฌ๋”๋Š” ์ดˆ๊ธฐ์— ๊ธฐ๋Œ€์น˜๋ฅผ ๋ช…ํ™•ํžˆ ์ „๋‹ฌํ•˜๊ณ , ์ง€์†์ ์œผ๋กœ ๊ฑด์„ค์ ์ธ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜๋ฉฐ, ํ•„์š”ํ•  ๋•Œ ์ฆ‰์‹œ ๋ฐฉํ–ฅ์„ ์กฐ์ •ํ•ด์•ผ ํ•œ๋‹ค. ๋Œ€์‘์ด ๋Šฆ์–ด์ง€๋ฉด ํ”ผ๋กœ๊ฐ์ด ์ปค์ง€๊ณ  ์˜คํ•ด๊ฐ€ ์Œ“์ธ๋‹ค. ๋ช…ํ™•์„ฑ์€ ๋ฆฌ๋”์‹ญ์˜ ํ•ต์‹ฌ ์„ฑ๊ณต ์š”์ธ์ด๋ฉฐ, ์นœ์ ˆํ•จ๊ณผ ์–‘๋ฆฝํ•  ์ˆ˜ ์—†๋Š” ๊ฐ€์น˜๊ฐ€ ์•„๋‹ˆ๋‹ค.

ํ•ญ์ƒ ๋ฌธ์„ ์—ด์–ด๋‘ฌ์•ผ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค

์ƒ์‚ฌ๊ฐ€ ์ง์›์˜ ์š”๊ตฌ์‚ฌํ•ญ์— ๊ด€์‹ฌ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค๋Š” ์ธ์ƒ์„ ์ฃผ๋Š” ๊ฒƒ์€ ์ค‘์š”ํ•˜์ง€๋งŒ, โ€œ์–ธ์ œ๋“  ์ฐพ์•„์˜ค๋ผโ€๋ผ๋Š” ๋ง์€ ๋ฆฌ๋”์—๊ฒŒ ์น˜๋ช…์ ์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ณ„ํš๋˜์ง€ ์•Š์€ ๋Œ€ํ™”๋Š” ์ผ์˜ ํ๋ฆ„์„ ๋Š๊ณ , ์ง„ํ–‰ ์ค‘์ธ ์ค‘์š”ํ•œ ์—…๋ฌด๋ฅผ ๋ฐฉํ•ดํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๋‹ค์‹œ ๋งํ•ด, โ€˜์ค‘๊ฐ„์ค‘๊ฐ„โ€™ ๋ฆฌ๋”์‹ญ์„ ๋ฐœํœ˜ํ•˜๋ ค๋Š” ๋ฐฉ์‹์€ ์ ์ ˆํ•˜์ง€ ์•Š๋‹ค. ์‚ฌ์ „์— ์‹œ๊ฐ„์„ ์ •ํ•ด ์ง์› ์ƒ๋‹ด์„ ์œ„ํ•œ ๋ณ„๋„ ์‹œ๊ฐ„์„ ํ™•๋ณดํ•ด์•ผ ํ•œ๋‹ค. ๋ฐ˜๋Œ€๋กœ ์ง‘์ค‘์ด ํ•„์š”ํ•œ ์—…๋ฌด ์‹œ๊ฐ„์—๋Š” ๋ฌธ์„ ๋‹ซ๋Š” ๊ฒƒ์ด ํšจ์œจ์ ์ด๋‹ค. โ€˜์—ด๋ฆฐ ๋ฌธโ€™์ด๋ผ๋Š” ํ™˜์ƒ์€ ์ง์›์ด ์ถฉ๋ถ„ํžˆ ์Šค์Šค๋กœ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ๊นŒ์ง€ ์ƒ์‚ฌ์—๊ฒŒ ์˜์กดํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ถ€์ •์  ๊ฒฐ๊ณผ๋ฅผ ๋‚ณ์„ ์ˆ˜ ์žˆ๋‹ค.

์ „๋ฌธ๊ฐ€๋ฅผ ๋Šฅ๊ฐ€ํ•˜๋ ค ํ•œ๋‹ค

๋ชจ๋“  ๊ธฐ์ˆ ์  ์งˆ๋ฌธ์— ๋‹ตํ•˜๊ฑฐ๋‚˜ ๋ชจ๋“  ๋ฌธ์ œ๋ฅผ ์ง์ ‘ ํ•ด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๋ฏฟ๋Š” ๊ฒƒ์€ ํฐ ์ฐฉ๊ฐ์ด๋‹ค. ์ด๋Š” ๊ฐ ๋ถ„์•ผ์˜ ์ „๋ฌธ์„ฑ์„ ๊ฐ€์ง„ ์ง์›์˜ ์—ญํ• ์ด๋ฉฐ, ๊ด€๋ฆฌ์ž์˜ ๋ณธ๋ž˜ ์ž„๋ฌด๋Š” ๋ฆฌ๋”์‹ญ๊ณผ ์กฐ์ง ์šด์˜์— ์žˆ๋‹ค. ์ด๋Ÿฐ ์ฑ…์ž„๊นŒ์ง€ ์Šค์Šค๋กœ ๋– ์•ˆ์œผ๋ ค ํ•˜๋ฉด ๊ฒฐ๊ตญ ํ•ต์‹ฌ ์—…๋ฌด์— ์ง‘์ค‘ํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋œ๋‹ค. ์‹œ๊ฐ„์„ ํ™•๋ณดํ•˜๊ณ  ๋ชฉํ‘œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋‹ฌ์„ฑํ•˜๋ ค๋ฉด, ์ ์ ˆํ•œ ์œ„์ž„์ด ํ•„์ˆ˜์ ์ด๋‹ค.
dl-ciokorea@foundryco.com

