โŒ

Normal view

There are new articles available, click to refresh the page.
Before yesterdayCIO

One Identity Unveils Major Upgrade to Identity Manager, Strengthening Enterprise Identity Security

20 January 2026 at 09:20

One Identity, a trusted leader inย identity security, today announces aย major upgrade to One Identity Manager, a top-rated IGA solution, strengtheningย identity governanceย as a critical security control for modern enterprise environments.ย 

One Identity Manager 10.0 introduces security-driven capabilities for risk-based governance,ย identity threat detection and response (ITDR), and AI-assisted insight, helping organizations better anticipate, contain, and manage identity-driven attacks across their complex IT ecosystems.ย 

For more than a decade, Identity Manager has served as a proven foundation for securing and governing identities at scale across some of the worldโ€™s largest and most complex environments. Version 10.0 builds on that foundation with a modernized experience, deeper integrations, and embedded intelligence that gives security teams clear visibility, stronger control, and more efficient execution across governance workflows.ย ย 

New capabilities includeย enhanced risk managementย integrations that allow organizations to ingest and act on user risk scores from third-party analytics andย UEBA tools. Newly introduced ITDR playbooks automate key remediation actions such as disabling accounts, flagging security incidents, and launching targeted attestation. Together, these capabilities help organizations shorten the window between detection and action when identity threats emerge.ย 

The release also introduces a modern, browser-based interface that delivers full administrative functionality without desktop installation.ย AI-assisted reporting, powered by a secure, customer-controlled large language model, enables authorized users to query identity data in natural language, reducing reliance on complex SQL and accelerating insights for audits, reviews, and compliance.ย ย 

Enhancedย SIEM compatibilityย through standards-based Syslog CEF formatting improves interoperability with modern security monitoring platforms. This helps security teams connect identity governance more seamlessly into broader security operations.ย 

โ€œOne Identity Manager 10.0 is a major upgrade that strengthens identity governance as a critical security component for protecting enterprise environments,โ€ said Praerit Garg, CEO of One Identity. โ€œOrganizations today face relentless identity-driven threats. This release combines a proven governance foundation with intelligence, automation, and usability that help security teams detect risk earlier, take decisive action, and operate at scale with confidence.โ€

โ€œOne Identity Manager 10.0 represents a significant change in identity governance for large-scale use,โ€ said Ciro Guariglia, CTO of Intragen by Nomios. โ€œThe platform improves the data model and automation engine, while bringing in a more scalable, policy-driven method for attestations. This change makes large certification campaigns easier to manage, instead of burdening administrators and the system.โ€ย ย 

With Identity Manager 10.0, One Identity continues advancing identity security as a central pillar of enterprise defense, helping organizations strengthen protection, reduce exposure, and support secure business operations in complex environments.ย 

About One Identityย 

One Identity delivers trusted identity security for enterprises worldwide to protect and simplify access to digital identities. With flexible deployment options and subscription terms โ€“ from self-managed to fully managed โ€“ our solutions integrate seamlessly into your identity fabric to strengthen your identity perimeter, protect against breaches and ensure governance and compliance. Trusted by more than 11,000 organizations managing over 500 million identities, One Identity is a leader in identity governance and administration (IGA), privileged access management (PAM), and access management (AM) for security without compromise.

Users can learn more atย www.oneidentity.com.ย 

Contact

Liberty Pike

One Identity LLC

liberty.pike@oneidentity.com

The forward-deployed engineer: Why talent, not technology, is the true bottleneck for enterprise AI

20 January 2026 at 07:15

Despite unprecedented investment in artificial intelligence, most enterprises have hit an integration wall. The technology works in isolation. The proofs of concept impress.

But when it comes time to deploy AI into production that touches real customers, impacts revenue and introduces legitimate risk, organizations balkโ€“for valid reasons: AI systems are fundamentally non-deterministic.

Unlike traditional software that behaves predictably, large language models can produce unexpected results. They risk providing confidently wrong answers, hallucinated facts and off-brand responses. For risk-conscious enterprises, this uncertainty creates a barrier that no amount of technical sophistication can overcome.

This pattern is common across industries. In my years helping enterprises deploy AI technology, Iโ€™ve watched many organizations build impressive AI demos that never made it past the integration wall.ย  The technology was ready. The business case was sound. But the organizational risk tolerance wasnโ€™t there, and nobody knew how to bridge the gap between what AI could do in a sandbox and what the enterprise was willing to deploy in production. At that point, I came to believe that the bottleneck wasnโ€™t the technology. It was the talent deploying it.

A few months ago, I joined Andela, which provides technical talent to enterprises for short or long-term assignments. From this vantage point, it remains clearer than ever that the capability that enterprises need has a name: the forward-deployed engineer (FDE). Palantir originally coined the term to describe customer-centric technologists essential to deploying their platform inside government agencies and enterprises. More recently, frontier labs, hyperscalers and startups have adopted the model. OpenAI, for example, will assign senior FDEs to high-value customers as investments to unlock platform adoption.

But hereโ€™s what CIOs need to understand: this capability has been concentrated with AI platform companies to drive their own growth. For enterprises to break through the integration wall, they need to develop FDEs internally.

What makes a forward-deployed engineer

The defining characteristic of an FDE is the ability to bridge technical solutions with business outcomes in ways traditional engineers simply donโ€™t. FDEs are not just builders. Theyโ€™re translators operating at the intersection of engineering, architecture and business strategy.

They are what I think of as โ€œexpedition leadersโ€ guiding organizations through the uncharted terrain of generative AI. Critically, they understand that deploying AI into production is more than a technical challenge. Itโ€™s also a risk management challenge that requires earning organizational trust through proper guardrails, monitoring and containment strategies.

In 15 years at Google Cloud and now at Andela, Iโ€™ve met only a handful of individuals who embody this archetype. What sets them apart isnโ€™t a single skill but a combination of four working in concert.

  • The first is problem-solving and judgment. AI output is often 80% to 90% correct, which makes the remaining 10% to 20% dangerously deceptive (or maddeningly overcomplicated). Effective FDEs possess the contextual understanding to catch what the model gets wrong. They spot AI workslop or the recommendation that ignores a critical business constraint. More importantly, they know how to design systems that contain this risk: output validation, human-in-the-loop checkpoints and deterministic fallback responses when the model is uncertain. This is what makes the difference between a demo that impresses and a production system that executives will sign off on.
  • The second competency is solutions engineering and design. FDEs must translate business requirements into technical architectures while navigating real trade-offs: cost, performance, latency and scalability. They know when a small language model (with lower inference cost) will outperform a frontier model for a specific use case, and they can justify that decision in terms of economics rather than technical elegance. Critically, they prioritize simplicity. The fastest path through the integration wall almost always begins with the minimum viable product (MVP) that solves 80% of the problem with appropriate guardrails. The solution will not be the elegant system that addresses every edge case but introduces uncontainable risk.
  • Third is client and stakeholder management. The FDE serves as the primary technical interface with business stakeholders, which means explaining technical mechanics to executives who often lack significant experience with AI. Instead, these leaders care about risk, timeline and business impact. This is where FDEs earn the organizational trust that allows AI to move into production. They translate non-deterministic behavior into risk frameworks that executives understand: whatโ€™s the blast radius if something goes wrong, what monitoring is in place and whatโ€™s the rollback plan? This makes AIโ€™s uncertainty legible and manageable to risk-conscious decision makers.
  • The fourth competency is strategic alignment. FDEs connect AI implementations to measurable business outcomes. They advise on which opportunities will move the needle versus which are technically interesting but carry disproportionate risk relative to value. They think about operational costs and long-term maintainability, as well as initial deployment. This commercial orientationโ€”paired with an honest assessment of riskโ€”is what separates an FDE from even the most talented software engineer.

The individuals who possess all of these competencies share a common profile. They typically started their careers as developers or in another deeply technical function. They likely studied computer science. Over time, they developed expertise in a specific industry and cultivated unusual adaptability and the willingness to stay curious as the landscape shifts beneath them. Because of this rare combination, theyโ€™re concentrated at the largest technology companies and command high compensation.

The CIOโ€™s dilemma

If FDEs are as scarce as Iโ€™m suggesting, what options do CIOs have?

Waiting for the talent market to produce more of them will take time. Every month that AI initiatives stall at the integration wall, the gap widens between organizations capturing real value and those still showcasing demos to their boards. The non-deterministic nature of AI isnโ€™t going away. If anything, as models become more capable, their potential for unexpected behavior increases. The enterprises that thrive will be those that develop the internal capability to deploy AI responsibly and confidently, not those waiting for the technology to become risk-free.

The alternative is to grow FDEs from within. This is harder than hiring, but itโ€™s the only path that scales. The good news: FDE capability can be developed. It requires the right raw material and an intensive, structured approach. At Andela, weโ€™ve built a curriculum that takes experienced engineers and trains them to operate as FDEs. Hereโ€™s what weโ€™ve learned about what works.

Building your FDE bench

Start by identifying the right candidates. Not every strong engineer will make the transition.ย  Look for experienced software engineers who demonstrate curiosity beyond their technical domain. You want people with foundational strength in core development practices and exposure to data science and cloud architecture. Prior industry expertise is a significant accelerant. Someone who understands healthcare compliance or financial services risk frameworks will ramp faster than someone learning the domain from scratch.

The technical development path has three layers. The foundation is AI and ML literacy: LLM concepts, prompting techniques, Python proficiency, understanding of tokens and basic agent architectures. These are table stakes.

The middle layer is the applied toolkit. Engineers need working competency in three areas that map to the โ€œthree hatsโ€ an FDE wears.

  • First is RAG, or retrieval-augmented generation, knowing how to connect models to enterprise data sources reliably and accurately.
  • Second is agentic AI, orchestrating multi-step reasoning and action sequences with appropriate checkpoints and controls.
  • Third is production operations, ensuring solutions can be deployed with proper monitoring, guardrails and incident response capabilities.

These skills are developed through building and shipping actual systems that have to survive contact with real-world risk requirements.

The advanced layer is deep expertise: model internals, fine-tuning, the kind of knowledge that allows an FDE to troubleshoot when standard approaches fail. This is what separates someone who can follow a playbook from someone who can improvise when the playbook doesnโ€™t cover the situation. It is also someone who can explain to a skeptical CISO why a particular approach is safe to deploy.

Professional capabilities are equally as important as technical training and can be harder to develop. FDEs must learn to reframe conversations, to stop talking about technical agents and start discussing business problems and risk mitigation. They must manage high-stakes stakeholder relationships, including difficult conversations around scope changes, timeline slips and the inherent uncertainties of non-deterministic systems. Most importantly, they must develop judgment: the ability to make good decisions under ambiguity and to inspire confidence in executives who are being asked to accept a new kind of technology risk.

Set realistic expectations with your leadership and your candidates. Even with a strong program, not everyone will complete the transition. But even a small cohort of FDE-capable talent can dramatically accelerate your path to overcoming the integration wall. One effective FDE embedded with a business unit can accomplish more than a dozen traditional engineers working in isolation from the business context. Thatโ€™s because the FDE understands that the barrier was never primarily technical.

The stakes

The enterprises that develop FDE capability will break through the integration wall. Theyโ€™ll move from impressive demos to production systems that generate real value. Each successful deployment will build organizational confidence for the next. Those that donโ€™t will remain stuck, unable to convert AI investment into AI returns, watching more risk-tolerant competitors pull ahead.

My bet when I joined Andela was that AI would not outpace human brilliance. I still believe that. But humans have to evolve. The FDE represents that evolution: technically deep, commercially minded, fluent in risk and adaptive enough to lead through continuous change. This is the archetype for the AI era. CIOs who invest in building this capability now wonโ€™t just keep pace with AI advancement; theyโ€™ll be the ones who finally capture the enterprise value that has remained stubbornly hard to reach.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

IBM targets agentic AI scale-up with new Enterprise Advantage consulting service

20 January 2026 at 07:03

IBM has launched a new consulting service named Enterprise Advantage, designed to help CIOs take their agentic and other AI applications from experimentation to large-scale production.

Enterprise Advantage is based on Consulting Advantage, IBMโ€™s internal AI-powered delivery platform, which in turn combines the companyโ€™s consulting expertise and workflows used to transform its internal operations.

Consulting Advantage also includes a marketplace that houses industryโ€‘specific AI agents and applications, which has been rolled into Enterprise Advantage.

Analysts say Enterprise Advantage could help enterprises more effectively build and scale agentic and other AI applications across complex, multi-cloud environments because the service is designed to operate independently of specific cloud providers, AI models, or underlying infrastructure.

This approach aligns with the fragmented and heterogeneous IT landscapes most large enterprises already run, as they need to be able to scale AI applications within the constraints of their current IT estates without having to rip and replace any layer or infrastructure, Sanchit Vir Gogia, chief analyst at Greyhound Research.

Echoing Gogiaโ€™s views, Pareekh Jain, principal analyst at Pareekh Consulting, pointed out that large enterprises already have sunk costs in multiple clouds and multiple model choices.

In fact, Jain sees the new service helping enterprises reduce hyperscaler lock-in and offering more flexibility of choice when it comes to choosing a specific cloud vendor or their AI stack for building an agentic or AI application.

Caution for CIOsย ย ย ย ย ย ย ย ย ย ย ย ย ย 

The flexibility offered by Enterprise Advantage could have its own set of tradeoffs for CIOs.

While Enterprise Advantageโ€™s cloudโ€‘agnostic pitch does help enterprises avoid getting locked into hyperscalerโ€‘specific agent platforms like AWS Bedrock Agents or Microsoft Copilot Studio, the dependency might shift to the orchestration layer, Jain pointed out.

โ€œIf companies build their agent workflows, governance rules, and orchestration logic entirely on IBMโ€™s Enterprise Advantage framework, migrating to another provider later could become just as difficult,โ€ Jain added.

Rather, CIOs should internally evaluate whether their enterprise has the talent and expertise to operate the frameworks and workflows that Enterprise Advantage provides because thatโ€™s the only way that they can avoid lock-in at the orchestration and service level, Gogia said.

โ€œIf clients simply deploy Enterprise Advantage without building internal muscle, theyโ€™ll end up reliant on IBMโ€™s platform for updates, extensions, and compliance maintenance. This could replicate the same old outsourcing trap weโ€™ve seen before,โ€ Gogia added.

In fact, Jain pointed out that enterprises with at least some level of AI maturity should look at adopting the new service.

While firms with very limited AI talent may find a framework-led approach too complex and instead prefer fully managed SaaS solutions, highly tech-native companies tend to build their own orchestration layers to avoid service dependency and retain control, the analyst said.

โ€œThe real sweet spot is the enterprise middle, large organizations with capable IT teams but heavy backlogs, where developers can build agents but are slowed by security, governance, and infrastructure hurdles that IBMโ€™s service can help remove,โ€ Jain added. The service has been made generally available.

How to optimize LLMs for enterprise success

20 January 2026 at 06:15

Large language models (LLMs) have rapidly become a cornerstone of modern enterprise operations, powering everything from customer support chatbots to advanced analytics platforms. While these models offer unparalleled capabilities, they also pose significant challenges for organizationsโ€”mainly their size, resource demands and sometimes unpredictable behaviour. Enterprises often grapple with high operational costs, latency issues and the risk of generating inaccurate or irrelevant outputs (commonly referred to as hallucinations). To truly harness the potential of LLMs, businesses need practical strategies to optimise these models for efficiency, reliability and accuracy. One key technique that has gained traction is model distillation.

Understanding model distillation

Model distillation is a method used to transfer the knowledge and capabilities of a large, complex model (the teacher) into a smaller, more efficient model (the student). The goal is to retain the teacherโ€™s performance while making the student model lighter, faster and less resource-intensive. Distillation works by training the student to mimic the outputs or internal representations of the teacher, essentially โ€œdistillingโ€ the essence of the larger model into a compact form.

Why is this important for enterprises? Running massive LLMs can be costly and slow, especially in environments where quick responses and scalability are crucial. Model distillation provides a means to deploy powerful AI solutions without the heavy infrastructure burden, making it a practical choice for businesses seeking to strike a balance between performance and efficiency.

How model distillation works

  • Train the trainer/teacher model: Begin with a large, pre-trained language model that performs well on your target tasks.
  • Prepare the student model: Design a smaller, more efficient model architecture that will learn from the teacher.
How LLM model distillation works

Magesh Kasthuri

  • Distillation training: The student is trained using the teacherโ€™s outputs or โ€œsoft labels,โ€ learning to replicate its behaviour as closely as possible.
  • Evaluation and fine-tuning: Assess the studentโ€™s performance and, if necessary, fine-tune it to ensure it meets accuracy and reliability requirements.

Throughout this process, the student model becomes adept at handling enterprise tasks with far less computational overhead, making it ideal for real-time applications.

Model distillation in practice

Imagine a financial services company that uses an LLM to generate investment reports. The original model is highly accurate but slow and expensive to run. By applying model distillation, the company trains a smaller student model that produces nearly identical reports with a fraction of the resources. This distilled model can now deliver insights in real-time, enabling analysts to make faster decisions while cutting operational costs.

In another scenario, a healthcare provider deploys an LLM-based assistant to help doctors access patient information and medical guidelines. The full-scale model offers excellent recommendations but struggles with latency on edge devices. After distillation, the student model fits comfortably on hospital servers, providing instant responses and maintaining data privacy.

Industrial use cases: Real-time scenarios across sectors

  • Financial services: Distilled models power fraud detection systems, delivering rapid alerts without draining computational resources.
  • Healthcare: Hospitals use distilled LLMs for triaging patient queries and supporting clinical decisions at the point of care.
  • Customer service: Call centres deploy compact chatbots trained via distillation to handle large volumes of queries efficiently.
  • Retail: E-commerce platforms run product recommendation engines using distilled models to personalise shopping experiences in real time.

Framework for model distillation: Optimizing LLMs for enterprises

To systematically optimise LLMs for enterprise use, a robust framework for model distillation is essential. Hereโ€™s a stepwise approach designed for IT professionals:

  • Assessment: Identify the target tasks and performance benchmarks required for your business operations.
  • Teacher model selection: Choose a high-performing LLM as your teacher, ensuring it excels at your chosen tasks.
  • Student model design: Architect a smaller model that can be trained efficiently while retaining core capabilities.
  • Distillation training: Use the teacherโ€™s outputs to guide the student, focusing on both output accuracy and internal representations.
How LLM model distillation works

Magesh Kasthuri

  • Validation: Rigorously test the student model against real-world data to spot hallucinations and inaccuracies.
  • Iterative fine-tuning: Continuously improve the student model by refining its training data and adjusting its architecture as needed.
  • Deployment: Integrate the distilled model into your enterprise systems, monitoring performance and updating as required.

How the framework reduces hallucinations and improves accuracy

A key challenge with LLMs is their tendency to โ€œhallucinateโ€โ€”generating plausible-sounding but incorrect information. The distillation framework addresses this by incorporating validation steps that test the student model against curated datasets and real-world scenarios. By exposing the student to diverse data during training and fine-tuning, enterprises can reduce the risk of hallucinations and ensure outputs remain reliable. Furthermore, ongoing monitoring and iterative updates help maintain model accuracy as business needs evolve.

Practical considerations and implementation tips

  • Customise training data: Use enterprise-specific datasets during distillation to align the model with your organizational context.
  • Monitor model outputs: Regularly review the studentโ€™s responses to catch emerging issues early.
  • Plan for scale: Design the distilled model architecture to support future growth and integration with other systems.
  • Collaborate across teams: Involve domain experts during validation to ensure the model meets real-world requirements.

Benefits for large enterprises

For large organizations, model distillation offers several compelling advantages:

  • Cost savings: Reduced computational demands lead to lower infrastructure and energy costs.
  • Improved reliability: Streamlined models respond faster and are easier to maintain, ensuring consistent service.
  • Scalability: Lightweight models can be deployed across multiple platforms and locations, supporting enterprise expansion.
  • Enhanced accuracy: The frameworkโ€™s focus on validation and fine-tuning helps minimise errors and hallucinations.

Conclusion

Model distillation stands out as a key technique for making large language models fit for enterprise operations. By transferring knowledge from complex models to efficient students, businesses can enjoy the best of both worldsโ€”powerful AI capabilities without the heavy resource burden. As enterprises continue to adopt AI at scale, model distillation will play a pivotal role in ensuring solutions are cost-effective, reliable and tailored to real-world needs. IT professionals seeking to maximise the value of LLMs should consider integrating distillation frameworks into their optimization strategies, paving the way for smarter, more agile enterprise AI.

This article was made possible by our partnership with the IASAโ€ฏChief Architect Forum. The CAFโ€™s purpose is to test, challenge and support the art and science of Business Technology Architecture and its evolution over time as well as grow the influence and leadership of chief architects both inside and outside the profession. The CAF is a leadership community of theโ€ฏIASA, the leading non-profit professional association for business technology architects.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

From static workflows to intelligent automation: Architecting the self-driving enterprise

20 January 2026 at 05:15

I want you to think about the most fragile employee in your organization. They donโ€™t take coffee breaks, they work 24/7 and they cost a fortune to recruit. But if a button on a website moves a few pixels to the right, this employee has a complete mental breakdown and stops working entirely.

I am talking, of course, about your RPA (robotic process automation) bots.

For the last few years, I have observed IT leaders, CIOs and business leaders pour millions into what we call automation. Weโ€™ve hired armies of consultants to draw architecture diagrams and map out every possible scenario. Weโ€™ve built rigid digital train tracks, convinced that if we just laid enough rail, efficiency would follow.

But we didnโ€™t build resilience. We built fragility.

As an AI solution architect, I see the cracks in this foundation every day. The strategy for 2026 isnโ€™t just about adopting AI; it is about attacking the fragility of traditional automation. The era of deterministic, rule-based systems is ending. We are witnessing the death of determinism and the rise of probabilistic systems โ€” what I call the shift from static workflows to intelligent automation.

The fragility tax of old automation

There is a painful truth we need to acknowledge: Your current bot portfolio is likely a liability.

In my experience and architectural practice, I frequently encounter what I call the fragility tax. This is the hidden cost of maintaining deterministic bots in a dynamic world. The industry rule of thumb ย โ€” ย and one that I see validated in budget sheets constantly โ€” is that for every $1 you spend on BPA licenses, you end up spending $3 on maintenance.

Why? Because traditional BPA is blind. It doesnโ€™t understand the screen it is looking at; it only understands coordinates (x, y). It doesnโ€™t understand the email it is reading; it only scrapes for keywords. When the user interface updates or the vendor changes an invoice format, the bot crashes.

I recall a disaster with an enterprise client who had an automated customer engagement process. It was a flagship project. It worked perfectly until the third-party system provider updated their solution. The submit button changed from green to blue. The bot, which was hardcoded to look for green pixels at specific coordinates, failed silently.

But fragility isnโ€™t just about pixel colors. It is about the fragility of trust in external platforms.

We often assume fragility only applies to bad code, but it also applies to our dependencies. Even the vanguard of the industry isnโ€™t immune. In September 2024, OpenAIโ€™s official newsroom account on X (formerly Twitter) was hijacked by scammers promoting a crypto token.

Think about the irony: The company building the most sophisticated intelligence in human history was momentarily compromised not by a failure of their neural networks, but by the fragility of a third-party platform. This is the fragility tax in action. When you build your enterprise on deterministic connections to external platforms you donโ€™t control, you inherit their vulnerabilities. If you had a standard bot programmed to Retweet@OpenAINewsroom, you would have automatically amplified a scam to your entire customer base.

The old way of scripting cannot handle this volatility. We spent years trying to predict the future and hard-code it into scripts. But the world is too chaotic for scripts. We need architecture that can heal itself.

The architectural pivot: From rules to goals

To capture the value of intelligent automation (IA), you must frame it as an architectural paradigm shift, not just a software upgrade. We are moving from task automation (mimicking hands) to decision automation (mimicking brains).

When I architect these systems, I look not only for rules but also for goals.

In the old paradigm, we gave the computer a script: Click button A, then type text B, then wait 5 seconds. In the new paradigm, we use cognitive orchestrators. We give the AI a goal: Perform this goal.

The difference is profound. If the submit button turns blue, a goal-based system using a large language model (LLM) and vision capabilities sees the button. It understands that despite the color change, it is still the submission mechanism. It adjusts its own path to achieving the goal.

Think of it like the difference between a train and an off-road vehicle. A train is fast and efficient, but it requires expensive infrastructure (tracks) and cannot steer around a rock on the line. Intelligent automation is the off-road vehicle. It uses sensors to perceive the environment. If it sees a rock, it doesnโ€™t derail; it decides to go around it.

This isnโ€™t magic; itโ€™s a specific architectural pattern. The tech stack required to support this is fundamentally different from what most CIOs currently have installed. It is no longer just a workflow engine. The new stack requires three distinct components working in concert:

  1. The workflow engine: The hands that execute actions.
  2. The reasoning layer (LLM): The brain that figures out the steps dynamically and handles the logic.
  3. The vector database: The memory that stores context, past experiences and embedded data to reduce hallucinations.

By combining these, we move from brittle scripts to resilient agents.

Breaking the unstructured data barrier

The most significant limitation of the old way was its inability to handle unstructured data. We know that roughly 80% of enterprise data is unstructured, locked away in PDFs, email threads, Slack and MS Teams chats, and call logs. Traditional business process automation cannot touch this. It requires structured inputs: rows and columns.

This is where the multi-modal understanding of intelligent automation changes the architecture.

I urge you to adopt a new mantra: Data entry is dead. Data understanding is the new standard.

I am currently designing architectures where the system doesnโ€™t just move a PDF from folder A to folder B. It reads the PDF. It understands the sentiment of the email attached to it. It extracts the intent from the call log referenced in the footer.

Consider a complex claims-processing scenario. In the past, a human had to manually review a handwritten accident report, cross-reference it with a policy PDF and check a photo of the damage. A deterministic bot is useless here because the inputs are never the same twice.

Intelligent automation changes the equation. It can ingest the handwritten note (using OCR), analyze the photo (using computer vision) and read the policy (using an LLM). It synthesizes these disparate, messy inputs into a structured claim object. It turns chaos into order.

This is the difference between digitization (making it electronic) and digitalization (making it intelligent).

Human-in-the-loop as a governance pattern

Whenever we present this self-driving enterprise concept to clients, the immediate reaction is โ€œYou want an LLM to talk to our customers?โ€ This is a valid fear. But the answer isnโ€™t to ban AI; it is to architect confidence-based routing.

We donโ€™t hand over the keys blindly. We build governance directly into the code. In this pattern, the AI assesses its own confidence level before acting.

This brings us back to the importance of verification. Why do we need humans in the loop? Because trusted endpoints donโ€™t always stay trusted.

Revisiting the security incident I mentioned earlier: If you had a fully autonomous sentient loop that automatically acted upon every post from a verified partner account, your enterprise would be at risk. A deterministic bot says: Signal comes from a trusted source -> execute.

A probabilistic, governed agent says: Signal comes from a trusted source, but the content deviates 99% from their semantic norm (crypto scam vs. tech news). The confidence score is low. Alert human.

That is the architectural shift we need.

  • Scenario A: The AI is 99% confident it understands the invoice, the vendor matches the master record and the semantics align with past behavior. The system auto-executes.
  • Scenario B: The AI is only 70% confident because the address is slightly different, the image is blurry or the request seems out of character (like the hacked tweet example). The system routes this specific case to a human for approval.

This turns automation into a partnership. The AI handles the mundane, high-volume work and your humans handle the edge cases. It solves the black box problem that keeps compliance officers awake at night.

Kill the zombie bots

If you want to prepare your organization for this shift, you donโ€™t need to buy more software tomorrow. You need to start with an audit.

Look at your current automation portfolio. Identify the zombie bots, which are the scripts that are technically alive but require constant intervention to keep moving. These bots fail whenever vendors update their software. These are the bots that are costing you more in fragility tax than they save in labor.

Stop trying to patch them. These are the prime candidates for intelligent automation.

The future belongs to the probabilistic. It belongs to architectures that can reason through ambiguity, handle unstructured chaos and self-correct when the world changes. As leaders, we need to stop building trains and start building off-road vehicles.

The technology is ready. The question is, are you ready to let go of the steering wheel?

Disclaimer: This and any related publications are provided in the authorโ€™s personal capacity and do not represent the views, positions or opinions of the authorโ€™s employer or any affiliated organization.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

Digital transformation 2026: Whatโ€™s in, whatโ€™s out

20 January 2026 at 05:01

I remind CIOs, โ€œYou will always be transforming.โ€ Every two years, new business drivers emerge, such as the pandemic from 2020-2022 and automation-driven efficiencies from 2023-2024. Weโ€™re now in the gen AI era, where most CIOs are under pressure to shift from driving broad experiments to delivering business value and ROI.

As a result, CIOs need to refocus their strategies and communicate an updated vision for transformation. My 2025 article on whatโ€™s in and out for digital transformation stressed the importance of developing transformational leaders and AI-ready employees while avoiding AI moonshots and ending lift-and-shift cloud migrations.

In 2026, experts suggest that CIOs must transform IT, transition AI to customer experience (CX) opportunities, and double down on data governance and security. ย ย 

In: Reengineering ITโ€™s digital operating model

In 2025, I wrote about how AI is the end of IT as we know it and how CIOs are rethinking IT for the agentic AI era. World-class IT organizations are setting higher expectations, partnering with departments on AI change management, and committing to lifelong learning.

With all the AI innovations impacting IT, CIOs will need to refocus their digital operating models to deliver more capabilities faster, at lower cost, and with higher resiliency.

Sesh Tirumala, CIO at Western Digital, says, โ€œVelocity gets us ahead, resilience keeps us steady, and adaptability ensures we stay ahead. Direction matters, and in 2026, velocity is the real currency of success.โ€

How can CIOs aim higher when CEOs and boards are demanding ROI from AI? Jay Upchurch, CIO at SAS, says the best and brightest CIOs will snap up commercial responsibilities. โ€œTop CIOs will sell customers and their divisional peers on technology like CMOs, and answer the constant call to do more with less like CFOs.โ€

I expect many CIOs will reorganize IT in 2026. Some will be mandated to reduce costs and headcount, while others will drive efficient collaboration in their product management, agile, and DevOps practices. Top CIOs will seek opportunities to guide reorganization across the enterprise as agentic AI creates new workflow patterns and cross-department collaboration opportunities.

โ€œCEOs will conclude that AI adoption is no longer a technology problem but a workforce and management problem,โ€ says Florian Douetteau, co-founder and CEO of Dataiku. โ€œInstead of selling cloud migrations and data platforms, consultants will start selling organizational rewiring to prepare for AI-run operations. This shift creates tension inside enterprises because it surfaces the real blocker: leadership culture, not technology.โ€

Raja Roy, senior managing partner in the office of technology excellence at Concentrix, adds, โ€œThe new priority: operating models that support rapid learning, collaboration, and real-time evolution, keeping the human/AI balance aligned to the right tasks, whether an interaction calls for a human touch or machine efficiency.โ€

Recommendation: CIOs should review ITโ€™s structure and agile practices to increase the effectiveness of delivering AI innovations and improve operational resilience.

Out: Underinvesting in data governance

Data governance is a critical function in global regulated enterprises, where governance, risk, and compliance (GRC) are critical top-down mandates. Midsize organizations are catching up, as they evolve to data-driven organizations and centralize data for AI initiatives.

While governing relational databases and warehouses is a relatively mature process, deploying agentic AI capabilities requires new tools and practices to extend data governance to unstructured data sources.ย 

โ€œUnstructured data now moves too fast for manual oversight, and organizations can finally govern it as itโ€™s created instead of cleaning it up later,โ€ says Felix Van de Maele, CEO of Collibra. โ€œIn 2026, human judgment still matters, but AI-assisted systems, not spreadsheets or static controls, will carry the day-to-day load.โ€

Van de Maele suggests that AI-powered metadata generation for unstructured data, with integrated data practices for building reliable AI at scale is in, while CIOs should move away from manual tagging, siloed datasets, and one-time compliance efforts.

Additionally, many data governance leaders must get more granular controls on who gets access to what data. Authorizing users to full datasets and file systems is no longer sufficient as more organizations deploy AI agents on top of whatever data an employee can access.ย ย 

โ€œMany organizations do not know where their sensitive data lives, who can access it, or how much is exposed across cloud and SaaS systems,โ€ says Yair Cohen, co-founder and VP of product at Sentra. โ€œLeaders in 2026 will treat governance as an engineering practice by embedding classification, tagging, and access rules directly into data pipelines, warehouses, and AI workflows.โ€

Recommendation: CIOs should be paranoid about data risks, take a sponsorship role in data governance, and ensure that improving data quality is prioritized in every AI initiative.

In: Targeting AI for growth and UX

In 2025, I warned CIOs about promoting AI as a driver of productivity and efficiency. Eventually, the CFO wants to see ROI, and this is one reason we saw significant technology layoffs in 2025.

I compiled over 50 expert predictions around 2026 on AI, from agentic workflows improving operations through gen AI embedded in customer experiences. I believe AI will have its Uber and Airbnb moment in 2026, as startups revolutionize customer experiences and disrupt slower-moving business-to-consumer (B2C) enterprises.

One easy way to embrace AI-enabled customer experiences is to upgrade call centers and chatbots without major infrastructure investments. Rob Scudiere, CTO at Verint, says, โ€œBrands can layer an AI-powered chatbot onto their existing application instead of replacing an outdated telephony system and interactive voice response (IVR).โ€

When considering improving customer experiences, Pasquale DeMaio, VP of Amazon Connect, says to embrace systems that leverage AI and human strengths. โ€œIn customer support, agentic AI will manage routine requests while human agents will address complex issues with empathy and nuance, guided by AI insights and recommendations.โ€

CIOs should recognize a paradigm shift in UX, as data entry forms, customer journeys, and prescriptive reports get replaced with agentic AI capabilities. Focusing on AI in customer support is an easy entry point, as the entire customer experience, especially in ecommerce and SaaS tools, requires redesigning with AI capabilities.

โ€œAI agents will become the frontend of the company as the primary starting point for any and all external contact,โ€ says Antoine Nasr, head of AI at Forethought. โ€œEnd-users will no longer have to try and navigate to the correct department and tool to get the help or information they need โ€” they will simply interact with the companyโ€™s public AI agent in natural language. With that, agent design will become a key concern for several functions, not just customer support.โ€

Recommendation: Product-based IT organizations are a step ahead in anticipating how AI will evolve CX, and they should plan to segment and learn from early AI adopters. ย 

Out: AI experimentation without paths to short-term business value

Several research reports in 2025 highlighted how few AI experiments are being deployed into production and delivering business value. CEOs and boards will demand that CIOs narrow the portfolio of AI experiments and have real plans to deliver ROI from AI investments.

Conal Gallagher, CISO and CIO at Flexera, says in the next era of AI, execution matters more than experimentation. โ€œCIOs will only continue to face bigger challenges and pressure to move beyond the AI experimentation phase and deliver clear, actionable, and measurable business outcomes.โ€

AI agents from top enterprise SaaS and security companies follow common patterns. These AI agents focus on a primary employee workflow, connect to multiple data sources, and aim to do more than complete tasks. CIOs will have to demonstrate the business value of how these AI agents guide employees in making smarter, faster decisions and the financial impacts of AI-revolutionized workflows.

โ€œAgentic AI delivers measurable ROI in months, not years, because it replaces entire processes, not just parts of them,โ€ says Luke Norris, co-founder and CEO of KamiwazaAI. โ€œEach successful deployment accelerates the next, creating a self-funding innovation loop. More and more enterprises will be realizing this compounding ROI in the coming 6-12 months.โ€

Experts offer guidance on transitioning from an experimental to an outcome-based mindset. Kerry Brown, transformation evangelist at Celonis, says after years of big AI investment, itโ€™s time to rethink end-to-end processes rather than just adding more automation on top.

โ€œLeaders need to empower employees with visibility into how work really happens, and give them ownership in redesigning it,โ€ says Brown. โ€œWhen teams have that context and agency, they become true drivers of transformation and help create a faster, more direct path to ROI.โ€

Ed Frederici, CTO at Appfire, adds, โ€œWhatโ€™s out in 2026 is treating AI as a standalone, isolated initiative, and the next wave of digital transformation moves beyond scattered pilots to full operational integration. CIOs will treat AI as core business infrastructure rather than a special project โ€” holding it to the same expectations for accuracy, security, and performance as every other critical system.โ€

Recommendation: Organizations with too many independently running AI experiments should revisit their AI governance strategy, communicate clear objectives, and prioritize where to build AI delivery plans.ย 

In: Implementing security before AI deployments

Nearly every transformational technology started with a gold rush to deliver innovations, and bolting on security afterward. CIOs will face pressure to move last yearโ€™s AI experiments into production this year, and weโ€™ll have to see to what extent security will be implemented in initial deployments.

Many experts chimed in on where CIOโ€™s need to get ahead of the curve. Here are three recommendations:

  • Implement agentic AI observability and trust verification frameworks. โ€œ2026 marks a major shift in the threat landscape as agentic commerce takes hold, and in turn, AI-driven deception accelerates,โ€ says Gavin Reid, CISO at HUMAN Security. โ€œCIOs need visibility into how and what AI agents operate across their environments and deploy trust verification frameworks that continuously validate identity, intent, and behavior in real-time.โ€
  • Establish security by design, especially around identity. โ€œA unified identity layer is now a prerequisite for effective AI security implementation and is an urgent priority for any organization making AI investments,โ€ says Ev Kontsevoy, CEO and co-founder of Teleport. โ€œOrganizations that embed these secure-by-design practices across development, delivery, and operations, and treat infrastructure security as a necessary mandate, will be best prepared for the transformational changes that AI will introduce.โ€
  • Extend data loss prevention to AI-powered browsers. โ€œAI-powered browsers like OpenAIโ€™s Atlas and Perplexityโ€™s Comet are one of the biggest blind spots in enterprise security,โ€ said Rohan Sathe, co-founder and CEO at Nightfall. โ€œEmployees use them to research deals, draft customer outreach, and summarize strategy docs, giving agents with memory and sync direct access to logged-in Gmail, CRM, and code repos. Legacy data loss prevention cannot see this, since it was built for files, not browser-level activity, prompts, or clipboard moves.โ€

Recommendation: CIOs must partner with CISOs, legal, and risk management to clearly define AI security non-negotiables, platforms, and implementation requirements.

CIOs should expect the unexpected in 2026, whether driven by volatile economic conditions, new AI capabilities, or headline-making security incidents. My back-to-basics recommendations for digital transformation in 2026 aim to guide CIOs toward growth opportunities while improving operational resiliency.

Developers still donโ€™t trust AI-generated code

20 January 2026 at 04:30

It may come as no surprise that a huge percentage of developers donโ€™t trust AI-generated code, but many also say itโ€™s becoming more difficult to check for errors created by coding assistants.

As AI coding assistants take over an ever-increasing amount of programming work, human coding teams are struggling to find the time to spot the errors, development leaders say. Coding assistants are improving the quality of their output, but they have also tended to become more verbose โ€” writing more lines of code to fix a problem โ€” making it harder to spot errors when they pop up, according to coding experts.

As a result, a major problem with AI-generated code is arising: developers sometimes spending more time reviewing AI output than they would have spent writing the code themselves.

While AI coding assistants have become ubiquitous, developers shouldnโ€™t trust them, says Alex Lisle, CTO of deepfake detection platform Reality Defender.

All the software engineers Lisle works with use coding assistants in some capacity, but the companyโ€™s developers keep a close eye on their output, he says. โ€œThe truth of the matter is most of my developers donโ€™t use AI-generated code for more than boilerplate and fixing a few little things,โ€ he says. โ€œWe donโ€™t trust AI-generated code at all.โ€

The responsibility for the quality of the code resides with the developer using the coding assistant, Lisle adds.

Cranking out code

The volume of code that can be generated by AI tools creates its own problems, Lisle contends.

โ€œItโ€™s kind of like having a junior developer who can write a very large amount of code very quickly,โ€ he explains. โ€œThe problem with that is it doesnโ€™t understand the code and the broader context. It often does the opposite of what you ask it to do.โ€

Overreliance on AI-generated code can lead to a code base thatโ€™s impossible to understand, Lisle says.

โ€œThe problem is as soon as you start leveraging it in a broader context, it creates an incredibly unstable and unknowable code,โ€ he adds. โ€œYou can get an AI to generate hundreds of thousands of lines of code, but itโ€™s very difficult to maintain, very difficult to understand, and in a production environment, none of that is suitable.โ€

Microsoft-focused coding firm Keypress Software Development Group has had mixed results with AI coding assistants, says Brian Owens, president and senior software architect there.

AI-generated code often requires only minimal review for small, self-contained use cases, but for production-grade applications, the output can be inconsistent and problematic, he says.

โ€œWeโ€™ve found that AI tools will occasionally ignore key aspects of the existing codebase or fail to align with established coding standards and architectural patterns,โ€ Owens says. โ€œThat creates additional work for our team in the form of review, refactoring, and rework to ensure the code is production ready.โ€

Owens has found that using a coding assistant may not save time over a human developer writing the code. โ€œIn some cases, the time spent validating and correcting AI-generated code can offset the expected efficiency gains โ€” and occasionally takes more time than if a developer had written the code without AI assistance,โ€ he says.

Major lack of trust

A recent survey of more than 1,100 IT professionals by code quality tool provide Sonar backs up the trust concerns voiced by some development leaders. While 72% of those surveyed say they use coding assistants every day, 96% say they donโ€™t fully trust AI-generated code.

At the same time, less than half of developers say they always check their AI-generated code before committing it, with nearly four in 10 saying that reviewing AI-generated code requires more effort than code written by their human coworkers.

As the quality of coding assistants improves, developers are finding it more difficult to find errors, says Chris Grams, vice president of corporate marketing at Sonar โ€” and not because they arenโ€™t there.

โ€œAs these coding models get better and better, you have a little bit of a needle-in-a-haystack problem, where there may be fewer and fewer issues overall, but those issues are going to a big security issue thatโ€™s well hidden and hard to find and could be the thing that takes down an application,โ€ he says.

While many software development leaders say they donโ€™t trust AI-generated code, the issue may be more nuanced, says Mark Porter, CTO at data analytics solutions provider dbt Labs.

Coding assistants are widely used at dbt Labs, he says, and trusting their output depends on the context.

โ€œTrusting AI written code is much like trusting human-written code,โ€ he adds. โ€œIn general, I look for the same trust signals in AI-generated code as any other code. If it was created via a high-integrity process, I trust it just like I would trust human code.โ€

The review bottleneck

But AI-generated code can be faulty in different ways than human-written code, with AI often adding complexity and creating overly confident comments, Porter says. The trust equation must adapt to these unique challenges.