2026๋…„์— ์ฃผ๋ชฉํ•ด์•ผ ํ•  10๋Œ€ IT ๊ธฐ์ˆ  ์—ญ๋Ÿ‰

27 November 2025 at 21:55

์ƒ์„ฑํ˜• AI๊ฐ€ ๊ธฐ์—…์˜ AI ์ „๋žต ์žฌํŽธ์„ ์ด๋Œ๋ฉด์„œ IT ๊ธฐ์ˆ  ์ธ๋ ฅ ์‹œ์žฅ๋„ ์žฌํŽธ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์—…์€ AI ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์ง€์›์ž์™€ ์žฌ์ง์ž์—๊ฒŒ ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋‘๊ณ  ์žˆ๋‹ค. ์ธ๋””๋“œ์˜ โ€˜2025 ํ…Œํฌ ์ธ์žฌ ๋ณด๊ณ ์„œ(Tech Talent Report)โ€™์— ๋”ฐ๋ฅด๋ฉด AI ๊ด€๋ จ ์กฐ์ง ์žฌํŽธ์˜ ์˜ํ–ฅ์„ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋ฐ›์€ ์ƒ์œ„ 4๊ฐœ ์—ญํ• ์€ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ดยท๊ฐœ๋ฐœ์ž, QA ์—”์ง€๋‹ˆ์–ด, ํ”„๋กœ๋•ํŠธ ๋งค๋‹ˆ์ €, ํ”„๋กœ์ ํŠธ ๋งค๋‹ˆ์ €์˜€๋‹ค. ํ˜„์žฌ ๊ธฐ์—…์€ ์‚ฌ์ด๋ฒ„๋ณด์•ˆ, ๋ฐ์ดํ„ฐ ๋ถ„์„ยท๋ฐ์ดํ„ฐ ์• ๋„๋ฆฌํ‹ฑ์Šค, AIํŒ€ ๊ตฌ์ถ•ยท๊ด€๋ฆฌ ์—ญ๋Ÿ‰์„ ๋ณด์œ ํ•œ ์ „๋ฌธ๊ฐ€์— ์˜ˆ์‚ฐ๊ณผ ๋…ธ๋ ฅ์„ ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹ค.

IT ์—ญํ• ์˜ ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋ฐ”๋€Œ๋ฉด์„œ ๊ตฌ์ง์ž๊ฐ€ ์ด๋ ฅ์„œ์— ๋‹ด์•„์•ผ ํ•  IT ๊ธฐ์ˆ  ์—ญ๋Ÿ‰๋„ ๋‹ฌ๋ผ์กŒ๋‹ค. ๊ธฐ์—…์€ ์ด์ œ ์ดˆ๊ธ‰ IT ์ง๋ฌด๋ผ๋„ ์ตœ์†Œํ•œ ๊ธฐ๋ณธ์ ์ธ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ”๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค. ๊ทธ๋ณด๋‹ค ๋†’์€ ์ˆ˜์ค€์—์„œ๋Š” AI ๋„๊ตฌ์™€ ์ „๋žต์„ ๊ฐ๋…ํ•˜๊ณ , ๋„์ž…ํ•˜๊ณ , ๋ณด์•ˆ ์ˆ˜์ค€์„ ํ™•๋ณดํ•˜๊ณ , ์šด์˜๊นŒ์ง€ ์ฑ…์ž„์งˆ ์ˆ˜ ์žˆ๋Š” IT ์ „๋ฌธ๊ฐ€๋ฅผ ์ฐพ๊ณ  ์žˆ๋‹ค.

์ธ๋””๋“œ ๋ฐ์ดํ„ฐ์— ๋”ฐ๋ฅด๋ฉด 2024๋…„๊ณผ 2025๋…„ ์‚ฌ์ด ์ฑ„์šฉ ๊ณต๊ณ ์— ์š”๊ตฌ ์กฐ๊ฑด์œผ๋กœ ํฌํ•จ๋œ ํšŸ์ˆ˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋‹ค์Œ 10๊ฐ€์ง€ IT ๊ธฐ์ˆ  ์—ญ๋Ÿ‰์˜ ์„ ํ˜ธ๋„๊ฐ€ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋†’์•„์กŒ๋‹ค.

AI

AI ์—ญ๋Ÿ‰ ์ˆ˜์š”๊ฐ€ ๊ฐ€์žฅ ํฐ ํญ์œผ๋กœ ๋Š˜์–ด๋‚œ ๊ฒƒ์€ ์ „ํ˜€ ๋†€๋ผ์šด ์ผ์ด ์•„๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ ์‚ฐ์—…๊ณผ ์ง๋ฌด์—์„œ AI ๋„์ž… ๊ฒฝ์Ÿ์ด ๋ฒŒ์–ด์ง€๋ฉด์„œ ๊ธฐ์—…์€ AI๋ฅผ ์–ด๋–ป๊ฒŒ๋“  ํ™œ์šฉํ•˜๋ ค ๋ถ„์ฃผํ•˜๊ฒŒ ์›€์ง์ด๊ณ  ์žˆ๋‹ค. 2024๋…„์—๋Š” AI ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๊ฐ€ 500๋งŒ ๊ฑด์„ ์›ƒ๋Œ์•˜๊ณ , 2025๋…„์—๋Š” 1๋…„ ์ƒˆ 400๋งŒ ๊ฑด ์ด์ƒ ๋Š˜์–ด๋‚ฌ๋‹ค. ์ด์ œ ๊ธฐ์ˆ  ๋ถ„์•ผ ๋ฐ–์—์„œ ์ผํ•˜๋Š” ์ง€์›์ž๋ผ๋„ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ, ํ”„๋กœ๊ทธ๋ž˜๋ฐยท์ฝ”๋”ฉ์šฉ AI ํ™œ์šฉ ๋“ฑ ์ผ์ • ์ˆ˜์ค€์˜ AI ์—ญ๋Ÿ‰์„ ๊ฐ–์ถฐ์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด๋‹ค.

ํŒŒ์ด์ฌ

ํŒŒ์ด์ฌ์€ ๋ฐ์ดํ„ฐ ๋ถ„์„, ์›น ๊ฐœ๋ฐœ, ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ, ๊ณผํ•™ ์ปดํ“จํŒ…, AIยท๋จธ์‹ ๋Ÿฌ๋‹(ML) ๋ชจ๋ธ ๊ตฌ์ถ• ๋“ฑ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๋Š” ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด์ด๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์ž, ์›น ๊ฐœ๋ฐœ์ž, ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธํ‹ฐ์ŠคํŠธ, ๋ฐ์ดํ„ฐ ์• ๋„๋ฆฌ์ŠคํŠธ, ML ์—”์ง€๋‹ˆ์–ด, ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋ถ„์„๊ฐ€, ํด๋ผ์šฐ๋“œ ์—”์ง€๋‹ˆ์–ด ๋“ฑ ๋‹ค์–‘ํ•œ IT ์ง๋ฌด๊ฐ€ ํญ๋„“๊ฒŒ ์‚ฌ์šฉํ•˜๋Š” ๋‹ค๋ชฉ์  ์–ธ์–ด์ด๋‹ค. ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ์˜ ํ™œ์šฉ ํญ์ด ๋„“๊ธฐ ๋•Œ๋ฌธ์— ๊พธ์ค€ํžˆ ์ˆ˜์š” ์ƒ์œ„๊ถŒ์„ ์œ ์ง€ํ•˜๋Š” ๊ธฐ์ˆ  ์—ญ๋Ÿ‰์ด๋‹ค. 2024๋…„์—๋Š” ํŒŒ์ด์ฌ ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๊ฐ€ 1,500๋งŒ ๊ฑด์„ ์กฐ๊ธˆ ๋„˜์—ˆ๊ณ , 2025๋…„์—๋Š” 1,800๋งŒ ๊ฑด์— ์•ฝ๊ฐ„ ๋ชป ๋ฏธ์น˜๋Š” ์ˆ˜์ค€๊นŒ์ง€ ๋Š˜์–ด๋‚ฌ๋‹ค. ๋” ๋งŽ์€ ์กฐ์ง์ด ์ฝ”๋”ฉ์— AI๋ฅผ ํ™œ์šฉํ•˜๊ณ  ์žˆ์ง€๋งŒ, ์—ฌ์ „ํžˆ ๋ณต์žกํ•œ ์ฝ”๋“œ๋ฅผ ์ง์ ‘ ์ž‘์„ฑํ•˜๊ณ , AI๊ฐ€ ์ƒ์„ฑํ•œ ์ฝ”๋“œ์˜ ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋‹ค๋“ฌ๊ณ  ํ’ˆ์งˆ์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ™๋ จ ๊ฐœ๋ฐœ์ž ์—ญ๋Ÿ‰์ด ํ•„์š”ํ•˜๋‹ค.

์•Œ๊ณ ๋ฆฌ์ฆ˜

๋งŽ์€ ๊ธฐ์—…์ด ์ฝ”๋”ฉ๊ณผ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ํšจ์œจํ™”๋ฅผ ์œ„ํ•ด AI๋ฅผ ๋„์ž…ํ•˜๋ฉด์„œ, ์ด๋Ÿฐ ๊ณผ์ •์„ ์ด๋Œ๊ณ  ์ œ์–ดํ•˜๋Š” ๊ธฐ์ค€์ด ๋˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ์˜์กด๋„๋„ ๋†’์•„์กŒ๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘์‹ฌ์˜ ์‚ฌ๊ณ ์—๋Š” ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์— ๋Œ€ํ•œ ๊นŠ์€ ์ดํ•ด, ๊ณ ์ฐจ์› ๋น„ํŒ์  ์‚ฌ๊ณ , ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๋Š” 2024๋…„์—๋Š” ์•ฝ 18๋งŒ ๊ฑด์— ๋ถˆ๊ณผํ–ˆ์ง€๋งŒ, 2025๋…„์—๋Š” 200๋งŒ ๊ฑด์ด ๋„˜์—ˆ๋‹ค. AI๊ฐ€ ์ดˆ๊ธ‰ ์—…๋ฌด ์ƒ๋‹น ๋ถ€๋ถ„์„ ๋„˜๊ฒจ๋ฐ›์œผ๋ฉด์„œ, ๊ธฐ์—…์€ AI ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ยท์ง€๋„ํ•˜๊ณ  ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณ ๊ธ‰ ์ธ๋ ฅ์„ ์ฐพ๊ณ  ์žˆ๋‹ค.

CI/CD

CI/CD ์—ญ๋Ÿ‰์€ AI ๋„์ž… ์ดํ›„ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ผ์ดํ”„์‚ฌ์ดํด์„ ํšจ์œจํ™”ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜ ๊ธฐ์ˆ ๋กœ ๋– ์˜ฌ๋ž๋‹ค. CI/CD ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์ „๋ฌธ๊ฐ€๋Š” ์ž๋™ํ™”ยท์Šคํฌ๋ฆฝํŒ… ๋„๊ตฌ๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ์ปจํ…Œ์ด๋„ˆํ™”, ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ, ์ž๋™ํ™” ํ…Œ์ŠคํŠธ ๊ฐ™์€ ๊ฐœ๋…์„ ์ดํ•ดํ•˜๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. 2024๋…„์—๋Š” CI/CD ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๊ฐ€ 700๋งŒ ๊ฑด์— ์กฐ๊ธˆ ๋ชป ๋ฏธ์ณค๊ณ , 2025๋…„์—๋Š” 900๋งŒ ๊ฑด์„ ๋„˜๋Š” ์ˆ˜์ค€๊นŒ์ง€ ์ฆ๊ฐ€ํ–ˆ๋‹ค.

๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ

๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ๋Š” ๊ธฐ์—…์˜ IT ์†”๋ฃจ์…˜์„ ๊ตฌ์ถ•ยท๋ฐฐํฌยท๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋„๋ฆฌ ์‚ฌ์šฉํ•˜๋Š” ํด๋ผ์šฐ๋“œ ํ”Œ๋žซํผ์œผ๋กœ, ๊ตฌ๊ธ€์€ ๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ ์—ญ๋Ÿ‰๊ณผ ์ง€์‹์„ ์ธ์ฆํ•˜๋Š” ์—ฌ๋Ÿฌ ์ž๊ฒฉ์ฆ์„ ์ œ๊ณตํ•œ๋‹ค. ์ตœ๊ทผ ๋ช‡ ๋…„ ๋™์•ˆ ๋งŽ์€ ์กฐ์ง์ด ์—…๋ฌด ๋„๊ตฌ, ์„œ๋น„์Šค, ๋ฐ์ดํ„ฐ ์ €์žฅ์†Œ๋ฅผ ๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋กœ ์ด์ „ํ•ด ์™”๋‹ค. ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๊ณ  ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋Š” AI ๊ฐœ๋ฐœ ํ™˜๊ฒฝ์—์„œ ํด๋ผ์šฐ๋“œ ๋„๊ตฌ๋Š” ํ•„์ˆ˜ ์ธํ”„๋ผ๋กœ ์ž๋ฆฌ ์žก์•˜๋‹ค. 2024๋…„์—๋Š” ๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๊ฐ€ ์•ฝ 350๋งŒ ๊ฑด์ด์—ˆ์ง€๋งŒ, 2025๋…„์—๋Š” 530๋งŒ ๊ฑด์„ ์›ƒ๋„๋Š” ์ˆ˜์ค€๊นŒ์ง€ ๋Š˜์–ด๋‚ฌ๋‹ค.

AWS

AWS๋Š” ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์“ฐ์ด๋Š” ํด๋ผ์šฐ๋“œ ํ”Œ๋žซํผ์ด๋‹ค. ์—ฌ๋Ÿฌ ์‚ฐ์—…์—์„œ ํด๋ผ์šฐ๋“œ ์ „๋žต์˜ ํ•ต์‹ฌ ์ถ•์„ ๋‹ด๋‹นํ•˜๋Š” ๋งŒํผ, ํ”Œ๋žซํผ์ด ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋Œ€ํ•œ ์„œ๋น„์Šค๋ฅผ ์ œ๋Œ€๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ AWS ์—ญ๋Ÿ‰ ์ˆ˜์š”๋„ ํฌ๋‹ค. ํด๋ผ์šฐ๋“œ ์—”์ง€๋‹ˆ์–ด, ๋ฐ๋ธŒ์˜ต์Šค ์—”์ง€๋‹ˆ์–ด, ์†”๋ฃจ์…˜ ์•„ํ‚คํ…ํŠธ, ๋ฐ์ดํ„ฐ ์—”์ง€๋‹ˆ์–ด, ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋ถ„์„๊ฐ€, ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์ž, ๋„คํŠธ์›Œํฌ ๊ด€๋ฆฌ์ž ๋“ฑ ์ˆ˜๋งŽ์€ IT ์ง๋ฌด์—์„œ ๊ณตํ†ต์œผ๋กœ ์š”๊ตฌ๋˜๋Š” ์—ญ๋Ÿ‰์ด๋‹ค. 2024๋…„์—๋„ AWS ์—ญ๋Ÿ‰์€ ๋†’์€ ์ธ๊ธฐ๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ 1,200๋งŒ ๊ฑด์ด ์กฐ๊ธˆ ๋„˜๋Š” ์ฑ„์šฉ ๊ณต๊ณ ์— ์š”๊ตฌ์‚ฌํ•ญ์œผ๋กœ ํฌํ•จ๋๊ณ , 2025๋…„์—๋Š” 1,370๋งŒ ๊ฑด์„ ๋„˜์—ˆ๋‹ค.