Reviewing AI code also creates its own challenges, adding to the developerโ€™s reviewing time, even as it saves coding time, he says. โ€œThe output volume is high, so it shifts the bottleneck from producing code to reviewing it,โ€ he adds.

Human reviews also need to maintain expert-level familiarity with the codebase, Porter says, which can be mitigated through software engineering best practices.

โ€œThere are certainly unique challenges to reviewing AI-written code,โ€ he adds. โ€œI think the question of trusting AI code is missing the point a bit; what Iโ€™m thinking about is how to build processes and guidelines and training that support my engineers using AI to assist them in writing efficient and correct code that is also maintainable โ€” and thatโ€™s the future of AI in coding, in my opinion.โ€

๋„ค์ด๋ฒ„, ๋ฐ์ดํ„ฐยท์ฑ…์ž„๊ฒฝ์˜ยท์ธ์‚ฌ ์ด๊ด„ C๋ ˆ๋ฒจ ์ธ์‚ฌ ๋ฐœํ‘œ

20 January 2026 at 03:18

๋„ค์ด๋ฒ„๋Š” ์ด๋ฒˆ C๋ ˆ๋ฒจ ๋ฆฌ๋”์‹ญ ์ฒด๊ณ„ ๊ฐœํŽธ์„ ํ†ตํ•ด AI ์—์ด์ „ํŠธ๋ถ€ํ„ฐ ํ”ผ์ง€์ปฌ AI, ์›น3 ๋“ฑ ๋ณ€ํ™”ํ•˜๋Š” ๊ธ€๋กœ๋ฒŒ ํ™˜๊ฒฝ์— ๋ณด๋‹ค ๊ธฐ๋ฏผํ•˜๊ฒŒ ๋Œ€์‘ํ•˜๊ณ , ์‹ ๊ทœ ์‚ฌ์—… ๋ชจ๋ธ ๋ฐœ๊ตด๊ณผ ์ „๋žต์  ๊ธ€๋กœ๋ฒŒ ํŒŒํŠธ๋„ˆ์‹ญ ํ™•๋Œ€์— ์†๋„๋ฅผ ๋‚ผ ๊ณ„ํš์ด๋‹ค. ์•„์šธ๋Ÿฌ AI๋ฅผ ๋น„๋กฏํ•œ ๊ธฐ์ˆ ์˜ ์‚ฌํšŒ์  ์˜ํ–ฅ๋ ฅ์ด ํ™•๋Œ€๋˜๋Š” ํ๋ฆ„์— ๋งž์ถฐ, ๊ธฐ์—…์˜ ์‚ฌํšŒ์  ์ฑ…์ž„์„ ํ•œ์ธต ๊ฐ•ํ™”ํ•ด ๋‚˜๊ฐ„๋‹ค๋Š” ๋ฐฉ์นจ์ด๋‹ค.

๋จผ์ €, ๋„ค์ด๋ฒ„ ์ฃผ์š” ์„œ๋น„์Šค ์ „๋ฐ˜์— AI ์—์ด์ „ํŠธ ์ ์šฉ์„ ๊ฐ€์†ํ™”ํ•˜๊ณ  ๊ฒ€์ƒ‰ ๋ฐ ๋ฐ์ดํ„ฐ ๊ธฐ์ˆ  ํ”Œ๋žซํผ์˜ ํ†ตํ•ฉยท๊ณ ๋„ํ™”๋ฅผ ์ถ”์ง„ํ•˜๊ธฐ ์œ„ํ•ด ๊น€๊ด‘ํ˜„ ๊ฒ€์ƒ‰ ํ”Œ๋žซํผ ๋ถ€๋ฌธ์žฅ์ด CDO(Chief Data & Contents Officer, ์ตœ๊ณ  ๋ฐ์ดํ„ฐยท์ฝ˜ํ…์ธ  ์ฑ…์ž„์ž)๋กœ ์„ ์ž„๋  ์˜ˆ์ •์ด๋‹ค. ๊น€๊ด‘ํ˜„ CDO๋Š” ๋„ค์ด๋ฒ„ ์ „๋ฐ˜์— ์ถ•์ ๋œ ์‚ฌ์šฉ์ž ๋ฐ์ดํ„ฐ์™€ ์ฝ˜ํ…์ธ ๋ฅผ ์œ ๊ธฐ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•ด ๋„ค์ด๋ฒ„ ์•ฑ๊ณผ ์ฃผ์š” ์„œ๋น„์Šค ์ „๋ฐ˜์— ์ฐจ๋ณ„ํ™”๋œ AI ์—์ด์ „ํŠธ ๊ฒฝํ—˜์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ค‘ยท์žฅ๊ธฐ์ ์ธ ์„œ๋น„์Šค ๊ฒฝ์Ÿ๋ ฅ ๊ฐ•ํ™”๋ฅผ ์ด๋Œ ๊ณ„ํš์ด๋‹ค.

๋˜ํ•œ ์œ ๋ด‰์„ ์ •์ฑ…/RM ๋ถ€๋ฌธ์žฅ์€ ์‹ ์ž„ CRO(Chief Corporate Responsibility Officer, ์ตœ๊ณ  ์ฑ…์ž„๊ฒฝ์˜ ์ฑ…์ž„์ž)๋กœ์„œ ๊ธ‰๋ณ€ํ•˜๋Š” ๋Œ€์™ธ ํ™˜๊ฒฝ ์†์—์„œ ํšŒ์‚ฌ ์ „๋ฐ˜์˜ ์ •์ฑ… ๋ฐ ๋ฆฌ์Šคํฌ ๊ด€๋ฆฌ ์ฒด๊ณ„๋ฅผ ์ด๊ด„ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋„ค์ด๋ฒ„๊ฐ€ ์ดํ•ด๊ด€๊ณ„์ž์™€ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌํšŒ์  ์ฑ…์ž„์„ ๋‹คํ•˜๋Š” ํ”Œ๋žซํผ์œผ๋กœ ์ง€์† ์„ฑ์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ด€๋ จ ์ •์ฑ… ์šด์˜๊ณผ ์•ˆ์ •์ ์ธ ์„œ๋น„์Šค ํ™˜๊ฒฝ ๊ตฌ์ถ•์„ ์ถ”์ง„ํ•  ์˜ˆ์ •์ด๋‹ค.

์•„์šธ๋Ÿฌ ํšŒ์‚ฌ์™€ ๊ตฌ์„ฑ์›์˜ ์„ฑ์žฅ์„ ์ง€์›ํ•˜๋Š” ์ธ์‚ฌ ์šด์˜ ์ฒด๊ณ„๋ฅผ ๋งˆ๋ จํ•˜๊ธฐ ์œ„ํ•ด ํ™ฉ์ˆœ๋ฐฐ HR ๋ถ€๋ฌธ์žฅ์ด CHRO(Chief Human Resources Officer, ์ตœ๊ณ  ์ธ์‚ฌ ์ฑ…์ž„์ž)๋กœ ์„ ์ž„๋  ์˜ˆ์ •์ด๋‹ค. ํ™ฉ์ˆœ๋ฐฐ CHRO๋Š” ๊ธฐ์ˆ  ํ™˜๊ฒฝ๊ณผ ์—…๋ฌด ๋ฐฉ์‹ ๋ณ€ํ™”์— ๋Œ€์‘ํ•ด ์ „์‚ฌ ์ธ์‚ฌ ์ „๋žต๊ณผ ์กฐ์ง ์šด์˜ ์ฒด๊ณ„๋ฅผ ์ด๊ด„ํ•˜๋ฉฐ, ์ค‘์žฅ๊ธฐ ์ธ์‚ฌ ์ •์ฑ… ์ˆ˜๋ฆฝ๊ณผ AI ์‹œ๋Œ€์— ๋ถ€ํ•ฉํ•˜๋Š” ์กฐ์ง ๊ฒฝ์Ÿ๋ ฅ ๊ฐ•ํ™”๋ฅผ ์ฃผ๋„ํ•  ๊ณ„ํš์ด๋‹ค.

๋„ค์ด๋ฒ„๋Š” ๋ณด๋„์ž๋ฃŒ๋ฅผ ํ†ตํ•ด โ€œ์•ž์œผ๋กœ C๋ ˆ๋ฒจ ๋ฆฌ๋”์‹ญ ์ค‘์‹ฌ์˜ ์ฑ…์ž„๊ฒฝ์˜ ์ฒด์ œ ํ•˜์—์„œ ์‡ผํ•‘, ๊ธˆ์œต, ํด๋ผ์šฐ๋“œ, AI ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฌ์—… ๋ฐ ๊ธฐ์ˆ  ์˜์—ญ์—์„œ โ€˜ํŒ€ ๋„ค์ด๋ฒ„โ€™์˜ ์—ญ๋Ÿ‰์„ ์œ ๊ธฐ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•ด โ€˜์—์ด์ „ํŠธ Nโ€™์„ ์ค‘์‹ฌ์œผ๋กœ AI ๊ฒฝ์Ÿ๋ ฅ์„ ํ•œ์ธต ๊ณ ๋„ํ™”ํ•˜๊ณ , ์ƒˆ๋กœ์šด ๊ธ€๋กœ๋ฒŒ ์‚ฌ์—… ๊ธฐํšŒ ๋ฐœ๊ตด๊ณผ ๋„์ „์„ ์ด์–ด๊ฐˆ ๊ฒƒโ€์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

ํ•œํŽธ, ์ƒˆ๋กญ๊ฒŒ ์„ ์ž„๋˜๋Š” C๋ ˆ๋ฒจ ๋ฆฌ๋”๋Š” ์˜ค๋Š” 2์›” 1์ผ์ž๋กœ ๊ณต์‹ ์ทจ์ž„ํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ๋ฆฌ๋”์‹ญ ์ฒด๊ณ„์— ๋”ฐ๋ฅธ ์„ธ๋ถ€ ์กฐ์ง ๊ฐœํŽธ์€ ์ˆœ์ฐจ์ ์œผ๋กœ ์ง„ํ–‰๋  ์˜ˆ์ •์ด๋‹ค.
jihyun.lee@foundryco.com

๋กœ์ปฌ ์ปดํ“จํŒ…์œผ๋กœ ๋„˜์–ด๊ฐ€๋Š” AI ์ถ”๋ก ยทยทยทโ€˜์—ฃ์ง€ AIโ€™ ํŠธ๋ Œ๋“œ ํ•œ๋ˆˆ์— ๋ณด๊ธฐ

20 January 2026 at 03:02

์—ฃ์ง€ AI์™€ ๊ด€๋ จํ•ด ๋ ˆ๋“œํ–‡์˜ ์—ฃ์ง€ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ๋ถ€๋ฌธ ์‹œ๋‹ˆ์–ด ๋””๋ ‰ํ„ฐ ์กฐ์Šˆ์•„ ๋ฐ์ด๋น„๋“œ๋Š” โ€œ๊ธ€๋กœ๋ฒŒ ์‹œ์žฅ์€ ํ˜„์žฌ ๊ฐ€ํŒŒ๋ฅธ ์„ฑ์žฅ ๊ถค๋„์— ์˜ฌ๋ผ ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์‹ค์ œ๋กœ ์—ฃ์ง€ AI ์‹œ์žฅ ๊ทœ๋ชจ๋Š” 2034๋…„๊นŒ์ง€ 1,430์–ต ๋‹ฌ๋Ÿฌ์— ์ด๋ฅผ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๊ณ  ์žˆ๋‹ค.

์—ฃ์ง€ AI์˜ ์„ฑ์žฅ์„ธ๋Š” ์—…๊ณ„ ์ „๋ฐ˜์ด ๋จธ์‹ ๋Ÿฌ๋‹(ML) ๋ชจ๋ธ์— ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต์‹œํ‚ค๋Š” AI ํ•™์Šต ์ค‘์‹ฌ์—์„œ ๋ฒ—์–ด๋‚˜, ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋ชจ๋ธ์„ ์‹ค์ œ๋กœ ํ™œ์šฉํ•ด ์ง€์‹์„ ์ ์šฉํ•˜๊ฑฐ๋‚˜ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ถ”๋ก  ์ค‘์‹ฌ์œผ๋กœ ์ด๋™ํ•˜๋Š” ํ๋ฆ„๊ณผ ๋งž๋ฌผ๋ ค ์žˆ๋‹ค.

์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌยทํ†ตํ•ฉ ๊ธฐ์—… ์ธํฌ๋งคํ‹ฐ์นด์˜ ์ œํ’ˆ ๊ด€๋ฆฌ ๋ถ€๋ฌธ ๋ถ€์‚ฌ์žฅ ์ˆ˜๋ฐ‹ ์•„๊ทธ๋ผ์™ˆ์€ โ€œ๊ฐ•๋ ฅํ•˜๋ฉด์„œ๋„ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ AI ํ”„๋กœ์„ธ์„œ์˜ ๋ฐœ์ „๊ณผ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท(IoT) ๊ธฐ๊ธฐ์˜ ํ™•์‚ฐ์ด ์ด๋Ÿฌํ•œ ํ๋ฆ„์„ ๊ฐ€์†ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณต์žกํ•œ AI ๋ชจ๋ธ์„ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ ์ง์ ‘ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ด์™€ ๊ด€๋ จํ•ด ๋ชจ๊ฑด์Šคํƒ ๋ฆฌ ๋ธ”๋กœ๊ทธ๋Š” AI ์‚ฐ์—…์ด โ€œ์ƒˆ๋กญ๊ณ , ์ž ์žฌ์ ์œผ๋กœ ํ›จ์”ฌ ๋” ํฐ ๋‹จ๊ณ„์ธ AI ์ถ”๋ก ์œผ๋กœ ์ ‘์–ด๋“ค๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ•˜๋ฉฐ, ์ด ๋‹จ๊ณ„์˜ ํ•ต์‹ฌ ํŠน์ง•์œผ๋กœ ์†Œ๋น„์ž์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ๊ธฐ์—… ์ „๋ฐ˜์— ๊ฑธ์ณ AI ๋ชจ๋ธ์ด ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ฑ„ํƒ๋œ๋‹ค๋Š” ์ ์„ ์งš์—ˆ๋‹ค.

์—ฃ์ง€ ์ปดํ“จํŒ…์€ ํผ๋ธ”๋ฆญ ํด๋ผ์šฐ๋“œ์™€๋Š” ๋‹ค๋ฅธ ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํผ๋ธ”๋ฆญ ํด๋ผ์šฐ๋“œ๋Š” ํ™•์žฅ์„ฑ๊ณผ ์‚ฌ์šฉ ํŽธ์˜์„ฑ ์ธก๋ฉด์—์„œ ๊ฐ•์ ์ด ์žˆ์ง€๋งŒ, ์ถ”๋ก  ๊ด€์ ์—์„œ๋Š” ํ•œ๊ณ„๋„ ๋ถ„๋ช…ํ•˜๋‹ค. ์ง€์—ฐ ์‹œ๊ฐ„์ด ๋Š˜์–ด๋‚˜๊ณ  ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ์šฐ๋ ค๊ฐ€ ์ปค์ง€๋ฉฐ, ์—ฐ์‚ฐ ์ฒ˜๋ฆฌ์™€ ๋ฐ์ดํ„ฐ ์œ ์ž…ยท์œ ์ถœ ๊ณผ์ •์—์„œ ๋น„์šฉ ๋ถ€๋‹ด์ด ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ์ ์ด ๋Œ€ํ‘œ์ ์ด๋‹ค. ๋ฐ˜๋ฉด AI๋ฅผ ์—ฃ์ง€์—์„œ ์‹คํ–‰ํ•˜๋ฉด ์ด๋Ÿฌํ•œ ๋ฌธ์ œ ์ƒ๋‹น ๋ถ€๋ถ„์„ ํ•ด์†Œํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” โ€œ์—ฃ์ง€ AI๋Š” ์ง€์—ฐ ์‹œ๊ฐ„ ๊ฐ์†Œ, ๋น„์šฉ ์ ˆ๊ฐ, ๋ณด์•ˆ๊ณผ ํ”„๋ผ์ด๋ฒ„์‹œ ๊ฐ•ํ™” ๋“ฑ ์—ฌ๋Ÿฌ ํ•ต์‹ฌ์ ์ธ ์ด์ ์„ ์ œ๊ณตํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์•„๋งˆ์กด์ด ์ตœ๊ทผ ์ผ๋ถ€ ML ํ•™์Šต ์ž‘์—…์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” GPU ์ด์šฉ ์š”๊ธˆ์„ 15% ์ธ์ƒํ•œ ์‚ฌ๋ก€์ฒ˜๋Ÿผ, ์ค‘์•™ ์ง‘์ค‘ํ˜• ํ•™์Šต์„ ์ค‘์‹ฌ์œผ๋กœ ํ•œ ํด๋ผ์šฐ๋“œ AI ๋น„์šฉ์€ ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฐฉํ–ฅ์œผ๋กœ ํ˜๋Ÿฌ๊ฐ€๊ณ  ์žˆ๋‹ค. IDC๋Š” 2027๋…„๊นŒ์ง€ CIO์˜ 80%๊ฐ€ AI ์ถ”๋ก  ์ˆ˜์š”๋ฅผ ์ถฉ์กฑํ•˜๊ธฐ ์œ„ํ•ด ํด๋ผ์šฐ๋“œ ์—…์ฒด์˜ ์—ฃ์ง€ ์„œ๋น„์Šค๋ฅผ ํ™œ์šฉํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ–ˆ๋‹ค.

๋‹ค๋งŒ ์ด๋Ÿฌํ•œ ์ „ํ™˜์ด ์ˆœํƒ„ํ•˜๊ฒŒ ์ด๋ค„์ง€์ง€๋Š” ์•Š์„ ์ „๋ง์ด๋‹ค. ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ๋†’์€ ์š”๊ตฌ, AI ์Šคํƒ์ด ์ฐจ์ง€ํ•˜๋Š” ํฐ ์‹œ์Šคํ…œ ์ž์› ๋ถ€๋‹ด, ํŒŒํŽธํ™”๋œ ์—ฃ์ง€ ์ƒํƒœ๊ณ„๋Š” ์—ฌ์ „ํžˆ ์ฃผ์š” ๊ณผ์ œ๋กœ ๋‚จ์•„์žˆ๋‹ค.

์ด ๊ธ€์—์„œ๋Š” ์—ฃ์ง€ AI๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ ํ˜„ํ™ฉ์„ ์‚ดํŽด๋ณด๊ณ , ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ AI๋ฅผ ์‹คํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๊ณผ ์šด์˜ ๋ฐฉ์‹, ๊ทธ๋ฆฌ๊ณ  AI ์‹œ๋Œ€์— ์ปดํ“จํŒ…์˜ ๋ฏธ๋ž˜๊ฐ€ ์–ด๋–ป๊ฒŒ ์ง„ํ™”ํ• ์ง€ ์ „๋ฐ˜์ ์œผ๋กœ ์งš์–ด๋ณธ๋‹ค.

์—ฃ์ง€ AI ์„ฑ์žฅ์„ ์ด๋„๋Š” ์š”์ธ

๋ฐ์ด๋น„๋“œ๋Š” โ€œ์—ฃ์ง€ AI ํ™•์‚ฐ์˜ ๊ฐ€์žฅ ํฐ ๋™์ธ์€ ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ์š”๊ตฌโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ค‘์•™ํ™”๋œ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ AI ์›Œํฌ๋กœ๋“œ์— ์˜์กดํ•˜๋Š” ๋Œ€์‹ , ์—ฃ์ง€์—์„œ ์ง์ ‘ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๋ฉด ๋ฐ์ดํ„ฐ๊ฐ€ ์ƒ์„ฑ๋˜๋Š” ์ง€์ ์—์„œ ์ฆ‰๊ฐ์ ์ธ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ํ•ต์‹ฌ์ด๋ผ๋Š” ๋ถ„์„์ด๋‹ค.

์—ฌ๋Ÿฌ ์ „๋ฌธ๊ฐ€๋„ ๊ฐ™์€ ์˜๊ฒฌ์„ ๋‚ด๋†“๊ณ  ์žˆ๋‹ค. ์ธํฌ๋งคํ‹ฐ์นด์˜ ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์—ฃ์ง€ AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์ „ํ•˜๋ฉฐ, ํŠนํžˆ ์‚ฐ์—… ํ˜„์žฅ์ด๋‚˜ ์ž๋™์ฐจ ๋ถ„์•ผ์ฒ˜๋Ÿผ ์ฐฐ๋‚˜์˜ ํŒ๋‹จ์ด ์ค‘์š”ํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ง€์—ฐ ์‹œ๊ฐ„ ๊ฐ์†Œ๊ฐ€ ๊ฐ€์žฅ ํฐ ์žฅ์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

๋˜ํ•œ ํด๋ผ์šฐ๋“œ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๋‚ด์ง€ ์•Š๊ณ ๋„ ML ๋ชจ๋ธ์— ๊ฐœ์ธ์ ์ด๊ฑฐ๋‚˜ ๊ธฐ์—… ๊ณ ์œ ์˜ ๋งฅ๋ฝ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ ค๋Š” ์ˆ˜์š” ์—ญ์‹œ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ์˜คํ”ˆ์†Œ์Šค ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ํ”Œ๋žซํผ ์ œ๊ณต์‚ฌ ํ…œํฌ๋Ÿด ํ…Œํฌ๋†€๋กœ์ง€์˜ ์‹œ๋‹ˆ์–ด ์Šคํƒœํ”„ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด์ด์ž AI ๊ธฐ์ˆ  ์ฑ…์ž„์ž์ธ ์š”ํ•œ ์А๋ผ์ด์–ด-์Šค๋ฏธ์Šค๋Š” โ€œํ”„๋ผ์ด๋ฒ„์‹œ๋Š” ๋งค์šฐ ๊ฐ•๋ ฅํ•œ ๋™์ธโ€์ด๋ผ๋ฉด์„œ, ์˜๋ฃŒ๋‚˜ ๊ธˆ์œต์ฒ˜๋Ÿผ ๊ทœ์ œ๊ฐ€ ์—„๊ฒฉํ•œ ์‚ฐ์—…์—์„œ๋Š” ๋ฏผ๊ฐํ•œ ์ •๋ณด๋ฅผ ๋กœ์ปฌ์—์„œ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ฒƒ์ด ๊ทœ์ œ ์ค€์ˆ˜๋ฅผ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์ˆ˜์„ธ(SUSE)์˜ ์—ฃ์ง€ ์‚ฌ์—… ๋ถ€๋ฌธ ๋ถ€์‚ฌ์žฅ ๊ฒธ ์ด๊ด„ ์ฑ…์ž„์ž ํ‚ค์Šค ๋ฐ”์‹ค ์—ญ์‹œ โ€œ์—ฃ์ง€ AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์€ ๋ถ„๋ช…ํžˆ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค. ๊ทธ๋Š” ์ œ์กฐ ๋ถ„์•ผ๋ฅผ ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋กœ ๊ผฝ์œผ๋ฉฐ, ๊ธฐ์—…์ด ์ƒ์‚ฐ ๋ผ์ธ์„ ์šด์˜ํ•˜๋Š” ๋Œ€ํ˜• ์„œ๋ฒ„๋ถ€ํ„ฐ ์†Œํ˜• ์„ผ์„œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์˜์—ญ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์‚ฌ์šฉ๋ก€์— ์—ฃ์ง€ AI ๋„์ž…์„ ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋กœํฌ์›ฐ ์˜คํ† ๋ฉ”์ด์…˜์— ๋”ฐ๋ฅด๋ฉด ์ œ์กฐ ๊ธฐ์—…์˜ 95%๊ฐ€ ํ–ฅํ›„ 5๋…„ ๋‚ด์— AI/ML, ์ƒ์„ฑํ˜• AI, ์ธ๊ณผ ๊ธฐ๋ฐ˜ AI์— ์ด๋ฏธ ํˆฌ์žํ–ˆ๊ฑฐ๋‚˜ ํˆฌ์ž๋ฅผ ๊ณ„ํšํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ 2024๋…„ ์ธํ…”์˜ CIO ๋ณด๊ณ ์„œ์—์„œ๋Š” ์ œ์กฐ ๋ถ„์•ผ ๋ฆฌ๋”์˜ 74%๊ฐ€ AI๊ฐ€ ๋งค์ถœ ์„ฑ์žฅ์— ๊ธฐ์—ฌํ•  ์ž ์žฌ๋ ฅ์ด ์žˆ๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค.

๋กœ์ปฌ AI ์—ฐ์‚ฐ์˜ ๊ฐ€์žฅ ํฐ ํšจ๊ณผ๋Š” ๋น„์šฉ ์ ˆ๊ฐ์ด๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์ „์†กํ•ด์•ผ ํ•  ๋ฐ์ดํ„ฐ ์–‘์ด ์ค„์–ด๋“ค๋ฉด์„œ ๋น„์šฉ๊ณผ ๋Œ€์—ญํญ์„ ํฌ๊ฒŒ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํŠน์ • ์›Œํฌ๋กœ๋“œ๋ฅผ ์—ฃ์ง€์—์„œ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ์‹์€ ๋น„์šฉ ์ ˆ๊ฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์—๋„ˆ์ง€ ์†Œ๋น„ ๊ฐ์†Œ์™€๋„ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ฒฐ๋œ๋‹ค. 2025๋…„ 1์›” ์•„์นด์ด๋ธŒ(Arxiv)์— ๋ฐœํ‘œ๋œ ๋…ผ๋ฌธ โ€˜ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์—ฃ์ง€ ํด๋ผ์šฐ๋“œ์˜ ์—๋„ˆ์ง€ ๋ฐ ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ ์ •๋Ÿ‰ํ™”โ€™์—์„œ๋Š” ์ˆœ์ˆ˜ ํด๋ผ์šฐ๋“œ ์ฒ˜๋ฆฌ ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•ด, ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ AI ์›Œํฌ๋กœ๋“œ์— ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์—ฃ์ง€ ํด๋ผ์šฐ๋“œ๋ฅผ ์ ์šฉํ•  ๊ฒฝ์šฐ ์กฐ๊ฑด์— ๋”ฐ๋ผ ์ตœ๋Œ€ 75%์˜ ์—๋„ˆ์ง€ ์ ˆ๊ฐ๊ณผ 80%๋ฅผ ์›ƒ๋„๋Š” ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ๋ฅผ ๊ฑฐ๋‘˜ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

ํ•ด๋‹น ๋…ผ๋ฌธ์˜ ์ €์ž์ธ ์‹œ์•„๋ฐ”์‹œ ์•Œ๋ผ๋ฌดํ‹ฐ๋Š” โ€œ์—ฃ์ง€ ์ฒ˜๋ฆฌ๋Š” ๋กœ์ปฌ ์ปดํ“จํŒ…์˜ ๋งฅ๋ฝ์„ ์ง์ ‘ ํ™œ์šฉํ•ด ์—ฐ์‚ฐ ๋ณต์žก๋„๋ฅผ ๋‚ฎ์ถ”๊ณ , ํด๋ผ์šฐ๋“œ ๊ทœ๋ชจ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ง‰๋Œ€ํ•œ ์—๋„ˆ์ง€ ์ˆ˜์š”๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

๋กœ์ปฌ AI๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธฐ์ˆ 

์—ฃ์ง€ AI ์„ฑ์žฅ์„ ์ด๋„๋Š” ์š”์ธ์€ ๋ถ„๋ช…ํ•ด ๋ณด์ด์ง€๋งŒ, ์ด๋ฅผ ์‹ค์ œ๋กœ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–ด๋–ค ๊ธฐ์ˆ ์ด ํ•„์š”ํ• ๊นŒ? ์ž์›์ด ์ œํ•œ๋œ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ AI ์—ฐ์‚ฐ์„ ์‹คํ–‰ํ•˜๋ ค๋ฉด ์†Œ๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ, ๊ฒฝ๋Ÿ‰ ํ”„๋ ˆ์ž„์›Œํฌ, ์ตœ์ ํ™”๋œ ๋ฐฐํฌ ๋ฐฉ์‹์ด ๊ฒฐํ•ฉ๋ผ์•ผ ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค.

์†Œ๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(SLM)

์ง€๊ธˆ๊นŒ์ง€ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์—…์€ ์•คํŠธ๋กœํ”ฝ์˜ ํด๋กœ๋“œ, ๊ตฌ๊ธ€์˜ ์ œ๋ฏธ๋‚˜์ด, ์˜คํ”ˆAI์˜ GPT ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ๋ฒ”์šฉ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜์˜ LLM์„ ํ™œ์šฉํ•ด AI๋ฅผ ์ค‘์•™์—์„œ ์šด์˜ํ•ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ AI ๋ชจ๋ธ ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•˜๋ฉด์„œ ์ด๋Ÿฐ ๊ตฌ์กฐ์—๋„ ๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค.

ํŠนํžˆ ์ž์ฒด ๋ฐฐํฌ๊ฐ€ ๊ฐ€๋Šฅํ•œ SLM์€ ํŠน์ • ์‚ฌ์šฉ๋ก€์—์„œ ํด๋ผ์šฐ๋“œ AI ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ์˜์กด๋„๋ฅผ ๋‚ฎ์ถ”๊ณ  ์žˆ๋‹ค. ํ…œํฌ๋Ÿด ํ…Œํฌ๋†€๋กœ์ง€์˜ ์А๋ผ์ด์–ด-์Šค๋ฏธ์Šค๋Š” โ€œSLM์˜ ์„ฑ๋Šฅ์ด ๋น ๋ฅด๊ฒŒ ํ–ฅ์ƒ๋˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ, ์ตœ๊ทผ ๊ธฐ์ˆ  ์ง„์ „์˜ ์‚ฌ๋ก€๋กœ ์˜คํ”ˆAI์˜ GPT-OSS์™€ ๊ณ„์ธต์  ์ถ”๋ก  ๋ชจ๋ธ์„ ์–ธ๊ธ‰ํ–ˆ๋‹ค.

์ตœ์ ํ™” ์ „๋žต

๋กœ์ปฌ AI์˜ ์‹œ์Šคํ…œ ๋ถ€๋‹ด์„ ์ค„์ด๋Š” ๊ฒƒ์€ ์—ฐ์‚ฐ ๋Šฅ๋ ฅ๊ณผ ๋Œ€์—ญํญ์ด ์ œํ•œ๋œ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค ํ™˜๊ฒฝ์—์„œ ํŠนํžˆ ์ค‘์š”ํ•˜๋‹ค. ์ด์— ๋”ฐ๋ผ SLM์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ธฐ์ˆ ์ด ์—ฃ์ง€ AI ๊ตฌํ˜„์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ํ•ต์‹ฌ ์˜์—ญ์œผ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค.

๋Œ€ํ‘œ์ ์ธ ์ „๋žต ๊ฐ€์šด๋ฐ ํ•˜๋‚˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์ธ ์–‘์žํ™”๋‹ค. ์–‘์žํ™”๋Š” ๋ชจ๋ธ ํฌ๊ธฐ์™€ ์—ฐ์‚ฐ ์š”๊ตฌ๋Ÿ‰์„ ์ค„์ด๋Š” ๋ฐฉ์‹์œผ๋กœ, ์—ฃ์ง€ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ ํ˜•ํƒœ๋กœ AI ๋ชจ๋ธ์„ ๊ฒฝ๋Ÿ‰ํ™”ํ•œ๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด NPU, ๊ตฌ๊ธ€์˜ ์—ฃ์ง€ TPU, ์• ํ”Œ์˜ ๋‰ด๋Ÿด ์—”์ง„, ์—”๋น„๋””์•„ ์ ฏ์Šจ ๋””๋ฐ”์ด์Šค์™€ ๊ฐ™์€ ํŠนํ™” ํ•˜๋“œ์›จ์–ด์—์„œ SLM์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ž์ฒด ์™„๊ฒฐํ˜• ํŒจํ‚ค์ง€ ์—ญ์‹œ ์—ฃ์ง€ AI๋ฅผ ๋Œ€๊ทœ๋ชจ๋กœ ์šด์˜ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” ์šด์˜์ฒด์ œ, ํ•˜๋“œ์›จ์–ด ๋“œ๋ผ์ด๋ฒ„, AI ๋ชจ๋ธ์„ ํ•˜๋‚˜๋กœ ๋ฌถ์€ ์ฆ‰์‹œ ๋ฐฐํฌ ๊ฐ€๋Šฅํ•œ ๋ฒ ์ด์Šค ์ด๋ฏธ์ง€๊ฐ€ ์—ฃ์ง€ AI ์ƒ์šฉํ™”๋ฅผ ํ˜„์‹คํ™”ํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—ฃ์ง€ ๋Ÿฐํƒ€์ž„ ๋ฐ ํ”„๋ ˆ์ž„์›Œํฌ

์ƒˆ๋กœ์šด ๋Ÿฐํƒ€์ž„ ๋ฐ ํ”„๋ ˆ์ž„์›Œํฌ ์—ญ์‹œ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ์˜ AI ์ถ”๋ก ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” ๊ฒฝ๋Ÿ‰ ์ƒ์„ฑํ˜• AI ๋Ÿฐํƒ€์ž„์ธ llama.cpp์™€ ํ•จ๊ป˜, ๋กœ์ปฌ ํ•˜๋“œ์›จ์–ด์—์„œ ๋ชจ๋ธ ์ถ”๋ก ์„ ์ง€์›ํ•˜๋Š” ์˜คํ”ˆ๋น„๋…ธ(OpenVINO)์™€ ๋ผ์ดํŠธRT(LiteRT, ์ด์ „ ํ…์„œํ”Œ๋กœ ๋ผ์ดํŠธ) ๊ฐ™์€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์–ธ๊ธ‰ํ–ˆ๋‹ค.

์•„๊ทธ๋ผ์™ˆ์€ โ€œllama.cpp์™€ GGUF ๋ชจ๋ธ ํฌ๋งท ๊ฐ™์€ ํ”„๋กœ์ ํŠธ๋Š” ๋‹ค์–‘ํ•œ ์†Œ๋น„์ž์šฉ ๋””๋ฐ”์ด์Šค์—์„œ ๊ณ ์„ฑ๋Šฅ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ณ  ์žˆ๋‹ค. MLC LLM๊ณผ ์›นLLM(WebLLM) ์—ญ์‹œ ์›น ๋ธŒ๋ผ์šฐ์ €์™€ ๋‹ค์–‘ํ•œ ๋„ค์ดํ‹ฐ๋ธŒ ํ”Œ๋žซํผ์—์„œ AI๋ฅผ ์ง์ ‘ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์žฅํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ํ˜ธํ™˜์„ฑ

์—ฃ์ง€ AI๊ฐ€ ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ์ƒํƒœ๊ณ„ ๋ฐ ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค์™€์˜ ํ˜ธํ™˜์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ ์—ญ์‹œ ์ค‘์š”ํ•œ ๊ณผ์ œ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค. ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค๊ฐ€ ์ด๋ฏธ ์—ฃ์ง€ ํ™˜๊ฒฝ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋กœ๋Š” โ€˜์ž์ฒด ํ˜ธ์ŠคํŒ… AI๋ฅผ ์œ„ํ•œ ์˜คํ”ˆ์†Œ์Šค ํ‘œ์ค€โ€™์œผ๋กœ ์†Œ๊ฐœ๋˜๋Š” ์ผ€์ด์„œ๋ธŒ(KServe)๊ฐ€ ์žˆ๋‹ค. ์ผ€์ด์„œ๋ธŒ๋Š” ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค ํ™˜๊ฒฝ์—์„œ ์—ฃ์ง€ ์ถ”๋ก ์„ ์ง€์›ํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋‹ค.

๋˜ ๋‹ค๋ฅธ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋กœ๋Š” ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ์ปดํ“จํŒ… ์žฌ๋‹จ(CNCF)์ด ์šด์˜ํ•˜๋Š” ์ƒŒ๋“œ๋ฐ•์Šค ํ”„๋กœ์ ํŠธ ์•„ํฌ๋ฆฌ(Akri)๊ฐ€ ๊ผฝํžŒ๋‹ค. ์ˆ˜์„ธ์˜ ๋ฐ”์‹ค์€ โ€œ์•„ํฌ๋ฆฌ๋Š” ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ ๋‹ค์–‘ํ•œ ๋™์  ๋””๋ฐ”์ด์Šค์™€ ๊ฐ„ํ—์ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜๋Š” ๋ฆฌํ”„ ๋””๋ฐ”์ด์Šค๋ฅผ ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค์—์„œ ์‰ฝ๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“ ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์•„ํฌ๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜๋ฉด IP ์นด๋ฉ”๋ผ, ์„ผ์„œ, USB ๋””๋ฐ”์ด์Šค ๋“ฑ ๋‹ค์–‘ํ•œ ์—”๋“œํฌ์ธํŠธ๋ฅผ ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค ๋ฆฌ์†Œ์Šค๋กœ ๋…ธ์ถœํ•  ์ˆ˜ ์žˆ์–ด, ํ•ด๋‹น ํ•˜๋“œ์›จ์–ด์— ์˜์กดํ•˜๋Š” ์—ฃ์ง€ AI ์›Œํฌ๋กœ๋“œ๋ฅผ ๋ณด๋‹ค ์†์‰ฝ๊ฒŒ ๋ฐฐํฌํ•˜๊ณ  ์ฟ ๋ฒ„๋„คํ‹ฐ์Šค์—์„œ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ฐœ๋ฐฉํ˜• ํ‘œ์ค€

๋งˆ์ง€๋ง‰์œผ๋กœ ์—ฃ์ง€ AI ํ™•์‚ฐ ๊ณผ์ •์—์„œ ๊ฐœ๋ฐฉํ˜• ์‚ฐ์—… ํ‘œ์ค€์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋ฐ”์‹ค์€ โ€œ๋น ๋ฅด๊ฒŒ ํ™•์žฅ๋˜๊ณ  ์žˆ๋Š” ์—ฃ์ง€ AI ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด ํ™˜๊ฒฝ์€ ์‹ฌ๊ฐํ•œ ์ƒํ˜ธ์šด์šฉ์„ฑ ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ๋ฆฌ๋ˆ…์Šค ์žฌ๋‹จ์ด ์ฃผ๋„ํ•˜๋Š” ๋งˆ๊ณ (Margo)์™€ ๊ฐ™์€ ํ”„๋กœ์ ํŠธ๊ฐ€ ์‚ฐ์—…์šฉ ์—ฃ์ง€ ์ž๋™ํ™” ๋ถ„์•ผ์—์„œ ํ‘œ์ค€์„ ์ •๋ฆฝํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๋‚ด๋‹ค๋ดค๋‹ค.

์ด์™€ ํ•จ๊ป˜ ONNX๋„ ์˜จ๋””๋ฐ”์ด์Šค AI ์ถ”๋ก ์„ ์œ„ํ•œ ๊ฒฝ์Ÿ ํ”„๋ ˆ์ž„์›Œํฌ ๊ฐ„ ์ƒํ˜ธ์šด์šฉ์„ฑ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋„์›€์ด ๋  ํ‘œ์ค€์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค.

์—ฃ์ง€ AI์˜ ํ˜„์‹ค์  ์žฅ๋ฒฝ

๊ธฐ์ˆ  ์ž์ฒด๋Š” ์ด๋ฏธ ๋งˆ๋ จ๋ผ ์žˆ์ง€๋งŒ, ์—ฃ์ง€ AI๋ฅผ ์‹ค์ œ๋กœ ์šด์˜ํ•˜๋Š” ๋ฐฉ์‹์€ ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋‹ค. ๊ฐœ๋… ์ฆ๋ช… ์ˆ˜์ค€์—์„œ ๋ฒ—์–ด๋‚˜ ์—ฃ์ง€ AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋ณธ๊ฒฉ์ ์ธ ์šด์˜ ํ™˜๊ฒฝ์œผ๋กœ ์˜ฎ๊ธฐ๊ธฐ๊นŒ์ง€๋Š” ์—ฌ๋Ÿฌ ๊ณผ์ œ๋ฅผ ๊ทน๋ณตํ•ด์•ผ ํ•œ๋‹ค.

์•„๊ทธ๋ผ์™ˆ์€ โ€œ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋Š” ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค๊ฐ€ ์ง€๋‹Œ ์ž์› ์ œ์•ฝโ€์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ง‰๋Œ€ํ•œ ์—ฐ์‚ฐ ์ž์›์„ ์š”๊ตฌํ•˜๋Š” ํฌ๊ณ  ๋ณต์žกํ•œ AI ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ๋”ฐ๋ฅธ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ž์›์ด ์ œํ•œ๋œ ํ•˜๋“œ์›จ์–ด ํ™˜๊ฒฝ์— ๋งž๊ฒŒ ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ์ตœ์ ํ™”ํ•˜๋ฉด์„œ๋„, ์‚ฌ์šฉ์ž๊ฐ€ ๊ธฐ๋Œ€ํ•˜๋Š” ๊ณ ์„ฑ๋Šฅ ์ƒ์œ„ ๋ชจ๋ธ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋ฅผ ์œ ์ง€ํ•ด์•ผ ํ•œ๋‹ค๋Š” ์  ์—ญ์‹œ ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œ๋‹ค.