๋ถ„์„ ์—ญ๋Ÿ‰

AI๊ฐ€ ์ดˆ๊ธ‰ยท๋ฐ˜๋ณต ์—…๋ฌด ์ƒ๋‹น ๋ถ€๋ถ„์„ ๋Œ€์ฒดํ•˜๋ฉด์„œ IT ์ „๋ฌธ๊ฐ€์—๊ฒŒ๋Š” ๋” ๋†’์€ ์ˆ˜์ค€์˜ ๋ถ„์„์  ์‚ฌ๊ณ  ์—ญ๋Ÿ‰์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. AI๊ฐ€ ๋‚ด๋ฆฌ๋Š” ํŒ๋‹จ์ด๋‚˜ ์ƒ์„ฑ ๊ฒฐ๊ณผ๊ฐ€ ํ•ญ์ƒ ์™„๋ฒฝํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ํŠนํžˆ ์ˆซ์ž์™€ ๋ฐ์ดํ„ฐ ์˜์—ญ์—์„œ๋Š” AI ํ™˜๊ฐ๊ณผ ์˜ค๋ฅ˜๋ฅผ ๊ฐ€๋ ค๋‚ผ ์ˆ˜ ์žˆ๋Š” ์ธ๊ฐ„์˜ ์‹œ์„ ๊ณผ ๋ถ„์„ ๋Šฅ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ๋ถ„์„ ์—ญ๋Ÿ‰์€ ์ด๋ฏธ ์˜ค๋ž˜์ „๋ถ€ํ„ฐ ์กฐ์ง์— ํ•ต์‹ฌ์œผ๋กœ ์ž๋ฆฌํ•œ ๋Šฅ๋ ฅ์ด๋‹ค. 2024๋…„์—๋Š” ๋ถ„์„ ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๊ฐ€ 1,900๋งŒ ๊ฑด์„ ์กฐ๊ธˆ ๋„˜์—ˆ๊ณ , 2025๋…„์—๋Š” 2,100๋งŒ ๊ฑด์„ ์›ƒ๋„๋Š” ์ˆ˜์ค€์œผ๋กœ ๋Š˜์–ด๋‚ฌ๋‹ค.

์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ

AI ์˜์กด๋„๊ฐ€ ๋†’์•„์ง€๋ฉด์„œ ๊ธฐ์—…์˜ ๋ณด์•ˆ ์ทจ์•ฝ ์ง€์ ๋„ ํ•จ๊ป˜ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ๋” ๋งŽ์€ ์ œํ’ˆ๊ณผ ์„œ๋น„์Šค๋ฅผ ์˜จ๋ผ์ธ์œผ๋กœ ์ „ํ™˜ํ•˜๊ณ  AI๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ณต๊ฒฉ์ž๊ฐ€ ๋…ธ๋ฆด ์ˆ˜ ์žˆ๋Š” ์ง€์ ์ด ๋งŽ์•„์ง„๋‹ค๋Š” ์˜๋ฏธ์ด๋‹ค. ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๋Š” 2024๋…„ ์•ฝ 240๋งŒ ๊ฑด์ด์—ˆ๋‹ค๊ฐ€ 2025๋…„์—๋Š” 400๋งŒ ๊ฑด์„ ๋„˜๋Š” ์ˆ˜์ค€๊นŒ์ง€ ์ฆ๊ฐ€ํ–ˆ๋‹ค. AI๋ฅผ ๋ณด์•ˆ ์†”๋ฃจ์…˜์— ํ†ตํ•ฉํ•˜๋“ , AI๋ฅผ ์•…์šฉํ•œ ์ƒˆ๋กœ์šด ๊ณ ๋„ํ™” ๊ณต๊ฒฉ์„ ๋ง‰๋“ , ๋ณด์•ˆ์€ AI ๋„์ž…์„ ์ถ”์ง„ํ•˜๋Š” ์กฐ์ง์ด ์ตœ์šฐ์„ ์œผ๋กœ ๊ณ ๋ คํ•˜๋Š” ๋ถ„์•ผ์ด๋‹ค.

์†Œํ”„ํŠธ์›จ์–ด ๋ฌธ์ œ ํ•ด๊ฒฐ ์—ญ๋Ÿ‰

๋” ๋งŽ์€ ์กฐ์ง์ด ๊ธฐ๋ณธ์ ์ธ ์ฝ”๋“œ์™€ ์Šคํฌ๋ฆฝํŠธ ์ž‘์„ฑ์—๋Š” AI๋ฅผ ํ™œ์šฉํ•˜๊ณ  ์žˆ์ง€๋งŒ, ์ตœ์ข… ๊ฒฐ๊ณผ๋ฌผ์—์„œ ๊ฒฐํ•จ, ๋ณด์•ˆ ๋ฌธ์ œ, ์ด์ƒ ์ง•ํ›„๋ฅผ ์ฐพ์•„๋‚ด๋Š” ์ผ์€ ์—ฌ์ „ํžˆ ์ธ๊ฐ„ IT ์ „๋ฌธ๊ฐ€์˜ ๋ชซ์ด๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ํŠธ๋Ÿฌ๋ธ”์ŠˆํŒ… ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๋Š” 2024๋…„ 900๋งŒ ๊ฑด์ด ์กฐ๊ธˆ ๋„˜์—ˆ๊ณ , 2025๋…„์—๋Š” 1,100๋งŒ ๊ฑด์— ์กฐ๊ธˆ ๋ชป ๋ฏธ์น˜๋Š” ์ˆ˜์ค€๊นŒ์ง€ ์ฆ๊ฐ€ํ–ˆ๋‹ค. ์ด ๋ถ„์•ผ์—๋Š” ์†Œํ”„ํŠธ์›จ์–ด ๋ฌธ์ œ๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ๊ณ ๊ฐยท์‚ฌ์šฉ์ž์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋Šฅ๋ ฅ, ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ, ๋น„ํŒ์  ์‚ฌ๊ณ , ๊ธฐ์ˆ  ์—ญ๋Ÿ‰์ด ๋ชจ๋‘ ํ•„์š”ํ•˜๋‹ค.

๋จธ์‹ ๋Ÿฌ๋‹

๋จธ์‹ ๋Ÿฌ๋‹์€ AI ๊ฐœ๋ฐœ์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋กœ, AI๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ๋†’์€ ์ˆ˜์ค€์˜ ์ „๋ฌธ์„ฑ์ด ์š”๊ตฌ๋œ๋‹ค. ๊ธฐ์—…์€ AI ๋„์ž…๊ณผ ํ–ฅํ›„ ํ™•์‚ฐ์„ ๋’ท๋ฐ›์นจํ•  ์ˆ˜ ์žˆ๋Š” ML ์—ญ๋Ÿ‰ ๋ณด์œ  ์ „๋ฌธ๊ฐ€๋ฅผ ํ™•๋ณดํ•˜๋Š” ๋ฐ ์ฃผ๋ ฅํ•˜๊ณ  ์žˆ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹ ์—ญ๋Ÿ‰์„ ์š”๊ตฌํ•œ ์ฑ„์šฉ ๊ณต๊ณ ๋Š” 2024๋…„ ์•ฝ 370๋งŒ ๊ฑด์—์„œ 2025๋…„์—๋Š” 500๋งŒ ๊ฑด์„ ๋„˜์—ˆ๋‹ค. ๊ธฐ์—…์ด AI ํ”„๋กœ์„ธ์Šค๋ฅผ ์ ๊ทน ๋„์ž…ํ•˜๊ณ , AI ์‹œ์Šคํ…œ์„ ์ง€์›ยท์œ ์ง€ํ•  ์ธ์žฌ๋ฅผ ์ฐพ๋Š” ํ๋ฆ„์ด ์ด์–ด์ง€๋Š” ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ IT ์ „๋ฌธ๊ฐ€๋Š” ๊ณ„์† ๋†’์€ ์ˆ˜์š”๋ฅผ ์œ ์ง€ํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.
dl-ciokorea@foundryco.com

8 common mistakes new IT leaders and managers make

27 November 2025 at 05:01

The gist:

  • New managers should not resort to blind activism and should only initiate changes with the involvement of employees.
  • Superiors who crave harmony are usually conflict-averse and often address problems too late.
  • A manager must be able to delegate to gain freedom and achieve their goals.

Congratulations, youโ€™ve done it! Youโ€™ve been promoted and entrusted with leadership responsibilities. An exciting and educational time is now beginning for you. Many pitfalls lie ahead. Fortunately, you can prepare for some classic stumbling blocks and avoid them with certainty by heeding the most common mistakes new bosses and managers make.

Underestimating the importance of the inaugural address

Whether youโ€™re already working at the company and know many employees, or taking on a leadership roleย in a new environment, your staff will be eager to meet the new boss. Itโ€™s helpful to invite the team to a get-together on the second or third day and officially introduce yourself. In a short speech, you should talk about yourself and your career path, and give an initial insight into yourย leadership style, values, and goals. Provide specific details about planned initial meetings at the workplace and a kick-off meeting.

And note: Many an opportunity for a good start in a new role has been squandered by empty phrases like: โ€œA good foundation is the best prerequisite for a solid baseโ€ โ€” an exemplary quote that was actually uttered in the German Bundestag. In other words: Meaningless statements, lengthyย CVs, score-settling with the predecessor, or criticizing previous work methods will win you any points.

Turning everything upside down in the first 100 days

New brooms sweep clean. When management positions are filled, the executive board expects positive changes. Under this expectation, new managers often fall into a frenzy of activity. It appears that the โ€œnewcomerโ€ is too preoccupied with themselves and their career, instead of getting their team on board.

It is better to use the first few weeks for employee meetings and workplace visits. This gives managers an overview of expectations, tasks, collaboration, processes, and potential sticking points. Only after this assessment and initial introduction should changes be initiated with employee involvement.

Allowing yourself to be manipulated by employees

When it comes to problems, employees often rely on their superiors. Whether itโ€™s pressure from above, difficulties with external parties or within the team โ€” they expect support. When a new manager arrives, employees tend to enlist them for unresolved and unsatisfactory issues, hoping they will advocate for these concerns with third parties.

But caution is advised here, as often only subjective perceptions come to light. Therefore, one should avoid making promises or hasty decisions, but rather first gain a comprehensive understanding of the status quo and responsibilities.

Forming close friendships with employees

A collegial atmosphere makes working life pleasant, and even after work, conversations with colleagues contribute to a positive work environment and team building. If friendships develop with individual colleagues, one should ask, for example: What influence does the relationship have on day-to-day business in the company, especially when critical situations arise? And: What impression might employees, colleagues, and superiors get if they find out about the friendship? To protect both managers and employees, it is advisable to maintain sufficient distance.

Always being right and not admitting mistakes

Admitting mistakes and accepting criticism from employees is often interpreted as a weakness in leadership. However, the opposite is true. True greatness and competence are demonstrated by those who are open to justified criticism and, if necessary, reverse a decision. This is how a manager gains credibility and trust. And as a role model for employees, you should only expect from them what you yourself are willing to give.

Avoiding conflict

Leaders who crave harmony are usually also conflict-averse. They secretly hope that problems will resolve themselves and often only address issues when a situation escalates. Whether itโ€™s employee misconduct or conflicts within theย team โ€” you should state expectations early on, always giveย constructive feedback, and adjust course in a timely manner. Reacting too late is exhausting and creates misunderstandings. Clarity in leadership is a key success factor. And clarity and friendliness are not mutually exclusive.

Always having an open door

While itโ€™s good to know that the manager is interested in their employeesโ€™ needs, a statement like โ€œYou can come to me anytimeโ€ is disastrous. The reason: Unplanned conversations disrupt the daily routine and pull the manager away from their current task.

In other words, leading โ€œin betweenโ€ is not advisable. After agreeing on a time slot, set aside dedicated time for employee meetings. However, for focused work, itโ€™s better to close the door. The myth of the open door also carries the risk of encouraging employees to become dependent, as many problems can often be solved independently after careful consideration.

Trying to outdo experts in their subject matter

Itโ€™s a misconception for managers to believe they have to answer every technical question or be able to solve every problem. Thatโ€™s the job of the specialists, namely the employees with their respective expertise. The primary role of a supervisor is to perform leadership and management tasks. Any manager who feels responsible for this quickly becomes a โ€œsuper-administrator.โ€ Tip: Delegate to gain more freedom and achieve your goals.