๋˜ํ•œ ์—ฃ์ง€ AI ์šด์˜์— ๋Œ€ํ•œ ์‹ค๋ฌด ๊ฒฝํ—˜๋„ ์•„์ง ์ถฉ๋ถ„ํžˆ ์ถ•์ ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ฐ์ด๋น„๋“œ๋Š” โ€œํŠนํ™”๋œ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค๋Š” ํ•˜๋“œ์›จ์–ด ๊ตฌ์„ฑ์ด ๋ณต์žกํ•˜๊ณ , ๋Œ€๋ถ€๋ถ„ ์ฆ‰์‹œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ƒํƒœ๋กœ ๋™์ž‘ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์ด ์ฃผ์š” ์žฅ์• ๋ฌผโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ์ตœ์ „๋ฐฉ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๊ณ  ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋ฉฐ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์—”๋“œํˆฌ์—”๋“œ ํ”Œ๋žซํผ์ด ๋ถ€์กฑํ•ด, ํ˜„์žฌ๋กœ์„œ๋Š” ๋ณต์žกํ•œ ์ˆ˜์ž‘์—… ๋ฐฉ์‹์— ์˜์กดํ•  ์ˆ˜๋ฐ–์— ์—†๋Š” ์ƒํ™ฉ์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๋ฐ”์‹ค์€ โ€œ์—ฃ์ง€ AI์˜ ์ฃผ์š” ๊ณผ์ œ๋Š” ํŒŒํŽธํ™”๋œ ์ƒํƒœ๊ณ„โ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค. ๊ทธ๋Š” โ€œํ‘œ์ค€ํ™”๋˜๊ณ  ์„ฑ์ˆ™ํ•œ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ๊ณผ ๋‹ฌ๋ฆฌ, ์—ฃ์ง€ AI๋Š” ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด, ํ†ต์‹  ํ”„๋กœํ† ์ฝœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๊ณตํ†ต๋œ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ๋ถ€์กฑํ•˜๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฐ์—… ์ „๋ฐ˜์˜ ํŒŒํŽธํ™”๋Š” ๋””๋ฐ”์ด์Šค๋ณ„๋กœ ๊ฒฝ์Ÿ์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด์™€ ๊ธฐ์ˆ ์„ ์–‘์‚ฐํ•˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ ์—ฃ์ง€ ํ™˜๊ฒฝ์—์„œ๋Š” ํ˜ธํ™˜์„ฑ ๋ฌธ์ œ์™€ ๊ฐœ๋ณ„ ๋งž์ถคํ˜• ํ•ด๊ฒฐ์ฑ…์ด ๋’ค๋”ฐ๋ฅด๊ฒŒ ๋œ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ ๋ถ„์‚ฐ๋œ AI ๋ชจ๋ธ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ๋ฌธ์ œ๋„ ๋ณต์žกํ•œ ์šด์˜ ๊ณผ์ œ๋กœ ๊ผฝํžŒ๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œ์ˆ˜๋งŽ์€ ๋””๋ฐ”์ด์Šค์— ๋ฐฐํฌ๋œ ๋ชจ๋ธ์„ ๋Œ€์ƒ์œผ๋กœ ๋ณด์•ˆ ์—…๋ฐ์ดํŠธ์™€ ๋ฒ„์ „ ๊ด€๋ฆฌ, ์„ฑ๋Šฅ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ์ž‘์—…โ€์ด๋ผ๋ฉฐ โ€œ์—ฃ์ง€ AI๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์—…์ด ๋ฐ˜๋“œ์‹œ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ด๋Ÿฌํ•œ ์žฅ๋ฒฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ „๋ฌธ๊ฐ€๋“ค์€ ๋ช‡ ๊ฐ€์ง€ ์‹ค์ฒœ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ–ˆ๋‹ค.

  • ์—ฐ๊ฒฐ์„ฑ์ด ๋‚ฎ์€ ํ™˜๊ฒฝ์—์„œ์˜ ์ถ”๋ก ๊ณผ ๊ฐ™์ด ์—ฃ์ง€ AI๊ฐ€ ์ ํ•ฉํ•œ ๊ฒฝ์šฐ์— ํ•œํ•ด ๋„์ž….
  • ๋น„๊ธฐ์ˆ  ๋ถ„์•ผ ๋ฆฌ๋”๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ง€์†์ ์œผ๋กœ ์ „๋‹ฌ.
  • ์ „๋ฉด์ ์ธ ์—ฃ์ง€ ๋˜๋Š” ํด๋ผ์šฐ๋“œ ๋ฐฐํฌ ๋Œ€์‹  ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ „๋žต์„ ๊ณ ๋ ค.
  • ์•„ํ‚คํ…์ฒ˜ ์ฐจ์›์—์„œ ์†Œํ”„ํŠธ์›จ์–ด ๊ณ„์ธต์„ ํŠน์ • ํ•˜๋“œ์›จ์–ด ์˜์กด์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ๋ถ„๋ฆฌ.
  • ์—ฃ์ง€ ํ™˜๊ฒฝ์˜ ์ œ์•ฝ์— ์ตœ์ ํ™”๋œ ๋ชจ๋ธ์„ ์„ ํƒ.
  • ์—…๋ฐ์ดํŠธ, ๋ชจ๋‹ˆํ„ฐ๋ง, ์œ ์ง€๋ณด์ˆ˜๋ฅผ ํฌํ•จํ•œ ์ „์ฒด ๋ชจ๋ธ ์ˆ˜๋ช… ์ฃผ๊ธฐ๋ฅผ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ๊ตฌ์ƒ.

์ค‘์•™ ์ง‘์ค‘ํ˜•์—์„œ ๋ถ„์‚ฐ ์ง€๋Šฅ์œผ๋กœ

์—ฃ์ง€ AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋น ๋ฅด๊ฒŒ ๋†’์•„์ง€๊ณ  ์žˆ์ง€๋งŒ, ๋Œ€์•ˆํ˜• ํด๋ผ์šฐ๋“œ๋กœ์˜ ์ „ํ™˜ ํ๋ฆ„๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ „๋ฌธ๊ฐ€๋“ค์€ ๋กœ์ปฌ ์ฒ˜๋ฆฌ๊ฐ€ ์ค‘์•™ ์ง‘์ค‘ํ˜• ํด๋ผ์šฐ๋“œ์— ๋Œ€ํ•œ ์˜์กด๋„๋ฅผ ์˜๋ฏธ ์žˆ๊ฒŒ ๋‚ฎ์ถ”์ง€๋Š” ์•Š์„ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ  ์žˆ๋‹ค. ์А๋ผ์ด์–ด-์Šค๋ฏธ์Šค๋Š” โ€œ์—ฃ์ง€ AI๊ฐ€ ๋ณธ๊ฒฉ์ ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๋Š” ์‹œ์ ์€ ์˜ค๊ฒ ์ง€๋งŒ, ๋„์ž… ์†๋„๋Š” ํด๋ผ์šฐ๋“œ์— ๋น„ํ•ด ๋’ค์ฒ˜์งˆ ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—ฃ์ง€ AI๋Š” ํผ๋ธ”๋ฆญ ํด๋ผ์šฐ๋“œ๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ๋ณด๋‹ค๋Š” ์ƒˆ๋กœ์šด ์—ญ๋Ÿ‰์„ ๋”ํ•ด ๋ณด์™„ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค. ๋ฐ”์‹ค์€ โ€œ๊ธฐ์กด ์ธํ”„๋ผ๋ฅผ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์—ฃ์ง€์— AI๋ฅผ ๋ฐฐ์น˜ํ•ด ๋” ๋˜‘๋˜‘ํ•˜๊ณ  ํšจ์œจ์ ์ด๋ฉฐ ๋ฐ˜์‘์„ฑ์ด ๋†’์€ ํ™˜๊ฒฝ์„ ๋งŒ๋“œ๋Š” ๋ฐฉ์‹์ด ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ์šด์˜์ฒด์ œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์—”๋“œํฌ์ธํŠธ๋ฅผ ๋ณด์™„ํ•˜๊ฑฐ๋‚˜, ์˜จํ”„๋ ˆ๋ฏธ์Šค ์„œ๋ฒ„ ์šด์˜์„ ์ตœ์ ํ™”ํ•˜๋Š” ํ˜•ํƒœ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค.

์ „๋ฌธ๊ฐ€๋“ค์€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์˜ ์—ญํ• ๊ณผ ์—ญ๋Ÿ‰์ด ๋‹จ๊ธฐ๊ฐ„ ๋‚ด ํฌ๊ฒŒ ๊ฐ•ํ™”๋  ๊ฒƒ์ด๋ผ๊ณ  ์˜๊ฒฌ์„ ๋ชจ์•˜๋‹ค. ์•„๊ทธ๋ผ์™ˆ์€ โ€œํ•˜๋“œ์›จ์–ด์™€ ์ตœ์ ํ™”๋œ ๋ชจ๋ธ, ๋ฐฐํฌ ํ”Œ๋žซํผ์ด ๋น ๋ฅด๊ฒŒ ๋ฐœ์ „ํ•˜๋ฉด์„œ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท, ๋ชจ๋ฐ”์ผ ๋””๋ฐ”์ด์Šค, ์ผ์ƒ์ ์ธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ „๋ฐ˜์— AI๊ฐ€ ๋”์šฑ ๊นŠ์ด ํ†ตํ•ฉ๋˜๋Š” ๋ชจ์Šต์„ ๋ณด๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์ด์–ด ๊ทธ๋Š” โ€œ์•ž์œผ๋กœ ์—ฃ์ง€ AI๋Š” ๋น ๋ฅธ ์„ฑ์žฅ์„ ์•ž๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ๋ถ„์‚ฐ๋˜๊ณ  ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์ ์ธ ์ง€๋Šฅ์œผ๋กœ์˜ ๊ทผ๋ณธ์ ์ธ ์ „ํ™˜์„ ์ด๋Œ ๊ฒƒโ€์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค.
dl-ciokorea@foundryco.com

๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ ์†”๋ฃจ์…˜ ๊ธฐ์—… ์—˜ํ‹ฐ์ œ๋กœ, ํ•œ๊ตญ ์‹œ์žฅ ์ง„์ถœ ๋ฐ ํ™์„ฑํ™” ์ง€์‚ฌ์žฅ ์„ ์ž„

20 January 2026 at 03:01

ํ™์„ฑํ™” ์ง€์‚ฌ์žฅ์€ IBM, ์ฌ๋งˆ์ดํฌ๋กœ์‹œ์Šคํ…œ์ฆˆ, ๋ฆฌ๋ฒ„๋ฒ ๋“œ, ํ€€ํ…€ ๋“ฑ ๊ธ€๋กœ๋ฒŒ IT ๊ธฐ์—…์—์„œ ์˜์—… ์ด๊ด„์„ ๋งก์•„ ์™”์œผ๋ฉฐ, 25๋…„ ์ด์ƒ ์˜์—… ๋ฐ ์กฐ์ง ๊ด€๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ฒฝ๋ ฅ์„ ์Œ“์•„์˜จ ์ธ๋ฌผ์ด๋‹ค.

์—˜ํ‹ฐ์ œ๋กœ๋Š” AI, ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ…(HPC), ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ์›Œํฌ๋กœ๋“œ ํ™•์‚ฐ์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ํ†ตํ•ฉ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฃผ์š” ์ œํ’ˆ์œผ๋กœ๋Š” ํ†ตํ•ฉ ์Šคํ† ๋ฆฌ์ง€ ํ”Œ๋žซํผ, ํด๋ผ์šฐ๋“œ ์—ฐ๋™ ํ…Œ์ดํ”„ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ, ์•„์นด์ด๋ธŒ ์ธ ์–ด ๋ฐ•์Šค(Archive in a Box), S3 ํ…Œ์ดํ”„ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๊ฐ€ ์žˆ๋‹ค.

์—˜ํ‹ฐ์ œ๋กœ์˜ ํ™์„ฑํ™” ์ง€์‚ฌ์žฅ์€ โ€œํ•œ๊ตญ์€ ๊ธ€๋กœ๋ฒŒ ๊ธˆ์œต, ๊ณต๊ณต, ์—ฐ๊ตฌยท๊ต์œก, ๋ฏธ๋””์–ดยท์—”ํ„ฐํ…Œ์ธ๋จผํŠธ, ์ œ์กฐ ์‚ฐ์—…์˜ ํ•ต์‹ฌ ๊ฑฐ์ ์œผ๋กœ์„œ, ๋ฐ์ดํ„ฐ ์ธํ”„๋ผ์˜ ์ค‘์š”์„ฑ์ด ๊ทธ ์–ด๋А ๋•Œ๋ณด๋‹ค ์ปค์ง„ ์‹œ์žฅ์ด๋‹คโ€๋ผ๋ฉฐ โ€œ์—˜ํ‹ฐ์ œ๋กœ๋Š” ํ•œ๊ตญ ๊ธฐ์—…๋“ค์ด ๋””์ง€ํ„ธ ์ „ํ™˜ ์ „๋žต์„ ์ถ”์ง„ํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐ์ดํ„ฐ ์„ฑ๋Šฅ, ๋ณดํ˜ธ ๋ฐ ๋น„์šฉ ํšจ์œจ์„ฑ ์‚ฌ์ด์˜ ํƒ€ํ˜‘ ์—†์ด ์ตœ์ ์˜ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ˜„์ง€ ๋งž์ถคํ˜• ์†”๋ฃจ์…˜๊ณผ ํ˜„์ง€ ์ง€์› ์ฒด๊ณ„๋ฅผ ๊ฐ•ํ™”ํ•ด ๋‚˜๊ฐˆ ๊ฒƒ์ด๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

ํ•œํŽธ ์—˜ํ‹ฐ์ œ๋กœ๋Š” 19์ผ ์„œ์šธ ๊ฐ•๋‚จ ํ˜„๋Œ€์•„์ดํŒŒํฌ(HDC)ํƒ€์›Œ ํฌ๋‹ˆ์ •ํ™€์—์„œ โ€˜LT์ œ๋กœ ํ•œ๊ตญ ์‹œ์žฅ ๊ณต์‹ ๋Ÿฐ์นญ ํŒŒํŠธ๋„ˆ ์ดˆ์ฒญ ์„ธ๋ฏธ๋‚˜โ€™๋ฅผ ๊ฐœ์ตœํ–ˆ๋‹ค. ํ–‰์‚ฌ์—๋Š” ๊ตญ๋‚ด ์ฃผ์š” ํŒŒํŠธ๋„ˆ์‚ฌ์™€ ๊ธฐ์—… IT ๋ฆฌ๋”๋“ค์ด ์ฐธ์„ํ•ด LT์ œ๋กœ์˜ ํ•œ๊ตญ ์‹œ์žฅ ์ง„์ถœ ๋ฐฉํ–ฅ๊ณผ ์ฐจ์„ธ๋Œ€ ๋ฐ์ดํ„ฐ ์Šคํ† ๋ฆฌ์ง€ยท์•„์นด์ด๋ธŒ ์ „๋žต์„ ๊ณต์œ ํ–ˆ๋‹ค. ๋”๋ถˆ์–ด ์ด๋‚  ์ž๋ฆฌ์—๋Š” LT์ œ๋กœ ํšŒ์žฅ ์—๋“œ๋จผ๋“œ ํ…Œ์ด๋ฅผ ๋น„๋กฏํ•œ ๋ณธ์‚ฌ ์ฃผ์š” ์ž„์›์ง„์ด ์ฐธ์„ํ–ˆ๋‹ค.

์—˜ํ‹ฐ์ œ๋กœ๋Š” ์‹ฑ๊ฐ€ํฌ๋ฅด์— ๋ณธ์‚ฌ๋ฅผ ๋‘๊ณ  ์•„์‹œ์•„ ์ฃผ์š” ๋„์‹œ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์„ธ์ผ์ฆˆ ๋ฐ ๊ณ ๊ฐ ์ง€์› ์ฒด๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•ด ์™”๋‹ค. ์ด๋ฒˆ ํ•œ๊ตญ ์‹œ์žฅ ์ง„์ถœ์„ ๊ณ„๊ธฐ๋กœ ๊ธˆ์œต, ๊ณต๊ณต, ์—ฐ๊ตฌยท๊ต์œก, ๋ฏธ๋””์–ดยท์—”ํ„ฐํ…Œ์ธ๋จผํŠธ, ์ œ์กฐ ๋“ฑ ๋ฐ์ดํ„ฐ ์ง‘์•ฝ์  ์‚ฐ์—…์„ ์ค‘์‹ฌ์œผ๋กœ ์‚ฌ์—…์„ ์ „๊ฐœํ•  ๊ณ„ํš์ด๋‹ค.
dl-ciokorea@foundryco.com

์นผ๋Ÿผ | 2026๋…„ IT ์ „๋žต์— ์•ž์„œ โ€˜ํ‘œ์ค€ ์šด์˜์ ˆ์ฐจโ€™๋ฅผ ์†๋ด์•ผ ํ•  ์ด์œ 

20 January 2026 at 02:43

์ˆ˜์‹ญ ๋…„ ๋™์•ˆ IT ์šด์˜ ๋งค๋‰ด์–ผ์€ ๋Œ€๊ฐœ 50ํŽ˜์ด์ง€ ๋ถ„๋Ÿ‰์˜ ๋นฝ๋นฝํ•œ PDF ๋ฌธ์„œ์˜€๋‹ค. ์‚ฌ๋žŒ์ด ๋งŒ๋“ค๊ณ  ์‚ฌ๋žŒ์ด ์ฝ๋„๋ก ์„ค๊ณ„๋œ ๋ฌธ์„œ๋Š”, ๊ฐ์‚ฌ๊ฐ€ ํ•„์š”ํ•ด์งˆ ๋•Œ๊นŒ์ง€ ๋””์ง€ํ„ธ ์ €์žฅ์†Œ ์–ด๋”˜๊ฐ€์—์„œ ๋ฐฉ์น˜๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 2026๋…„์— ์ ‘์–ด๋“  ์ง€๊ธˆ, ์ „ํ†ต์ ์ธ SOP๋Š” ์‚ฌ์‹ค์ƒ ์ˆ˜๋ช…์„ ๋‹คํ•œ ์ƒํƒœ๋‹ค. ์ด์ œ ์ด ๋งค๋‰ด์–ผ์˜ ์ฃผ๋œ ์‚ฌ์šฉ์ž๊ฐ€ ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์‹œ์Šคํ…œ์€ ์ ์  ๋” ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜์œผ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ๋‹จ์ˆœํžˆ ๋Œ€์‹œ๋ณด๋“œ๋ฅผ ๊ฐ์‹œํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ์Šค์Šค๋กœ ์‚ฌ๊ณ ํ•˜๊ณ  ๊ณ„ํšํ•˜๋ฉฐ ์ธํ”„๋ผ ๋‚ด ๋ณ€๊ฒฝ์„ ์‹คํ–‰ํ•˜๋Š” ์ž์œจํ˜• ์—์ด์ „ํŠธ๊ฐ€ ๋ฐฐ์น˜๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค ์—์ด์ „ํŠธ๋Š” PDF ๋ฌธ์„œ๋ฅผ ์ฝ์„ ์ˆ˜ ์—†๊ณ , ๋ฒ•๋ฅ  ์šฉ์–ด๋กœ ์ž‘์„ฑ๋œ ๋ณด์•ˆ ์ •์ฑ…์˜ ์ทจ์ง€๋ฅผ ํ•ด์„ํ•˜์ง€๋„ ๋ชปํ•œ๋‹ค. ์ž์œจํ˜• IT ์‹œ๋Œ€์— ํ†ต์ œ๋ ฅ์„ ์œ ์ง€ํ•˜๋ ค๋ฉด ๊ณ ์ •๋œ ๊ทœ์น™์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ  โ€˜์—์ด์ „ํŠธ ํ—Œ๋ฒ•โ€™, ์ฆ‰ ์•คํŠธ๋กœํ”ฝ์ด ์ œ์‹œํ•œ โ€˜ํ—Œ๋ฒ• ์ค‘์‹ฌ AI(Constitutional AI)โ€™๋ฅผ ๊ธฐ์—… ํ™˜๊ฒฝ์— ์ ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” AI์˜ ๋ฌธ์ œ์ ์„ AI๊ฐ€ ์Šค์Šค๋กœ ๊ฒ€์ฆํ•˜๊ณ  ๊ณ ์น˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•œ๋‹ค.

๋ฌธ์„œ ์† ์ •์ฑ…์—์„œ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„๋œ ์ •์ฑ…์œผ๋กœ

๊ณผ๊ฑฐ IT ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ์‚ฌํ›„ ๋Œ€์‘๋งŒ ๊ฐ€๋Šฅํ•œ โ€˜์ฒดํฌ๋ฆฌ์ŠคํŠธโ€™ ๋ฐฉ์‹์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์˜ค๋Š˜๋‚  ๊ธฐ์—…์€ ์ •์ฑ…์„ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„ํ•˜๋Š” โ€˜PaC(Policy as Code)โ€™๋กœ์˜ ์ „ํ™˜์ด ํ•„์š”ํ•˜๋‹ค.

  • ์ „์ „๋‘์—ฝ ์—ญํ• : ์—์ด์ „ํŠธ ํ—Œ๋ฒ•์€ ์ž์œจ ์‹œ์Šคํ…œ ๊ธฐ๊ณ„๊ฐ€ ์ฝ์„ ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ณธ ์›์น™ ์ง‘ํ•ฉ์ด๋‹ค.
  • ์šด์˜ ๊ฒฝ๊ณ„: ์—์ด์ „ํŠธ๊ฐ€ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์—… ๋ฒ”์œ„์™€ ์ ˆ๋Œ€ ๋„˜์ง€ ๋ง์•„์•ผ ํ•  ์œค๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ๊ทœ์ •ํ•œ๋‹ค.
  • ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ๊ทœ์น™: ์ฝ”๋“œ๋กœ ๊ตฌํ˜„๋œ ๊ฐ•์ œ ๊ทœ์น™์˜ ์˜ˆ๋กœ๋Š” โ€˜ํ”ผํฌ ์‹œ๊ฐ„๋Œ€์—๋Š” ์ธ๊ฐ„ ๊ฐœ์ž… ํ† ํฐ ์—†์ด๋Š” ์šด์˜ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์ˆ˜์ •ํ•˜์ง€ ์•Š๋Š”๋‹คโ€™์™€ ๊ฐ™์€ ์›์น™์ด ์žˆ๋‹ค.
  • LLM ์ดํ•ด ๊ฐ€๋Šฅ์„ฑ: ์ด๋Ÿฌํ•œ ๊ทœ์น™์€ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜์„ ๋‹ด๋‹นํ•˜๋Š” LLM์ด ์ดํ•ดํ•˜๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฐ ์ „ํ™˜์€ ๊ทผ๋ณธ์ ์ธ ๋ณ€ํ™”๋ฅผ ์˜๋ฏธํ•œ๋‹ค. IT ์ „๋ฌธ๊ฐ€์˜ ์—ญํ• ์€ โ€˜์šด์˜์žโ€™์—์„œ โ€˜์˜๋„ ์„ค๊ณ„์žโ€™๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. IT ์ง์›์€ ๋” ์ด์ƒ ์‹œ์Šคํ…œ์„ ์ง์ ‘ ์กฐ์ž‘ํ•˜๋Š” ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๋ผ, ์ž์œจ ์‹œ์Šคํ…œ์ด ๋”ฐ๋ผ์•ผ ํ•  ํ–‰๋™ ๊ทœ์น™์„ ์„ค๊ณ„ํ•˜๋Š” ์ฃผ์ฒด๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค.

IT ์šด์˜์„ ์œ„ํ•œ ์ž์œจ์„ฑ ๊ณ„์ธต ๊ตฌ์กฐ

๊ธฐ์—…์ด โ€˜ํ‚ฌ ์Šค์œ„์น˜โ€™์— ๋Œ€ํ•œ ํ†ต์ œ๊ถŒ์„ ์œ ์ง€ํ•˜๋ฉด์„œ AI ์—ญ๋Ÿ‰์„ ํ™•์žฅํ•˜๋ ค๋ฉด, โ€˜์ž์œจ์„ฑ์˜ ๊ณ„์ธต ๊ตฌ์กฐโ€™์— ์ดˆ์ ์„ ๋งž์ถœ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋Š” 1978๋…„ ์—ฐ๊ตฌ์ž ํ† ๋จธ์Šค ์…ฐ๋ฆฌ๋˜์™€ ์œŒ๋ฆฌ์—„ ๋ฒ„ํ”Œ๋žญํฌ์˜ ๊ธฐ์ดˆ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐœ๋…์ด๋‹ค.

1๋‹จ๊ณ„: ์™„์ „ ์ž์œจํ™” ์˜์—ญ(๊ฐ€์žฅ ์‰ฝ๊ฒŒ ๋„์ž…ํ•  ์ˆ˜ ์žˆ๋Š” ์˜์—ญ)

  • ์ด๋Š” ์‚ฌ๋žŒ์ด ๊ฐœ์ž…ํ•˜๋Š” ๋น„์šฉ์ด ํ•ด๋‹น ์ž‘์—…์˜ ๊ฐ€์น˜๋ณด๋‹ค ๋” ํฐ ์—…๋ฌด๋ฅผ ์˜๋ฏธํ•œ๋‹ค.
  • ์‚ฌ๋ก€
    • ์ž๋™ ํ™•์žฅ
    • ๋กœ๊ทธ ๋กœํ…Œ์ด์…˜
    • ๊ธฐ๋ณธ ํ‹ฐ์ผ“ ๋ผ์šฐํŒ…
    • ์บ์‹œ ์ •๋ฆฌ
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ์‚ฌ์ „์— ์ •์˜๋œ ์ž„๊ณ„๊ฐ’ ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋™์ž‘ํ•˜๋Š” ํ†ต์ œ๋œ ์ž๋™ํ™” ์˜์—ญ(sandbox of trust)์—์„œ ๊ด€๋ฆฌ๋œ๋‹ค.

2๋‹จ๊ณ„: ๊ฐ๋…ํ˜• ์ž์œจํ™” ์˜์—ญ(์‚ฌ์ „ ํ™•์ธ ๊ตฌ๊ฐ„)

  • ์—์ด์ „ํŠธ๊ฐ€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘๊ณผ ๋ฌธ์ œ ์›์ธ ๋ถ„์„, ํ•ด๊ฒฐ ๋ฐฉ์•ˆ ๋„์ถœ ๋“ฑ ํ•ต์‹ฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ์ตœ์ข… ์‹คํ–‰ ๋‹จ๊ณ„์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ์Šน์ธ, ์ฆ‰ ํ™•์ธ ์ ˆ์ฐจ๊ฐ€ ํ•„์š”ํ•œ ๋‹จ๊ณ„๋‹ค.
  • ์‚ฌ๋ก€
    • ์‹œ์Šคํ…œ ํŒจ์น˜
    • ์‚ฌ์šฉ์ž ๊ณ„์ • ํ”„๋กœ๋น„์ €๋‹
    • ๋น„์ค‘์š” ์„ค์ • ๋ณ€๊ฒฝ
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ์—์ด์ „ํŠธ๋Š” ํ•ด๋‹น ์กฐ์น˜๋ฅผ ์™œ ์ˆ˜ํ–‰ํ•˜๋ ค๋Š”์ง€์— ๋Œ€ํ•œ ํŒ๋‹จ ๊ทผ๊ฑฐ, ์ฆ‰ ์ถ”๋ก  ๊ณผ์ •์„ ๊ด€๋ฆฌ์ž์—๊ฒŒ ์ œ์‹œํ•ด์•ผ ํ•œ๋‹ค.

3๋‹จ๊ณ„: ์‚ฌ๋žŒ ์ „์šฉ ์˜์—ญ

  • ์–ด๋–ค ์ƒํ™ฉ์—์„œ๋„ ์—์ด์ „ํŠธ๊ฐ€ ์ž์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•ด์„œ๋Š” ์•ˆ ๋˜๋Š”, ์‹œ์Šคํ…œ์˜ ์กด๋ฆฝ๊ณผ ์ง๊ฒฐ๋œ ํ•ต์‹ฌ ์ž‘์—…์„ ์˜๋ฏธํ•œ๋‹ค.
  • ์‚ฌ๋ก€
    • ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์‚ญ์ œ
    • ํ•ต์‹ฌ ๋ณด์•ˆ ์„ค์ • ์šฐํšŒ
    • ์—์ด์ „ํŠธ ํ—Œ๋ฒ• ์ž์ฒด์— ๋Œ€ํ•œ ์ˆ˜์ •
  • ๊ฑฐ๋ฒ„๋„Œ์Šค: ๋‹ค๋‹จ๊ณ„ ์ธ์ฆ(MFA) ๋˜๋Š” ๋ณต์ˆ˜ ์ธ์›์˜ ์ด์ค‘ ์Šน์ธ๊ณผ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ํ†ต์ œ ์ ˆ์ฐจ๋ฅผ ์ ์šฉํ•œ๋‹ค.

์ˆจ๊ฒจ์ง„ ๊ณต๊ฒฉ ํ‘œ๋ฉด ์ค„์ด๊ธฐ

์ค‘์•™ํ™”๋œ ํ—Œ๋ฒ• ์ฒด๊ณ„๋ฅผ ๊ตฌํ˜„ํ•˜๋ฉด, ์ค‘์•™ IT์˜ ๊ด€๋ฆฌ ๋ฐ ๊ฐ๋… ์—†์ด ๋ฐฐํฌ๋˜๋Š” ์„€๋„์šฐ AI ์—์ด์ „ํŠธ๋กœ ์ธํ•œ ๋ฆฌ์Šคํฌ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

  • ํ†ตํ•ฉ API: ๋ชจ๋“  ์—์ด์ „ํŠธ๋Š” ํ•ต์‹ฌ ์ธํ”„๋ผ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ธฐ ์ „์— ํ•ด๋‹น ์šด์˜ ์›์น™ ์ฒด๊ณ„์— ๋”ฐ๋ผ ์ธ์ฆ์„ ๊ฑฐ์ณ์•ผ ํ•œ๋‹ค.
  • ์ปดํ”Œ๋ผ์ด์–ธ์Šค ์ด๋ ฅ: ์ด๋ฅผ ํ†ตํ•ด SOC2๋‚˜ EU AI ๋ฒ•๊ณผ ๊ฐ™์€ ๊ทœ์ œ ๋Œ€์‘์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์•™ํ™”๋œ ๊ฐ์‚ฌ ์ด๋ ฅ์ด ์ƒ์„ฑ๋œ๋‹ค.
  • ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์˜์‚ฌ๊ฒฐ์ •: ์ž์œจ์ ์œผ๋กœ ๋‚ด๋ ค์ง„ ํŒ๋‹จ๊ณผ ์‹คํ–‰์— ๋Œ€ํ•œ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๊ธฐ๋ก์„ ์ถ•์ ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ธฐ๊ณ„ ์ค‘์‹ฌ ์„ธ๊ณ„ ์† ์‚ฌ๋žŒ์˜ ๋ชฉ์†Œ๋ฆฌ

์ด๋ฅธ๋ฐ” โ€˜ํ—Œ๋ฒ•โ€™์€ ์ฝ”๋“œ๊ฐ€ ์•„๋‹ˆ๋ผ, ์—”์ง€๋‹ˆ์–ด์˜ ๊ฒฝํ—˜๊ณผ ํŒ๋‹จ์ด ์ง‘์•ฝ๋œ ์‚ฌ๋žŒ์˜ ๋ฌธ์„œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ๋žŒ์˜ ์—ญํ• ์€ ์—ฌ์ „ํžˆ ์ค‘์š”ํ•˜๋‹ค.

  • ์˜๋„ ์„ค๊ณ„์ž: IT ์ „๋ฌธ๊ฐ€์˜ ์—ญํ• ์€ โ€˜์šด์˜์žโ€™์—์„œ โ€˜์˜๋„์˜ ์„ค๊ณ„์žโ€™๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค.
  • ๋ฌธํ™”์  ์ „ํ™˜: IT ํŒ€์€ ๊ฐœ์ธ์ด ๋‚˜์„œ์„œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์—์„œ ๋ฒ—์–ด๋‚˜, ์‹œ์Šคํ…œ ์ค‘์‹ฌ์˜ ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ฌธํ™”๋กœ ์ „ํ™˜ํ•ด์•ผ ํ•œ๋‹ค.

โ€˜ํ—Œ๋ฒ• ์ œ์ • ํšŒ์˜โ€™๋ฅผ ์‹œ์ž‘ํ•  ๋•Œ

2020๋…„๋Œ€ ํ›„๋ฐ˜์—๋„ PDF ํ˜•์‹์˜ ๊ธฐ์กด SOP์— ์˜์กดํ•œ๋‹ค๋ฉด, IT ์šด์˜์€ ๋น„์ฆˆ๋‹ˆ์Šค์˜ ๋ฐœ๋ชฉ์„ ์žก๋Š” ๋ณ‘๋ชฉ์œผ๋กœ ์ „๋ฝํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค.

์ง€๊ธˆ ๋ฐ”๋กœ ์ทจํ•ด์•ผ ํ•  ๋‹จ๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ๋ ˆ๋“œ๋ผ์ธ ์ •์˜: ์ˆ˜์„ ์•„ํ‚คํ…ํŠธ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ 3๋‹จ๊ณ„ ์˜์—ญ์˜ ๊ฒฝ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์„ค์ •ํ•œ๋‹ค.
  • ์ž๋™ํ™” ์„ฑ๊ณผ ๋„์ถœ: ์ฆ‰์‹œ ์ž๋™ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•œ 1๋‹จ๊ณ„ ์—…๋ฌด๋ฅผ ์‹๋ณ„ํ•œ๋‹ค.
  • ์ „๋žต์— ์ง‘์ค‘: ์‚ฌ๋žŒ์€ ๋ด‡์„ ๊ฐ์‹œํ•˜๋Š” ๋ฐ ์‹œ๊ฐ„์„ ์“ฐ๋Š” ๋Œ€์‹ , ์ „๋žต๊ณผ ํ˜์‹ ์— ์ง‘์ค‘ํ•˜๋„๋ก ๋ฐฉํ–ฅ์„ ์ „ํ™˜ํ•œ๋‹ค.

dl-ciokorea@foundryco.com

ํด๋ฆญํ•˜์šฐ์Šค, ๋žญํ“จ์ฆˆ ์ธ์ˆ˜ ๋ฐœํ‘œยทยทยท๋ฐ์ดํ„ฐ ํ”Œ๋žซํผ AI ๊ฒฝ์Ÿ ๊ฐ€์†ํ™”

20 January 2026 at 02:33

์˜คํ”ˆ์†Œ์Šค ์ปฌ๋Ÿผ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๊ธฐ์—…์ธ ํด๋ฆญํ•˜์šฐ์Šค(ClickHouse)๊ฐ€ ์˜คํ”ˆ์†Œ์Šค LLM ์—”์ง€๋‹ˆ์–ด๋ง ํ”Œ๋žซํผ ๋žญํ“จ์ฆˆ(Langfuse)๋ฅผ ์ธ์ˆ˜ํ•œ๋‹ค๊ณ  ๋ฐœํ‘œํ–ˆ๋‹ค. ์ด๋กœ์จ ์˜จ๋ผ์ธ ๋ถ„์„ ์ฒ˜๋ฆฌ์™€ AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•ด ์„ค๊ณ„๋œ ์ž์‚ฌ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์„œ๋น„์Šค์— ์˜ต์ €๋ฒ„๋นŒ๋ฆฌํ‹ฐ(observability) ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ–ˆ๋‹ค.

๋ถ„์„๊ฐ€๋“ค์€ ๋งŽ์€ ๊ธฐ์—…์ด LLM ๊ธฐ๋ฐ˜ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์œผ๋กœ ์ด์ „ํ•˜๋ ค๋Š” ์ƒํ™ฉ์—์„œ, ํด๋ฆญํ•˜์šฐ์Šค๊ฐ€ ์ด๋ฒˆ ๊ฑฐ๋ž˜๋ฅผ ํ†ตํ•ด ๋ณด๋‹ค ์™„์„ฑ๋„ ๋†’์€ ๋ฐ์ดํ„ฐยทAI ํ”Œ๋žซํผ์œผ๋กœ ๋„์•ฝํ•˜๋ ค๊ณ  ํ•œ๋‹ค๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค.

HFS๋ฆฌ์„œ์น˜์˜ ์• ์†Œ์‹œ์—์ดํŠธ ํ”„๋ž™ํ‹ฐ์Šค ๋ฆฌ๋” ์•…์ƒคํŠธ ํ‹ฐ์•„๊ธฐ๋Š” ํ”„๋กฌํ”„ํŠธ ์ถ”์ , ๋ชจ๋ธ ํ‰๊ฐ€, ๋น„์šฉ ๋ฐ ์ง€์—ฐ ์‹œ๊ฐ„ ์ถ”์  ๋“ฑ ๋žญํ“จ์ฆˆ์˜ ์˜ต์ €๋ฒ„๋นŒ๋ฆฌํ‹ฐ ๊ธฐ์ˆ ์ด ํด๋ฆญํ•˜์šฐ์Šค์˜ ํ•ต์‹ฌ ๊ฐ•์ ์ธ ๊ณ ์„ฑ๋Šฅ ๋ถ„์„ ์—ญ๋Ÿ‰์„ ์ง์ ‘์ ์œผ๋กœ ๋ณด์™„ํ•œ๋‹ค๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

ํ‹ฐ์•„๊ธฐ๋Š” ํด๋ฆญํ•˜์šฐ์Šค๊ฐ€ ๋žญํ“จ์ฆˆ๋ฅผ ์ธ์ˆ˜ํ•จ์œผ๋กœ์จ ๋ณ„๋„์˜ ๊ด€์ธก ๋„๊ตฌ์— ์˜์กดํ•˜์ง€ ์•Š๊ณ ๋„ ๋Œ€๊ทœ๋ชจ LLM ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ๋ฅผ ์šด์˜ ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฐ์ดํ„ฐ์™€ ํ•จ๊ป˜ ์ˆ˜์ง‘ยท์ €์žฅยท๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ๋„ค์ดํ‹ฐ๋ธŒ ๋ฐฉ์‹์„ ๊ณ ๊ฐ์—๊ฒŒ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํŒ€์€ ๋ชจ๋ธ ๋””๋ฒ„๊น… ์†๋„๋ฅผ ๋†’์ด๊ณ  ๋น„์šฉ์„ ํ†ต์ œํ•˜๋Š” ํ•œํŽธ, ๋ณด๋‹ค ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” AI ์›Œํฌ๋กœ๋“œ๋ฅผ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

๊ทธ๋ ˆ์ดํ•˜์šด๋“œ๋ฆฌ์„œ์น˜์˜ ์ˆ˜์„ ์• ๋„๋ฆฌ์ŠคํŠธ ์‚ฐ์นซ ๋น„๋ฅด ๊ณ ๊ธฐ์•„๋Š” ํด๋ฆญํ•˜์šฐ์Šค๊ฐ€ ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ ์ƒ์„ฑํ˜• AI๊ฐ€ ์‹ค์ œ๋กœ ํ•œ๊ณ„์— ๋ถ€๋”ชํžˆ๋Š” ์ง€์ ์— ๋Œ€์‘ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ๊ณ ๊ธฐ์•„๋Š” โ€œ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์—…์€ AI ๊ธฐ๋Šฅ์„ ๊ตฌ์ถ•ํ•˜์ง€ ๋ชปํ•ด์„œ ์‹คํŒจํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ด๋ฅผ ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•˜๊ณ  ์‹ ๋ขฐํ•˜์ง€ ๋ชปํ•˜๋ฉฐ ๋น„์šฉ์„ ๊ฐ๋‹นํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ๋ชจ๋ธ์€ ๋“œ๋ฆฌํ”„ํŠธ๋ฅผ ์ผ์œผํ‚ค๊ณ  ๋น„์šฉ์€ ๊ธ‰์ฆํ•˜์ง€๋งŒ, ๋น„์ฆˆ๋‹ˆ์Šค ์‚ฌ์šฉ์ž๋Š” ์˜์‚ฌ๊ฒฐ์ •์ด ์ •๋‹นํ•œ์ง€ ํŒ๋‹จํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ํด๋ฆญํ•˜์šฐ์Šค๋Š” ๋ฐ”๋กœ ์ด ์‚ฌ๊ฐ์ง€๋Œ€๋ฅผ ์ •ํ™•ํžˆ ๊ณต๋žตํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค.

๋˜ํ•œ ๊ณ ๊ธฐ์•„๋Š” โ€œ๋žญํ“จ์ฆˆ๋ฅผ ๋‚ด๋ถ€์— ๋‘๋ฉด์„œ ํด๋ฆญํ•˜์šฐ์Šค๊ฐ€ ๋ชจ๋“  LLM ํ˜ธ์ถœ์„ ๊ตฌ์กฐํ™”๋˜๊ณ  ์งˆ์˜ ๊ฐ€๋Šฅํ•œ ๊ธฐ๋ก์œผ๋กœ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋„๊ตฌ๋ฅผ ๊ฐ–์ถ”๊ฒŒ ๋๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์‚ฐ์—… ์ „๋ฐ˜์˜ ๋ณ€ํ™”

๋ถ„์„๊ฐ€๋“ค์€ ์ด๋ฒˆ ์ธ์ˆ˜๊ฐ€ ๋ฐ์ดํ„ฐ ์›จ์–ดํ•˜์šฐ์Šค์™€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋ฒค๋” ์ „๋ฐ˜์—์„œ AI ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„์˜ ์ฃผ๋„๊ถŒ์„ ํ™•๋ณดํ•˜๋ ค๋Š” ํ๋ฆ„์ด ํ™•์‚ฐ๋˜๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์—๋ฒ ๋ ˆ์ŠคํŠธ๊ทธ๋ฃน์˜ ์• ๋„๋ฆฌ์ŠคํŠธ ์ด์‹œ ํƒ€์ฟ ๋ฅด๋Š” ๊ธฐ์—…์ด ํŒŒ์ผ๋Ÿฟ ๋‹จ๊ณ„๋ฅผ ๋„˜์–ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์œผ๋กœ ์ด์ „ํ•˜๋ ค๋Š” ๊ณผ์ •์—์„œ, ๋ฒค๋”๊ฐ€ ์ฃผ๋กœ ๋ถ„์„์šฉ ๊ธฐ๋ก ์‹œ์Šคํ…œ ์—ญํ• ์— ๋จธ๋ฌผ๋˜ ์œ„์น˜์—์„œ ๋ฒ—์–ด๋‚˜ ์šด์˜ ์›Œํฌํ”Œ๋กœ๋ฅผ ์ง€์›ํ•˜๋Š” โ€˜์‹คํ–‰ ์‹œ์Šคํ…œโ€™์œผ๋กœ, ์Šคํƒ ์ƒ๋‹จ์œผ๋กœ ์ด๋™ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํ‹ฐ์•„๊ธฐ ์—ญ์‹œ ๋ฐ์ดํ„ฐ ์›จ์–ดํ•˜์šฐ์Šค์™€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋ฒค๋”๊ฐ€ โ€˜AI๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š”๊ฐ€โ€™๋ผ๋Š” ์งˆ๋ฌธ์—์„œ โ€˜AI๋ฅผ ์•ˆ์ „ํ•˜๊ณ  ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜๊ฒŒ, ๋Œ€๊ทœ๋ชจ๋กœ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€โ€™๋ผ๋Š” ๋‹จ๊ณ„๋กœ ์ธ์‹์„ ์ „ํ™˜ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

๊ฐ™์€ ๋งฅ๋ฝ์—์„œ ํƒ€์ฟ ๋ฅด๋Š” ์Šค๋…ธ์šฐํ”Œ๋ ˆ์ดํฌ(Snowflake)๊ฐ€ ์˜ต์ €๋ธŒ(Observe)๋ฅผ ์ธ์ˆ˜ํ•œ ์‚ฌ๋ก€์™€ ์ด๋ฒˆ ๊ฑฐ๋ž˜๋ฅผ ๋น„๊ตํ•ด ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ๋‘ ์ธ์ˆ˜ ์‚ฌ๋ก€๊ฐ€ ์„ ๋„์ ์ธ ๋ฐ์ดํ„ฐ ํ”Œ๋žซํผ ์ „๋ฐ˜์—์„œ ๊ณตํ†ต๋œ ์ „๋žต์  ๋ฐฉํ–ฅ์„ ๋ณด์—ฌ์ค€๋‹ค๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ์ €์žฅ์†Œ์— ํ†ตํ•ฉ๋œ ์˜ต์ €๋ฒ„๋นŒ๋ฆฌํ‹ฐ ๊ฒฝํ—˜์„ ๊ฒฐํ•ฉํ•ด, ์šด์˜ ๋ถ„์„ ์˜์—ญ์—์„œ ์ฆ๊ฐ€ํ•˜๋Š” ์ง€์ถœ์„ ๋” ๋งŽ์ด ํ™•๋ณดํ•˜๋ ค๋Š” ์›€์ง์ž„์ด๋ผ๋Š” ์„ค๋ช…์ด๋‹ค.

๊ณ ๊ธฐ์•„๋„ ์ด์— ๋™์˜ํ•˜๋ฉฐ, ํด๋ฆญํ•˜์šฐ์Šค์˜ ๋žญํ“จ์ฆˆ ์ธ์ˆ˜๊ฐ€ ์‚ฌ์šฉ์ž ๊ธฐ๋ฐ˜ ํ™•์žฅ์—๋„ ๊ธฐ์—ฌํ•  ๊ฒƒ์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๊ทธ๋™์•ˆ ํด๋ฆญํ•˜์šฐ์Šค๋Š” ์ฃผ๋กœ ๋ถ„์„๊ณผ ์ธํ”„๋ผ ํŒ€์„ ์ค‘์‹ฌ์œผ๋กœ ํ™œ์šฉ๋ผ ์™”๋‹ค. ๋žญํ“จ์ฆˆ๋ฅผ ํ†ตํ•ด AI ์—”์ง€๋‹ˆ์–ด๋ง, ํ”„๋กฌํ”„ํŠธ ์šด์˜, ์ œํ’ˆ ์ฑ…์ž„์ž, ๋‚˜์•„๊ฐ€ ๋ฆฌ์Šคํฌ ๋ฐ ์ปดํ”Œ๋ผ์ด์–ธ์Šค ํŒ€๊นŒ์ง€ ์ฆ‰๊ฐ์ ์ธ ๊ด€๋ จ์„ฑ์„ ํ™•๋ณดํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ๋งค์šฐ ํฐ ์‚ฌ์šฉ์ž์ธต ํ™•๋Œ€โ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํ•œํŽธ ๋ฐ์ดํ„ฐ๋ธŒ๋ฆญ์Šค๋ฅผ ๋น„๋กฏํ•œ ๋‹ค๋ฅธ ๊ฒฝ์Ÿ์‚ฌ๋“ค ์—ญ์‹œ ์˜ต์ €๋ฒ„๋นŒ๋ฆฌํ‹ฐ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค.

๊ธฐ์กด ๋žญํ“จ์ฆˆ ๊ณ ๊ฐ์— ๋Œ€ํ•œ ์ง€์› ์ง€์†

์ด๋ฒˆ ๊ฑฐ๋ž˜๋Š” ํด๋ฆญํ•˜์šฐ์Šค์˜ ์ „๋žต์  ๊ฐ•ํ™”๋ฟ ์•„๋‹ˆ๋ผ ๊ธฐ์กด ๋žญํ“จ์ฆˆ ๊ณ ๊ฐ์—๊ฒŒ๋„ ๊ธ์ •์ ์ธ ํšจ๊ณผ๋ฅผ ๊ฐ€์ ธ์˜ฌ ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค.

์–‘์‚ฌ๋Š” ๋žญํ“จ์ฆˆ ํฌํ„ธ์— ๊ฒŒ์‹œํ•œ ๊ณต์ง€๋ฅผ ํ†ตํ•ด ํด๋ฆญํ•˜์šฐ์Šค๊ฐ€ ๋žญํ“จ์ฆˆ๋ฅผ ์˜คํ”ˆ์†Œ์Šค ํ”„๋กœ์ ํŠธ๋กœ ๊ณ„์† ์ง€์›ํ•˜๊ณ , ๊ธฐ์กด ์‚ฌ์šฉ์ž์— ๋Œ€ํ•œ ์—ฐ์†์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ํ•œํŽธ ํด๋ฆญํ•˜์šฐ์Šค์˜ ๋ถ„์„ ์—”์ง„๊ณผ ๊ด€๋ฆฌํ˜• ์„œ๋น„์Šค์™€์˜ ๋ณด๋‹ค ๊ธด๋ฐ€ํ•œ ํ†ตํ•ฉ์„ ํ†ตํ•ด ํ”Œ๋žซํผ์„ ๋‹จ๊ณ„์ ์œผ๋กœ ๊ณ ๋„ํ™”ํ•  ๊ณ„ํš์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

์ด๋ฏธ ๋žญํ“จ์ฆˆ๋ฅผ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉ ์ค‘์ธ ๊ธฐ์—…์˜ ๊ฒฝ์šฐ, ์ด๋ฒˆ ์ธ์ˆ˜๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ์›Œํฌํ”Œ๋กœ์— ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋ฅผ ์š”๊ตฌ๋ฐ›์ง€ ์•Š์œผ๋ฉด์„œ๋„ ์žฅ๊ธฐ์ ์ธ ์•ˆ์ •์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํšŒ์‚ฌ ์ธก์€ ๋‚ด๋‹ค๋ดค๋‹ค.

๋žญํ“จ์ฆˆ๋Š” 2023๋…„ ํด๋ ˆ๋ฉ˜์Šค ๋ผ๋ฒ ๋ฅดํŠธ, ๋ง‰์Šค ๋‹ค์ดํžˆ๋งŒ, ๋งˆ๋ฅดํฌ ํด๋ง๊ฒ์ด ์„ค๋ฆฝํ•œ ์Šคํƒ€ํŠธ์—…์œผ๋กœ, ๋ผ์ดํŠธ์Šคํ”ผ๋“œ๋ฒค์ฒ˜์Šค, ์ œ๋„ˆ๋Ÿด์บํ„ธ๋ฆฌ์ŠคํŠธ, ์™€์ด์ฝค๋น„๋„ค์ดํ„ฐ์˜ ํˆฌ์ž๋ฅผ ๋ฐ›์•˜๋‹ค. ํ˜„์žฌ 13๋ช… ๊ทœ๋ชจ์˜ ํŒ€์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋งˆ์ผ€ํŒ…๊ณผ ์˜์—…์„ ์ „๋‹ดํ•˜๋Š” ๋‘ ๋ฒˆ์งธ ์‚ฌ๋ฌด์†Œ๋ฅผ ์ƒŒํ”„๋ž€์‹œ์Šค์ฝ”์— ๋‘๊ณ  ์žˆ๋‹ค.
dl-ciokorea@foundryco.com

์ผ๋ฌธ์ผ๋‹ต | ์ผ๋ณธ ์™ธ์‹ ๊ธฐ์—…์˜ ๊ธ€๋กœ๋ฒŒ ๋„์•ฝ, ํŠธ๋ฆฌ๋„๋ฅด CIO๊ฐ€ ๋งํ•˜๋Š” ๋ณ€ํ™”์— ๊ฐ•ํ•œ IT ์ „๋žต

20 January 2026 at 02:25

์šฐ๋™ ๋ธŒ๋žœ๋“œ ๋งˆ๋ฃจ๊ฐ€๋ฉ”์ œ๋ฉด ๋“ฑ์„ ์šด์˜ํ•˜๋Š” ์ผ๋ณธ ์™ธ์‹ ๊ธฐ์—… ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค๋Š” ๊ธ€๋กœ๋ฒŒ ์‹œ์žฅ ํ™•์žฅ์„ ๋ชฉํ‘œ๋กœ ๋””์ง€ํ„ธ๊ณผ IT ๊ธฐ๋ฐ˜์˜ ๊ฒฝ์˜ ํ˜์‹ ์— ์†๋„๋ฅผ ๋‚ด๊ณ  ์žˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์‹œ์Šคํ…œ ์ „๋ฉด ํ˜„๋Œ€ํ™”์™€ ์กฐ์ง ๊ฐœํŽธ, SaaSยทAI ํ™œ์šฉ๊นŒ์ง€ ์ง์ ‘ ์ด๋Œ์–ด ์˜จ CIO ์ด์†Œ๋ฌด๋ผ ์•ผ์Šค๋…ธ๋ฆฌ(็ฃฏๆ‘ๅบทๅ…ธ)๊ฐ€ ๋ฒค๋” ๊ฒฝํ—˜๊ณผ ๊ฒฝ์˜ ์‹œ๊ฐ์„ ๋ฐ”ํƒ•์œผ๋กœ ๋ณ€ํ™”์— ๊ฐ•ํ•œ ๊ธฐ์—… ๊ธฐ๋ฐ˜์„ ๊ตฌ์ถ•ํ•˜๋Š” ์ „๋žต๊ณผ ์ฒ ํ•™์„ ์ œ์‹œํ–ˆ๋‹ค.

Q(CIO์žฌํŒฌ) : ์ง€๊ธˆ๊นŒ์ง€์˜ ๊ฒฝ๋ ฅ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ด ๋‹ฌ๋ผ.
A(์ด์†Œ๋ฌด๋ผ ์•ผ์Šค๋…ธ๋ฆฌ) : ์ปค๋ฆฌ์–ด๋Š” ํ›„์ง€์“ฐ์—์„œ ์‹œ์ž‘ํ–ˆ๋‹ค. ์•ฝ 7๋…„ ๋™์•ˆ ์ฃผ๋กœ ๊ณต๊ณต ๋ถ€๋ฌธ ์‹œ์Šคํ…œ์„ ๋‹ด๋‹นํ•˜๋Š” ์‹œ์Šคํ…œ ์—”์ง€๋‹ˆ์–ด๋กœ ์ผํ•˜๋ฉฐ ํ˜„์žฅ์—์„œ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰์„ ๋‹ค์ ธ์™”๋‹ค.

์ดํ›„ 2000๋…„ ์†Œํ”„ํŠธ๋ฑ…ํฌ(ํ˜„ ์†Œํ”„ํŠธ๋ฑ…ํฌ๊ทธ๋ฃน)๋กœ ์ด์งํ–ˆ๋‹ค. ๋‹น์‹œ ์†์ •์˜ ํšŒ์žฅ์ด โ€œ์•ž์œผ๋กœ๋Š” ์ธํ„ฐ๋„ท ์‹œ๋Œ€โ€๋ผ๊ณ  ๊ฐ•์กฐํ•˜๋˜ ์‹œ๊ธฐ๋กœ, ์‚ฌ๋‚ด์—์„œ๋Š” ์ธํ„ฐ๋„ท ๊ด€๋ จ ๋ฒค์ฒ˜๊ฐ€ ์ž‡๋”ฐ๋ผ ์ถœ๋ฒ”ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ๊ทธ์ค‘ ํ•˜๋‚˜๊ฐ€ ์ „์ž์ƒ๊ฑฐ๋ž˜ ์‚ฌ์—…์œผ๋กœ, ํ˜„์žฌ์˜ ์„ธ๋ธ๋„ท์‡ผํ•‘์ด๋‹ค. ๋‚˜๋Š” ์‹œ์Šคํ…œ ์ฑ…์ž„์ž๋กœ ์‚ฌ์—… ์ถœ๋ฒ”์— ์ฐธ์—ฌํ•ด ์•ฝ 8๋…„ ๋™์•ˆ ์‚ฌ์—… ์„ฑ์žฅ์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ์—ญํ• ์„ ๋งก์•˜๋‹ค.

๋‹ค์Œ์œผ๋กœ ๋„์ „ํ•œ ๊ณณ์€ ์™ธ์‹ IT ๋ฒค์ฒ˜ ๊ฐˆํ”„๋„ท์ด๋‹ค. ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค๋ฅผ ๋น„๋กฏํ•œ ์ฃผ์š” ์™ธ์‹ ์ฒด์ธ์„ ๊ณ ๊ฐ์œผ๋กœ ๋‘” ํšŒ์‚ฌ๋กœ, ์ด๊ณณ์—์„œ 4๋…„ ๋™์•ˆ ๊ฐœ๋ฐœ ์ฑ…์ž„์ž๋กœ ์‹œ์Šคํ…œ์„ ์ด๋Œ์—ˆ์„ ๋ฟ ์•„๋‹ˆ๋ผ ์˜์—… ์ฑ…์ž„์ž ์—ญํ• ๋„ ๊ฒฝํ—˜ํ–ˆ๋‹ค. ๊ธฐ์ˆ ๋ฟ ์•„๋‹ˆ๋ผ ๋น„์ฆˆ๋‹ˆ์Šค ํ˜„์žฅ์„ ์ง์ ‘ ์›€์ง์ด๋Š” ์–ด๋ ค์›€๊ณผ ์žฌ๋ฏธ๋ฅผ ์ฒด๊ฐํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ์ ์€ ํฐ ์ˆ˜ํ™•์ด์—ˆ๋‹ค.

์ดํ›„ ํˆฌ์žํšŒ์‚ฌ ์˜คํฌ์บํ”ผํƒˆ(ํ˜„ UNIVAยท์˜คํฌํ™€๋”ฉ์Šค)๋กœ ์ž๋ฆฌ๋ฅผ ์˜ฎ๊ฒจ ์•ฝ 8๋…„๊ฐ„ ํˆฌ์ž ๊ธฐ์—…์— ํ•ธ์ฆˆ์˜จ์œผ๋กœ ๊ด€์—ฌํ–ˆ๋‹ค. ๊ฒฝ์˜ ์žฌ๊ฑด๊ณผ ๊ธฐ์—… ๊ฐ€์น˜ ์ œ๊ณ ๋ฅผ ์ถ”์ง„ํ–ˆ๊ณ , ๊ฒฝ์šฐ์— ๋”ฐ๋ผ์„œ๋Š” ์ง์ ‘ ๋Œ€ํ‘œ์ด์‚ฌ๋ฅผ ๋งก๋Š” ๋“ฑ ๊ฒฝ์˜ ์ „๋ฐ˜์— ๊นŠ์ด ๊ด€์—ฌํ•˜๋Š” ๊ฒฝํ—˜์„ ์Œ“์•˜๋‹ค. ์ด ์‹œ๊ธฐ์— ํ˜•์„ฑ๋œ โ€˜์‚ฌ์—…์„ ์–ด๋–ป๊ฒŒ ์žฌ์ •๋น„ํ•˜๊ณ  ์„ฑ์žฅ์œผ๋กœ ์ด๋Œ ๊ฒƒ์ธ๊ฐ€โ€™๋ผ๋Š” ๊ด€์ ์€ ์ง€๊ธˆ์˜ ์ค‘์š”ํ•œ ์ž์‚ฐ์ด ๋˜๊ณ  ์žˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  2019๋…„ ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค CIO๋กœ ๋ถ€์ž„ํ–ˆ๋‹ค. ์–ด๋А๋ง 6๋…„์ด ์ง€๋‚œ ํ˜„์žฌ, ๋ฒค๋”๋กœ์„œ ์ถ•์ ํ•œ ์ง€์‹๊ณผ ์‚ฌ์—…ํšŒ์‚ฌ์—์„œ์˜ ๊ฒฝํ—˜, ๊ฒฝ์˜์ž๋กœ์„œ์˜ ์‹œ๊ฐ์„ ๋ชจ๋‘ ํ™œ์šฉํ•ด ์‚ฌ์—… ์„ฑ์žฅ์„ ๊ฒฌ์ธํ•˜๋Š” CIO๋กœ์„œ ๋„์ „์„ ์ด์–ด๊ฐ€๊ณ  ์žˆ๋‹ค.

Q : ์ง€๊ธˆ๊นŒ์ง€์˜ ๊ฒฝ๋ ฅ ๊ฐ€์šด๋ฐ ํŠนํžˆ ์ธ์ƒ์— ๋‚จ๋Š” ์ผ์€ ๋ฌด์—‡์ธ๊ฐ€.
A : ๋Œ์•„๋ณด๋ฉด ๊ฐ ์—…์ข…๊ณผ ์—ญํ• ๋งˆ๋‹ค ํฐ ๋„์ „์ด ์žˆ์—ˆ๋‹ค. ์ฒ˜์Œ SI ์—…๋ฌด๋ฅผ ๋งก์•˜์„ ๋•Œ๋Š” ์–ผ๋งˆ๋‚˜ ํฐ ๊ทœ๋ชจ์˜ ํ”„๋กœ์ ํŠธ๋ฅผ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๊ฐ€ ์„ฑ์žฅ์˜ ๊ธฐ์ค€์ด์—ˆ๋‹ค. ๋‹น์‹œ 20๋Œ€์— 800์ธ์›”(ไบบๆœˆ, ์—ฌ๋Ÿฌ ์ธ๋ ฅ์ด ์ˆ˜๊ฐœ์›” ์ด์ƒ ํˆฌ์ž…๋ผ, ์ธ๋ ฅ ์ˆ˜ร—ํˆฌ์ž… ๊ฐœ์›” ์ˆ˜๋ฅผ ํ•ฉ์‚ฐํ•˜๋ฉด 800์— ์ด๋ฅด๋Š”) ๊ทœ๋ชจ์˜ ํ”„๋กœ์ ํŠธ๋ฅผ ๋งก์•˜๋Š”๋ฐ, ์ง€๊ธˆ ์ƒ๊ฐํ•ด ๋ณด๋ฉด ์ Š์€ ์‹œ์ ˆ์— ์ƒ๋‹นํžˆ ํฐ ์ฑ…์ž„์„ ๋งก๊ธธ ๋งŒํผ ๊ธฐํšŒ๋ฅผ ์ฃผ๋˜ ํšŒ์‚ฌ์˜€๋‹ค๊ณ  ๋А๋‚€๋‹ค.

์†Œํ”„ํŠธ๋ฑ…ํฌ์—์„œ๋Š” ์ฒ˜์Œ์œผ๋กœ โ€˜๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ๋งŒ๋“ ๋‹คโ€™๋Š” ์ผ์— ๋„์ „ํ–ˆ๋‹ค. ๋‹ด๋‹นํ•œ ๊ฒƒ์€ ํ˜„์žฌ์˜ ์„ธ๋ธ๋„ท์‡ผํ•‘์œผ๋กœ ์ด์–ด์ง€๋Š” ์ „์ž์ƒ๊ฑฐ๋ž˜ ์‚ฌ์—…์ด๋‹ค. ๋งค์ถœ์ด ์ „ํ˜€ ์—†๋Š” ์ƒํƒœ์—์„œ ์ถœ๋ฐœํ•ด, ์‹œ์Šคํ…œ ์ฑ…์ž„์ž๋กœ์„œ ์‚ฌ์—…์ด ์•ฝ 200์–ต ์—” ๊ทœ๋ชจ๋กœ ์„ฑ์žฅํ•˜๋Š” ๊ณผ์ •์„ ๋’ท๋ฐ›์นจํ–ˆ๋‹ค. ๋‹จ์ˆœํ•œ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์ด ์•„๋‹ˆ๋ผ, ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ์žฅ๊ณผ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ๊ฒฝํ—˜์ด์—ˆ๋‹ค๋Š” ์ ์—์„œ ์ปค๋ฆฌ์–ด ์ „๋ฐ˜์— ๋งค์šฐ ํฐ ์˜๋ฏธ๋ฅผ ๋‚จ๊ฒผ๋‹ค.

ํ˜„์ง์ธ ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค CIO๋กœ์„œ ์ฒ˜์Œ ๋งก์€ ํฐ ๊ณผ์ œ๋Š” ์ „์‚ฌ ์‹œ์Šคํ…œ์˜ ์ „๋ฉด์ ์ธ ํ˜„๋Œ€ํ™”์˜€๋‹ค. ๋ถ€์ž„ ์ดํ›„ ์•ฝ 6๋…„์— ๊ฑธ์ณ ์ถ”์ง„ํ•ด ์™”๊ณ , ์ด์ œ ๋ชจ๋“  ๊ต์ฒด ์ž‘์—…์ด ๋งˆ๋ฌด๋ฆฌ ๋‹จ๊ณ„์— ์ด๋ฅด๊ณ  ์žˆ๋‹ค.

๋‹น์ดˆ์—๋Š” 3๋…„ ๋‚ด ์™„๋ฃŒ๋ฅผ ๋ชฉํ‘œ๋กœ ํ–ˆ์ง€๋งŒ, ์‚ฌ๋‚ด ์‚ฌ์ •๊ณผ ๊ธฐ์กด ๊ตฌ์กฐ๋ฅผ ์„ธ์‹ฌํ•˜๊ฒŒ ๊ณ ๋ คํ•˜๋ฉฐ ์ง„ํ–‰ํ•  ํ•„์š”๊ฐ€ ์žˆ์—ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์†๋„๋ณด๋‹ค ์™„์„ฑ๋„๋ฅผ ํƒํ•ด ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๋”๋ผ๋„ ํ™•์‹คํžˆ ๋๋‚ด๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ถ”์ง„ํ•˜๊ฒŒ ๋๋‹ค.

ํ”„๋กœ์ ํŠธ์˜ ์ถœ๋ฐœ์ ์€ โ€˜์‹œ์Šคํ…œ์ด ๋ช‡ ๊ฐœ๋‚˜ ์žˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒโ€™์ด์—ˆ๋‹ค. ์ฒ˜์Œ ์ ๊ฒ€ํ–ˆ์„ ๋•Œ ์•ฝ 180๊ฐœ์˜ ์‹œ์Šคํ…œ์ด ์กด์žฌํ–ˆ๊ณ , ์ดํ›„ ์—…๋ฌด ๋ชฉ์ ์— ๋”ฐ๋ผ ์žฌ์ •๋ฆฌํ•˜๋ฉฐ ํ†ตํ•ฉ์„ ์ง„ํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํ˜„์žฌ๋Š” ์•ฝ 40๊ฐœ ์ˆ˜์ค€๊นŒ์ง€ ๋Œ€ํญ ์ค„์ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

์ด ๊ณผ์ •์„ ๋Œ์•„๋ณด๋ฉด, ์‹œ์Šคํ…œ ์ž์‚ฐ ์ •๋ฆฌ๋ถ€ํ„ฐ ํ˜„๋Œ€ํ™”๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ์ง์ ‘ ์ด๋Œ์–ด ์˜จ ๊ฒฝํ—˜์€ CIO๋กœ์„œ ๊ฐ€์žฅ ์ฒ˜์Œ์— ๋„์ „ํ•˜๊ธฐ์— ๊ฑธ๋งž์€ ๊ณผ์ œ์˜€๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

Q : ๊ฐ€์žฅ ์–ด๋ ค์› ๋˜ ๊ฒฝํ—˜์€ ๋ฌด์—‡์ธ๊ฐ€.
A : ๊ฐ€์žฅ ์‹ ๊ฒฝ์„ ๋งŽ์ด ์“ด ์ผ์€ ํŠธ๋ฆฌ๋„๋ฅดํ™€๋”ฉ์Šค์—์„œ ์ถ”์ง„ํ•œ ์—…๋ฌด ์กฐ์ง ๊ฐœํŽธ์ด์—ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์˜ ๋ณธ์‚ฌ ์—…๋ฌด๋ฅผ ์ง€์ฃผํšŒ์‚ฌ์™€ ์‰์–ด๋“œ์„œ๋น„์Šค ํšŒ์‚ฌ(๊ทธ๋ฃน ๊ณตํ†ต ๊ด€๋ฆฌยท์šด์˜ ์—…๋ฌด๋ฅผ ํ†ตํ•ฉ ์ˆ˜ํ–‰ํ•˜๋Š” ์กฐ์ง)๋กœ ์—ญํ• ์„ ๋‚˜๋ˆ  ์žฌ๊ตฌ์„ฑํ–ˆ๋‹ค. ์ดํ›„ ํšŒ๊ณ„ยท์ธ์‚ฌยทIT ์šด์˜ ๋“ฑ ๋ฐ˜๋ณต์ ์ธ ๊ด€๋ฆฌ ์—…๋ฌด๋ฅผ ๋‚ด๋ถ€ ์กฐ์ง์ด ์•„๋‹Œ ์™ธ๋ถ€ ์ „๋ฌธ ์œ„ํƒ์—…์ฒด(Business Process Outsourcing, BPO)์— ๋งก๊ธฐ๋Š” ๋ฐฉ์‹์œผ๋กœ ์šด์˜ ๊ตฌ์กฐ๋ฅผ ๋ฐ”๊ฟจ๋‹ค.

์‚ฌ๋‚ด์—์„œ ์ˆ˜ํ–‰ํ•˜๋˜ ์—…๋ฌด๋ฅผ ์™ธ๋ถ€๋กœ ์˜ฎ๊ธฐ๋Š” ๊ณผ์ •์€ ๋Œ€๋‹ดํ•˜๋ฉด์„œ๋„ ๋งค์šฐ ์„ฌ์„ธํ•œ ์กฐ์ •์ด ํ•„์š”ํ•œ ํ”„๋กœ์ ํŠธ์˜€๋‹ค. ์šฐ์„  IT ๋ถ€๋ฌธ๋ถ€ํ„ฐ ์ฐฉ์ˆ˜ํ–ˆ๋Š”๋ฐ, ์ด ๊ณผ์ •์ด ๊ฐ€์žฅ ์–ด๋ ค์› ๋‹ค.

๋‹น์‹œ ๋‚˜๋Š” ์‰์–ด๋“œ์„œ๋น„์Šค ํšŒ์‚ฌ์˜ ๋Œ€ํ‘œ๋ฅผ ๊ฒธ์ž„ํ•˜๋ฉฐ ์ตœ๋Œ€ ์•ฝ 180๋ช…์˜ ์ธ๋ ฅ์„ ์ด๋Œ๊ณ  ์žˆ์—ˆ๋‹ค. ์ด ์กฐ์ง์—๋Š” IT ์šด์˜ํŒ€๋ฟ ์•„๋‹ˆ๋ผ ํšŒ๊ณ„ ๊ธฐ์žฅ์„ ๋‹ด๋‹นํ•˜๋Š” ์žฌ๋ฌด ์กฐ์ง, ๊ธ‰์—ฌ ๊ณ„์‚ฐ์„ ๋งก์€ ์ธ์‚ฌ ์กฐ์ง ๋“ฑ ์ด๋ฅธ๋ฐ” ์˜คํผ๋ ˆ์ด์…˜ ๊ธฐ๋Šฅ์ด ์ง‘์•ฝ๋ผ ์žˆ์—ˆ๋‹ค. ์ „๋žต ์ˆ˜๋ฆฝ์€ ์ง€์ฃผํšŒ์‚ฌ๊ฐ€ ๋งก๊ณ , ์ผ์ƒ์ ์ธ ์˜คํผ๋ ˆ์ด์…˜์€ ํ•˜๋‚˜๋กœ ๋ฌถ์–ด ๊ด€๋ฆฌํ•˜๋Š” ์ฒด์ œ๋ฅผ ๊ฐ–์ถ”๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ, ์ด ๊ฐ€์šด๋ฐ ์ผ๋ถ€ ์—…๋ฌด๋ฅผ ๋‹จ๊ณ„์ ์œผ๋กœ ๋ถ„๋ฆฌํ•ด ์™ธ๋ถ€๋กœ ์ด์ „ํ•˜๋Š” ๊ฒƒ์ด ๋‹น์‹œ ๋งก์€ ์—ญํ• ์ด์—ˆ๋‹ค.

๋‹น์—ฐํžˆ ๊ธฐ์กด ์—…๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋˜ ์ธ๋ ฅ์˜ ๋‹ค์Œ ์ปค๋ฆฌ์–ด๋ฅผ ์–ด๋–ป๊ฒŒ ์„ค๊ณ„ํ• ์ง€๊ฐ€ ํฐ ๊ณผ์ œ๊ฐ€ ๋๋‹ค. ํŠธ๋ฆฌ๋„๋ฅด๋Š” ํšจ๊ณ ํ˜„ ๊ฐ€์ฝ”๊ฐ€์™€์‹œ์—์„œ ์ฐฝ์—…ํ•ด ์ดํ›„ ๊ณ ๋ฒ ์‹œ์— ๋ณธ์‚ฌ๋ฅผ ๋‘๊ณ  ์žˆ์—ˆ๊ณ , ๋‹น์‹œ ์‰์–ด๋“œ์„œ๋น„์Šค ํšŒ์‚ฌ์˜ ๊ฑฐ์  ์—ญ์‹œ ๊ณ ๋ฒ ์— ์žˆ์—ˆ๋‹ค.

์‹œ๋ถ€์•ผ ๋ณธ์‚ฌ๋กœ ์ด๋™์ด ๊ฐ€๋Šฅํ•œ ์ธ๋ ฅ์—๊ฒŒ๋Š” ์ง€์ฃผํšŒ์‚ฌ ์—…๋ฌด๋ฅผ ์ œ์•ˆํ–ˆ์ง€๋งŒ, ๊ฐ€์ • ์‚ฌ์ • ๋“ฑ์œผ๋กœ ์ „๊ทผ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๋„ ์ ์ง€ ์•Š์•˜๋‹ค. ์ด๋Ÿฐ ๊ฒฝ์šฐ์—๋Š” BPO ๋ฒค๋”๋กœ ์ „์ ํ•ด ๊ธฐ์กด๊ณผ ๊ฐ™์€ ์—…๋ฌด๋ฅผ ์ด์–ด๊ฐ€๋„๋ก ํ•˜๊ฑฐ๋‚˜, ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน ๋งค์žฅ์œผ๋กœ ํ™œ๋™ ๋ฌด๋Œ€๋ฅผ ์˜ฎ๊ธฐ๋Š” ๋ฐฉ์•ˆ์„ ์ œ์‹œํ–ˆ๋‹ค. ๋‚˜๋Š” ๊ตฌ์„ฑ์› ํ•œ ์‚ฌ๋žŒ ํ•œ ์‚ฌ๋žŒ๊ณผ ๋ฉด๋‹ด์„ ๊ฑฐ๋“ญํ•˜๋ฉฐ ๋‹ค์Œ ์ง„๋กœ๋ฅผ ํ•จ๊ป˜ ๊ฒฐ์ •ํ•ด ๋‚˜๊ฐ”๋‹ค.

๋ฌผ๋ก  ์ด ๊ณผ์ •์€ ํ˜ผ์ž์„œ ๊ฐ๋‹นํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์ด ์•„๋‹ˆ์—ˆ๋‹ค. ๋ถ€์žฅ๊ณผ ๊ด€๋ฆฌ์ง์˜ ํ˜‘์กฐ๋ฅผ ์–ป์–ด ์ง์›๋“ค๊ณผ ์ง„์ง€ํ•˜๊ฒŒ ๋Œ€ํ™”๋ฅผ ์ด์–ด๊ฐ€๋ฉฐ ์ถ”์ง„ํ–ˆ๋‹ค. ์ตœ์ข…์ ์ธ ๋ชฉํ‘œ๋Š” ๊ฐ์ž๊ฐ€ ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์—์„œ๋„ ์žฅ๊ธฐ๊ฐ„ ์—ญ๋Ÿ‰์„ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด์—ˆ๋‹ค. ํšŒ์‚ฌ ์ฐจ์›์˜ ๋ฐฉ์นจ์€ ๋ถ„๋ช…ํ–ˆ์ง€๋งŒ, ์ตœ๋Œ€ํ•œ ๊ตฌ์„ฑ์›๋“ค์ด ๋‚ฉ๋“ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๋ก ์— ์ด๋ฅด๋Š” ๊ฒƒ์ด ๋‹น์‹œ ์Šค์Šค๋กœ์—๊ฒŒ ์ฃผ์–ด์ง„ ๊ฐ€์žฅ ํฐ ์ฑ…์ž„์ด์—ˆ๋‹ค๊ณ  ๋ณธ๋‹ค.

Q : ํŠนํžˆ ๊ธฐ์–ต์— ๋‚จ๋Š” ๋ง์ด๋‚˜ ์‚ฌ๊ฑด์ด ์žˆ๋Š”๊ฐ€.
A : ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๊ฐ€ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์„ธ๋ธ๋„ท์‡ผํ•‘ ์ถœ๋ฒ”์— ๊ด€์—ฌํ•˜๋˜ ์‹œ๊ธฐ์˜ ๊ฒฝํ—˜์ด๋‹ค. ๋‹น์‹œ ์„ธ๋ธ&์•„์ดํ™€๋”ฉ์Šค ํšŒ์žฅ์ด์—ˆ๋˜ ์Šค์ฆˆํ‚ค ๋„์‹œํ›„๋ฏธ์˜ ๋ง์„, ๋‹น์‹œ ์ƒ์‚ฌ์ด์ž ํšŒ์žฅ์˜ ์•„๋“ค์ธ ์Šค์ฆˆํ‚ค ์•ผ์Šคํžˆ๋กœ๋กœ๋ถ€ํ„ฐ ์ „ํ•ด ๋“ค์€ ์ ์ด ์žˆ๋‹ค.

ํ•œ ๋ฒˆ์€ โ€œ์‚ฌ๋žŒ๋“ค ์•ž์—์„œ ์ด์•ผ๊ธฐํ•  ๋•Œ ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ๊ธด์žฅํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋А๋ƒโ€๊ณ  ๋ฌผ์—ˆ๋Š”๋ฐ, โ€œ๋ฌด๋ฆฌํ•ด์„œ ์ž˜๋‚œ ์ฒ™ํ•˜์ง€ ๋ง๊ณ , ๋ชจ๋ฅด๋Š” ๊ฒƒ์€ ์ด์•ผ๊ธฐํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ๋งŒ ๋งํ•˜๋ฉด ๊ธด์žฅํ•˜์ง€ ์•Š๋Š”๋‹คโ€๋Š” ๋‹ต์„ ๋“ค์—ˆ๋‹ค. ๋ชจ๋ฅด๋Š” ๊ฒƒ์€ ๋ชจ๋ฅธ๋‹ค๊ณ  ๋งํ•˜๋ฉด ๋œ๋‹ค๋Š” ์ด์•ผ๊ธฐ์˜€๋‹ค. ์žˆ๋Š” ๊ทธ๋Œ€๋กœ, ๊ณผ์žฅํ•˜์ง€ ์•Š๊ณ  ๋งํ•˜๋Š” ์‚ฌ๋žŒ์ด์•ผ๋ง๋กœ ๊ฒฐ๊ตญ ์„ฑ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด ๊ฐ„๋‹ค๋Š” ์ ์„ ๊ฐ•ํ•˜๊ฒŒ ๋А๊ผˆ๋‹ค.

๋‘ ๋ฒˆ์งธ๋Š” ๊ฐ™์€ ์‹œ๊ธฐ, ์„ธ๋ธ๋„ท์‡ผํ•‘์ด ์•ผํ›„์˜ ์žํšŒ์‚ฌ ์‚ฌ์—…์ด์—ˆ์„ ๋•Œ์˜ ๊ฒฝํ—˜์ด๋‹ค. ๋‹น์‹œ์—๋Š” ์ธํ„ฐ๋„ท์ด ์•„์ง ๋ณธ๊ฒฉ์ ์ธ ๋น„์ฆˆ๋‹ˆ์Šค๋กœ ์ž๋ฆฌ ์žก๊ธฐ ์ „์ด์—ˆ๊ณ , ์ผ๋ณธ์—์„œ๋Š” ์•ผํ›„๊ฐ€ ์•ž์„œ ์žˆ์—ˆ์œผ๋ฉฐ ๊ตฌ๊ธ€์ด ๋ง‰ ์ง„์ž…ํ•˜๋˜ ์‹œ๊ธฐ์˜€๋‹ค.

์ด์šฉ์ž๊ฐ€ ๊ธ‰์ฆํ•˜๋ฉด์„œ ์„œ๋ฒ„๊ฐ€ ํ˜ผ์žกํ•ด์ง€๊ณ  ์‹œ์Šคํ…œ์ด ํ•œ๊ณ„์— ๋ถ€๋”ชํžˆ๋Š” ์ƒํ™ฉ์ด ์ž์ฃผ ๋ฐœ์ƒํ–ˆ๋Š”๋ฐ, ๊ทธ๋•Œ ๋‹น์‹œ ์•ผํ›„ ๋Œ€ํ‘œ์˜€๋˜ ์ด๋…ธ์šฐ์— ๋งˆ์‚ฌํžˆ๋กœ๋กœ๋ถ€ํ„ฐ โ€œ์ธํ„ฐ๋„ท ๋น„์ฆˆ๋‹ˆ์Šค์—์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ๋Š˜์–ด๋‚˜๋ฉด ์„œ๋ฒ„๋ฅผ ์ฆ์„คํ•˜๋Š” ๊ฒƒ์ด ๊ธฐ๋ณธ ์›์น™โ€์ด๋ผ๋Š” ๋ง์„ ๋“ค์—ˆ๋‹ค. ๊ทธ ํ•œ๋งˆ๋””์— ํฐ ๊นจ๋‹ฌ์Œ์„ ์–ป์—ˆ๋‹ค.

๊ธฐ์กด ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ํ™˜๊ฒฝ์—์„œ๋Š” ๊ฐ’๋น„์‹ผ ์ž์›์„ ์–ด๋–ป๊ฒŒ ์ตœ์ ํ™”ํ•ด ๋๊นŒ์ง€ ํ™œ์šฉํ•  ๊ฒƒ์ธ๊ฐ€๊ฐ€ ๊ธฐ๋ณธ์ ์ธ ์‚ฌ๊ณ ๋ฐฉ์‹์ด์—ˆ๋‹ค. ๋‚˜๋Š” ์—ญ์‹œ ์ œํ•œ๋œ ์ž์›์„ ํšจ์œจ์ ์œผ๋กœ ์“ฐ๋Š” ๊ฒƒ์ด ๋‹น์—ฐํ•˜๋‹ค๊ณ  ์—ฌ๊ฒจ ์™”๋‹ค.

ํ•˜์ง€๋งŒ ์ธํ„ฐ๋„ท์˜ ์„ธ๊ณ„์—์„œ๋Š” ์ €๋ ดํ•œ ์„œ๋ฒ„๋ฅผ ์ถ”๊ฐ€ํ•ด ํ™•์žฅํ•˜๋Š” ๊ฒƒ์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์„ ํƒ์ด์—ˆ๋‹ค. ํˆฌ์ž๋ฅผ ์ „์ œ๋กœ ํ•œ ์Šค์ผ€์ผ์•„์›ƒ ๋ฌธํ™”๊ฐ€ ๋ฟŒ๋ฆฌ๋‚ด๋ ค ์žˆ์—ˆ๊ณ , ์ถ”๊ฐ€ ํˆฌ์ž๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ์ธํ„ฐ๋„ท ๋น„์ฆˆ๋‹ˆ์Šค ์ž์ฒด๊ฐ€ ์„ฑ๋ฆฝํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ธ์‹์ด ์ž๋ฆฌ ์žก๊ณ  ์žˆ์—ˆ๋‹ค.

์ด๋Ÿฌํ•œ ์‚ฌ๊ณ ๋ฐฉ์‹์˜ ์ฐจ์ด๋Š” ๋งค์šฐ ์ถฉ๊ฒฉ์ ์ด์—ˆ๋‹ค. ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ธฐ์ˆ ๊ณผ ์ธํ„ฐ๋„ท ๊ธฐ์ˆ  ์‚ฌ์ด์˜ ๋ณธ์งˆ์ ์ธ ์ฐจ์ด๋ฅผ ๋ถ„๋ช…ํ•˜๊ฒŒ ์ฒด๊ฐํ•œ ์ˆœ๊ฐ„์ด์—ˆ๊ณ , ๊ทธ ๊ฐ„๊ทน์€ ์ง€๊ธˆ๋„ ์™„์ „ํžˆ ๋ฉ”์›Œ์ง€์ง€ ์•Š์€ ์ฑ„ ๋‚จ์•„ ์žˆ๋‹ค๊ณ  ๋А๋ผ๊ณ  ์žˆ๋‹ค.

Q : CIO๋กœ์„œ ์–ด๋–จ ๋•Œ ๋ณด๋žŒ์„ ๋А๋ผ๋Š”๊ฐ€.
A: ํšŒ์‚ฌ์˜ ๋ฐฉํ–ฅ์„ฑ์„ ๋น ๋ฅด๊ฒŒ ์‹คํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•  ๋•Œ CIO๋กœ์„œ์˜ ๋ณด๋žŒ์„ ๋А๋‚€๋‹ค. ๊ทธ๋Ÿฐ ๋ฉด์—์„œ ํŠธ๋ฆฌ๋„๋ฅด์˜ ๋ชฉํ‘œ๋Š” ๊ณ ๊ฐ์—๊ฒŒ ๊ฐ๋™์ ์ธ ๊ฒฝํ—˜์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ ์ตœ์ „์„ ์—๋Š” ๋งค์žฅ์—์„œ ์ผํ•˜๋Š” ์ง์›๊ณผ ์ด๋ฅผ ๋’ท๋ฐ›์นจํ•˜๋Š” ๋งค๋‹ˆ์ง€๋จผํŠธ๊ฐ€ ์žˆ๋‹ค. ๋‹ค๋งŒ ์‚ฌ๋žŒ์˜ ํž˜์—๋งŒ ์˜์กดํ•˜๋Š” ๋ฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ด๋“ค์„ ๋’ค์—์„œ ์–ด๋–ป๊ฒŒ ์ง€์›ํ• ์ง€๊ฐ€ ์ค‘์š”ํ•˜๋‹ค. ๋ณ€ํ™”์— ์‹ ์†ํžˆ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๊ธฐ๋ฐ˜์„ ๊ฐ–์ถ”๋Š” ๊ฒƒ์ด์•ผ๋ง๋กœ CIO๋กœ์„œ์˜ ๊ฐ€์žฅ ํฐ ๋ณด๋žŒ์ด๋‹ค.

IT ๋ถ€์„œ๊ฐ€ ์ž์ฒด ๋…ผ๋ฆฌ๋งŒ์œผ๋กœ ์›€์ง์—ฌ์„œ๋Š” ์˜๋ฏธ๊ฐ€ ์—†๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ IT๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค์— ์–ผ๋งˆ๋‚˜ ๊ธฐ์—ฌํ•˜๊ณ  ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๋ณ€ํ™”์— ์–ผ๋งˆ๋‚˜ ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๊ตฌ์ถ•ํ–ˆ๋Š”์ง€๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฌ์—… ํ™•์žฅ์„ ๊ณ ๋ฏผํ•  ๋•Œ๋Š” ์—…ํƒœ๊ฐ€ ๋Š˜์–ด๋‚  ๊ฒฝ์šฐ ํ•˜๋‚˜์˜ ๊ตฌ์กฐ๋กœ ๋Œ€์‘ํ• ์ง€, ์—ฌ๋Ÿฌ ๊ตฌ์กฐ๋ฅผ ์กฐํ•ฉํ• ์ง€์— ๋Œ€ํ•œ ์„ค๊ณ„ ํŒ๋‹จ์ด ํ•„์š”ํ•˜๋‹ค. ์„œ๋ฒ„๋ฅผ ๋Š˜๋ฆด ๊ฒƒ์ธ์ง€, ํ•œ ๋Œ€๋ฅผ ๋Œ€ํ˜•ํ™”ํ•  ๊ฒƒ์ธ์ง€์™€ ๊ฐ™์€ ์Šค์ผ€์ผ์•„์›ƒ๊ณผ ์Šค์ผ€์ผ์—… ์„ ํƒ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋‹ค. ์ด๋Ÿฐ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฒ€ํ† ํ•˜๋Š” ๊ณผ์ • ์ž์ฒด๊ฐ€ ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ์˜์—ญ์ด๋‹ค.