The 10 hottest IT skills for 2026

27 November 2025 at 05:00

Gen AI has reshaped the IT skills market as companies restructure for AI strategies, and prioritize candidates and employees with AI skills. Data from Indeedโ€™s 2025 Tech Talent Report show that the top four roles affected by AI-related restructuring include software engineers and developers, QA engineers, product managers, and project managers. Companies are now focusing their efforts and hiring budgets on professionals with skills in cybersecurity, data analytics and analysis, and building or managing AI teams.

This reprioritization of IT roles has also created a shift in the most in-demand IT skills that jobseekers will want to have on their rรฉsumรฉs. Organizations now expect candidates to have basic prompt engineering skills at minimum, even for entry-level IT roles. And beyond that, theyโ€™re looking for IT professionals who can help oversee, implement, secure, and manage AI tools and strategies.

Data from Indeed reveal these are the 10 IT skills that grew the most desirable between 2024 and 2025, based on how many times they appeared as a requirement in a job posting year over year.

AI

Itโ€™s no surprise that AI is at the top of the list for one of the most in-demand skills based on growth in tech job postings listed since 2024. Companies are scrambling to adopt AI as it rapidly finds its way into every industry and career path. In 2024, there were just over 5 million job postings that required AI skills, and in 2025, that number grew by more than 4 million. So candidates, even for those working outside of tech, are now expected to have some level of AI skills, whether itโ€™s prompt engineering, natural language processing, or using AI for programming and coding.

Python

Python is a programming language used in several fields, including data analysis, web development, software programming, scientific computing, and for building AI and ML models. Itโ€™s a versatile language used by a wide range of IT professionals such as software developers, web developers, data scientists, data analysts, ML engineers, cybersecurity analysts, cloud engineers, and more. Its widespread use in the enterprise makes it a steady entry on any in-demand skill list. In 2024, there were just over 15 million job listings requiring Python skills, and that grew to just under 18 million in 2025. Although more organizations are relying on AI for coding, they still need skilled professionals who understand key programming languages to write more complex code, and to help with prompt and QA code written by AI.

Algorithms

As more companies embrace AI and its ability to streamline coding and programming, organizations are also becoming more reliant on algorithms to help guide and dictate those processes. Algorithmic thinking requires a complex understanding of databases and programming, high-value critical thinking, and problem solving. Algorithm skills were listed as a requirement on around 180,000 job postings in 2024, which jumped to over 2 million in 2025. AI has taken over more of the entry-level work, leaving organizations looking for higher-skilled professionals who can help build and guide AI systems, and who understand how to build efficient algorithms.

CI/CD

Continuous integration and continuous delivery or deployment skills have grown in demand in the wake of AI implementation to help streamline the software development lifecycle. Professionals with CI/CD skills can handle tasks such as building tools used for automation and scripting, and have a strong understanding of concepts such as containerization, cloud integration, and automated testing. In 2024, there were just under 7 million job listings that looked for CI/CD skills and that number jumped to just over 9 million in 2025.

Google Cloud

Google Cloud is a popular platform to build, deploy, and manage IT solutions for an organization, with several certifications offered by Google to certify your professional skills with, and knowledge of, Google Cloud. Organizations have adopted the cloud in recent years, moving tools, services, and data storage to solutions hosted by Googleโ€™s cloud services. Cloud tools are critical for AI development, allowing for more versatile and agile storage solutions to host the large data sets required to train and run AI tools. Google Cloud skills were a requirement for around 3.5 million job listings in 2024, but that rose to just over 5.3 million in 2025.

AWS

Amazon Web Services is the most widely used cloud platform today. Central to cloud strategies across nearly every industry,ย AWS skillsย are in high demand as organizations look to make the most of the platformโ€™s wide range of offerings. Itโ€™s a common skill for cloud engineers, DevOps engineers, solutions architects, data engineers, cybersecurity analysts, software developers, network administrators, and many more IT roles. In 2024, AWS skills were still popular and were listed as a requirement on just over 12 million job listings, which jumped to over 13.7 million in 2025.

Analysis Skills

AI has taken a lot of entry-level and rote work off the table for IT professionals, which has created more room for higher-level skills such as analytical thinking. Since AI still doesnโ€™t create perfect outputs with every prompt, companies need a human eye and analytical mind to catch AI hallucinations and errors, especially when it comes to numbers and data. Analysis skills have been critical for organizations for a while now; in 2024, just over 19 million job listings required analysis skills, a number that number jumped to just over 21 million in 2025.

Cybersecurity

An increased reliance on AI has created more vulnerabilities for organizations. As they take more products and services online and integrate AI, more opportunities are created for security attacks. Cybersecurity skills were a requirement on around 2.4 million job listings in 2024, which grew to just over 4 million in 2025. Whether organizations look to integrate AI into cybersecurity solutions or help prevent new sophisticated attacks that use AI to breach systems, security is a top priority for organizations as they move forward with AI.

Software troubleshooting

Although organizations are increasingly using AI to write basic codes and scripts to build software tools, organizations still need human IT professionals to identify flaws, security issues, and other potential anomalies in the final product. Software troubleshooting skills were listed as a requirement on just over 9 million job listings in 2024, but this year, that number grew to just under 11 million. Itโ€™s an area of IT that requires communication, problem-solving, critical thinking, and technical skills to identify software issues and troubleshoot problems for clients and customers.