๋˜ ์ง€๊ธˆ์ฒ˜๋Ÿผ ๋ณ€ํ™”๊ฐ€ ์žฆ์€ ์‹œ๋Œ€์—๋Š” ๊ฒฝ์˜์ง„์ด ๊ธฐ์กด ๋ฐฉ์นจ์„ ๋ฐ”๊พธ๋Š” ์ผ๋„ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋•Œ ๋Œ€๊ทœ๋ชจ ํˆฌ์ž๋ฅผ ์ด์œ ๋กœ ์‹œ์Šคํ…œ์„ ํฌ๊ธฐํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์€ ๋ฐ”๋žŒ์งํ•˜์ง€ ์•Š๋‹ค. ๊ทธ๋ž˜์„œ ๊ฐ€๋Šฅํ•œ ํ•œ ๊ตฌ๋…ํ˜• ์„œ๋น„์Šค, ์ฆ‰ SaaS๋ฅผ ์ ๊ทน ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์œ ์—ฐ์„ฑ์ด ์š”๊ตฌ๋˜๋Š” ๋ฐฑ์˜คํ”ผ์Šค ์˜์—ญ์€ SaaS๋ฅผ ์กฐํ•ฉํ•˜๋Š” ํŽธ์ด ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ํŒ๋‹จ์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ๊ฒƒ์€ ์—”์ง€๋‹ˆ์–ด๋กœ์„œ์˜ ๊ฒฝํ—˜๊ณผ ์‚ฌ์—… ๊ฒฝ์˜์— ์ง์ ‘ ๊ด€์—ฌํ–ˆ๋˜ ๊ฒฝํ—˜์ด๋‹ค. ๊ธฐ์ˆ ์„ ์ถฉ๋ถ„ํžˆ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋ฉด ์ตœ์ ์˜ ์„ ํƒ์„ ํ•  ์ˆ˜ ์—†๊ณ , ๊ฒฝ์˜ ๊ด€์ ์ด ์—†์œผ๋ฉด ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์–ด๋–ป๊ฒŒ ์ง€์›ํ• ์ง€์— ๋Œ€ํ•œ ๋‹ต๋„ ๋‚˜์˜ค์ง€ ์•Š๋Š”๋‹ค. ์ด ๋‘ ๊ฐ€์ง€๋ฅผ ํ•จ๊ป˜ ํ™œ์šฉํ•ด ์‚ฌ๊ณ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด CIO ์—ญํ• ์˜ ๊ฐ€์žฅ ํฐ ์ฆ๊ฑฐ์›€์ด๋‹ค.

์‚ฌ์‹ค IT ๋ฒค๋” ์‹œ์ ˆ๋ถ€ํ„ฐ ์•ž์œผ๋กœ๋Š” SaaS๊ฐ€ ํ•„์ˆ˜๊ฐ€ ๋  ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ด ์™”๋‹ค. ๋‹น์‹œ์—๋Š” ์ œ์•ˆํ•˜๋”๋ผ๋„ ์‚ฌ์šฉ์ž ๊ธฐ์—…์ด ์ฑ„ํƒํ•˜์ง€ ์•Š์œผ๋ฉด ์‹คํ–‰์œผ๋กœ ์ด์–ด์ง€์ง€ ์•Š์•˜์ง€๋งŒ, CIO๊ฐ€ ๋œ ์ดํ›„์—๋Š” ์Šค์Šค๋กœ ๊ฒฐ์ •ํ•ด ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ์‹ค๊ฐํ–ˆ๋‹ค. ์ด๋Š” ๋งค์šฐ ํฐ ์ฐจ์ด์ด๋ฉฐ, ์‚ฌ์—…ํšŒ์‚ฌ๋กœ ์ž๋ฆฌ๋ฅผ ์˜ฎ๊ฒผ๊ธฐ์— ๊ฐ€๋Šฅํ•ด์ง„ ๋„์ „์ด๋‹ค.

ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์€ ๋ณ€ํ™”๋ฅผ ๋‘๋ ค์›Œํ•˜์ง€ ์•Š๊ณ  ์ง„ํ™”๋ฅผ ๊ฑฐ๋“ญํ•ด ์˜จ ๊ธฐ์—…์ด๋‹ค. ๊ทธ ๋•๋ถ„์— ๊ธ‰์„ฑ์žฅ์„ ์ด๋ค˜๊ณ , ๊ฒฉ๋ณ€ํ•˜๋Š” ํ™˜๊ฒฝ ์†์—์„œ๋„ ๋Œ€์‘ํ•ด ์˜ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๊ฐ•์ ์€ ๋ฐ˜๋“œ์‹œ ์ง€์ผœ์•ผ ํ•œ๋‹ค๊ณ  ๋ณด๊ณ , ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์„ ์ „๋ฉด์ ์œผ๋กœ SaaS ์ค‘์‹ฌ์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ์ž‘์—…์„ ์ถ”์ง„ํ•ด ์™”๋‹ค.

SaaS ๋ฒค๋”์˜ ์ œํ’ˆ ๋’ค์—๋Š” ์ˆ˜๋งŽ์€ ๋›ฐ์–ด๋‚œ ์—”์ง€๋‹ˆ์–ด๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๊ด€์ ์— ๋”ฐ๋ผ์„œ๋Š” ์ด๋“ค์ด ๋ชจ๋‘ ํšŒ์‚ฌ๋ฅผ ๋’ท๋ฐ›์นจํ•˜๋Š” ์™ธ๋ถ€ ์ธ๋ ฅ์ด๋ผ๊ณ ๋„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ž์‚ฌ ์—ญ๋Ÿ‰์—๋งŒ ์˜์กดํ•˜์ง€ ์•Š๊ณ  ์™ธ๋ถ€์˜ ํž˜์„ ์–ด๋–ป๊ฒŒ ์กฐํ•ฉํ• ์ง€ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ, ๊ทธ๊ฒƒ์ด CIO์˜ ์—ญํ• ์ด๋ฉฐ ๋‚˜์—๊ฒŒ ๊ฐ€์žฅ ํฐ ๋ณด๋žŒ์ด๋‹ค.

Q : AI ํ™œ์šฉ์— ๋Œ€ํ•ด์„œ๋Š” ์–ด๋–ป๊ฒŒ ๋ณด๊ณ  ์žˆ๋Š”๊ฐ€.
A: ์ตœ๊ทผ ์ƒ์„ฑํ˜• AI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๊ณ  ์žˆ์ง€๋งŒ, ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์ด ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ํ˜„์žฅ์˜ ์ƒ์‚ฐ์„ฑ์„ ๋†’์ด๋Š” AI ํ™œ์šฉ์ด๋‹ค. ์ƒ์„ฑํ˜• AI๋Š” ํ™”์ดํŠธ์นผ๋ผ ์—…๋ฌด์˜ ํšจ์œจํ™”์—๋Š” ํšจ๊ณผ์ ์ด๋‹ค. ๋‹ค๋งŒ ์‚ฌ์—…๊ณผ ์ง์ ‘ ๋งž๋‹ฟ์•„ ์žˆ๋Š” ํ˜„์žฅ ์—…๋ฌด์—์„œ๋Š” ์ฆ‰์‹œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๊ณ  ์‹คํšจ์„ฑ์ด ๋ถ„๋ช…ํ•œ AI ํ™œ์šฉ์ด ํ•„์š”ํ•œ ๊ฒƒ ๊ฐ™๋‹ค.

๊ทธ ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๊ฐ€ ์ˆ˜์š” ์˜ˆ์ธก์ด๋‹ค. ๋งค์ถœ๊ณผ ๋ฐฉ๋ฌธ๊ฐ ์ˆ˜๋ฅผ AI๋กœ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ ๋‹ค์Œ ๋‚  ํ•„์š”ํ•œ ์ธ๋ ฅ ๊ทœ๋ชจ๋‚˜ ์‹์ž์žฌ ๋ฐœ์ฃผ๋Ÿ‰์„ ๋ณด๋‹ค ํšจ์œจ์ ์œผ๋กœ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋งค์žฅ ์šด์˜ ๊ณ„ํš์ด ํ•œ์ธต ์ˆ˜์›”ํ•ด์กŒ๊ณ , ํ˜„์žฅ์˜ ๋ถ€๋‹ด๋„ ํฌ๊ฒŒ ์ค„์—ˆ๋‹ค.

๋˜ ํ•˜๋‚˜๋Š” ์–ผ๊ตด ์ธ์‹์„ ํ™œ์šฉํ•œ ๊ทผํƒœ ๊ด€๋ฆฌ๋‹ค. ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์—๋Š” ํŒŒํŠธํƒ€์ž„๊ณผ ์•„๋ฅด๋ฐ”์ดํŠธ ์ง์›์ด ๋งŽ์•„ ์ถœํ‡ด๊ทผ ๊ธฐ๋ก ๊ด€๋ฆฌ๊ฐ€ ์ค‘์š”ํ•œ ๊ณผ์ œ์˜€๋‹ค. ๊ธฐ์กด์˜ ์ง€๋ฌธ์ด๋‚˜ ์ •๋งฅ ์ธ์‹ ๋ฐฉ์‹์€ ๋ฌผ์„ ์ž์ฃผ ์‚ฌ์šฉํ•˜๋Š” ํ™˜๊ฒฝ์ด๋‚˜ ์ถ”์šด ๋‚ ์”จ๋กœ ์ธํ•ด ์˜ˆ์™ธ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜์ง€๋งŒ, ์–ผ๊ตด ์ธ์‹์œผ๋กœ ์ „ํ™˜ํ•œ ์ดํ›„์—๋Š” ์˜ˆ์™ธ๊ฐ€ ๊ฑฐ์˜ ๋ฐœ์ƒํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ์ธ์‹ ์†๋„๋„ ๋น ๋ฅด๊ณ  ๋งˆ์Šคํฌ๋ฅผ ์ฐฉ์šฉํ•œ ์ƒํƒœ์—์„œ๋„ ์ฆ‰์‹œ ์ธ์‹ํ•  ์ˆ˜ ์žˆ์–ด, ํ˜„์žฅ์—์„œ๋Š” ๊ทผํƒœ ๊ด€๋ฆฌ๊ฐ€ ํ›จ์”ฌ ์ˆ˜์›”ํ•ด์กŒ๋‹ค๋Š” ๋ฐ˜์‘์ด ๋‚˜์˜จ๋‹ค.

ํ™”๋ คํ•ด ๋ณด์ด๋Š” ๊ธฐ์ˆ ์€ ์•„๋‹์ง€ ๋ชจ๋ฅด์ง€๋งŒ, ์ด๋Ÿฐ ์ ‘๊ทผ์ด ํ˜„์žฅ์˜ ์ƒ์‚ฐ์„ฑ์„ ๊พธ์ค€ํžˆ ๋Œ์–ด์˜ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค. ์ด๊ฒƒ์ด ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์ด ์ง€ํ–ฅํ•˜๋Š” AI ํ™œ์šฉ์˜ ๋ณธ์งˆ์ด๋ผ๊ณ  ๋ณธ๋‹ค.

Q : CIO์—๊ฒŒ ํ•„์š”ํ•œ ์ž์งˆ์€ ๋ฌด์—‡์ด๋ผ๊ณ  ๋ณด๋Š”๊ฐ€.
A : ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์€ โ€˜๊ฐ์˜คโ€™๋‹ค. ๋ฌผ๋ก  ํ•œ ๋ฒˆ ์ •ํ•œ ์ผ์„ ๋๊นŒ์ง€ ํ•ด๋‚ด๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•˜์ง€๋งŒ, ๊ทธ์— ์•ž์„œ ๋ฌด์—‡์„ ๋ชฉํ‘œ๋กœ ํ•˜๋Š”์ง€ ๋ถ„๋ช…ํžˆ ์ œ์‹œํ•ด์•ผ ํ•œ๋‹ค. ๋ฏธ๋ž˜์˜ ๋ชจ์Šต์„ ๊ทธ๋ฆฐ ๋’ค โ€œ์ด ๋ฐฉํ–ฅ์œผ๋กœ ํšŒ์‚ฌ๋ฅผ ์ด๋Œ๊ฒ ๋‹คโ€๊ณ  ์„ ์–ธํ•˜๋Š” ๊ฒƒ ์ž์ฒด๊ฐ€ CIO์—๊ฒŒ๋Š” ๊ฐ์˜ค์˜ ํ‘œํ˜„์ด๋ผ๊ณ  ๋ณธ๋‹ค.

๋‚˜ ์—ญ์‹œ DX ๋น„์ „์„ ์™ธ๋ถ€์— ๊ณต๊ฐœํ•˜๋ฉด์„œ โ€œ์ด์ œ๋Š” ๋ฐ˜๋“œ์‹œ ํ•ด๋‚ด์•ผ ํ•œ๋‹คโ€๋Š” ๊ฒฐ์‹ฌ์ด ์„ฐ๋‹ค. ๊ทธ๋ ‡๊ฒŒ ํ•ด์•ผ ์ง์›๊ณผ ๋ฒค๋” ๋ชจ๋‘๊ฐ€ ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์ด ์–ด๋–ค ๋ชจ์Šต์„ ์ง€ํ–ฅํ•˜๋Š”์ง€ ์ดํ•ดํ•˜๊ณ , ๊ฐ™์€ ๋ฐฉํ–ฅ์„ ๋ฐ”๋ผ๋ณด๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ๋งค์šฐ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค.

CIO์—๊ฒŒ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋ชจ์Šต์„ ํ•˜๋‚˜์˜ ๊ทธ๋ฆผ์œผ๋กœ ์ œ์‹œํ•˜๊ณ , ๊ทธ ๋น„์ „์„ ํ–ฅํ•ด ํ”๋“ค๋ฆผ ์—†์ด ๋‚˜์•„๊ฐ€๋Š” ์ถ”์ง„๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋•Œ ์ค‘์š”ํ•œ ๊ฒƒ์ด ๋ฐฑ์บ์ŠคํŠธ(backcast) ์‚ฌ๊ณ , ์ฆ‰ ์ตœ์ข… ๋ชฉํ‘œ์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด ์ง€๊ธˆ ๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ๊ฑฐ๊พธ๋กœ ๊ณ„์‚ฐํ•ด ๋‚˜๊ฐ€๋Š” ๋ฐฉ์‹์ด๋‹ค. ํฌ์–ด์บ์ŠคํŠธ(forecast) ๋ฐฉ์‹, ๋‹ค์‹œ ๋งํ•ด ํ˜„์žฌ ์ƒํƒœ๋ฅผ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„ ๊ณผ์ œ๋ฅผ ํ•˜๋‚˜์”ฉ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ์‹๋งŒ์œผ๋กœ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ ์–ด๋ ต๋‹ค.

๋ฌผ๋ก  ์ผ์ • ์ˆ˜์ค€์˜ ์•ˆ์ •๊ธฐ์— ๋“ค์–ด์„œ๋ฉด ํฌ์–ด์บ์ŠคํŠธ ๋ฐฉ์‹์˜ ๊ฐœ์„ ์œผ๋กœ ์ถฉ๋ถ„ํ•œ ๊ฒฝ์šฐ๋„ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ํฐ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด์•ผ ํ•  ๋•Œ๋Š” ๋ฐฑ์บ์ŠคํŠธ ๊ด€์ ์—์„œ ๊ณผ๊ฐํ•˜๊ฒŒ ๋ฐฉํ–ฅ๊ณผ ๊ฒฝ๋กœ๋ฅผ ๊ทธ๋ ค์•ผ ํ•œ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ณผ์ •์—์„œ ์˜ˆ์ƒ๊ณผ ํ˜„์‹ค ์‚ฌ์ด์— ํฐ ๊ฐ„๊ทน์ด ์ƒ๊ธด๋‹ค๋ฉด, โ€œ์ด๊ฑด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ํŒ๋‹จํ•˜๊ณ  ๊ณผ๊ฐํ•˜๊ฒŒ ๋ฐฉํ–ฅ์„ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๋‹จ๋ ฅ๊นŒ์ง€ ๊ฐ–์ถ”๋Š” ๊ฒƒ, ์ด๊ฒƒ์ด CIO์—๊ฒŒ ์š”๊ตฌ๋˜๋Š” ํ•ต์‹ฌ ์ž์งˆ์ด๋ผ๊ณ  ๋ณธ๋‹ค.

Q : CIO๋ฅผ ๊ฟˆ๊พธ๋Š” ์ง์›์—๊ฒŒ ํ•„์š”ํ•œ ์—ญ๋Ÿ‰์€ ๋ฌด์—‡์ธ๊ฐ€.
A : ๋‚˜๋Š” ํŒ€์›๋“ค์—๊ฒŒ ๋Š˜ โ€œ์žฅ์ฐจ CIO๋‚˜ CTO, ํ˜น์€ CDO ๊ฐ™์€ ์—ญํ• ์„ ๋งก์„ ์ˆ˜ ์žˆ๋Š” ์ธ์žฌ๋กœ ์„ฑ์žฅํ•˜๊ธธ ๋ฐ”๋ž€๋‹คโ€๊ณ  ์ด์•ผ๊ธฐํ•˜๊ณ  ์žˆ๋‹ค. ์ผ๋ณธ์—๋Š” ์•„์ง ๊ทธ๋Ÿฐ ์ธ์žฌ๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋งŽ์ง€ ์•Š๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ๋””์ง€ํ„ธ์„ ๋น„์ฆˆ๋‹ˆ์Šค์™€ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฐ€๊ต ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌ๋žŒ์„ ๋” ๋Š˜๋ ค์•ผ ํ•œ๋‹ค๊ณ  ๋ณธ๋‹ค. ์ Š์€ ์‹œ์ ˆ๋ถ€ํ„ฐ ์ด ์—ญํ• ์„ ๋ชฉํ‘œ๋กœ ์ปค๋ฆฌ์–ด๋ฅผ ์Œ“์•„ ๊ฐ€๊ธธ ๋ฐ”๋ž€๋‹ค.

์ด๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ์—ญ๋Ÿ‰์€ ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๊ธฐ์ดˆ์ ์ธ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰์ด๋‹ค. ์ฝ”๋“œ๋ฅผ ์ง์ ‘ ์ž‘์„ฑํ•˜์ง€ ์•Š๋Š” IT ๋ฆฌ๋”๋„ ์žˆ์ง€๋งŒ, ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด ๊ทธ ํŽธ์ด ํ›จ์”ฌ ๋‚ซ๋‹ค. ๋‚˜ ์—ญ์‹œ ์ค‘ํ•™์ƒ ๋•Œ๋ถ€ํ„ฐ ์ฝ”๋“œ๋ฅผ ์จ ์™”๋‹ค. ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด๋„ ํ•˜๋‚˜๋งŒ ์•„๋Š” ๊ฒƒ๋ณด๋‹ค ๋‘ ๊ฐ€์ง€ ์ด์ƒ์„ ์ตํžˆ๋ฉด ๋น„๊ต๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง€๊ณ  ์ดํ•ด์˜ ๊นŠ์ด๋„ ๋‹ฌ๋ผ์ง„๋‹ค. ์ด๋Š” ์ด์ง์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ์‹œ์•ผ๊ฐ€ ์—ด๋ฆฌ๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•˜๋ฉฐ, ์—ฌ๋Ÿฌ ๊ด€์ ์„ ๊ฐ–๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

๋‘ ๋ฒˆ์งธ๋Š” ์•„ํ‚คํ…ํŠธ๋กœ์„œ์˜ ์—ญ๋Ÿ‰์ด๋‹ค. ์‚ฌ์šฉ์ž ๊ธฐ์—…์˜ CIO๋Š” ๊ธฐ์กด ๊ธฐ์ˆ ์„ ์–ด๋–ป๊ฒŒ ์กฐํ•ฉํ•ด ์ž์‚ฌ ๋น„์ฆˆ๋‹ˆ์Šค์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค ๊ฒƒ์ธ์ง€๋ฅผ ๋Š์ž„์—†์ด ๊ณ ๋ฏผํ•ด์•ผ ํ•œ๋‹ค. CTO์˜ ์—ญํ• ๊ณผ ๋งž๋‹ฟ์•„ ์žˆ๋Š” ๋ถ€๋ถ„๋„ ์žˆ์ง€๋งŒ, ๋„คํŠธ์›Œํฌ๋‚˜ ์ธํ”„๋ผ, ํด๋ผ์šฐ๋“œ ๊ฐ™์€ ๊ธฐ์ดˆ๋ฅผ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋ฉด ์ตœ์ ์˜ ์กฐํ•ฉ์„ ํŒ๋‹จํ•  ์ˆ˜ ์—†๋‹ค. ์‹œ์Šคํ…œ ์•„ํ‚คํ…ํŠธ๋กœ์„œ์˜ ์ง€์‹๊ณผ ์‚ฌ๊ณ ๋Š” ํ•„์ˆ˜์ ์ด๋‹ค.

๋งˆ์ง€๋ง‰์€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ญ๋Ÿ‰์ด๋‹ค. ํ”„๋กœ์ ํŠธ๊ฐ€ ์‹คํŒจํ•˜๋Š” ์ด์œ ๋Š” ๊ธฐ์ˆ  ๋ถ€์กฑ๋ณด๋‹ค ์†Œํ†ต ๋ถ€์กฑ์—์„œ ๋น„๋กฏ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ํ›จ์”ฌ ๋งŽ๋‹ค. ๋‚˜๋Š” ํ‰์†Œ ์ผ๋Œ€์ผ ๋Œ€ํ™”๋ฅผ ์ž์ฃผ ํ•˜๋Š”๋ฐ, ๋Œ€ํ™” ์ƒ๋Œ€๋Š” ๋Œ€ํ‘œ๋ถ€ํ„ฐ ๊ทธ๋ฃน์‚ฌ ์ž„์›, ์‚ฌ์—…ํšŒ์‚ฌ ๊ฒฝ์˜์ง„๊นŒ์ง€ ๋‹ค์–‘ํ•˜๋‹ค. ์ด๋“ค์ด ๋ฌด์—‡์„ ํ•˜๊ณ  ์‹ถ์€์ง€ ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋ฉด ์žฅ๊ธฐ์ ์ธ ๊ด€์ ์˜ ์‹œ์Šคํ…œ ์„ค๊ณ„๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๊ณ , ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ์–ธ์ž๊ฐ€ ๋˜์ง€ ๋ชปํ•˜๋ฉด ์„ฑ๊ณผ๋„ ๋‚˜์˜ค๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋Ÿฐ ์—ญ๋Ÿ‰์€ ๋‚˜๋ฟ ์•„๋‹ˆ๋ผ ๋ถ€์žฅ๊ธ‰ ๊ตฌ์„ฑ์›์—๊ฒŒ๋„ ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค.

๊ธฐ์ดˆ์ ์ธ ๊ธฐ์ˆ  ์—ญ๋Ÿ‰, ์•„ํ‚คํ…ํŠธ๋กœ์„œ์˜ ์„ค๊ณ„ ์—ญ๋Ÿ‰, ๊ทธ๋ฆฌ๊ณ  ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ญ๋Ÿ‰. ์ด ์„ธ ๊ฐ€์ง€๋Š” CIO๋ฅผ ๋ชฉํ‘œ๋กœ ํ•  ๋•Œ ๋ฐ˜๋“œ์‹œ ๊ฐ–์ถฐ์•ผ ํ•  ์ž์งˆ์ด๋‹ค. ํŠนํžˆ B2B ๊ธฐ์—…์ผ์ˆ˜๋ก ํŒŒํŠธ๋„ˆ ๊ธฐ์—…๊ณผ์˜ ๊ด€๊ณ„๊ฐ€ ์ค‘์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์ Š์€ ์‹œ์ ˆ๋ถ€ํ„ฐ ์ด๋ฅผ ๊ฐ•ํ•˜๊ฒŒ ์˜์‹ํ•˜๊ธธ ๊ถŒํ•˜๊ณ  ์‹ถ๋‹ค.

Q : ์•ž์œผ๋กœ์˜ ๋ชฉํ‘œ๋Š”?
A: ์šฐ๋ฆฌ๋Š” โ€˜๊ธ€๋กœ๋ฒŒ ํ‘ธ๋“œ ์ปดํผ๋‹ˆโ€™๋ฅผ ๊ธฐ์—… ๋น„์ „์œผ๋กœ ๋‚ด์„ธ์šฐ๊ณ  ์žˆ๋‹ค. ๋ชฉํ‘œ๋Š” ์œ ๋ช…ํ•œ ํ–„๋ฒ„๊ฑฐ ์ฒด์ธ์ด๋‚˜ ์ปคํ”ผ ์ฒด์ธ๊ณผ ์–ด๊นจ๋ฅผ ๋‚˜๋ž€ํžˆ ํ•˜๋Š”, ์ผ๋ณธ ์ตœ์ดˆ์˜ โ€˜์„ธ๊ณ„์—์„œ ํ†ตํ•˜๋Š” ์™ธ์‹ ๊ธฐ์—…โ€™์ด ๋˜๋Š” ๊ฒƒ์ด๋‹ค.

ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์€ ์ด๋ฏธ 30๊ฐœ๊ตญ ์ด์ƒ์— ์ง„์ถœํ•ด ์žˆ์ง€๋งŒ, ๋ชจ๋“  ๊ตญ๊ฐ€์—์„œ ์ผ๋ณธ๊ณผ ๋™์ผํ•œ ํ’ˆ์งˆ์„ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋А๋ƒ๊ณ  ํ•˜๋ฉด ์•„์ง ๊ณผ์ œ๊ฐ€ ๋‚จ์•„ ์žˆ๋‹ค. ์ด ์ˆ˜์ค€์„ ์–ด๋–ป๊ฒŒ ๋Œ์–ด์˜ฌ๋ฆด์ง€๊ฐ€ ์•ž์œผ๋กœ์˜ ํฐ ๊ณผ์ œ๋‹ค. ๋””์ง€ํ„ธ์˜ ํž˜์œผ๋กœ ๊ธฐ์ค€์„ ๋งž์ถ”๊ณ , ์ƒˆ๋กœ์šด ๊ตญ๊ฐ€๋กœ๋„ ๋ณด๋‹ค ์‰ฝ๊ฒŒ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์‚ฌ์—… ๊ฐ€์†์œผ๋กœ ์ด์–ด์ง„๋‹ค๊ณ  ๋ณธ๋‹ค.

์ง€๊ธˆ๊นŒ์ง€๋Š” ์ผ๋ณธ ์‹œ์žฅ์— ์ง‘์ค‘ํ•ด ์™”์ง€๋งŒ, ์•ž์œผ๋กœ๋Š” ๊ธ€๋กœ๋ฒŒ ์žํšŒ์‚ฌ์™€ ํ”„๋žœ์ฐจ์ด์ฆˆ ํŒŒํŠธ๋„ˆ์— ๋Œ€ํ•ด์„œ๋„ ๋ณด๋‹ค ์ ๊ทน์ ์œผ๋กœ ์ง€์›ํ•ด ๋‚˜๊ฐˆ ์ƒ๊ฐ์ด๋‹ค.

๋ฌผ๋ก  ๋ชจ๋“  ๊ฒƒ์„ ์ผ๋ฅ ์ ์ธ ๊ตฌ์กฐ๋กœ ์ ์šฉํ•˜๋Š” ๊ฒƒ์€ ํ˜„์‹ค์ ์ด์ง€ ์•Š๋‹ค. ์ œ์กฐ์—…์ฒ˜๋Ÿผ ์ „ ์„ธ๊ณ„์— ๋™์ผํ•œ ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜๋Š” ๋ฐฉ์‹๋„ ์žˆ์ง€๋งŒ, ์™ธ์‹ ์‚ฐ์—…์€ ํ˜„์ง€ ์†Œ๋น„์ž๊ฐ€ ์‹ค์ œ๋กœ ๋จน์–ด์•ผ ๊ฐ€์น˜๊ฐ€ ์ƒ๊ธด๋‹ค. ์ผ์ •ํ•œ ์ž์œจ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„, ํŠธ๋ฆฌ๋„๋ฅด๊ทธ๋ฃน์œผ๋กœ์„œ ๋ฐ˜๋“œ์‹œ ์ง€์ผœ์•ผ ํ•  ๊ธฐ์ค€์„ ์–ด๋–ป๊ฒŒ ์ •์ฐฉ์‹œํ‚ฌ์ง€๊ฐ€ ์ค‘์š”ํ•˜๋‹ค.

์ด ๊ณผ์ •์—์„œ ํšจ๊ณผ์ ์ธ ์ˆ˜๋‹จ์ด ๋””์ง€ํ„ธ ๊ธฐ๋ฐ˜์ด๋‹ค. ๊ธฐ์ค€์„ ์‹œ์Šคํ…œ์— ๋…น์—ฌ ๋‘๋ฉด, ์˜์‹ํ•˜์ง€ ์•Š์•„๋„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ’ˆ์งˆ๊ณผ ์šด์˜ ๊ธฐ์ค€์ด ์œ ์ง€๋œ๋‹ค. ์ด๋Ÿฐ ๊ตฌ์กฐ๋ฅผ ์•ž์œผ๋กœ ๋” ๋Š˜๋ ค ๊ฐ€๊ณ ์ž ํ•œ๋‹ค.

๋‹ค๋งŒ ๊ณผ๋„ํ•˜๊ฒŒ ์ ์šฉํ•˜๋ฉด โ€˜์†์œผ๋กœ ๋งŒ๋“ค๊ณ  ๊ฐ“ ์กฐ๋ฆฌํ•œ๋‹คโ€™๋Š” ์šฐ๋ฆฌ์˜ ์šด์˜ ์ฒ ํ•™์ด ์•ฝํ•ด์งˆ ์œ„ํ—˜๋„ ์žˆ๋‹ค. ๊ทธ ๊ท ํ˜•์„ ์–ด๋””์— ๋‘˜ ๊ฒƒ์ธ์ง€๋Š” ์‰ฝ์ง€ ์•Š์€ ๊ณผ์ œ์ง€๋งŒ, ์˜คํžˆ๋ ค ๊ทธ ์ง€์ ์— ์žฌ๋ฏธ๊ฐ€ ์žˆ๋‹ค๊ณ  ๋А๋‚€๋‹ค.

๋ณธ์‚ฌ ๊ฒฝ์˜์ง„๊ณผ ๊ฐ ์‚ฌ์—… ์ฑ…์ž„์ž๋“ค๊ณผ ์ง€์†์ ์œผ๋กœ ๋…ผ์˜ํ•˜๋ฉฐ, ๊ฐ ์ง€์—ญ์— ๋งž๋Š” ์ตœ์ ์˜ ๊ท ํ˜•์ ์„ ์ฐพ์•„๊ฐ€๋Š” ์ž‘์—…์„ ์ „ ์„ธ๊ณ„๋กœ ํ™•๋Œ€ํ•ด ๋‚˜๊ฐ€๊ณ  ์‹ถ๋‹ค.
dl-ciokorea@foundryco.com

*์ด ๊ธฐ์‚ฌ๋Š” CIO ์žฌํŒฌ์— ๊ฒŒ์žฌ๋œ ์›๋ฌธ์„ ๋ฐ”ํƒ•์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์›๋ฌธ์€ ์—ฌ๊ธฐ์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

โ€œ๋ณด์•ˆยท๋ฐ์ดํ„ฐยท์กฐ์ง์ด ์Šน๋ถ€ ๊ฐ€๋ฅธ๋‹คโ€ 2026๋…„ CIO 10๋Œ€ ๊ณผ์ œ

20 January 2026 at 01:30

CIO์˜ โ€˜ํฌ๋ง ๋ชฉ๋กโ€™์€ ๋Š˜ ๊ธธ๊ณ  ๋น„์šฉ๋„ ๋งŽ์ด ๋“ ๋‹ค. ํ•˜์ง€๋งŒ ์šฐ์„ ์ˆœ์œ„๋ฅผ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ์„ธ์šฐ๋ฉด, ํŒ€๊ณผ ์˜ˆ์‚ฐ์„ ์†Œ์ง„ํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ธ‰๋ณ€ํ•˜๋Š” ์š”๊ตฌ์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹ค.

ํŠนํžˆ 2026๋…„์—๋Š” IT ์šด์˜์„ โ€˜๋น„์šฉ ์„ผํ„ฐโ€™๊ฐ€ ์•„๋‹ˆ๋ผ ์†์ต ๊ด€์ ์—์„œ ์žฌ์ •์˜ํ•˜๋ฉด์„œ, ๊ธฐ์ˆ ๋กœ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์žฌ์ฐฝ์กฐํ•˜๋Š” ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹ค. ์•ก์„ผ์ถ”์–ด(Accenture)์˜ ๊ธฐ์ˆ  ์ „๋žตยท์ž๋ฌธ ๊ธ€๋กœ๋ฒŒ ๋ฆฌ๋“œ ์ฝ”์—”๋ผํŠธ ์…ธํฌํŠธ๋Š” โ€œ์ตœ์†Œํ•œ์˜ ํˆฌ์ž๋กœ โ€˜๋ถˆ๋งŒ ๊บผ์ง€์ง€ ์•Š๊ฒŒ ์œ ์ง€โ€™ํ•˜๋Š” ๋ฐ์„œ ๋ฒ—์–ด๋‚˜, ๊ธฐ์ˆ ๋กœ ๋งค์ถœ ์„ฑ์žฅ์„ ๊ฒฌ์ธํ•˜๊ณ  ์ƒˆ๋กœ์šด ๋””์ง€ํ„ธ ์ œํ’ˆ์„ ๋งŒ๋“ค๋ฉฐ, ์ƒˆ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ์„ ๋” ๋น ๋ฅด๊ฒŒ ์‹œ์žฅ์— ๋‚ด๋†“๋Š” ์ชฝ์œผ๋กœ ์ดˆ์ ์„ ์˜ฎ๊ฒจ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ถŒ๊ณ ํ–ˆ๋‹ค.

๋‹ค์Œ์€ CIO๊ฐ€ 2026๋…„์— ์šฐ์„ ์ˆœ์œ„ ์ƒ๋‹จ์— ์˜ฌ๋ ค์•ผ ํ•  10๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œ๋‹ค.

1. ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ๊ณผ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ๊ฐ•ํ™”

๊ธฐ์—…์ด ์ƒ์„ฑํ˜• AI์™€ ์—์ด์ „ํ‹ฑ AI๋ฅผ ํ•ต์‹ฌ ์›Œํฌํ”Œ๋กœ์šฐ ๊นŠ์ˆ™์ด ํ†ตํ•ฉํ•˜๋ฉด์„œ, ๊ณต๊ฒฉ์ž ์—ญ์‹œ ๊ฐ™์€ AI ๊ธฐ์ˆ ๋กœ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๊ต๋ž€ํ•˜๊ณ  ์ง€์‹์žฌ์‚ฐ(IP)๊ณผ ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋…ธ๋ฆด ๊ฐ€๋Šฅ์„ฑ์ด ์ปค์กŒ๋‹ค. ์†Œ๋น„์ž ์‹ ์šฉํ‰๊ฐ€ ๊ธฐ์—… ํŠธ๋žœ์Šค์œ ๋‹ˆ์–ธ(TransUnion)์˜ ๊ธ€๋กœ๋ฒŒ ์ œํ’ˆ ํ”Œ๋žซํผ ๋‹ด๋‹น ์ˆ˜์„๋ถ€์‚ฌ์žฅ ์š”๊ฒŒ์‹œ ์กฐ์‹œ๋Š” โ€œ๊ทธ ๊ฒฐ๊ณผ CIO์™€ CISO๋Š” ๋‚˜์œ ํ–‰์œ„์ž๋“ค์ด ๋™์ผํ•œ AI ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•ด ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๋ฐฉํ•ดํ•˜๊ณ , ๊ณ ๊ฐ ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ์™€ ๊ฒฝ์Ÿ์šฐ์œ„์— ํ•ด๋‹นํ•˜๋Š” ์ •๋ณดยท์ž์‚ฐ์„ ํฌํ•จํ•œ IP๋ฅผ ํƒˆ์ทจํ•˜๋ ค ํ•  ๊ฒƒ์ž„์„ ์˜ˆ์ƒํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์กฐ์‹œ๋Š” ๋””์ง€ํ„ธ ์ „ํ™˜ ๊ฐ€์†๊ณผ AI ํ†ตํ•ฉ ํ™•๋Œ€๋กœ ๋ฆฌ์Šคํฌ ํ™˜๊ฒฝ์ด ํฌ๊ฒŒ ๋„“์–ด์งˆ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ , 2026๋…„ ์ตœ์šฐ์„  ๊ณผ์ œ๋กœ โ€˜๋ณด์•ˆ ํšŒ๋ณตํƒ„๋ ฅ์„ฑโ€™๊ณผ โ€˜๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œโ€™๋ฅผ ๊ผฝ์•˜๋‹ค. ํŠนํžˆ, โ€œ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ์™€ ๊ธ€๋กœ๋ฒŒ ๊ทœ์ œ ์ค€์ˆ˜๋Š” ํ˜‘์ƒ ๋Œ€์ƒ์ด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

2. ๋ณด์•ˆ ๋„๊ตฌ ํ†ตํ•ฉ

AI์˜ ํšจ๊ณผ๋ฅผ ์ œ๋Œ€๋กœ ๋Œ์–ด๋‚ด๋ ค๋ฉด ๊ธฐ๋ฐ˜์„ ๋‹ค์‹œ ๋‹ค์ ธ์•ผ ํ•œ๋‹ค๋Š” ์ฃผ์žฅ๋„ ์žˆ๋‹ค. ๋”œ๋กœ์ดํŠธ์˜ ๋ฏธ๊ตญ ์‚ฌ์ด๋ฒ„ ํ”Œ๋žซํผ ๋ฐ ๊ธฐ์ˆ ยท๋ฏธ๋””์–ดยทํ†ต์‹ (TMT) ์‚ฐ์—… ๋ฆฌ๋” ์•„๋ฃฌ ํŽ˜๋ฆฐ์ฝœ๋žŒ์€ โ€œํ•„์ˆ˜ ์กฐ๊ฑด ์ค‘ ํ•˜๋‚˜๋Š” ํŒŒํŽธํ™”๋œ ๋ณด์•ˆ ๋„๊ตฌ๋ฅผ ํ†ตํ•ฉยท์—ฐ๋™๋œ ์‚ฌ์ด๋ฒ„ ๊ธฐ์ˆ  ํ”Œ๋žซํผ์œผ๋กœ ๋ฌถ๋Š” ๊ฒƒ์ธ๋ฐ, ์ด๋ฅผ โ€˜ํ”Œ๋žซํผํ™”(platformization)โ€™๋ผ๊ณ  ๋ถ€๋ฅธ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํŽ˜๋ฆฐ์ฝœ๋žŒ์€ ํ†ตํ•ฉ์€ ๋ณด์•ˆ์„ โ€˜์—ฌ๋Ÿฌ ํฌ์ธํŠธ ์†”๋ฃจ์…˜์˜ ๋ˆ„๋”๊ธฐโ€™์—์„œ ๋น ๋ฅธ ํ˜์‹ ๊ณผ ํ™•์žฅ ๊ฐ€๋Šฅํ•œ AI ์ค‘์‹ฌ ์šด์˜์„ ์œ„ํ•œ ๋ฏผ์ฒฉํ•˜๊ณ  ํ™•์žฅ๋œ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ”๊ฟ€ ๊ฒƒ์ด๋ผ๋ฉฐ, โ€œ์œ„ํ˜‘์ด ์ •๊ตํ•ด์งˆ์ˆ˜๋ก ํ†ตํ•ฉ ํ”Œ๋žซํผ์ด ์ค‘์š”ํ•ด์ง€๋ฉฐ, ๋„๊ตฌ ๋‚œ๋ฆฝ์„ ๋ฐฉ์น˜ํ•˜๋ฉด ์˜คํžˆ๋ ค ๋ถ„์ ˆ๋œ ๋ณด์•ˆ ํƒœ์„ธ๊ฐ€ ๊ณต๊ฒฉ์ž์—๊ฒŒ ์œ ๋ฆฌํ•˜๊ฒŒ ์ž‘๋™ํ•ด ์œ„ํ—˜์ด ์ปค์ง„๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋˜ โ€œ๊ธฐ์—…์€ ๋‚ ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ์œ„ํ˜‘์— ์ง๋ฉดํ•  ๊ฒƒ์ด๋ฉฐ, ์ด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋ณด์•ˆ ๋„๊ตฌ๊ฐ€ ๋ฌด๋ถ„๋ณ„ํ•˜๊ฒŒ ํ™•์‚ฐ๋  ๊ฒƒ์ด๋‹ค. ๊ณต๊ฒฉ์ž๊ฐ€ ์ด๋ ‡๊ฒŒ ํŒŒํŽธํ™”๋œ ๋ณด์•ˆ ํƒœ์„ธ๋ฅผ ์•…์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ํ”Œ๋žซํผํ™”๋ฅผ ๋Šฆ์ถ”๋ฉด ์œ„ํ—˜๋งŒ ์ฆํญ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

3. ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ โ€˜๊ธฐ๋ณธ๊ธฐโ€™ ์žฌ์ ๊ฒ€

์กฐ์ง์ด ํšจ์œจยท์†๋„ยทํ˜์‹ ์„ ์œ„ํ•ด ์ƒˆ๋กœ์šด AI ๋ชจ๋ธ ๋„์ž… ๊ฒฝ์Ÿ์— ๋‚˜์„œ๊ณ  ์žˆ์ง€๋งŒ, ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ๋ฅผ ์œ„ํ•œ ๊ธฐ๋ณธ ๋‹จ๊ณ„์กฐ์ฐจ ๋†“์น˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์ ์ง€ ์•Š๋‹ค๋Š” ๊ฒฝ๊ณ ๋„ ๋‚˜์˜จ๋‹ค. ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œยท๋ณด์กด ์ „๋ฌธ์—…์ฒด ๋„๋…ธ๋งˆ ์†Œํ”„ํŠธ์›จ์–ด(Donoma Software)์˜ ์ตœ๊ณ ์ „๋žต์ฑ…์ž„์ž ํŒŒ์ปค ํ”ผ์–ด์Šจ์€ โ€œ์ƒˆ AI ๊ธฐ์ˆ ์„ ํ’€๊ธฐ ์ „์— ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ณธ ์กฐ์น˜๋ฅผ ํ•˜์ง€ ์•Š๋Š” ์กฐ์ง์ด ๋งŽ๋‹คโ€๋ผ๋ฉฐ 2026๋…„์—๋Š” โ€œ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๊ธด๊ธ‰ ๊ณผ์ œ๋กœ ๋ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํ”ผ์–ด์Šจ์€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ยท์‚ฌ์šฉยท๋ณดํ˜ธ ์ด์Šˆ๊ฐ€ ์ดˆ๊ธฐ ํ•™์Šต๋ถ€ํ„ฐ ์šด์˜๊นŒ์ง€ AI ๋ผ์ดํ”„์‚ฌ์ดํด ์ „๋ฐ˜์—์„œ ๋ฐœ์ƒํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋˜ ๋งŽ์€ ๊ธฐ์—…์ด โ€œAI๋ฅผ ๋ฌด์‹œํ•ด ๊ฒฝ์Ÿ์—์„œ ๋’ค์ฒ˜์ง€๊ฑฐ๋‚˜ ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋…ธ์ถœํ•  ์ˆ˜ ์žˆ๋Š” LLM์„ ๋„์ž…ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๋‚˜์œ ์„ ํƒ์ง€ ์‚ฌ์ด์— ๋†“์—ฌ ์žˆ๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.