Machine Learning

ML is fundamental to AI development and requires a strong expertise of not only AI but also natural language processing. Organizations are seeking professionals with ML skills to support AI initiatives, and the future of AI adoption in the enterprise. In 2024, there were around 3.7 million job listings that looked for ML skills, while that jumped to over 5 million in 2025. IT professionals with ML skills will continue to be in demand as companies embrace AI processes and look for professionals to help support and maintain AI systems.

Allies: The CIOโ€™s key to amplifying influence

27 November 2025 at 04:30

In a previous article, we focused on the risk of the CIO becoming invisible. Even for tech executives, visibility and influence are difficult to achieve alone. They multiply when supported by allies.

Here, we analyze the difference between having and not having allies, the multiple opportunities that exist if a bottom-up approach is used, and how to avoid invisible errors that can neutralize an alliance.

1. When support is lacking: Cost and risk for the CIO

In 2020, Daimler decided to spin off its famousย innovation incubator, Lab1886, where the vehicles and mobility of the future were being developed. There was plenty of talent, but a lack of allies within the company to take ownership of the projects. Without a clear link within the organization, projects werenโ€™t properly transferred and implemented. In the end, the unit became isolated.

The same thing happens to the CIO when their initiatives lack internal support: Talent and effort arenโ€™t enough if no one in the business takes ownership of them. In fact, even CIOs of large companies say theyโ€™ve had to defend proposals from scratch, or, from another angle, theyโ€™ve received projects from other areas of the business โ€œunfiltered,โ€ that is, without IT having any prior visibility into the problem.

This dynamic creates a perception that the CIO acts as a brake, and it doesnโ€™t help the CIO gain more influence; quite the opposite, in fact. The CIO is pushed to put out fires instead of leading the digital strategy.

CIOs are becoming aware that this spiral is unsustainable.ย As David Walmsley, CDO/CTO of jewelry giant Pandora, said to Mark Samuels: โ€œAs I said from day one of the digital transformation, we are not here to take orders. We are here to provide robust collaboration.โ€

2. Allies: Strengthening the CIOโ€™s position

CIOs need to break out of the dynamic of justifying initiatives or redirecting other peopleโ€™s projects. To do this, they cannot resort to authority, but rather to complicity. That is, building allies within the organization.

The great advantage of having allies is that they represent political capital where support is already secured. This accelerates approvals and avoids the cycles of justifying initiatives, with the associated wear and tear

Furthermore, it provides other benefits. For example, friction is reduced because allies act as a buffer by contributing their own legitimacy. Additionally, a network effect is created, where connections within the organization open the door to new conversations where the CIO was not present or to opportunities off their radar. Finally, an ally can become the voice that champions an initiative when the CIO is not present, contributing their own credibility.

In short, allies are an asset for the CIO that strengthens their position, multiplies their influence, and prevents burnout.

3. Building allies from the bottom up: Trust that scales

The value of allies is clear, but how are they acquired? There arenโ€™t always shared interests or things that make the process easier. What there is, however, is an abundance of pain points that business leaders experience, which steal their time and budget. If the CIO is able to be part of the solution, they will create the foundation for an alliance.

It seems logical to start at the top of the hierarchy, but that can be the most difficult path. There are many potential allies with burning issues. For example, the financialย controllerย lives with the pressure of slow closings and inaccurate forecasts. The purchasing manager has to deal with duplicate contracts and error-ridden manual invoicing tasks.

The opportunities are there. What it takes to find them is to look for the signs, the trail these problems leave, from duplicate invoices to spreadsheets circulating unchecked at the end of each month. These are all traces of unchecked processes where IT can quickly achieve improvements.

If the CIO helps these profiles, it leaves an impact that can travel and escalate surprisingly quickly. What begins by resolving a procurement bottleneck ends up being cited in department meetings, reaching, for example, the CFO.

4. How to avoid the invisible mistakes that break an alliance

Finding the opportunity to start a relationship is only the first step. In practice, whatโ€™s decisive is how an initiative is managed. This requires paying attention to silent elements that can jeopardize the continuity of the collaboration and send the CIO back to square one.

The first risk arises if the initiative isnโ€™t translated into business language. This topic deserves its own discussion, but it can be summarized as follows: If the potential ally doesnโ€™t fully understand the activity, or canโ€™t explain it to their colleagues in their own language, it wonโ€™t take off.

Something similar happens when the CIO arrives with a perfect, ready-made solution. If thereโ€™s no room for the other person to co-create and leave their mark on the initiative, they wonโ€™t feel ownership and wonโ€™t get involved, even if the project benefits them.

A less visible obstacle can also arise: the attention economy. Time is a scarce commodity in all areas. If a project, or the relationship itself, demands a lot of dedication or is very complex, it will be unprofitable for the business and wonโ€™t bear fruit.

Added to this is a more political, though equally crucial, risk. It arises when stakeholders who have the power to block IT are overlooked. These could be compliance officers, legal officers, or even committee attendees. When they arenโ€™t identified and their voices arenโ€™t heard, objections appear late, with little room to overcome them.

These risks go unnoticed, and therein lies the danger. What they highlight is that technical perfection is not the most important thing; rather, working together generates trust. The relationship and communication established will serve as a model for the future relationship.

5. Consolidated mission and political capital for the future

For the CIO, having allies means no longer having to undertake the transformation effort alone. Their IT initiatives no longer require constant defense because there is pre-existing support and accumulated political capital.

Furthermore, this support network provides resilience. Their strategy is much more resistant to potential changes in the organizational chart because it is based on shared business priorities.

Ultimately, the CIO gains room to maneuver. Instead of wasting energy putting out fires, they move beyond tactical issues and can concentrate on their mission as the architect of the digital strategy

The author of this article isย Alberto Bellรฉ, principal analyst at Foundry.

โŒ
โŒ