ํ•ต์‹ฌ์€ โ€˜AI๋ฅผ ํ•  ๊ฒƒ์ธ๊ฐ€โ€™๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ—˜์— ๋น ๋œจ๋ฆฌ์ง€ ์•Š์œผ๋ฉด์„œ AI ๊ฐ€์น˜๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•โ€™์ด๋‹ค. ํ”ผ์–ด์Šจ์€ ํŠนํžˆ โ€œ๋ฐ์ดํ„ฐ๊ฐ€ โ€˜์™„์ „ํžˆโ€™ ๋˜๋Š” โ€˜์—”๋“œ ํˆฌ ์—”๋“œโ€™๋กœ ์•”ํ˜ธํ™”๋ผ ์žˆ๋‹คโ€๋Š” ์กฐ์ง์˜ ์ž์‹ ๊ฐ๊ณผ ๋‹ฌ๋ฆฌ, ์‹ค์ œ๋กœ๋Š” ์‚ฌ์šฉ ์ค‘ ๋ฐ์ดํ„ฐ๊นŒ์ง€ ํฌํ•จํ•ด ๋ชจ๋“  ์ƒํƒœ์—์„œ ์—ฐ์†์ ์œผ๋กœ ๋ณดํ˜ธํ•˜๋Š” ์ฒด๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ๋‹ค. ํ”„๋ผ์ด๋ฒ„์‹œ ๊ฐ•ํ™” ๊ธฐ์ˆ ์„ ์ง€๊ธˆ ๋„์ž…ํ•˜๋ฉด ์ดํ›„ AI ๋ชจ๋ธ ์ ์šฉ์—์„œ๋„ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐํ™”ยท๋ณด์•ˆ์ด ์„ ํ–‰๋ผ ํ•™์Šต ํšจ์œจ์ด ์ข‹์•„์ง€๊ณ , ์žฌํ•™์Šต์— ๋”ฐ๋ฅธ ๋น„์šฉยท๋ฆฌ์Šคํฌ๋„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค.

4. ํŒ€ ์ •์ฒด์„ฑ๊ณผ ๊ฒฝํ—˜์— ์ง‘์ค‘

2026๋…„ CIO ๊ณผ์ œ๋กœ โ€˜๊ธฐ์—… ์ •์ฒด์„ฑโ€™๊ณผ ์ง์› ๊ฒฝํ—˜์„ ์žฌ์ •๋น„ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋ชฉ์†Œ๋ฆฌ๋„ ์žˆ๋‹ค. IT ๋ณด์•ˆ ์†Œํ”„ํŠธ์›จ์–ด ์—…์ฒด ๋„ท์œ„๋ฆญ์Šค(Netwrix)์˜ CIO ๋งˆ์ดํด ์›ป์ ค์€ โ€œ์ •์ฒด์„ฑ์€ ์‚ฌ๋žŒ๋“ค์ด ์กฐ์ง์— ํ•ฉ๋ฅ˜ํ•˜๊ณ  ํ˜‘์—…ํ•˜๊ณ  ๊ธฐ์—ฌํ•˜๋Š” ๊ธฐ๋ฐ˜โ€์ด๋ผ๋ฉฐ, โ€œ์ •์ฒด์„ฑ๊ณผ ์ง์› ๊ฒฝํ—˜์„ ์ œ๋Œ€๋กœ ์žก์œผ๋ฉด ๋ณด์•ˆ, ์ƒ์‚ฐ์„ฑ, ๋„์ž… ๋“ฑ ๋‹ค๋ฅธ ๋ชจ๋“  ๊ฒƒ์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋”ฐ๋ผ์˜จ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์›ป์ ค์€ ์ง์›๋“ค์ด ์ง์žฅ์—์„œ โ€˜์†Œ๋น„์ž๊ธ‰โ€™ ๊ฒฝํ—˜์„ ๊ธฐ๋Œ€ํ•œ๋‹ค๊ณ  ์ง„๋‹จํ–ˆ๋‹ค. ๋‚ด๋ถ€ ๊ธฐ์ˆ ์ด ๋ถˆํŽธํ•˜๋ฉด ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์šฐํšŒํ•˜๊ฒŒ ๋˜๋ฉฐ, ๊ทธ ์ˆœ๊ฐ„ ์กฐ์ง์€ ๋ณด์•ˆ๊ณผ ์†๋„๋ฅผ ๋™์‹œ์— ์žƒ๋Š”๋‹ค๋Š” ์ง€์ ์ด๋‹ค. ๋ฐ˜๋Œ€๋กœ โ€˜์ •์ฒด์„ฑ์— ๋ฟŒ๋ฆฌ๋ฅผ ๋‘” ๋งค๋„๋Ÿฌ์šด ๊ฒฝํ—˜โ€™์„ ๊ตฌ์ถ•ํ•œ ๊ธฐ์—…์ด ํ˜์‹  ์†๋„์—์„œ ์•ž์„œ๊ฐˆ ๊ฒƒ์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค.

5. ๊ฐ’๋น„์‹ผ ERP ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜ ๋Œ€์‘ ๋ฐฉ์•ˆ ๋งˆ๋ จ

ERP ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜์€ 2026๋…„์—๋„ CIO๋ฅผ ๊ฐ•ํ•˜๊ฒŒ ์••๋ฐ•ํ•  ์ „๋ง์ด๋‹ค. ์ธ๋ณด์ด์Šค ๋ผ์ดํ”„์‚ฌ์ดํด ๊ด€๋ฆฌ ์†Œํ”„ํŠธ์›จ์–ด ์—…์ฒด ๋ฐ”์Šค์›จ์–ด(Basware)์˜ CIO ๋ฐฐ๋Ÿฟ ์‰ฌ์œ„์ธ ๋Š” โ€œ์˜ˆ๋ฅผ ๋“ค์–ด SAP S/4HANA ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜์€ ๋ณต์žกํ•˜๊ณ , ๊ณ„ํš๋ณด๋‹ค ๊ธธ์–ด์ง€๋ฉด์„œ ๋น„์šฉ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์‰ฌ์œ„์ธ ๋Š” ์—…๊ทธ๋ ˆ์ด๋“œ ๋น„์šฉ์ด ๊ธฐ์—… ๊ทœ๋ชจ์™€ ๋ณต์žก๋„์— ๋”ฐ๋ผ 1์–ต ๋‹ฌ๋Ÿฌ ์ด์ƒ, ๋งŽ๊ฒŒ๋Š” 5์–ต ๋‹ฌ๋Ÿฌ๊นŒ์ง€ ๋›ธ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค.

๋˜ํ•œ, ERP๊ฐ€ โ€˜๋ชจ๋“  ๊ฒƒ์„ ํ•˜๋ ค๋Š”โ€™ ๊ตฌ์กฐ์ธ ๋งŒํผ, ์ธ๋ณด์ด์Šค ์ฒ˜๋ฆฌ์ฒ˜๋Ÿผ ํŠน์ • ์—…๋ฌด๋ฅผ ์•„์ฃผ ์ž˜ ํ•ด๋‚ด๋Š” ๋ฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ์—ฌ๊ธฐ์— ์ˆ˜๋งŽ์€ ์• ๋“œ์˜จ ์ปค์Šคํ„ฐ๋งˆ์ด์ง•์ด ๋”ํ•ด์ง€๋ฉด ๋ฆฌ์Šคํฌ๊ฐ€ ์ปค์ง„๋‹ค. ์‹œ์œ„์ธ ๋Š” ์ด์— ๋Œ€ํ•œ ๋Œ€์•ˆ์œผ๋กœ๋Š” SAP๊ฐ€ ๊ฐ•์ ์„ ๊ฐ–๋Š” ํ•ต์‹ฌ์€ ๊ทธ๋Œ€๋กœ ๋‘๊ณ , ์ฃผ๋ณ€ ๊ธฐ๋Šฅ์€ ๋ฒ ์ŠคํŠธ ์˜ค๋ธŒ ๋ธŒ๋ฆฌ๋“œ ๋„๊ตฌ๋กœ ๋ณด์™„ํ•˜๋Š” โ€˜ํด๋ฆฐ ์ฝ”์–ด(clean core)โ€™ ์ „๋žต์„ ์ œ์‹œํ–ˆ๋‹ค.

6. ํ˜์‹ ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค

2026๋…„ ํ˜์‹ ์„ ์ง€์† ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“ค๋ ค๋ฉด, ๋ชจ๋“ˆํ˜•ยทํ™•์žฅํ˜• ์•„ํ‚คํ…์ฒ˜์™€ ๋ฐ์ดํ„ฐ ์ „๋žต์ด ํ•ต์‹ฌ์ด๋ผ๋Š” ์˜๊ฒฌ๋„ ๋‚˜์™”๋‹ค. ์ปดํ”Œ๋ผ์ด์–ธ์Šค ํ”Œ๋žซํผ ์—…์ฒด ์‚ผ์‚ฌ๋ผ(Samsara)์˜ CIO ์Šคํ‹ฐ๋ธ ํ”„๋ž€์ฒดํ‹ฐ๋Š” โ€œํ˜์‹ ์ด ํ™•์žฅ ๊ฐ€๋Šฅํ•˜๊ณ  ์ง€์† ๊ฐ€๋Šฅํ•˜๋ฉฐ ์•ˆ์ „ํ•˜๊ฒŒ ์ด๋ค„์ง€๋„๋ก ํ•˜๋Š” ๊ธฐ๋ฐ˜์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ์šฐ์„ ์ˆœ์œ„ ์ค‘ ํ•˜๋‚˜โ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํ”„๋ž€์ฒดํ‹ฐ๋Š” ๋А์Šจํ•˜๊ฒŒ ๊ฒฐํ•ฉ๋œ API ์šฐ์„  ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ตฌ์ถ• ์ค‘์ด๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋” ๋น ๋ฅด๊ฒŒ ์›€์ง์ด๊ณ  ๋ณ€ํ™”์— ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์‘ํ•˜๋ฉด์„œ ์†”๋ฃจ์…˜ ์—…์ฒด์™€ ํ”Œ๋žซํผ ์ข…์†์„ ํ”ผํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์›Œํฌํ”Œ๋กœ์šฐยท๋„๊ตฌยทAI ์—์ด์ „ํŠธ๊นŒ์ง€ ๋” ์—ญ๋™์ ์œผ๋กœ ๋ฐ”๋€Œ๋Š” ํ™˜๊ฒฝ์—์„œ โ€˜๊ฐ•ํ•˜๊ฒŒ ๊ฒฐํ•ฉ๋œ ์Šคํƒโ€™์€ ํ™•์žฅ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค๋Š” ํŒ๋‹จ์ด๋‹ค. ๋˜ํ•œ ๋ฐ์ดํ„ฐ๋Š” AI๋ฟ ์•„๋‹ˆ๋ผ ๋น„์ฆˆ๋‹ˆ์Šค ์ธ์‚ฌ์ดํŠธ, ๊ทœ์ œ ๋Œ€์‘, ๊ณ ๊ฐ ์‹ ๋ขฐ๋ฅผ ์œ„ํ•œ ์žฅ๊ธฐ ์ „๋žต ์ž์‚ฐ์ด๋ผ๋ฉฐ, ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ๊ณผ ๊ฑฐ๋ฒ„๋„Œ์Šค, ์ ‘๊ทผ์„ฑ์„ ์ „์‚ฌ์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋ง๋ถ™์˜€๋‹ค.

7. ์ธ๋ ฅ ์ „ํ™˜ ๊ฐ€์†ํ™”

AI ์‹œ๋Œ€ ์ธ๋ ฅ ์ „๋žต์€ โ€˜์ฑ„์šฉโ€™๋งŒ์œผ๋กœ ํ•ด๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค. ์ž„์› ์„œ์น˜ยท๊ฒฝ์˜ ์ปจ์„คํŒ… ๊ธฐ์—… ํ•˜์ด๋“œ๋ฆญ ์•ค ์ŠคํŠธ๋Ÿฌ๊ธ€์Šค(Heidrick & Struggles)์˜ ํŒŒํŠธ๋„ˆ ์Šค์ฝง ํ†ฐ์Šจ์€ โ€œ์—…์Šคํ‚ฌ๋ง๊ณผ ๋ฆฌ์Šคํ‚ฌ๋ง์€ ์ฐจ์„ธ๋Œ€ ๋ฆฌ๋”๋ฅผ ํ‚ค์šฐ๋Š” ํ•ต์‹ฌโ€์ด๋ผ๋ฉฐ, โ€œ2026๋…„์˜ ๊ธฐ์ˆ  ๋ฆฌ๋”๋Š” ์ œํ’ˆ ์ค‘์‹ฌ์˜ ๊ธฐ์ˆ  ๋ฆฌ๋”๋กœ์„œ, ์ œํ’ˆยท๊ธฐ์ˆ ยท๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์‚ฌ์‹ค์ƒ ํ•˜๋‚˜๋กœ ๋ฌถ์–ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํ†ฐ์Šจ์€ โ€˜๋””์ง€ํ„ธ ์ธ์žฌ ๊ณต์žฅโ€™ ๋ชจ๋ธ์„ ์ œ์•ˆํ–ˆ๋‹ค. ์—ญ๋Ÿ‰ ๋ถ„๋ฅ˜ ์ฒด๊ณ„(๊ธฐ์ˆ  ์—ญ๋Ÿ‰ ๋ถ„๋ฅ˜), ์—ญํ•  ๊ธฐ๋ฐ˜ ํ•™์Šต ๊ฒฝ๋กœ, ์‹ค์ „ ํ”„๋กœ์ ํŠธ ์ˆœํ™˜์„ ๊ตฌ์กฐํ™”ํ•ด ๋‚ด๋ถ€์—์„œ ์ธ์žฌ๋ฅผ ํ‚ค์šฐ๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋˜ํ•œ AI๊ฐ€ ํ™œ์„ฑํ™”๋œ ํ™˜๊ฒฝ์— ๋งž์ถฐ ์ง๋ฌด๋ฅผ ์žฌ์„ค๊ณ„ํ•˜๊ณ  ์ž๋™ํ™”๋กœ ๊ณ ๋„์˜ ์ „๋ฌธ ๋…ธ๋™ ์˜์กด๋„๋ฅผ ์ค„์ด๋ฉฐ, โ€˜ํ“จ์ „ ํŒ€(fusion teams)โ€™์œผ๋กœ ํฌ์†Œ ์—ญ๋Ÿ‰์„ ์กฐ์ง ์ „๋ฐ˜์— ํ™•์‚ฐํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

8. ํŒ€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๊ณ ๋„ํ™”

๊ธฐ์ˆ  ์กฐ์ง์—์„œ ๋ถˆํ™•์‹ค์„ฑ์ด ์ปค์งˆ์ˆ˜๋ก ๋ถˆ์•ˆ์ด ํ™•์‚ฐ๋˜๊ณ , ๊ทธ ์–‘์ƒ์€ ๊ฐœ์ธ๋ณ„๋กœ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. CompTIA์˜ ์ตœ๊ณ  ๊ธฐ์ˆ  ์—๋ฐ˜์ ค๋ฆฌ์ŠคํŠธ ์ œ์ž„์Šค ์Šคํƒ ์ €๋Š” โ€œ๊ธฐ์ˆ  ๋ถ€์„œ์—์„œ ๋ถˆํ™•์‹ค์„ฑ์ด ๋ฏธ์น˜๋Š” 1์ฐจ ํšจ๊ณผ๋Š” ๋ถˆ์•ˆโ€์ด๋ผ๋ฉฐ, โ€œ๋ถˆ์•ˆ์€ ์‚ฌ๋žŒ๋งˆ๋‹ค ๋‹ค๋ฅธ ํ˜•ํƒœ๋กœ ๋“œ๋Ÿฌ๋‚œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์Šคํƒ ์ €๋Š” ํŒ€์›๊ณผ์˜ ๋ฐ€์ฐฉ ์†Œํ†ต์„ ๊ฐ•ํ™”ํ•˜๊ณ , ๋” ํšจ๊ณผ์ ์ด๊ณ  ๊ด€๋ จ์„ฑ ๋†’์€ ๊ต์œก์œผ๋กœ ๋ถˆ์•ˆ์„ ๊ด€๋ฆฌํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ œ์•ˆํ–ˆ๋‹ค.

9. ๋ฏผ์ฒฉ์„ฑยท์‹ ๋ขฐยทํ™•์žฅ์„ฑ์„ ์œ„ํ•œ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”

AI ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ์ด๋ฅผ ์šด์˜ํ•  ์ˆ˜ ์žˆ๋Š” ์—ญ๋Ÿ‰๋„ 2026๋…„ ํ•ต์‹ฌ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜๋‹ค. ๋ณด์•ˆ ์†”๋ฃจ์…˜ ์—…์ฒด ๋„ท์Šค์ฝ”ํ”„(Netskope)์˜ CDIO ๋งˆ์ดํฌ ์•ค๋”์Šจ์€ โ€œAI๋ฅผ ๋„˜์–ด 2026๋…„ CIO ์šฐ์„ ์ˆœ์œ„๋Š” ๋ฏผ์ฒฉ์„ฑ, ์‹ ๋ขฐ, ํ™•์žฅ์„ฑ์„ ์ด๋„๋Š” ๊ธฐ๋ฐ˜ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•˜๋Š” ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์•ค๋”์Šจ์€ ์ œํ’ˆ ์šด์˜ ๋ชจ๋ธ(product operating model)์ด ์ „ํ†ต์  ์†Œํ”„ํŠธ์›จ์–ด ํŒ€์„ ๋„˜์–ด, IAM, ๋ฐ์ดํ„ฐ ํ”Œ๋žซํผ, ํ†ตํ•ฉ ์„œ๋น„์Šค ๊ฐ™์€ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ธฐ๋ฐ˜ ์—ญ๋Ÿ‰๊นŒ์ง€ ํฌํ•จํ•˜๋Š” ํ˜•ํƒœ๋กœ ํ™•์žฅ๋  ๊ฒƒ์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค. ์ด๋•Œ ์ง์›ยทํŒŒํŠธ๋„ˆยท๊ณ ๊ฐยท์„œ๋“œํŒŒํ‹ฐยทAI ์—์ด์ „ํŠธ ๋“ฑ โ€˜์ธ๊ฐ„/๋น„์ธ๊ฐ„ IDโ€™๋ฅผ ๋ชจ๋‘ ์ง€์›ํ•ด์•ผ ํ•˜๋ฉฐ, ์ตœ์†Œ ๊ถŒํ•œ๊ณผ ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ์›์น™์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ์•ˆ์ „ํ•˜๊ณ  ์ ์‘ํ˜• ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

10. ์ง„ํ™”ํ•˜๋Š” IT ์•„ํ‚คํ…์ฒ˜

2026๋…„์—๋Š” ํ˜„์žฌ์˜ IT ์•„ํ‚คํ…์ฒ˜๊ฐ€ AI ์—์ด์ „ํŠธ์˜ ์ž์œจ์„ฑ์„ ๊ฐ๋‹นํ•˜์ง€ ๋ชปํ•˜๋Š” โ€˜๋ ˆ๊ฑฐ์‹œ ๋ชจ๋ธโ€™์ด ๋  ์ˆ˜๋„ ์žˆ๋‹ค. ์„ธ์ผ์ฆˆํฌ์Šค์˜ ์ตœ๊ณ  ์•„ํ‚คํ…ํŠธ ์—๋ฏผ ๊ฒŒ๋ฅด๋ฐ”๋Š” โ€œํšจ๊ณผ์ ์œผ๋กœ ํ™•์žฅํ•˜๋ ค๋ฉด ๊ธฐ์—…์€ ์ƒˆ๋กœ์šด ์—์ด์ „ํ‹ฑ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ๋กœ ์ „ํ™˜ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ, ๋ฐ์ดํ„ฐ ์˜๋ฏธ๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๊ณต์œ  ์‹œ๋งจํ‹ฑ ๊ณ„์ธต, ์ค‘์•™ํ™”๋œ ์ง€๋Šฅ์„ ์œ„ํ•œ ํ†ตํ•ฉ AI/ML ๊ณ„์ธต, ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ์—์ด์ „ํŠธ ์ธ๋ ฅ์˜ ๋ผ์ดํ”„์‚ฌ์ดํด์„ ๊ด€๋ฆฌํ•˜๋Š” ์—์ด์ „ํ‹ฑ ๊ณ„์ธต, ๋ณต์žกํ•œ ํฌ๋กœ์Šค ์‚ฌ์ผ๋กœ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ๊ด€๋ฆฌํ•˜๋Š” ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ๊ณ„์ธต ๋“ฑ 4๊ฐœ ๊ณ„์ธต์„ ์ œ์‹œํ–ˆ๋‹ค.

๊ฒŒ๋ฅด๋ฐ”๋Š” ์ด ์ „ํ™˜์ด โ€œ์—”๋“œ ํˆฌ ์—”๋“œ ์ž๋™ํ™”๋ฅผ ๋‹ฌ์„ฑํ•œ ๊ธฐ์—…๊ณผ ์—์ด์ „ํŠธ๊ฐ€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‚ฌ์ผ๋กœ์— ๊ฐ‡ํžŒ ๊ธฐ์—…์„ ๊ฐ€๋ฅด๋Š” ๊ฒฐ์ •์  ๊ฒฝ์Ÿ๋ ฅโ€์ด ๋  ๊ฒƒ์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

โ€œ์˜ฌํ•ด ๋ณด์•ˆ, ์ด๊ฒƒ๋งŒ์€ ํ•„์ˆ˜โ€ ๊ธ€๋กœ๋ฒŒ ๋ฆฌ๋”๊ฐ€ ๊ผฝ์€ 2026๋…„ ๋ณด์•ˆ ์šฐ์„  ์ˆœ์œ„

20 January 2026 at 00:47

2026๋…„์„ ์•ž๋‘๊ณ  CISO์™€ ๋Š์ž„์—†์ด ์ง„ํ™”ํ•˜๋Š” ์‚ฌ์ด๋ฒ„ ๊ณต๊ฒฉ์ž ๊ฐ„์˜ ๋Œ€๊ฒฐ์ด ๋‹ค์‹œ ํ•œ ๋ฒˆ ๊ฒฉํ™”๋˜๋Š” ๊ฐ€์šด๋ฐ, ๊ณต๊ฒฉ์ž๋ณด๋‹ค ํ•œ๋ฐœ ์•ž์„œ ์ฃผ๋„๊ถŒ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์น˜๋ฐ€ํ•˜๊ฒŒ ๊ธฐํš๋œ ๊ฐ•๋ ฅํ•œ ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํ”„๋กœ์ ํŠธ๊ฐ€ ํšจ๊ณผ์ ์ธ ๋Œ€์‘์ฑ…์ผ ์ˆ˜ ์žˆ๋‹ค.

๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ถ€ํ„ฐ ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ๊นŒ์ง€, ํ–ฅํ›„ 1๋…„ ๋™์•ˆ ๋ชจ๋“  CISO๊ฐ€ ๋„์ž…์„ ๊ฒ€ํ† ํ•ด๋ณผ ๋งŒํ•œ ํ•ต์‹ฌ ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํ”„๋กœ์ ํŠธ 7๊ฐ€์ง€๋ฅผ ์ •๋ฆฌํ–ˆ๋‹ค.

1. AI ์‹œ๋Œ€๋ฅผ ์œ„ํ•œ ์•„์ด๋ดํ‹ฐํ‹ฐ ๋ฐ ์ ‘๊ทผ ๊ด€๋ฆฌ ์ „ํ™˜

AI์™€ ์ž๋™ํ™” ๊ธฐ์ˆ ์ด ์ง„ํ™”ํ•˜๋ฉด์„œ ์ง์›์˜ ์ ‘๊ทผ ๊ถŒํ•œ๋ฟ ์•„๋‹ˆ๋ผ AI ์—์ด์ „ํŠธ์™€ ๋จธ์‹  ํ”„๋กœ์„ธ์Šค์˜ ์•„์ด๋ดํ‹ฐํ‹ฐ๊นŒ์ง€ ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์ด ์ด์ œ ํ•„์ˆ˜์ ์ธ ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ์š”์†Œ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค. ๋”œ๋กœ์ดํŠธ ๋ฏธ๊ตญ ์‚ฌ์ด๋ฒ„ ์•„์ด๋ดํ‹ฐํ‹ฐ ๋ถ€๋ฌธ ๋ฆฌ๋”์ธ ์•ค์„œ๋‹ˆ ๋ฒ„๊ทธ๋Š” ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋ฅผ ๋ณด์•ˆ์˜ ํ•ต์‹ฌ ๊ณผ์ œ๋กœ ์งš์—ˆ๋‹ค.

๋ฒ„๊ทธ๋Š” โ€œํŠนํžˆ ์—์ด์ „ํ‹ฑ AI๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•œ AI์˜ ๋น ๋ฅธ ๋ฐœ์ „์ด ๋งŽ์€ ๋ณด์•ˆ ๋ฆฌ๋”๋กœ ํ•˜์—ฌ๊ธˆ ์•„์ด๋ดํ‹ฐํ‹ฐ ๊ด€๋ฆฌ ์ „๋žต์„ ๋‹ค์‹œ ์ƒ๊ฐํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์‚ฌ๋žŒ๊ณผ ๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ๋ฅผ ๋ชจ๋‘ ์•„์šฐ๋ฅด๋Š” ๋ณด๋‹ค ์ •๊ตํ•œ ์•„์ด๋ดํ‹ฐํ‹ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ CISO์™€ CIO๋กœ ํ•˜์—ฌ๊ธˆ ์ฐจ์„ธ๋Œ€ ๋””์ง€ํ„ธ ์ „ํ™˜์„ ๋Œ€๋น„ํ•œ ๋ณด์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋„๋ก ์ด๋Œ๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ทธ๋Š” ์ƒ์„ฑํ˜• AI์™€ ์—์ด์ „ํ‹ฑ AI๊ฐ€ ์ƒˆ๋กœ์šด ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ๊ณผ ๋” ๋†’์€ ์ˆ˜์ค€์˜ ์ž์œจ์„ฑ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋งŒํผ, ์กฐ์ง์ด ์•„์ด๋ดํ‹ฐํ‹ฐ ๋ฐ ์ ‘๊ทผ ๊ด€๋ฆฌ(IAM) ํ”„๋กœ๊ทธ๋žจ์„ ์„ ์ œ์ ์œผ๋กœ ํ˜„๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค. ๋ชจ๋“  ๋””์ง€ํ„ธ ์•„์ด๋ดํ‹ฐํ‹ฐ ์ „๋ฐ˜์˜ ์ ‘๊ทผ์„ ๋ณดํ˜ธํ•˜๋Š” ๊ฒƒ์€ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ์™€ ๊ทœ์ œ ์ค€์ˆ˜, ์šด์˜ ํšจ์œจ์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋ผ๋Š” ์„ค๋ช…์ด๋‹ค.

๋ฒ„๊ทธ๋Š” ๋ผ์ดํ”„์‚ฌ์ดํด ๊ด€๋ฆฌ, ๊ฐ•๋ ฅํ•œ ์ธ์ฆ, ์ •๋ฐ€ํ•œ ์—ญํ•  ๋ฐ ์ •์ฑ… ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ์ œ์–ด์™€ ๊ฐ™์€ IAM ์—ญ๋Ÿ‰์„ ๊ณ ๋„ํ™”ํ•˜๋ฉด ๋น„์ธ๊ฐ€ ์ ‘๊ทผ์„ ์ฐจ๋‹จํ•˜๊ณ  ํƒˆ์ทจ๋œ ์ž๊ฒฉ ์ฆ๋ช…์œผ๋กœ ์ธํ•œ ์œ„ํ—˜์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

๋˜ํ•œ ์ด๋Ÿฌํ•œ ํ†ต์ œ๋ฅผ ๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ๊นŒ์ง€ ํ™•์žฅํ•˜๋ฉด ์‹œ์Šคํ…œ์ด๋‚˜ ๋ฐ์ดํ„ฐ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ชจ๋“  ์ฃผ์ฒด๋ฅผ ์ ์ ˆํžˆ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ •๊ธฐ์ ์ธ ์ ‘๊ทผ ๊ถŒํ•œ ๊ฒ€ํ† ์™€ ์ง€์†์ ์ธ ๊ต์œก์„ ๋ณ‘ํ–‰ํ•  ๊ฒฝ์šฐ ์ •๋ณด ๋ณดํ˜ธ ์ˆ˜์ค€์„ ๋†’์ด๊ณ  ๊ณ ๋„ํ™”๋œ AI ๊ธฐ์ˆ ์„ ๋ณด๋‹ค ์•ˆ์ „ํ•˜๊ฒŒ ๋„์ž…ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

2. ์ด๋ฉ”์ผ ๋ณด์•ˆ ๊ฐ•ํ™”

์นด๋„ค๊ธฐ๋ฉœ๋ก ๋Œ€ํ•™๊ต CISO์ธ ๋ฉ”๋ฆฌ ์•ค ๋ธ”๋ ˆ์–ด๋Š” ํ”ผ์‹ฑ์ด ์—ฌ์ „ํžˆ ์ž๊ฒฉ ์ฆ๋ช…์„ ํƒˆ์ทจํ•˜๊ณ  ํ”ผํ•ด์ž๋ฅผ ์†์ด๋Š” ์ฃผ์š” ๊ณต๊ฒฉ ๊ฒฝ๋กœ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ์œ„ํ˜‘ ํ–‰์œ„์ž๋“ค์ด ๋ฉ”์ผ ์„œ๋น„์Šค ์ œ๊ณต์—…์ฒด์˜ ํƒ์ง€ ๊ธฐ๋Šฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ์ ์  ๋” ์ •๊ตํ•œ ํ”ผ์‹ฑ ๊ณต๊ฒฉ์„ ๋งŒ๋“ค์–ด๋‚ด๊ณ  ์žˆ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๋ธ”๋ ˆ์–ด๋Š” โ€œ๊ธฐ์กด์˜ ๋‹ค์ค‘์š”์†Œ ์ธ์ฆ ๊ธฐ๋ฒ•์€ ์ด์ œ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋ฌด๋ ฅํ™”๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณต๊ฒฉ์ž๋“ค์€ ์นจํˆฌ์— ์„ฑ๊ณตํ•œ ์ดํ›„ ์ด๋ฅผ ๋น ๋ฅด๊ฒŒ ์ˆ˜์ตํ™”ํ•˜๋Š” ๋‹จ๊ณ„๋กœ ์ด๋™ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

์ด์ฒ˜๋Ÿผ ๊ฐˆ์ˆ˜๋ก ๋Œ€์‘์ด ์–ด๋ ค์›Œ์ง€๋Š” ์ด๋ฉ”์ผ ๋ณด์•ˆ ํ™˜๊ฒฝ ์†์—์„œ ๋ธ”๋ ˆ์–ด๋Š” CISO๊ฐ€ ๋ณด์•ˆ ํ”„๋กœ์ ํŠธ๋ฅผ ์ถ”์ง„ํ•˜๋Š” ๊ณผ์ •์—์„œ ์™ธ๋ถ€ ์ „๋ฌธ ์กฐ์ง์˜ ์ง€์›์„ ๊ฒ€ํ† ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ์‹ค์ œ๋กœ ๊ทธ๊ฐ€ ์ ‘์ด‰ํ•œ ์—ฌ๋Ÿฌ ๋ฒค๋”๋Š” ์ œ์•ˆ์š”์ฒญ์„œ(RFP)์— ์‘๋‹ตํ•˜๋Š” ํ•œํŽธ, ์ตœ์‹  ๋ณด์•ˆ ์—ญ๋Ÿ‰์„ ์‹œํ—˜ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ…Œ์ŠคํŠธ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ „ํ–ˆ๋‹ค.

3. AI๋ฅผ ํ™œ์šฉํ•œ ์ฝ”๋“œ ์ทจ์•ฝ์  ํƒ์ง€

์‹œ์Šค์ฝ” AI ์—ฐ๊ตฌ์› ์•„๋งŒ ํ”„๋ฆฌ์–€์Šˆ๋Š” ์ž์›์ด ์ œํ•œ๋œ ํ™˜๊ฒฝ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM)์„ ํ™œ์šฉํ•ด ์ž์œจ์ ์œผ๋กœ ์ทจ์•ฝ์ ์„ ํƒ์ƒ‰ํ•˜๋Š” ์—์ด์ „ํŠธ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ๋‹ค.

ํ”„๋ฆฌ์–€์Šˆ๋Š” ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ์ด ๋ณธ์งˆ์ ์œผ๋กœ ๊ธด ๋งฅ๋ฝ์„ ๋‹ค๋ค„์•ผ ํ•˜๋Š” ์˜์—ญ์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ตœ์‹  ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ๋น„์šฉ์ด๋‚˜ ์ง€์—ฐ ์‹œ๊ฐ„ ์ธก๋ฉด์—์„œ ์ƒ๋‹นํ•œ ๋ถ€๋‹ด์ด ๋”ฐ๋ฅธ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋Š” โ€œ์กฐ์ง์˜ ์ฝ”๋“œ๋ฒ ์ด์Šค๋Š” ๋ณดํ†ต ์ˆ˜์ฒœ ๊ฐœ ํŒŒ์ผ๊ณผ ์ˆ˜๋ฐฑ๋งŒ ์ค„์˜ ์ฝ”๋“œ๋กœ ๊ตฌ์„ฑ๋œ๋‹คโ€๋ผ๋ฉฐ โ€œํŠน์ • ์ทจ์•ฝ์ ์„ ์ฐพ์•„์•ผ ํ•  ๋•Œ ๋ชจ๋“  ์ฝ”๋“œ๋ฅผ ๋Œ€ํ˜• ๋ชจ๋ธ์— ์ž…๋ ฅํ•˜๋ฉด ๊ฐ๋‹นํ•˜๊ธฐ ์–ด๋ ค์šธ ์ •๋„๋กœ ๋น„์šฉ์ด ์ปค์ง€๊ฑฐ๋‚˜, ์•„์˜ˆ ๋งฅ๋ฝ ํ•œ๊ณ„๋ฅผ ์ดˆ๊ณผํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

ํ”„๋ฆฌ์–€์Šˆ๋Š” ์ด ํ”„๋กœ์ ํŠธ๊ฐ€ ๋Œ€๋ถ€๋ถ„์˜ ๋ณด์•ˆ ๋ถ„์„๊ฐ€๊ฐ€ ์ทจ์•ฝ์ ์„ ์ฐพ๋Š” ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•œ ์ ‘๊ทผ์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ž ์žฌ์ ์ธ ์ทจ์•ฝ ์ง€์ ์„ ์ถ”๋ก ํ•œ ๋’ค ํ•ด๋‹น ์˜์—ญ์„ ํƒ์ƒ‰ํ•˜๊ณ , ๊ด€๋ จ ์ฝ”๋“œ๋ฅผ ๊ฐ€์ ธ์™€ ๋ถ„์„ํ•˜๋Š” ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•ด ์•ฝ์ ์„ ์ฐพ์•„๋‚ด๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Š” โ€œ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ด ์ ‘๊ทผ๋ฒ•์ด ํšจ๊ณผ์ ์ด๋ผ๋Š” ์ ์€ ์ด๋ฏธ ํ™•์ธํ–ˆ๋‹คโ€๋ผ๋ฉฐ โ€œ2026๋…„์—๋Š” ์ด๋ฅผ ํ™•์žฅํ•ด ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์‹ค์งˆ์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•œ๋‹คโ€๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

์ด๋ฏธ ์นจํˆฌ ํ…Œ์Šคํ„ฐ์™€ ๋ณด์•ˆ ์—ฐ๊ตฌ์›๋“ค์€ ์ƒ์„ฑํ˜• AI๋ฅผ ์ทจ์•ฝ์  ํƒ์ƒ‰์— ํ™œ์šฉํ•ด ์™”์œผ๋ฉฐ, AI ๊ธฐ๋ฐ˜ ๋ฒ„๊ทธ ํ—ŒํŒ…์€ ์ทจ์•ฝ์  ๋ฐœ๊ฒฌ ์†๋„๋ฅผ ๋†’์ด๋Š” ๋™์‹œ์— ๊ทธ ์ ‘๊ทผ์„ฑ์„ ํ™•๋Œ€ํ•˜๋Š” ํ๋ฆ„์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ด๋Š” ํšจ๊ณผ์ ์ธ ๋ฒ„๊ทธ ๋ฐ”์šดํ‹ฐ ํ”„๋กœ๊ทธ๋žจ์„ ์„ค๊ณ„ํ•˜๋Š” ๊ธฐ์ค€์—๋„ ๋ณ€ํ™”๋ฅผ ์ฃผ๊ณ  ์žˆ๋‹ค.

4. ๊ธฐ์—… ์ „๋ฐ˜์˜ AI ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ฐ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ ๊ฐ•ํ™”

AI ๋ฆฌ์Šคํฌ์™€ ์ž์œจํ˜• ์œ„ํ˜‘์ด ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ํ™˜๊ฒฝ์„ ์žฌํŽธํ•˜๋Š” ๊ฐ€์šด๋ฐ, AI ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฐ ํ˜‘์—… ์†”๋ฃจ์…˜ ๊ธฐ์—… ๊ณ ํˆฌ(GoTo)์˜ CISO์ธ ์•„ํ‹ธ๋ผ ํ‡ด๋ขฐํฌ๋Š” ์กฐ์ง ๋‚ด ๋ชจ๋“  AI ๋„๊ตฌ๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ๊ด€๋ฆฌยท๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ํ•œํŽธ, ์Šน์ธ๋˜์ง€ ์•Š์€ ํ”Œ๋žซํผ์„ ์ฐจ๋‹จํ•ด ๋ฐ์ดํ„ฐ ์œ ์ถœ์„ ๋ฐฉ์ง€ํ•˜๋Š” ๋ฐ ์ฃผ๋ ฅํ•˜๊ณ  ์žˆ๋‹ค.

ํ‡ด๋ขฐํฌ๋Š” โ€œ์„ค๊ณ„ ๋‹จ๊ณ„๋ถ€ํ„ฐ ๋ณด์•ˆ์„ ๋‚ด์žฌํ™”ํ•˜๋Š” ์›์น™์„ ์ ์šฉํ•˜๊ณ  ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ์„ ๋น„์ฆˆ๋‹ˆ์Šค ์ „๋žต๊ณผ ์ •๋ ฌํ•จ์œผ๋กœ์จ ํšŒ๋ณต๋ ฅ๊ณผ ์‹ ๋ขฐ, ๊ทœ์ œ ์ค€์ˆ˜๋ฅผ ๋™์‹œ์— ๊ตฌ์ถ•ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ด๋Ÿฌํ•œ ์š”์†Œ๋Š” AI ์‹œ๋Œ€์˜ ํ•ต์‹ฌ์ ์ธ ์ฐจ๋ณ„ํ™” ์š”์ธโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋‹ค๋งŒ ๊ทธ๋Š” ์—ฌ๋А ๋Œ€๊ทœ๋ชจ ๋ณด์•ˆ ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ํŠน์ • ์กฐ์ง์ด๋‚˜ ๋ถ€์„œ์— ๊ตญํ•œ๋œ ์ ‘๊ทผ์œผ๋กœ๋Š” ์„ฑ๊ณตํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๊ทธ๋Š” โ€œํ˜„์žฌ์™€ ๋ฏธ๋ž˜์˜ ์„ฑ๊ณต์„ ๋ณด์žฅํ•˜๋Š” ์‹คํ–‰ ๋ฐฉ์‹์„ ์ •๋ฆฝํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „์‚ฌ ๋ชจ๋“  ๋ถ€์„œ์™€์˜ ํ˜‘์—…์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

5. ๋ณด์•ˆ ์šด์˜ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•œ AI ์šฐ์„  ์ „๋žต

์„ธ์ผ์ฆˆ ์„ฑ๊ณผ ๊ด€๋ฆฌ ๊ธฐ์—… ์žญํ‹€๋ฆฌ(Xactly)์˜ CISO ๋งค์Šˆ ์ƒคํ”„๋Š” ์ˆ˜์น˜ ๋ถ„์„ ๊ฒฐ๊ณผ์™€ ์œ„ํ˜‘ ํ™˜๊ฒฝ ๋ณ€ํ™” ๋ชจ๋‘๊ฐ€ AI ์‹ ๋ขฐ๋ฅผ ์ตœ์šฐ์„  ๊ณผ์ œ๋กœ ์‚ผ์•„์•ผ ํ•จ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ์ž์‚ฌ ๋ณด์•ˆ ์šด์˜์„ ๋Œ€์ƒ์œผ๋กœ ํฌ๋ฆฌ์Šคํ…์Šจ์‹ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ, ์ฆ์  ์ˆ˜์ง‘๊ณผ ๊ฒฝ๋ณด ๊ฒ€์ฆ, ๊ทœ์ œ ์ค€์ˆ˜ ๋ณด๊ณ ์™€ ๊ฐ™์€ ์—…๋ฌด๋ฅผ ํฌํ•จํ•ด ์ „์ฒด ๊ธฐ๋Šฅ์  ์ž‘์—…์˜ ์•ฝ 67%๊ฐ€ ๊ธฐ๊ณ„์  ์„ฑ๊ฒฉ์„ ๋ ๋ฉฐ ์ž๋™ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ์„ ํ™•์ธํ–ˆ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

์ƒคํ”„๋Š” โ€œ๊ณต๊ฒฉ์ž๋“ค์€ ์ด๋ฏธ ๋จธ์‹  ์†๋„๋กœ AI๋ฅผ ํ™œ์šฉํ•ด ๊ณต๊ฒฉํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ธ๊ฐ„์˜ ์†๋„๋กœ ๋Œ€์‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ๋Š” AI ๊ธฐ๋ฐ˜ ๊ณต๊ฒฉ์„ ๋ฐฉ์–ดํ•  ์ˆ˜ ์—†๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์ด์–ด โ€œAI ์‹ ๋ขฐ๋ฅผ ๋ณด์•ˆ ์šด์˜์— ์ ์šฉํ•˜๋ฉด, ๊ธฐ๊ณ„๊ฐ€ ๋” ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์—…์„ ์ธ๊ฐ„ ๋ถ„์„๊ฐ€๊ฐ€ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ํ”ผํ•  ์ˆ˜ ์žˆ๊ณ , ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ ๋Œ€์‘ ์—ญ๋Ÿ‰์„ ๋Œ์–ด์˜ฌ๋ฆด ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

AI๊ฐ€ ๋ฐฉ์–ด ์ˆ˜๋‹จ์œผ๋กœ์„œ ์‹ค์งˆ์ ์ธ ๋„๊ตฌ๋กœ ์ž๋ฆฌ ์žก์œผ๋ฉด์„œ, CISO๋“ค์€ ์กฐ์ง ๋‚ด ๋ณด์•ˆ ํŒ€ ์šด์˜ ๋ฐฉ์‹ ์—ญ์‹œ AI์˜ ์ž ์žฌ๋ ฅ์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์žฌ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ๋‹ค.

6. ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ์„œ์˜ ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ๋ชจ๋ธ ์ „ํ™˜

์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๊ธฐ์—… ์œ ๋ฆฌ์Šคํ‹ฑ(Euristiq)์˜ CTO ํŒŒ๋ธ”๋กœ ํŠธํžˆ๋ฅด๋Š” 2026๋…„ ํ•ต์‹ฌ ํ”„๋กœ์ ํŠธ๋กœ ์ž์‚ฌ ๋‚ด๋ถ€ ๊ฐœ๋ฐœ๊ณผ ๊ณ ๊ฐ ๊ฐœ๋ฐœ ์ „๋ฐ˜์— ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์ž‘์—…์„ ๊ผฝ์•˜๋‹ค. ๊ทธ๋Š” โ€œ๋ณด์•ˆ์ด ์ค‘์š”ํ•œ ๊ธฐ์—…๊ณผ ์˜ค๋žซ๋™์•ˆ ํ˜‘๋ ฅํ•ด ์™”์ง€๋งŒ, 2026๋…„์—๋Š” ์‹œ์žฅ๊ณผ ๊ทœ์ œ ์š”๊ตฌ ์ˆ˜์ค€์ด ํฌ๊ฒŒ ๋†’์•„์ง€๋ฉด์„œ โ€˜์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ ๊ธฐ๋ณธ๊ฐ’โ€™ ๋ชจ๋ธ๋กœ์˜ ์ „ํ™˜์ด ์ „๋žต์  ํ•„์ˆ˜ ๊ณผ์ œ๊ฐ€ ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํŠธํžˆ๋ฅด๋Š” ์ด ํ”„๋กœ์ ํŠธ๊ฐ€ ๋‹จ์ˆœํžˆ ์ž์‚ฌ ๋ณด์•ˆ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๊ทธ๋Š” โ€œ๊ณ ๋ถ€ํ•˜ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์‹œ์Šคํ…œ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ ๋ฌด๊ฒฐ์„ฑ์ด ์ค‘์š”ํ•œ AI ๊ธฐ๋ฐ˜ ์†”๋ฃจ์…˜์— ์ด๋ฅด๊ธฐ๊นŒ์ง€, ๊ณ ๊ฐ์„ ์œ„ํ•œ ๋ณด๋‹ค ์•ˆ์ „ํ•œ ํ”Œ๋žซํผ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œ์ธํ”„๋ผ์™€ ๊ฐœ๋ฐœ, CI/CD, ๋‚ด๋ถ€ ๋„๊ตฌ ์ „๋ฐ˜์— ์ œ๋กœ ํŠธ๋Ÿฌ์ŠคํŠธ๋ฅผ ์ ์šฉํ•จ์œผ๋กœ์จ ํ†ตํ•ฉ๋œ ๋ณด์•ˆ ๊ธฐ์ค€์„ ๋งˆ๋ จํ•˜๊ณ , ์ด๋ฅผ ๊ณ ๊ฐ ์•„ํ‚คํ…์ฒ˜์—๋„ ์ด์ „ํ•  ๊ณ„ํšโ€์ด๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.

์ด ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋Š” ํŠน์ • ๋ณด์•ˆ ์‚ฌ๊ณ ๋ฅผ ๊ณ„๊ธฐ๋กœ ์‹œ์ž‘๋œ ๊ฒƒ์€ ์•„๋‹ˆ๋ผ๊ณ  ํŠธํžˆ๋ฅด๋Š” ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์œ„ํ˜‘ ๋ชจ๋ธ์ด ๊ทธ ์–ด๋А ๋•Œ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ํ™•์ธํ–ˆ๋‹คโ€๋ผ๋ฉฐ โ€œ๊ณต๊ฒฉ์€ ๋” ์ด์ƒ ๊ฒฝ๊ณ„์—์„œ๋งŒ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ทจ์•ฝ์ ์ด๋‚˜ API, ์ทจ์•ฝํ•œ ์ธ์ฆ ๋ฉ”์ปค๋‹ˆ์ฆ˜, ์ž˜๋ชป ์„ค์ •๋œ ๊ถŒํ•œ ๋“ฑ ๋‚ด๋ถ€ ์š”์†Œ๋ฅผ ํ†ตํ•ด ์ ์  ๋” ๋งŽ์ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๊ฐ€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ฒ€ํ† ํ•˜๊ฒŒ ๋งŒ๋“  ๊ณ„๊ธฐ๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

7. ์ „์‚ฌ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค ๊ฐ•ํ™”

์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๋ฐ์ดํ„ฐยทAIยท๋ฐ์ดํ„ฐ ํŒจ๋ธŒ๋ฆญ ์†”๋ฃจ์…˜ ๊ธฐ์—… ์†”๋ฆญ์Šค ํ…Œํฌ๋†€๋กœ์ง€์Šค(Solix Technologies)์˜ ์ด๊ด„ ๋ฐฐ๋ฆฌ ์ฟค์ŠคํŠธ๋Š” 2026๋…„ ์šฐ์„  ๊ณผ์ œ๋กœ ๋ชจ๋“  ์ „์‚ฌ ์‹œ์Šคํ…œ์— ๊ฑธ์นœ ํ†ตํ•ฉ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ฐ ๋ณด์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์ถ•์„ ์ œ์‹œํ–ˆ๋‹ค. ๊ทธ๋Š” ์ด ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ ๋งŽ์€ ์กฐ์ง์ด ์—ฌ์ „ํžˆ ๊ฒช๊ณ  ์žˆ๋Š” ์„€๋„ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ์™€ ์ผ๊ด€๋˜์ง€ ์•Š์€ ์ ‘๊ทผ ํ†ต์ œ, ๊ทœ์ œ ์ค€์ˆ˜ ๊ณต๋ฐฑ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ๋„ ํ•จ๊ป˜ ๋‹ด๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ฟค์ŠคํŠธ๋Š” โ€œ๋ชจ๋“  ํ™˜๊ฒฝ์—์„œ ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜์™€ ๋ณดํ˜ธ, ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ์‹์„ ํ‘œ์ค€ํ™”ํ•˜๋ฉด ์ถ”์ ๋˜์ง€ ์•Š๋Š” ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋ผ๋Š” ๊ฐ€์žฅ ํฐ ๋ณด์•ˆ ํ—ˆ์ ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ด ํ”„๋กœ์ ํŠธ๋Š” ๊ฐ€์‹œ์„ฑ์„ ๋†’์ด๊ณ  ์ •์ฑ… ๊ธฐ๋ฐ˜ ํ†ต์ œ๋ฅผ ๊ฐ•ํ™”ํ•ด ๋ฉ€ํ‹ฐํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ์˜ ๋…ธ์ถœ์„ ์ค„์ด๋Š” ๋ฐฉ์‹์œผ๋กœ ๋ณด์•ˆ ์ˆ˜์ค€์„ ๋Œ์–ด์˜ฌ๋ฆด ๊ฒƒโ€์ด๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

๊ทธ๋Š” ๊ณ ๊ฐ๋“ค์ด ๊ธ‰๊ฒฉํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ€์™€ ์ƒˆ๋กœ์šด ๊ทœ์ œ ์š”๊ตฌ์— ์••๋„๋˜๋Š” ์ƒํ™ฉ์„ ๋ชฉ๊ฒฉํ•œ ์ดํ›„ ์ด๋ฒˆ ํ”„๋กœ์ ํŠธ๋ฅผ ์ถ”์ง„ํ•˜๊ฒŒ ๋๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ํ˜„์žฌ ๋ณด์•ˆ ๋ฐ ํด๋ผ์šฐ๋“œ ์—”์ง€๋‹ˆ์–ด๋ง ํŒ€์ด ์ฃผ์š” ๊ธฐ์ˆ  ํŒŒํŠธ๋„ˆ์™€ ํ˜‘๋ ฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, 2026๋…„ 3๋ถ„๊ธฐ ๋„์ž…์„ ๋ชฉํ‘œ๋กœ ์ค€๋น„๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

์ƒ์‚ฐ์„ฑ ๋„๊ตฌ๋กœ ์œ„์žฅํ•œ ํฌ๋กฌ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ, ๊ธฐ์—… HRยทERP ๊ณ„์ • ํƒˆ์ทจ ๋…ธ๋ ค

19 January 2026 at 21:38

ํฌ๋กฌ ์›น ์Šคํ† ์–ด์˜ ๋ฐฉ์–ด ์ฒด๊ณ„๋ฅผ ์šฐํšŒํ•œ ์กฐ์ง์ ์ธ ์•…์„ฑ ๋ธŒ๋ผ์šฐ์ € ์• ๋“œ์˜จ ์บ ํŽ˜์ธ์ด ํ™•์ธ๋๋‹ค. ์ด ์บ ํŽ˜์ธ์€ ์ƒ์‚ฐ์„ฑ ๋„๊ตฌ๋กœ ํ™๋ณด๋œ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ์„ ๋ฌด๊ธฐํ™”ํ•ด ๊ธฐ์—… ์„ธ์…˜ ํ† ํฐ์„ ํƒˆ์ทจํ•˜๊ณ , ๊ถ๊ทน์ ์œผ๋กœ ๊ณ„์ • ์ „์ฒด๋ฅผ ์žฅ์•…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ฒŒ์˜€๋‹ค.

๋ณด์•ˆ ๊ธฐ์—… ์†Œ์ผ“์˜ ์œ„ํ˜‘ ์—ฐ๊ตฌํŒ€์€ ๋ธ”๋กœ๊ทธ๋ฅผ ํ†ตํ•ด โ€œ์ด ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ๋“ค์€ ์„œ๋กœ ์—ฐ๊ณ„ํ•ด ์ธ์ฆ ํ† ํฐ์„ ํ›”์น˜๊ณ , ์‚ฌ๊ณ  ๋Œ€์‘ ๊ธฐ๋Šฅ์„ ์ฐจ๋‹จํ•˜๋ฉฐ, ์„ธ์…˜ ํ•˜์ด์žฌํ‚น์„ ํ†ตํ•ด ์™„์ „ํ•œ ๊ณ„์ • ํƒˆ์ทจ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ํ•ด๋‹น ์บ ํŽ˜์ธ์€ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ธ์‚ฌ๊ด€๋ฆฌ(HR) ๋ฐ ์ „์‚ฌ์ ์ž์›๊ด€๋ฆฌ(ERP) ํ”Œ๋žซํผ์„ ์ฃผ์š” ํ‘œ์ ์œผ๋กœ ์‚ผ์•˜๋‹ค.

์†Œ์ผ“ ์—ฐ๊ตฌ์ง„์€ ์ด๋ฒˆ ๊ณต๊ฒฉ์„ ์ž๊ฒฉ ์ฆ๋ช…์„ ์€๋ฐ€ํžˆ ํƒˆ์ทจํ•˜๋Š” ๋ฐฉ์‹๊ณผ ๊ธฐ์—…์˜ ๋ณด์•ˆ ๋Œ€์‘ ๊ธฐ๋Šฅ์„ ๋ฐฉํ•ดํ•˜๋Š” ์ˆ˜๋ฒ•์ด ํ•จ๊ป˜ ์‚ฌ์šฉ๋œ ๋ณตํ•ฉ์ ์ธ ๊ธฐ์—… ์นจํ•ด ์‚ฌ๋ก€๋กœ ๋ถ„์„ํ–ˆ๋‹ค. ๊ณต๊ฒฉ์ž๋Š” ๊ฒ‰๋ณด๊ธฐ์—๋Š” ์‹ ๋ขฐ๊ฐ์„ ์ฃผ๋Š” ๋””์ž์ธ๊ณผ ์ •์ƒ์ ์ธ ์šฉ๋„๋ฅผ ๋‚ด์„ธ์šด ํฌ๋กฌ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ 5์ข…์„ ๊ฒŒ์‹œํ–ˆ์œผ๋ฉฐ, ์‹ค์ œ๋กœ๋Š” ๊ธฐ์—… ์—…๋ฌด ํ๋ฆ„ ๊นŠ์ˆ™ํ•œ ์ง€์ ์—์„œ ์•…์„ฑ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„ํ–ˆ๋‹ค.

์„ค์น˜ ์ˆ˜ ์ง‘๊ณ„ ๊ฒฐ๊ณผ, ์—ฐ๊ตฌ์ง„์ด ๊ตฌ๊ธ€ ๋ณด์•ˆ ํŒ€์— ๊ฒฝ๊ณ ํ•˜๊ณ  ์‚ญ์ œ ์š”์ฒญ์„ ์ œ์ถœํ•˜๊ธฐ ์ „๊นŒ์ง€ 2,300๋ช… ์ด์ƒ์ด ์ด ๋„๊ตฌ๋ฅผ ์„ค์น˜ํ•œ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. ํ•ด๋‹น ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ์€ ์›Œํฌ๋ฐ์ด, ๋„ท์Šค์œ„ํŠธ, ์„์„ธ์ŠคํŒฉํ„ฐ์Šค์™€ ๊ฐ™์€ ์‹œ์Šคํ…œ์„ ๊ฒจ๋ƒฅํ–ˆ์œผ๋ฉฐ, ์ด๋“ค ํ™˜๊ฒฝ์—์„œ๋Š” ๋‹จ ํ•˜๋‚˜์˜ ์„ธ์…˜๋งŒ ํƒˆ์ทจ๋ผ๋„ ์ง์› ์ •๋ณด, ์žฌ๋ฌด ๋ฐ์ดํ„ฐ, ๋‚ด๋ถ€ ์—…๋ฌด ํ”„๋กœ์„ธ์Šค ์ „๋ฐ˜์ด ๋…ธ์ถœ๋  ์ˆ˜ ์žˆ๋‹ค.

์•…์„ฑ ์ฝ”๋“œ๋ฅผ ์ˆจ๊ธด ๊ฐ€์งœ ์ƒ์‚ฐ์„ฑ ๋„๊ตฌ

์ด๋ฒˆ์— ํ™•์ธ๋œ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ๋“ค์€ ๋ชจ๋‘ ๊ธฐ์—… ์‚ฌ์šฉ์ž๋ฅผ ์œ„ํ•œ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ ๋„๊ตฌ๋‚˜ ๋ณด์•ˆ ๋ณด์กฐ ๋„๊ตฌ๋ฅผ ๊ฐ€์žฅํ–ˆ๋‹ค. ํฌ๋กฌ ์›น ์Šคํ† ์–ด ๋“ฑ๋ก ํŽ˜์ด์ง€์—๋Š” ์™„์„ฑ๋„ ๋†’์€ ๋Œ€์‹œ๋ณด๋“œ ํ™”๋ฉด๊ณผ ํ•จ๊ป˜ HR ๋˜๋Š” ERP ๋„๊ตฌ ์ ‘๊ทผ์„ ๊ฐ„์†Œํ™”ํ•ด ์ค€๋‹ค๋Š” ์„ค๋ช…์ด ๋‹ด๊ฒผ๋‹ค. ์š”์ฒญํ•œ ๊ถŒํ•œ ์—ญ์‹œ ์ฟ ํ‚ค ์ ‘๊ทผ์ด๋‚˜ ํŽ˜์ด์ง€ ์ˆ˜์ •๊ณผ ๊ฐ™์€ โ€˜ํ‘œ์ค€์ โ€™์ด๊ณ  ๋ฌดํ•ดํ•ด ๋ณด์ด๋Š” ๊ธฐ๋Šฅ์œผ๋กœ ๊ตฌ์„ฑ๋ผ ์žˆ์—ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์„ค์น˜ ์ดํ›„์—๋Š” ์ „ํ˜€ ๋‹ค๋ฅธ ํ–‰์œ„๊ฐ€ ์ด์–ด์กŒ๋‹ค. ๋ฐ์ดํ„ฐ๋ฐ”์ดํด๋ผ์šฐ๋“œ ์•ก์„ธ์Šค(DataByCloud Access), ๋ฐ์ดํ„ฐ ๋ฐ”์ด ํด๋ผ์šฐ๋“œ 1(Data By Cloud 1), ์†Œํ”„ํŠธ์›จ์–ด ์•ก์„ธ์Šค(Software Access)๋กœ ๋ถˆ๋ฆฐ ์„ธ ๊ฐ€์ง€ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ์€ ์ธ์ฆ ํ† ํฐ์ด ํฌํ•จ๋œ ์„ธ์…˜ ์ฟ ํ‚ค๋ฅผ ๊ณต๊ฒฉ์ž๊ฐ€ ํ†ต์ œํ•˜๋Š” ์ธํ”„๋ผ๋กœ ์™ธ๋ถ€ ์ „์†กํ–ˆ๋‹ค. ๋‹ค์ˆ˜์˜ ๊ธฐ์—… ์‹œ์Šคํ…œ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ† ํฐ๋งŒ์œผ๋กœ๋„ ๋น„๋ฐ€๋ฒˆํ˜ธ ์ž…๋ ฅ ์—†์ด ์‚ฌ์šฉ์ž ์ธ์ฆ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ผ๋ถ€ ์‚ฌ๋ก€์—์„œ๋Š” ์ตœ์‹  ์ž๊ฒฉ ์ฆ๋ช…์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด 60์ดˆ๋งˆ๋‹ค ์ฟ ํ‚ค๋ฅผ ์ถ”์ถœํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

์ด๋ฏธ ๋กœ๊ทธ์ธ ํ™”๋ฉด๊ณผ ๋‹ค์ค‘ ์ธ์ฆ ์ ˆ์ฐจ๋ฅผ ํ†ต๊ณผํ•œ ์„ธ์…˜์€ ํƒˆ์ทจ๋œ ๋น„๋ฐ€๋ฒˆํ˜ธ์™€ ๋™์ผํ•œ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋กœ ์ธํ•ด ์ผ๋ฐ˜์ ์ธ ๋ณด์•ˆ ๊ฒฝ๊ณ ๋ฅผ ์œ ๋ฐœํ•˜์ง€ ์•Š์€ ์ฑ„ ๊ณ„์ •์— ์ง์ ‘ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ๋ฌธ์ œ๋กœ ์ง€์ ๋๋‹ค.

์—ฐ๊ตฌ์ง„์€ โ€œ์ž‘์„ฑ ์‹œ์ ์„ ๊ธฐ์ค€์œผ๋กœ ๋‹ค์„ฏ ๊ฐœ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ ๋ชจ๋‘ ์—ฌ์ „ํžˆ ์กฐ์‚ฌ ์ค‘โ€์ด๋ผ๋ฉฐ โ€œ๊ตฌ๊ธ€ ํฌ๋กฌ ์›น ์Šคํ† ์–ด ๋ณด์•ˆ ํŒ€์— ์‚ญ์ œ ์š”์ฒญ์„ ์ œ์ถœํ–ˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ตฌ๊ธ€์€ CSO์˜ ๋…ผํ‰ ์š”์ฒญ์— ์ฆ‰๊ฐ์ ์ธ ๋‹ต๋ณ€์„ ๋‚ด๋†“์ง€ ์•Š์•˜๋‹ค.

๋ณด์•ˆ ์กฐ์น˜ ์šฐํšŒ์™€ ์„ธ์…˜ ํ•˜์ด์žฌํ‚น

์ด๋ฒˆ ์บ ํŽ˜์ธ์€ ์ž๊ฒฉ ์ฆ๋ช… ํƒˆ์ทจ์— ๊ทธ์น˜์ง€ ์•Š์•˜๋‹ค. ํˆด ์•ก์„ธ์Šค 11(Tool Access 11)๊ณผ ๋ฐ์ดํ„ฐ ๋ฐ”์ด ํด๋ผ์šฐ๋“œ 2(Data By Cloud 2)๋กœ ๋ถˆ๋ฆฐ ๋‘ ๊ฐœ์˜ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ์€ DOM ์กฐ์ž‘ ๊ธฐ๋Šฅ์„ ํฌํ•จํ•˜๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ‘œ์  ํ”Œ๋žซํผ ๋‚ด ๋ณด์•ˆ ๋ฐ ๊ด€๋ฆฌ ํŽ˜์ด์ง€ ์ ‘๊ทผ์„ ์ ๊ทน์ ์œผ๋กœ ์ฐจ๋‹จํ–ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๊ธฐ์—… ๊ด€๋ฆฌ์ž๋Š” ๋น„๋ฐ€๋ฒˆํ˜ธ ๋ณ€๊ฒฝ, ๋กœ๊ทธ์ธ ์ด๋ ฅ ํ™•์ธ, ์นจํ•ด๋œ ๊ณ„์ • ๋น„ํ™œ์„ฑํ™”์™€ ๊ฐ™์€ ํ™”๋ฉด์— ์ ‘๊ทผํ•  ์ˆ˜ ์—†์—ˆ๊ณ , ์˜์‹ฌ์Šค๋Ÿฌ์šด ํ™œ๋™์„ ์ธ์ง€ํ•˜๋”๋ผ๋„ ์ฆ‰๊ฐ์ ์ธ ๋Œ€์‘์ด ์–ด๋ ค์šด ์ƒํ™ฉ์— ๋†“์˜€๋‹ค.

๋‹ค์„ฏ ๊ฐœ ๊ฐ€์šด๋ฐ ๊ฐ€์žฅ ๊ณ ๋„ํ™”๋œ ๊ฒƒ์œผ๋กœ ๋ถ„์„๋œ ์†Œํ”„ํŠธ์›จ์–ด ์•ก์„ธ์Šค๋Š” ์ฟ ํ‚ค ํƒˆ์ทจ ์™ธ์—๋„ ์–‘๋ฐฉํ–ฅ ์ฟ ํ‚ค ์ฃผ์ž… ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ–ˆ๋‹ค. ํƒˆ์ทจํ•œ ์„ธ์…˜ ํ† ํฐ์„ ๊ณต๊ฒฉ์ž๊ฐ€ ์ œ์–ดํ•˜๋Š” ๋ธŒ๋ผ์šฐ์ €์— ๋‹ค์‹œ ์ฃผ์ž…ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, chrome.cookies.set()๊ณผ ๊ฐ™์€ API๋ฅผ ํ™œ์šฉํ•ด ์œ ํšจํ•œ ์ธ์ฆ ์ฟ ํ‚ค๋ฅผ ์ง์ ‘ ์‹ฌ๋Š” ๊ตฌ์กฐ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ”ผํ•ด ์‚ฌ์šฉ์ž์˜ ์ถ”๊ฐ€์ ์ธ ์กฐ์ž‘ ์—†์ด๋„ ๊ณต๊ฒฉ์ž๋Š” ์ธ์ฆ๋œ ์„ธ์…˜์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

์ด ๊ธฐ๋ฒ•์€ ๋กœ๊ทธ์ธ ํ™”๋ฉด๊ณผ ๋‹ค์ค‘ ์ธ์ฆ ์ ˆ์ฐจ๋ฅผ ์‚ฌ์‹ค์ƒ ์šฐํšŒํ•˜๋ฉฐ, ์ฆ‰๊ฐ์ ์ธ ๊ณ„์ • ํƒˆ์ทจ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค.

์—ฐ๊ตฌ์ง„์€ โ€œ๋„ค ๊ฐœ์˜ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ์€ databycloud1104 ๊ณ„์ •์œผ๋กœ, ๋‚˜๋จธ์ง€ ํ•˜๋‚˜๋Š” ๋‹ค๋ฅธ ๋ธŒ๋žœ๋“œ๋กœ ๊ฒŒ์‹œ๋์ง€๋งŒ, ๋‹ค์„ฏ ๊ฐœ ๋ชจ๋‘ ๋™์ผํ•œ ์ธํ”„๋ผ ํŒจํ„ด์„ ๊ณต์œ ํ•˜๊ณ  ์žˆ์–ด ๋‹จ์ผ ์กฐ์ง์ด ์ฃผ๋„ํ•œ ํ˜‘๋ ฅ๋œ ์ž‘์ „์œผ๋กœ ๋ณด์ธ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์†Œ์ผ“์€ ๊ธฐ์—…์„ ๋Œ€์ƒ์œผ๋กœ ๋ธŒ๋ผ์šฐ์ € ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ ์‚ฌ์šฉ์„ ์—„๊ฒฉํžˆ ๊ฐ์‚ฌํ•˜๊ณ  ์ œํ•œํ•  ๊ฒƒ์„ ๊ถŒ๊ณ ํ–ˆ๋‹ค. ๋˜ํ•œ ๊ถŒํ•œ ์š”์ฒญ์„ ๋ฉด๋ฐ€ํžˆ ๊ฒ€ํ† ํ•˜๊ณ , ์ฟ ํ‚ค๋‚˜ ๊ธฐ์—…์šฉ ์‚ฌ์ดํŠธ์— ๋ถˆํ•„์š”ํ•˜๊ฒŒ ์ ‘๊ทผํ•˜๋Š” ์• ๋“œ์˜จ์€ ์ œ๊ฑฐํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ์ด์™€ ํ•จ๊ป˜ ๋น„์ •์ƒ์ ์ธ ์„ธ์…˜ ํ™œ๋™์„ ์ง€์†์ ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ , ์‚ฌ์šฉ์ž์—๊ฒŒ ๋ฐฐํฌ๋˜๊ธฐ ์ „์— ์•…์„ฑ ํ™•์žฅ ํ”„๋กœ๊ทธ๋žจ ํ–‰์œ„๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๊ณ  ์ œ์‹œํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

์˜คํ”ˆํ…์ŠคํŠธ, ๊ธฐ๊ฐ€์˜ด โ€˜2025 ํด๋ผ์šฐ๋“œ ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ ๋ ˆ์ด๋”โ€™์—์„œ 5๋…„ ์—ฐ์† ์ตœ๊ณ  ํ‰๊ฐ€ ํš๋“

19 January 2026 at 21:33

์ด๋ฒˆ ๋ณด๊ณ ์„œ์—์„œ ๊ธฐ๊ฐ€์˜ด(GigaOm)์€ ์˜คํ”ˆํ…์ŠคํŠธ๋ฅผ ํด๋ผ์šฐ๋“œ ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ ์‹œ์žฅ์—์„œ ๊ธฐ์ˆ ๋ ฅ๊ณผ ๋น„์ „, ์‹คํ–‰ ์—ญ๋Ÿ‰์„ ๋ชจ๋‘ ๊ฐ–์ถ˜ ์„ ๋„ ๊ธฐ์—…์œผ๋กœ ํ‰๊ฐ€ํ–ˆ๋‹ค. ํŠนํžˆ ๋‹จ์ˆœํ•œ ๋ถ€ํ•˜ ํ…Œ์ŠคํŠธ๋ฅผ ๋„˜์–ด, ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ํ™˜๊ฒฝ๊ณผ AI ๊ธฐ์ˆ ์„ ๊ฒฐํ•ฉํ•œ ์„ฑ๋Šฅ ์—”์ง€๋‹ˆ์–ด๋ง ์—ญ๋Ÿ‰์„ ํ†ตํ•ด ์‹œ์žฅ์„ ์ฃผ๋„ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์—์„œ ๋†’์€ ์ ์ˆ˜๋ฅผ ์ œ์‹œํ–ˆ๋‹ค.

๊ฐ€๊ธฐ์˜ด์€ ์˜คํ”ˆํ…์ŠคํŠธ์˜ ์„ฑ๋Šฅ ์—”์ง€๋‹ˆ์–ด๋ง ์†”๋ฃจ์…˜์ด ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ์ƒ์• ์ฃผ๊ธฐ ์ „๋ฐ˜์— ๊ฑธ์ณ ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ๋‚ด์žฌํ™”ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ๊ฐœ๋ฐœ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ์šด์˜ ํ™˜๊ฒฝ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์ผ๊ด€๋œ ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์—…์ด ์‚ฌ์šฉ์ž ๊ฒฝํ—˜ ์ €ํ•˜์™€ ์„œ๋น„์Šค ์žฅ์• ๋ฅผ ์‚ฌ์ „์— ์˜ˆ๋ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ๊ฐ•์ ์œผ๋กœ ๊ผฝํ˜”๋‹ค.

๋˜ํ•œ ๋ณด๊ณ ์„œ๋Š” ์˜คํ”ˆํ…์ŠคํŠธ์˜ AI ๊ธฐ๋ฐ˜ ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ ๊ธฐ๋Šฅ์— ์ฃผ๋ชฉํ–ˆ๋‹ค. AI๋ฅผ ํ™œ์šฉํ•œ ํ…Œ์ŠคํŠธ ์Šคํฌ๋ฆฝํŠธ ์ƒ์„ฑ๊ณผ ๋ถ„์„ ๊ธฐ๋Šฅ์ด ํ…Œ์ŠคํŠธ ์ค€๋น„ ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•˜๊ณ , ์ด์ƒ ์ง•ํ›„ ํƒ์ง€์™€ ๊ทผ๋ณธ ์›์ธ ๋ถ„์„์„ ์ž๋™ํ™”ํ•จ์œผ๋กœ์จ ์„ฑ๋Šฅ ๋ฌธ์ œ๋ฅผ ๋ณด๋‹ค ์‹ ์†ํ•˜๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•œ๋‹ค๋Š” ํ‰๊ฐ€๋‹ค. ๊ธฐ๊ฐ€์˜ด์€ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์ด ์ˆ˜๋™ ํ…Œ์ŠคํŠธ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ๋Œ€๊ทœ๋ชจ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ๋„ ๋†’์€ ์ •ํ™•์„ฑ๊ณผ ํšจ์œจ์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์˜คํ”ˆํ…์ŠคํŠธ์˜ ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ์•„ํ‚คํ…์ฒ˜ ์—ญ์‹œ ์ฃผ์š” ๊ฒฝ์Ÿ๋ ฅ์œผ๋กœ ์–ธ๊ธ‰๋๋‹ค. ์ž๋™ ํ™•์žฅ๊ณผ ๊ณ ๊ฐ€์šฉ์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์†Œ๊ทœ๋ชจ ํ…Œ์ŠคํŠธ๋ถ€ํ„ฐ ๊ธ€๋กœ๋ฒŒ ๊ทœ๋ชจ์˜ ๋Œ€๊ทœ๋ชจ ์‹œ๋‚˜๋ฆฌ์˜ค๊นŒ์ง€ ์•ˆ์ •์ ์ธ ํ…Œ์ŠคํŠธ ์‹คํ–‰์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ๊ณผ ์œ ์‚ฌํ•œ ์กฐ๊ฑด์—์„œ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•œ๋‹ค๋Š” ์ ์—์„œ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ณ ๊ฐ์˜ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๊ธฐ๊ฐ€์˜ด์€ ํ‰๊ฐ€ํ–ˆ๋‹ค.

๊ธฐ๊ฐ€์˜ด์€ ์˜คํ”ˆํ…์ŠคํŠธ๊ฐ€ ์ƒ์„ฑํ˜• AI, ๋ฐ๋ธŒ์˜ต์Šค(DevOps) ํ†ตํ•ฉ, ์ง€๋Šฅํ˜• ์ž๋™ํ™”๋ฅผ ์ง€์†์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๋ฉฐ ์„ฑ๋Šฅ ์—”์ง€๋‹ˆ์–ด๋ง ์˜์—ญ์—์„œ ํ˜์‹ ์„ ์ด์–ด๊ฐ€๊ณ  ์žˆ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์˜คํ”ˆํ…์ŠคํŠธ๊ฐ€ ํ…Œ์ŠคํŠธ ์ž๋™ํ™”์™€ ์šด์˜ ํšจ์œจ์„ฑ์„ ๋†’์ด๋Š” ๋™์‹œ์—, ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š” ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ๋„ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋””์ง€ํ„ธ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๋ถ„์„์ด๋‹ค.

์˜คํ”ˆํ…์ŠคํŠธ๋Š” ์ด๋ฒˆ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด ํด๋ผ์šฐ๋“œ ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ ์‹œ์žฅ์—์„œ ๋‹จ์ˆœํ•œ ์†”๋ฃจ์…˜ ์—…์ฒด๋ฅผ ๋„˜์–ด, ์„ฑ๋Šฅ ์—”์ง€๋‹ˆ์–ด๋ง์˜ ๋ฐฉํ–ฅ์„ฑ๊ณผ ๊ธฐ์ค€์„ ์ œ์‹œํ•˜๋Š” ๊ธฐ์—…์œผ๋กœ์„œ์˜ ์ž…์ง€๋ฅผ ๋‹ค์กŒ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.
dl-ciokorea@foundryco.com

ๅ‹•็”ป็”Ÿๆˆใฏโ€œไธ–็•Œโ€ใ‚’ๅญฆใ‚“ใงใ„ใ‚‹ใฎใ‹ใ€‚็”Ÿๆˆใƒขใƒ‡ใƒซใจไธ–็•Œใƒขใƒ‡ใƒซใฎ่ฟ‘ใ„ใ‘ใฉ้ ใ„้–ขไฟ‚

19 January 2026 at 10:02

โ€œใใ‚Œใฃใฝใ„ๆœชๆฅโ€ใจโ€œๆญฃใ—ใ„ๆœชๆฅโ€ใฏๅˆฅ็‰ฉ

ๅ‹•็”ป็”Ÿๆˆใฎใƒ‡ใƒขใ‚’่ฆ‹ใฆไบบใŒ้ฉšใใฎใฏใ€ๅ‹•ใใŒ่‡ช็„ถใงใ€ๆ™‚้–“ๆ–นๅ‘ใซ็ ด็ถปใŒๅฐ‘ใชใใ€็พๅฎŸใซใ‚ใ‚‹โ€œใฃใฝใ•โ€ใŒๆˆ็ซ‹ใ—ใฆใ„ใ‚‹ใ‹ใ‚‰ใ ใ€‚้€†ใซ่จ€ใˆใฐใ€็งใŸใกใฏใ€Œ่ฆ‹ใŸ็›ฎใŒใใ‚Œใฃใฝใ„ใ€ใ ใ‘ใงใ€ใ‹ใชใ‚Šใฎ้ƒจๅˆ†ใ‚’็†่งฃใจ้Œฏ่ฆšใ™ใ‚‹ใ€‚ๆ˜ ็”ปใฎVFXใŒ็‰ฉ็†็š„ใซๅŽณๅฏ†ใงใชใใฆใ‚‚ๆˆ็ซ‹ใ™ใ‚‹ใฎใจๅŒใ˜ใงใ€่ฆ–่ฆšใฏ็ดฐ้ƒจใฎๆ•ดๅˆๆ€งใ‚ˆใ‚Šใ‚‚ๅคงๅฑ€ใฎๆตใ‚Œใซๅผทใๅๅฟœใ™ใ‚‹ใ€‚ใ“ใ“ใซใ€็”Ÿๆˆใƒขใƒ‡ใƒซใจไธ–็•Œใƒขใƒ‡ใƒซใ‚’ๆททๅŒใ—ใ‚„ใ™ใ„่ฝใจใ—็ฉดใŒใ‚ใ‚‹ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใŒ็‹™ใ†โ€œๆญฃใ—ใ„ๆœชๆฅโ€ใฏใ€ๅ˜ใซ่‡ช็„ถใซ่ฆ‹ใˆใ‚‹ๆœชๆฅใงใฏใชใ„ใ€‚ไป‹ๅ…ฅใ—ใŸใจใใซ็ญ‹ใŒ้€šใ‚‹ๆœชๆฅใ ใ€‚ใŸใจใˆใฐใ€ๆœบใฎไธŠใฎใƒœใƒผใƒซใŒ่ปขใŒใ‚‹ๅ‹•็”ปใ‚’ไฝœใ‚‹ใจใ—ใฆใ€่ฆ‹ใŸ็›ฎใ ใ‘ใชใ‚‰ใ€Œใใ‚Œใฃใฝใ„่ปขใŒใ‚Šๆ–นใ€ใฏใ„ใใ‚‰ใงใ‚‚ไฝœใ‚Œใ‚‹ใ€‚ใงใ‚‚ใ€ใใ“ใซๆ‰‹ใ‚’ๅ…ฅใ‚Œใฆใƒœใƒผใƒซใ‚’ๆญขใ‚ใŸใ‚‰ใฉใ†ใชใ‚‹ใ‹ใ€ๅบŠใฎๆ่ณชใŒๅค‰ใ‚ใฃใŸใ‚‰ใฉใ†ใชใ‚‹ใ‹ใ€ๅˆฅใฎ่ง’ๅบฆใ‹ใ‚‰่ฆ‹ใŸใ‚‰ๅŒใ˜ๅ‡บๆฅไบ‹ใจใ—ใฆๆ•ดๅˆใ™ใ‚‹ใ‹ใ€‚ใ“ใ†ใ—ใŸๆกไปถใ‚’ๅค‰ใˆใŸใจใใซใ‚‚ไธ€่ฒซใ—ใฆไบˆๆธฌใงใใ‚‹ใชใ‚‰ใ€ๅˆใ‚ใฆโ€œไธ–็•Œใฎไป•็ต„ใฟโ€ใ‚’ๆŽดใ‚“ใงใ„ใ‚‹ใจ่จ€ใˆใ‚‹ใ€‚

ๅ‹•็”ป็”ŸๆˆใŒ้œฒๅ‘ˆใ—ใ‚„ใ™ใ„ๅผฑ็‚นใจใ—ใฆใ€็‰ฉไฝ“ๆ’ๅธธๆ€งใŒใ‚ใ‚‹ใ€‚็”ป้ขใฎๅค–ใซๅ‡บใŸ็‰ฉไฝ“ใŒใ€ๆˆปใฃใฆใใŸใจใใซๅˆฅ็‰ฉใซใชใฃใฆใ„ใŸใ‚Šใ€้ฎ่”ฝ็‰ฉใฎ่ฃใงๅญ˜ๅœจใŒๆ›–ๆ˜งใซใชใฃใŸใ‚Šใ™ใ‚‹ใ€‚ใ“ใ‚ŒใŒ่ตทใใ‚‹ใฎใฏใ€ใƒขใƒ‡ใƒซใŒใ€Œ็‰ฉไฝ“ใจใ„ใ†ๅ˜ไฝใงไธ–็•Œใ‚’่ฟฝ่ทกใ—ใฆใ„ใ‚‹ใ€ใ‚ˆใ‚Šใ€ใ€Œใ“ใฎ็”ป้ขใฎๆฌกใซๆฅใใ†ใช็”ป้ขใ€ใ‚’็ตฑ่จˆ็š„ใซๅˆๆˆใ—ใฆใ„ใ‚‹ๆฏ”้‡ใŒๅคงใใ„ใ‹ใ‚‰ใ ใ€‚ใ‚‚ใกใ‚ใ‚“่ฟ‘ๅนดใฏๆ”นๅ–„ใŒ้€ฒใ‚“ใงใ„ใ‚‹ใŒใ€ๅŽŸ็†็š„ใซโ€œ่ฆ‹ใˆใชใ„้–“ใ‚‚ๅŒใ˜็‰ฉไฝ“ใŒใใ“ใซใ‚ใ‚‹โ€ใจใ„ใ†ไฟกๅฟตใ‚’็ถญๆŒใ™ใ‚‹ใฎใฏใ€ๅ˜ใชใ‚‹ๆฌกใƒ•ใƒฌใƒผใƒ ไบˆๆธฌไปฅไธŠใฎๆง‹้€ ใ‚’่ฆๆฑ‚ใ™ใ‚‹ใ€‚

ใ‚‚ใ†ไธ€ใคใฏๆŽฅ่งฆใจๅ› ๆžœใ ใ€‚็‰ฉไฝ“ๅŒๅฃซใŒ่งฆใ‚ŒใŸ็žฌ้–“ใซๅŠ›ใŒไผใ‚ใ‚Šใ€้€ŸๅบฆใŒๅค‰ใ‚ใ‚Šใ€ๅ›ž่ปขใŒ่ตทใใ‚‹ใ€‚ใ“ใฎใ€Œ่งฆใ‚ŒใŸใ‹ใ‚‰ๅค‰ใ‚ใ‚‹ใ€ใจใ„ใ†ๅ› ๆžœใฏใ€ๆ˜ ๅƒใจใ—ใฆใฏ็Ÿญใ„ๅฑ€ๆ‰€็พ่ฑกใ ใŒใ€ไธ–็•Œ็†่งฃใฎไธญๆ ธใซ่ฟ‘ใ„ใ€‚็”Ÿๆˆใƒขใƒ‡ใƒซใฏ่ฆ‹ใŸ็›ฎใฎ้€ฃ็ถšๆ€งใ‚’ๅ„ชๅ…ˆใ—ใฆใ€ๆŽฅ่งฆใฎ็žฌ้–“ใ‚’โ€œใใ‚Œใฃใฝใไธธใ‚ใ‚‹โ€ใ“ใจใŒใ‚ใ‚‹ใ€‚ใ ใ‹ใ‚‰ใ€ๆŽฅ่งฆใ—ใฆใ„ใ‚‹ใฎใซใ™ใ‚ŠๆŠœใ‘ใŸใ‚Šใ€้€†ใซ่งฆใ‚Œใฆใ„ใชใ„ใฎใซๅฝฑ้ŸฟใŒๅ‡บใŸใ‚Šใ™ใ‚‹ใ€‚ไบบ้–“ใฎ็›ฎใฏๆ„ๅค–ใจใ“ใ‚Œใ‚’่ฆ‹้€ƒใ™ใ“ใจใ‚‚ใ‚ใ‚‹ใŒใ€ใƒญใƒœใƒƒใƒˆใ‚„ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณ็”จ้€”ใงใฏ่‡ดๅ‘ฝ็š„ใซใชใ‚‹ใ€‚

็ตๅฑ€ใฎใจใ“ใ‚ใ€โ€œใใ‚Œใฃใฝใ„ๆœชๆฅโ€ใฏใ€Œ่ฆณๅฎขใ‚’็ดๅพ—ใ•ใ›ใ‚‹ๆœชๆฅใ€ใ ใŒใ€โ€œๆญฃใ—ใ„ๆœชๆฅโ€ใฏใ€Œๆกไปถใ‚’ๅค‰ใˆใฆใ‚‚ไธ€่ฒซใ™ใ‚‹ๆœชๆฅใ€ใ ใ€‚ๅ‹•็”ป็”ŸๆˆใŒไธ–็•Œใƒขใƒ‡ใƒซใซ่ฆ‹ใˆใ‚‹็žฌ้–“ใฏๅข—ใˆใฆใ„ใ‚‹ใ€‚ใ—ใ‹ใ—ใ€ใใฎใพใพไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใซใฏใ€ไป‹ๅ…ฅใจไธ€่ฒซๆ€งใจใ„ใ†ใƒใƒผใƒ‰ใชๆกไปถใ‚’ใ‚ฏใƒชใ‚ขใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎ็”Ÿๆˆใƒขใƒ‡ใƒซใ€‚ใฉใ“ใพใงๆˆ็ซ‹ใ—ใฆใ„ใ‚‹ใฎใ‹

ใจใฏใ„ใˆใ€ๅ‹•็”ป็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซ่ฟ‘ใฅใ„ใฆใ„ใ‚‹ใฎใ‚‚ไบ‹ๅฎŸใ ใ€‚็†็”ฑใฏๅ˜็ด”ใงใ€ๅ‹•็”ปใฏๆ™‚้–“ๆ–นๅ‘ใฎๅ› ๆžœใ‚’ๅซใ‚€ใ‹ใ‚‰ใ ใ€‚็”ปๅƒ็”ŸๆˆใŒใ€Œไธ€ๆžšใฎไธ–็•Œใ€ใ‚’ไฝœใ‚‹ใฎใซๅฏพใ—ใฆใ€ๅ‹•็”ป็”Ÿๆˆใฏใ€Œไธ–็•ŒใŒใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ€ใ‚’ๆ‰ฑใ†ใ€‚ใใ“ใซใฏ่‡ช็„ถใซใ€็Šถๆ…‹ใจ้ท็งปใฎๅญฆ็ฟ’ใŒๅ…ฅใ‚Š่พผใ‚€ใ€‚ใ“ใ“ใง้‡่ฆใชใฎใฏใ€็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซๅฏ„ใ‚‹ใ‹ใฉใ†ใ‹ใฏใ€ใƒขใƒ‡ใƒซใฎๅญฆ็ฟ’็›ฎๆจ™ใจใ„ใ†ใ‚ˆใ‚Šใ€Œใฉใ†ไฝฟใ†ใ‹ใ€ใจใ€Œใฉใ‚“ใชๆกไปถใ‚’่ชฒใ™ใ‹ใ€ใงๆฑบใพใ‚‹็‚นใ ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆ่ชžใ‚Šใ‚„ใ™ใใชใ‚‹ใฎใฏใ€ๆฝœๅœจ็ฉบ้–“ใงใฎ็Šถๆ…‹้ท็งปใ‚’ๆ˜Ž็คบ็š„ใซๆŒใคใ‚ฟใ‚คใƒ—ใ ใ€‚่ฆณๆธฌใงใ‚ใ‚‹ๅ‹•็”ปใƒ•ใƒฌใƒผใƒ ใ‚’ใใฎใพใพๆ‰ฑใ†ใฎใงใฏใชใใ€ๅ†…้ƒจใงๅœง็ธฎใ—ใŸ็Šถๆ…‹่กจ็พใซ่ฝใจใ—ใ€ๆฌกใฎ็Šถๆ…‹ใ‚’ไบˆๆธฌใ—ใ€ๅฟ…่ฆใซๅฟœใ˜ใฆๆ˜ ๅƒใซๆˆปใ™ใ€‚ใ“ใ†ใ™ใ‚‹ใจใ€้•ทๆœŸไบˆๆธฌใฎ่จˆ็ฎ—ใŒ่ปฝใใชใ‚‹ใ ใ‘ใงใชใใ€ใ€ŒไปŠใฏใ“ใ†ใ„ใ†็Šถๆณใ ใ€ใจใ„ใ†ๅ†…้ƒจใฎใพใจใพใ‚ŠใŒไฝœใ‚Šใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฎ่จ€่‘‰ใง่จ€ใˆใฐใ€ๆฝœๅœจ็Šถๆ…‹ใŒโ€œไธ–็•Œใฎ่ฆ็ด„โ€ใจใ—ใฆๆฉŸ่ƒฝใ™ใ‚‹ใ€‚

ใ•ใ‚‰ใซไธ€ๆญฉ้€ฒใ‚€ใฎใŒใ€ใ‚ขใ‚ฏใ‚ทใƒงใƒณๆกไปถใฅใ‘ใ ใ€‚ใคใพใ‚Šใ€Œใ“ใ†ๅ‹•ใ‹ใ—ใŸใ‚‰ใฉใ†ใชใ‚‹ใ‹ใ€ใ‚’ๅญฆใถๅฝขใงใ€ๅ…ฅๅŠ›ใซ่กŒๅ‹•ใ‚’ๅ…ฅใ‚Œใฆๆœชๆฅใ‚’็”Ÿๆˆใ™ใ‚‹ใ€‚ใ‚ฒใƒผใƒ ใ‚„ใƒญใƒœใƒƒใƒˆใฎๆ–‡่„ˆใงใฏใ“ใ‚ŒใŒๆฑบๅฎš็š„ใงใ€่กŒๅ‹•ใŒใชใ‘ใ‚Œใฐไธ–็•Œใƒขใƒ‡ใƒซใฏ่จˆ็”ปใซไฝฟใ„ใซใใ„ใ€‚ๅ‹•็”ป็”Ÿๆˆใงใ‚‚ใ€ใ‚ซใƒกใƒฉใฎ็งปๅ‹•ใ€่ฆ–็‚นใฎๆŒ‡ๅฎšใ€็‰ฉไฝ“ใฎๆ“ไฝœใชใฉใ€ไฝ•ใ‚‰ใ‹ใฎโ€œไป‹ๅ…ฅโ€ใ‚’ๆกไปถใจใ—ใฆไธŽใˆใ‚‰ใ‚Œใ‚‹ใ‚ˆใ†ใซใชใ‚‹ใปใฉใ€ไธ–็•Œใƒขใƒ‡ใƒซใซ่ฟ‘ใ„ๆ€งๆ ผใ‚’ๅธฏใณใ‚‹ใ€‚็”ŸๆˆใŒโ€œ้‘‘่ณž็”จใฎๆ˜ ๅƒโ€ใ‹ใ‚‰ใ€โ€œ่ฉฆ่กŒ็”จใฎๆœชๆฅโ€ใธๅฝนๅ‰ฒใ‚’ๅค‰ใˆใ‚‹ใ‹ใ‚‰ใ ใ€‚

ใŸใ ใ—ใ€ใ“ใ“ใงๅฃใŒๅ‡บใ‚‹ใ€‚ๅ‹•็”ป็”Ÿๆˆใฎๅผทใฟใฏใ€็พๅฎŸใฎๅคšๆง˜ใช่ฆ‹ใŸ็›ฎใ‚’ๅ†็พใงใใ‚‹ใ“ใจใ ใŒใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฏใ€ใใฎๅคšๆง˜ใ•ใŒ้€†ใซ่ถณใ‚’ๅผ•ใฃๅผตใ‚‹ใ“ใจใŒใ‚ใ‚‹ใ€‚่ฆ‹ใŸ็›ฎใฎ่‡ช็”ฑๅบฆใŒ้ซ˜ใ„ใปใฉใ€ๆœชๆฅใฎไธ็ขบๅฎŸๆ€งใฏๅข—ใˆใ€ใƒขใƒ‡ใƒซใฏใ€Œใฉใฎๆœชๆฅใงใ‚‚ใ‚ใ‚Šๅพ—ใ‚‹ใ€ๆ–นๅ‘ใธ้€ƒใ’ใ‚„ใ™ใ„ใ€‚ใ™ใ‚‹ใจใ€ใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ„ใŒๆฑบใ‚ๆ‰‹ใซๆฌ ใ‘ใ‚‹ไบˆๆธฌใซใชใ‚‹ใ€‚่จˆ็”ปใซไฝฟใ†ใชใ‚‰ใ€ๆœชๆฅใŒๅคšๆง˜ใงใ‚ใ‚‹ใ“ใจ่‡ชไฝ“ใฏๆ‚ชใใชใ„ใŒใ€่กŒๅ‹•ใซใ‚ˆใฃใฆๅˆ†ๅฒใŒโ€œๅˆถๅพกๅฏ่ƒฝโ€ใซใชใฃใฆใ„ใชใ„ใจๆ„ๅ‘ณใŒ่–„ใ„ใ€‚ใฉใ‚“ใช่กŒๅ‹•ใ‚’ใ—ใฆใ‚‚ใ€ๆ˜ ๅƒใŒใชใ‚“ใจใชใๆตใ‚Œใฆใ„ใใ ใ‘ใชใ‚‰ใ€ๆ„ๆ€ๆฑบๅฎšใซใฏใคใชใŒใ‚‰ใชใ„ใ€‚

้•ทๆœŸไบˆๆธฌใฎ็ ด็ถปใ‚‚้ฟใ‘ใŒใŸใ„ใ€‚ๅ‹•็”ป็”Ÿๆˆใฏไธ€ๆญฉๅ…ˆใ‚’ๅฝ“ใฆใ‚‹ใฎใŒๅพ—ๆ„ใงใ‚‚ใ€ใใ‚Œใ‚’็ฉใฟ้‡ใญใ‚‹ใจ่ชคๅทฎใŒๅข—ใˆใ‚‹ใ€‚ๆœ€ๅˆใฏๅฐใ•ใชใ‚บใƒฌใงใ‚‚ใ€ๆ•ฐ็ง’ๅพŒใซใฏๅˆฅไธ–็•Œใซๆผ‚ๆตใ™ใ‚‹ใ€‚ใ“ใ‚Œใฏๆ˜ ๅƒใจใ—ใฆใฏใ€Œใชใ‚“ใ‹ๅค‰ใ ใ‘ใฉใ€้›ฐๅ›ฒๆฐ—ใฏใใ‚Œใฃใฝใ„ใ€ใงๆธˆใ‚€ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ€‚ใ—ใ‹ใ—ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆไฝฟใ†ใชใ‚‰ใ€ใปใ‚“ใฎๅฐ‘ใ—ใฎใ‚บใƒฌใŒ่‡ดๅ‘ฝๅ‚ทใซใชใ‚‹ใ€‚็‰นใซใ€่ก็ชใ‚„่ฝไธ‹ใฎใ‚ˆใ†ใซไธ€็žฌใฎใ‚คใƒ™ใƒณใƒˆใŒๅฐ†ๆฅใ‚’ๆฑบใ‚ใ‚‹ๅ ด้ขใงใฏใ€ใ‚คใƒ™ใƒณใƒˆใฎๆ‰ฑใ„ใŒๆ›–ๆ˜งใ ใจ่จˆ็”ปใŒๆˆ็ซ‹ใ—ใชใ„ใ€‚

ใ‚‚ใ†ไธ€็‚นใ€็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซใชใ‚Šใใ‚Œใชใ„ๅ…ธๅž‹ใฏใ€ๅŒใ˜ๅ‡บๆฅไบ‹ใ‚’ๅˆฅ่ฆ–็‚นใง่ฆ‹ใŸใจใใฎๆ•ดๅˆๆ€งใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏโ€œไธ–็•Œใใฎใ‚‚ใฎโ€ใ‚’ๅ†…้ƒจใซๆŒใคใฎใงใ€่ฆ–็‚นใŒๅค‰ใ‚ใฃใฆใ‚‚ๅŒใ˜ไธ–็•Œใจใ—ใฆๆ•ดๅˆใ™ใ‚‹ใฎใŒ็†ๆƒณใ ใ€‚ไธ€ๆ–นใ€ๅ‹•็”ป็”Ÿๆˆใฏใ—ใฐใ—ใฐใ€Œใ“ใฎ่ฆ–็‚นใฎๆ˜ ๅƒใ€ใ‚’็›ดๆŽฅ็”Ÿๆˆใ™ใ‚‹ใ€‚่ฆ–็‚นใ‚’ๅค‰ใˆใŸ็”Ÿๆˆใ‚’ๅˆฅ้€”่กŒใ†ใจใ€็‰ฉไฝ“ใฎไฝ็ฝฎ้–ขไฟ‚ใ‚„็ดฐ้ƒจใŒๅพฎๅฆ™ใซๅค‰ใ‚ใฃใฆใ—ใพใ†ใ“ใจใŒใ‚ใ‚‹ใ€‚ใ“ใ‚Œใฏใ€Œไธ–็•Œใฎใƒขใƒ‡ใƒซใ€ใงใฏใชใใ€Œๆ˜ ๅƒใฎใƒขใƒ‡ใƒซใ€ใซใชใฃใฆใ„ใ‚‹ๅ…†ๅ€™ใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใฎ่ท้›ขใ‚’็คบใ™ๅˆ†ใ‹ใ‚Šใ‚„ใ™ใ„ใ‚ตใ‚คใƒณใ ใ€‚

ใคใพใ‚Šใ€ๅ‹•็”ป็”Ÿๆˆใฏไธ–็•Œใƒขใƒ‡ใƒซใฎ็ด ๆใซใชใ‚Šๅพ—ใ‚‹ใŒใ€ใใฎใพใพใงใฏโ€œๆ˜ ๅƒใ‚‰ใ—ใ•โ€ใซๅผ•ใฃๅผตใ‚‰ใ‚Œใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆๆˆ็ซ‹ใ•ใ›ใ‚‹ใซใฏใ€่กŒๅ‹•ใซใ‚ˆใ‚‹ๅˆ†ๅฒใ€่ฆ–็‚นใ‚’่ถ…ใˆใŸไธ€่ฒซๆ€งใ€ใ‚คใƒ™ใƒณใƒˆใฎๅ› ๆžœใ€้•ทๆœŸๅฎ‰ๅฎšๆ€งใจใ„ใฃใŸๆกไปถใ‚’ใ€ใฉใ“ใพใง่จญ่จˆใซ็น”ใ‚Š่พผใ‚ใ‚‹ใ‹ใŒ้ตใซใชใ‚‹ใ€‚

่ฉ•ไพกใฎ้›ฃใ—ใ•ใจใ€ใ“ใ‚Œใ‹ใ‚‰ใฎ็ซถไบ‰่ปธ

็”Ÿๆˆใƒขใƒ‡ใƒซใŒไธ–็•Œใƒขใƒ‡ใƒซใซ่ฟ‘ใฅใ„ใฆใ„ใ‚‹ใ‹ใฉใ†ใ‹ใ‚’่ญฐ่ซ–ใ™ใ‚‹ใจใใ€ๆœ€ๅคงใฎๅ•้กŒใฏ่ฉ•ไพกใ ใ€‚็”ปๅƒใ‚„ๅ‹•็”ปใฎ็”Ÿๆˆใงใฏใ€่‡ช็„ถใ•ใ‚„้ซ˜็ฒพ็ดฐใ•ใŒ็›ฎ็ซ‹ใคใฎใงใ€่ฉ•ไพกใ‚‚ใใ“ใซๅฏ„ใ‚Šใ‚„ใ™ใ„ใ€‚ใ—ใ‹ใ—ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎไพกๅ€คใฏใ€็”ป่ณชใงใฏใชใใ€ŒไบˆๆธฌใŒๆ„ๆ€ๆฑบๅฎšใซไฝฟใˆใ‚‹ใ‹ใ€ใซใ‚ใ‚‹ใ€‚ใ“ใ“ใ‚’ๆธฌใ‚‰ใชใ„้™ใ‚Šใ€้€ฒๆญฉใ—ใฆใ„ใ‚‹ใฎใ‹ใ€่ฆ‹ใŸ็›ฎใŒใ†ใพใใชใฃใŸใ ใ‘ใชใฎใ‹ใŒๅˆ†ใ‹ใ‚‰ใชใ„ใ€‚

่ฉ•ไพกใŒ้›ฃใ—ใ„็†็”ฑใฎไธ€ใคใฏใ€ๆœชๆฅใŒไธ€ใคใซๆฑบใพใ‚‰ใชใ„ใ“ใจใ ใ€‚็พๅฎŸใฎๆ˜ ๅƒใงใ™ใ‚‰ใ€ๅฐ‘ใ—ๆกไปถใŒๅค‰ใ‚ใ‚Œใฐๅˆฅใฎๆœชๆฅใซใชใ‚‹ใ€‚ๆญฃ่งฃใฎๆœชๆฅใŒ่ค‡ๆ•ฐใ‚ใ‚‹ไปฅไธŠใ€ใ€Œใ“ใฎใƒ•ใƒฌใƒผใƒ ใŒๆญฃใ—ใ„ใ€ใจไธ€ๆ„ใซ่จ€ใˆใชใ„ใ€‚ใใ“ใงใ€็”Ÿๆˆใฎ่ฉ•ไพกใงใฏ็ตฑ่จˆ็š„ใชๆŒ‡ๆจ™ใ‚„ไบบ้–“ใฎไธป่ฆณใŒไฝฟใ‚ใ‚ŒใŒใกใ ใŒใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎ่ƒฝๅŠ›ใ‚’ๆธฌใ‚‹ใซใฏไธๅๅˆ†ใซใชใ‚Šใ‚„ใ™ใ„ใ€‚ๅฟ…่ฆใชใฎใฏใ€Œไป‹ๅ…ฅใซๅฏพใ—ใฆๆ•ดๅˆใ™ใ‚‹ใ‹ใ€ใ€Œๅˆถ็ด„ใ‚’ๅฎˆใ‚‹ใ‹ใ€ใ€Œ้•ทๆœŸ็š„ใซ็ ด็ถปใ—ใชใ„ใ‹ใ€ใจใ„ใฃใŸๆ€ง่ณชใ ใŒใ€ใ“ใ‚Œใ‚‰ใฏ็Ÿญใ„ใ‚ฏใƒชใƒƒใƒ—ใ‚’็œบใ‚ใ‚‹ใ ใ‘ใงใฏๅˆคๆ–ญใ—ใซใใ„ใ€‚

ใ‚‚ใ†ไธ€ใคใฏใ€ใƒขใƒ‡ใƒซใŒโ€œใ†ใพใ„ใ”ใพใ‹ใ—โ€ใ‚’่ฆšใˆใ‚‹ใ“ใจใ ใ€‚ไพ‹ใˆใฐใ€็‰ฉไฝ“ใŒ่ฆ‹ๅˆ‡ใ‚Œใใ†ใซใชใฃใŸใ‚‰ใ€้ƒฝๅˆใ‚ˆใใ‚ซใƒกใƒฉใ‚’ๆบใ‚‰ใ—ใฆ่ชค้ญ”ๅŒ–ใ™ใ‚ˆใ†ใช็”Ÿๆˆใฏใ€ๅ‹•็”ปใจใ—ใฆใฏ่‡ช็„ถใงใ‚‚ใ€ไธ–็•Œ็†่งฃใจใ—ใฆใฏๅพŒ้€€ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ€‚ใ‚ใ‚‹ใ„ใฏใ€ไบบ้–“ใŒๆฐ—ใฅใใซใใ„็Ÿ›็›พใ‚’ๆŠฑใˆใŸใพใพใ€่ณชๆ„Ÿใ‚„ใƒฉใ‚คใƒ†ใ‚ฃใƒณใ‚ฐใง่ชฌๅพ—ใ—ใฆใใ‚‹ใ€‚ๆ˜ ๅƒใฎ่ชฌๅพ—ๅŠ›ใฏๅผทๅŠ›ใงใ€่ฉ•ไพก่€…ใฎๆ„Ÿ่ฆšใ‚’็ฐกๅ˜ใซไน—ใฃๅ–ใ‚‹ใ€‚ใ ใ‹ใ‚‰ใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆใฎ่ฉ•ไพกใฏใ€ไบบ้–“ใฎไธป่ฆณใซ้ ผใ‚Šใ™ใŽใชใ„ไป•็ต„ใฟใŒ่ฆใ‚‹ใ€‚

ไปŠๅพŒใฎ็ซถไบ‰่ปธใจใ—ใฆ่ฆ‹ใˆใฆใใ‚‹ใฎใฏใ€ใ„ใ‚ใฐโ€œไธ–็•Œใซๅฏพใ™ใ‚‹ใƒ†ใ‚นใƒˆโ€ใ ใ€‚ๆกไปถใ‚’ๅค‰ใˆใ‚‹ใƒ†ใ‚นใƒˆใ€่ฆ–็‚นใ‚’ๅค‰ใˆใ‚‹ใƒ†ใ‚นใƒˆใ€่กŒๅ‹•ใ‚’ๅ…ฅใ‚Œใ‚‹ใƒ†ใ‚นใƒˆใ‚’้€šใ˜ใฆใ€ใฉใ“ใพใงไธ€่ฒซๆ€งใ‚’ไฟใฆใ‚‹ใ‹ใŒๅ•ใ‚ใ‚Œใ‚‹ใ€‚ๅ˜ใซใ€Œๆฌกใƒ•ใƒฌใƒผใƒ ใฃใฝใ„ใ‚‚ใฎใ€ใŒๅ‡บใ‚‹ใ ใ‘ใงใฏใชใใ€ใ€Œใ“ใฎๆ“ไฝœใ‚’ใ—ใŸใ‚‰ใ“ใ†ใชใ‚‹ใ€ใจใ„ใ†ๅ› ๆžœใŒ็ถญๆŒใ•ใ‚Œใ‚‹ใ‹ใ€‚้ฎ่”ฝ็‰ฉใฎ่ฃใง็‰ฉไฝ“ใŒๅญ˜็ถšใ™ใ‚‹ใ‹ใ€‚ๆŽฅ่งฆใฎ็ตๆžœใŒ็‰ฉ็†ใจใ—ใฆๆˆ็ซ‹ใ™ใ‚‹ใ‹ใ€‚ใ“ใ†ใ—ใŸใƒใ‚งใƒƒใ‚ฏใฏใ€ๆ˜ ๅƒใฎ็พŽใ—ใ•ใจใฏๅˆฅใฎๆฌกๅ…ƒใงใƒขใƒ‡ใƒซใ‚’่ฉ•ไพกใ™ใ‚‹ใ€‚

ใƒ—ใƒญใƒ€ใ‚ฏใƒˆ่ฆ–็‚นใง่ฆ‹ใ‚‹ใจใ€ไธ–็•Œใƒขใƒ‡ใƒซ็š„ใชๅ‹•็”ป็”Ÿๆˆใฏโ€œ็”จ้€”โ€ใงไพกๅ€คใŒๆฑบใพใ‚‹ใ€‚ๆ˜ ็”ปๅˆถไฝœใ‚„ๅบƒๅ‘Šใ‚ฏใƒชใ‚จใ‚คใƒ†ใ‚ฃใƒ–ใงใฏใ€ๅคšๅฐ‘ใฎ็‰ฉ็†็Ÿ›็›พใ‚ˆใ‚Š่กจ็พๅŠ›ใŒ้‡่ฆใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ€‚ไธ€ๆ–นใ€ใƒญใƒœใƒƒใƒˆใฎ่จ“็ทดใ‚„ไฝœๆฅญ่จˆ็”ปใงใฏใ€่ฆ‹ใŸ็›ฎใŒๅคšๅฐ‘่’ใใฆใ‚‚ๅ› ๆžœใŒๆญฃใ—ใ„ใปใ†ใŒไพกๅ€คใŒ้ซ˜ใ„ใ€‚ใคใพใ‚Šใ€ๅŒใ˜ๅ‹•็”ป็”Ÿๆˆใงใ‚‚ใ€ไธ–็•Œใƒขใƒ‡ใƒซใซๅฏ„ใ›ใ‚‹ใปใฉใ€Œๆญฃใ—ใ•ใ€ใŒ่ฆๆฑ‚ใ•ใ‚Œใ€่กจ็พใฎ่‡ช็”ฑๅบฆใจใฎใƒˆใƒฌใƒผใƒ‰ใ‚ชใƒ•ใŒๅผทใใชใ‚‹ใ€‚ใ“ใ“ใ‚’็†่งฃใ›ใšใซใ€Œๅ‹•็”ป็”ŸๆˆใŒ้€ฒใ‚“ใ ใ‹ใ‚‰ไธ–็•Œใƒขใƒ‡ใƒซใ‚‚ๅฎŒๆˆใซ่ฟ‘ใ„ใ€ใจ็ต่ซ–ใฅใ‘ใ‚‹ใฎใฏๅฑ้™บใ ใ€‚

็ต่ซ–ใจใ—ใฆใ€ๅ‹•็”ป็”Ÿๆˆใฏไธ–็•Œใƒขใƒ‡ใƒซใฎๅ…ฅๅฃใซ็ซ‹ใฃใฆใ„ใ‚‹ใ€‚ๆ™‚้–“ใ‚’ๆ‰ฑใ†ไปฅไธŠใ€ๅ†…้ƒจใซ็Šถๆ…‹้ท็งปใŒ่Šฝ็”Ÿใˆใ‚‹ใ‹ใ‚‰ใ ใ€‚ใ—ใ‹ใ—ใ€ไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใŸใ‚ใซใฏใ€่ฆ‹ใŸ็›ฎใฎ้€ฃ็ถšๆ€งใงใฏใชใใ€ไป‹ๅ…ฅใจไธ€่ฒซๆ€งใซ่€ใˆใ‚‹ใ“ใจใŒๅฟ…่ฆใซใชใ‚‹ใ€‚็”Ÿๆˆใƒขใƒ‡ใƒซใŒๆฌกใซ็ซถใ†ใฎใฏใ€็”ป่ณชใ ใ‘ใงใฏใชใ„ใ€‚โ€œไธ–็•Œใจใ—ใฆ็ญ‹ใŒ้€šใ‚‹ๆœชๆฅโ€ใ‚’ใฉใ‚Œใ ใ‘ไฝœใ‚Œใ‚‹ใ‹ใ€‚ใใ“ใซใ€็”ŸๆˆAIใฎๆฌกใฎๆœฌๅฝ“ใฎไผธใณใ—ใ‚ใŒใ‚ใ‚‹ใ€‚

ใƒญใƒœใƒƒใƒˆใฏใชใœๅคฑๆ•—ใ™ใ‚‹ใฎใ‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใงใ€Œใ‚„ใ‚‹ๅ‰ใซใ‚ใ‹ใ‚‹ใ€ใ‚’ไฝœใ‚‹

19 January 2026 at 10:01

ๅˆถๅพกใจๅผทๅŒ–ๅญฆ็ฟ’ใฎ้–“ใซใ‚ใ‚‹โ€œ็ฉบ็™ฝโ€ใ‚’ๅŸ‹ใ‚ใ‚‹็™บๆƒณ

ใƒญใƒœใƒƒใƒˆใ‚’ๅ‹•ใ‹ใ™ๆŠ€่ก“ใฏๅคงใใๅˆ†ใ‘ใ‚‹ใจใ€ใƒขใƒ‡ใƒซใซๅŸบใฅใๅˆถๅพกใจใ€็ตŒ้จ“ใซๅŸบใฅใๅญฆ็ฟ’ใซๅˆ†ใ‹ใ‚Œใ‚‹ใ€‚ๅ‰่€…ใฎไปฃ่กจใฏๅคๅ…ธ็š„ใชๅˆถๅพกๅทฅๅญฆใงใ€ใƒญใƒœใƒƒใƒˆใฎๅŠ›ๅญฆใƒขใƒ‡ใƒซใ‚„ใ‚ปใƒณใ‚ตใƒผใฎๆŒ™ๅ‹•ใŒใ‚ใ‚‹็จ‹ๅบฆใ‚ใ‹ใฃใฆใ„ใ‚‹ใ“ใจใ‚’ๅ‰ๆใซใ€็›ฎๆจ™ใจใฎๅทฎๅˆ†ใ‚’ๅŸ‹ใ‚ใ‚‹ใ‚ˆใ†ใซๅ…ฅๅŠ›ใ‚’่ชฟๆ•ดใ™ใ‚‹ใ€‚ๅพŒ่€…ใฎไปฃ่กจใฏๅผทๅŒ–ๅญฆ็ฟ’ใงใ€ๆœ€ๅˆใ‹ใ‚‰ๆญฃใ—ใ„ใƒขใƒ‡ใƒซใŒใชใใฆใ‚‚ใ€่ฉฆ่กŒ้Œฏ่ชคใฎ็ตๆžœใจใ—ใฆใ†ใพใ„่กŒๅ‹•ใ‚’่ฆ‹ใคใ‘ใฆใ„ใใ€‚ใฉใกใ‚‰ใ‚‚ๅผทๅŠ›ใ ใŒใ€็พๅ ดใซๅ‡บใ‚‹ใƒญใƒœใƒƒใƒˆใฏใ“ใฎไบŒใคใฎใฉ็œŸใ‚“ไธญใงใคใพใšใใ‚„ใ™ใ„ใ€‚

ๅˆถๅพกๅทฅๅญฆใฏใ€ใƒขใƒ‡ใƒซใŒๆญฃใ—ใ‘ใ‚Œใฐ้žๅธธใซๅฎ‰ๅฎšใ—ใฆใ„ใ‚‹ใ€‚ใ—ใ‹ใ—็พๅฎŸใฎ็พๅ ดใฏใ€ใƒขใƒ‡ใƒซใŒใ„ใคใ‚‚ๆญฃใ—ใ„ใจใฏ้™ใ‚‰ใชใ„ใ€‚ๅบŠใŒๆฟกใ‚Œใฆใ„ใ‚‹ใ€่ท็‰ฉใฎ้‡ๅฟƒใŒๅฐ‘ใ—ใšใ‚Œใฆใ„ใ‚‹ใ€็ฉบ่ชฟใฎ้ขจใง่ปฝใ„้ƒจๅ“ใŒๅ‹•ใใ€ๅŒใ˜ๅž‹็•ชใฎ้ƒจๆใงใ‚‚ๆ‘ฉๆ“ฆใŒๅพฎๅฆ™ใซ้•ใ†ใ€‚ใ“ใ†ใ—ใŸโ€œๅœฐๅ‘ณใชใ‚บใƒฌโ€ใฏใ€ๆ•ฐๅผใฎใƒขใƒ‡ใƒซใซ่ผ‰ใ›ใฅใ‚‰ใ„ไธ€ๆ–นใงใ€ใƒญใƒœใƒƒใƒˆใฎๆˆๅฆใ‚’ๅทฆๅณใ™ใ‚‹ใ€‚็ตๆžœใจใ—ใฆใ€็พๅ ดใงๅˆถๅพกใ‚’ไธๅฏงใซใƒใƒฅใƒผใƒ‹ใƒณใ‚ฐใ—ใฆใ‚‚ใ€ๆƒณๅฎšๅค–ใฎ็Šถๆณใง็ ด็ถปใ—ใฆใ—ใพใ†ใ€‚

ๅผทๅŒ–ๅญฆ็ฟ’ใฏใ€ใใ†ใ—ใŸใ‚บใƒฌใ‚‚ๅซใ‚ใฆๅญฆ็ฟ’ใงๅธๅŽใงใใใ†ใซ่ฆ‹ใˆใ‚‹ใ€‚ใจใ“ใ‚ใŒใ€็พๅฎŸใฎใƒญใƒœใƒƒใƒˆใซ่ฉฆ่กŒ้Œฏ่ชคใ‚’ใ•ใ›ใ‚‹ใฎใฏ้ซ˜ใ„ใ€‚่ปขๅ€’ใ•ใ›ใ‚‹ใ‚ใ‘ใซใฏใ„ใ‹ใชใ„ใ—ใ€ๅคฑๆ•—ใงๅ‘จๅ›ฒใ‚’ๅ‚ทใคใ‘ใ‚‹ๅฏ่ƒฝๆ€งใ‚‚ใ‚ใ‚‹ใ€‚ใƒ‡ใƒผใ‚ฟใ‚’้›†ใ‚ใ‚‹ใ ใ‘ใงใ‚‚ๆ™‚้–“ใŒใ‹ใ‹ใ‚‹ใ€‚ใคใพใ‚Šใ€ๅผทๅŒ–ๅญฆ็ฟ’ใŒๅพ—ๆ„ใชใ€Œๅคง้‡ใฎ่ฉฆ่กŒใ€ใฏใ€็พๅฎŸไธ–็•Œใงใฏๅˆถ็ด„ใŒๅผทใ™ใŽใ‚‹ใ€‚ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ฟใƒผไธŠใงๅญฆ็ฟ’ใ—ใฆใ‹ใ‚‰ๅฎŸๆฉŸใธ็งปใ™ๆ‰‹ๆณ•ใ‚‚ๅบƒใไฝฟใ‚ใ‚Œใ‚‹ใŒใ€ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ฟใƒผใจ็พๅฎŸใฎๅทฎใ€ใ„ใ‚ใ‚†ใ‚‹โ€œใ‚ทใƒ ใƒปใƒˆใ‚ฅใƒปใƒชใ‚ขใƒซโ€ใฎๅฃใซใถใคใ‹ใ‚‹ใ€‚ใ“ใ“ใงใพใŸใ€ใƒขใƒ‡ใƒซใฎไธๆญฃ็ขบใ•ใŒๅ•้กŒใจใ—ใฆๆˆปใฃใฆใใ‚‹ใ€‚

ใ“ใฎใ‚ธใƒฌใƒณใƒžใ‚’ๅŸ‹ใ‚ใ‚‹็™บๆƒณใŒไธ–็•Œใƒขใƒ‡ใƒซใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€็พๅฎŸใฎใƒ‡ใƒผใ‚ฟใ‹ใ‚‰ใ€Œ็’ฐๅขƒใŒใฉใ†ๅๅฟœใ™ใ‚‹ใ‹ใ€ใ‚’ๅญฆใณใ€ๅ†…้ƒจใงไบˆๆธฌใงใใ‚‹ใ‚ˆใ†ใซใ™ใ‚‹ใ€‚้‡่ฆใชใฎใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใŒโ€œๅฎŒๅ…จใช็‰ฉ็†ๆณ•ๅ‰‡โ€ใ‚’ๆ‰‹ใซๅ…ฅใ‚Œใ‚‹ใ“ใจใ‚ˆใ‚Šใ€ใ€Œๆ„ๆ€ๆฑบๅฎšใซไฝฟใˆใ‚‹ใƒฌใƒ™ใƒซใงๆœชๆฅใ‚’่ฆ‹็ฉใ‚‚ใ‚‹ใ€ใ“ใจใ‚’็›ฎๆŒ‡ใ™็‚นใ ใ€‚ใŸใจใˆใฐใ€็ฎฑใ‚’ๆŠผใ—ใŸใจใใซๆ•ฐใƒŸใƒชๅ˜ไฝใงๆญฃ็ขบใซใฉใ“ใธ่กŒใใ‹ใ‚ˆใ‚Šใ‚‚ใ€ๆŠผใ—ๆ–นใ‚’ๅค‰ใˆใ‚Œใฐๅ€’ใ‚Œใ‚‹ๅฑ้™บใŒไธŠใŒใ‚‹ใฎใ‹ใ€ๆป‘ใ‚Šใ‚„ใ™ใ„ใ‹ใ‚‰ๆŠผใ™ใ‚ˆใ‚ŠๆŒใคในใใชใฎใ‹ใ€ใใ†ใ„ใฃใŸๅˆคๆ–ญใŒใงใใ‚Œใฐไพกๅ€คใŒใ‚ใ‚‹ใ€‚

ใ•ใ‚‰ใซ่จ€ใˆใฐใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€Œ่กŒๅ‹•ใฎ็ตๆžœใ‚’ๅ…ˆ่ชญใฟใ—ใฆใ‹ใ‚‰ๅ‹•ใใ€ใจใ„ใ†ๆ„ๅ‘ณใงใ€ๅˆถๅพกใจๅญฆ็ฟ’ใ‚’ใคใชใใ€‚ๅˆถๅพกใฎไธ–็•Œใงใฏใ€ๆœชๆฅใ‚’ๅฐ‘ใ—ๅ…ˆใพใงไบˆๆธฌใ—ใชใŒใ‚‰ๅ…ฅๅŠ›ใ‚’ๆฑบใ‚ใ‚‹ๆž ็ต„ใฟใŒๆ˜”ใ‹ใ‚‰ใ‚ใ‚‹ใ€‚ๅญฆ็ฟ’ใฎไธ–็•Œใงใฏใ€ใใฎไบˆๆธฌใƒขใƒ‡ใƒซ่‡ชไฝ“ใ‚’ใƒ‡ใƒผใ‚ฟใ‹ใ‚‰็ฒๅพ—ใงใใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ใใฎไบŒใคใ‚’ๅˆไฝ“ใ•ใ›ใŸใ‚‚ใฎใจใ—ใฆ็†่งฃใ™ใ‚‹ใจ่…‘ใซ่ฝใกใ‚„ใ™ใ„ใ€‚ใƒญใƒœใƒƒใƒˆใŒๅคฑๆ•—ใ—ใ‚„ใ™ใ„ใฎใฏใ€ใพใ•ใซใ“ใฎโ€œไบˆๆธฌใ—ใฆ้ธใถโ€่ƒฝๅŠ›ใŒๅผฑใ„ใ‹ใ‚‰ใงใ‚ใ‚Šใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏใใ“ใ‚’่ฃœใ†ใŸใ‚ใฎ่จญ่จˆๆ€ๆƒณใ ใ€‚

ไบˆๆธฌใ—ใฆใ‹ใ‚‰ๅ‹•ใใ€‚ใƒขใƒ‡ใƒซไบˆๆธฌๅˆถๅพกใจไธ–็•Œใƒขใƒ‡ใƒซใฎๆŽฅ็ถš

ใƒญใƒœใƒƒใƒˆใซใ€Œใ‚„ใ‚‹ๅ‰ใซใ‚ใ‹ใ‚‹ใ€ใ‚’ๆŒใŸใ›ใ‚‹ใจใใ€ๅˆ†ใ‹ใ‚Šใ‚„ใ™ใ„ๆฏ”ๅ–ฉใฏ่„ณๅ†…ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใ ใ€‚ไบบ้–“ใ‚‚ใ€ใ‚ณใƒƒใƒ—ใ‚’ๅ–ใ‚ใ†ใจใ™ใ‚‹ใจใใซใ€้ ญใฎไธญใงไธ€็žฌใ ใ‘ใ€Œใ“ใฎ่ง’ๅบฆใ ใจใถใคใ‹ใ‚‹ใชใ€ใจใ‹ใ€Œใ“ใ“ใ‚’ๆŒใฆใฐๆป‘ใ‚‰ใชใ„ใชใ€ใจๆƒณๅƒใ—ใฆใ‹ใ‚‰ๆ‰‹ใ‚’ไผธใฐใ—ใฆใ„ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ใ“ใ‚Œใ‚’่จˆ็ฎ—ใจใ—ใฆๅฎŸ่ฃ…ใ™ใ‚‹ใŸใ‚ใฎ้ƒจๅ“ใซใชใ‚‹ใ€‚

ใ“ใฎใจใไธญๅฟƒใซใ‚ใ‚‹ใฎใŒใ€ใƒขใƒ‡ใƒซไบˆๆธฌๅˆถๅพก๏ผˆMPC๏ผ‰ใซ่ฟ‘ใ„่€ƒใˆๆ–นใ ใ€‚MPCใฏใ€็พๅœจใฎ็Šถๆ…‹ใ‹ใ‚‰ๆœชๆฅใ‚’็Ÿญใ„ๅœฐๅนณใงไบˆๆธฌใ—ใ€ใใฎไบˆๆธฌใฎไธญใง็›ฎ็š„ใ‚’ๆœ€ใ‚‚ๆบ€ใŸใ™ๅ…ฅๅŠ›ๅˆ—ใ‚’้ธใถใ€‚้ธใ‚“ใ ๅ…ฅๅŠ›ใ‚’ใ™ในใฆๅฎŸ่กŒใ™ใ‚‹ใฎใงใฏใชใใ€ๆœ€ๅˆใฎไธ€ๆ‰‹ใ ใ‘ใ‚’ๅฎŸ่กŒใ—ใ€ๆฌกใฎ็žฌ้–“ใซใพใŸ่ฆณๆธฌใ—ใฆ่จˆ็”ปใ‚’ๆ›ดๆ–ฐใ™ใ‚‹ใ€‚ใ“ใ†ใ™ใ‚‹ใ“ใจใงใ€ใƒขใƒ‡ใƒซใŒๅฐ‘ใ—ไธๆญฃ็ขบใงใ‚‚ใ€่ฆณๆธฌใง่ปŒ้“ไฟฎๆญฃใ—ใชใŒใ‚‰ๅฎ‰ๅฎšใซๅ‹•ใ‘ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๅ…ฅใ‚‹ใฎใฏใ€ใ“ใ“ใงไฝฟใ†ใ€Œๆœชๆฅไบˆๆธฌใฎใƒขใƒ‡ใƒซใ€ใ‚’ใ€่งฃๆž็š„ใช็‰ฉ็†ใƒขใƒ‡ใƒซใ ใ‘ใซ้ ผใ‚‰ใšใ€ใƒ‡ใƒผใ‚ฟใ‹ใ‚‰ๅญฆ็ฟ’ใ—ใŸใ‚‚ใฎใซ็ฝฎใๆ›ใˆใ‚‹้ƒจๅˆ†ใ ใ€‚

ใƒญใƒœใƒƒใƒˆใงใ“ใฎๆŽฅ็ถšใŒๅŠนใใฎใฏใ€็ŸญๆœŸไบˆๆธฌใŒๅๅˆ†ๅฝนใซ็ซ‹ใคๅ ด้ขใŒๅคšใ„ใ‹ใ‚‰ใ ใ€‚ใŸใจใˆใฐใ€้šœๅฎณ็‰ฉๅ›ž้ฟใงใฏๆ•ฐ็ง’ๅ…ˆใพใง่ฆ‹้€šใ›ใ‚Œใฐๅฎ‰ๅ…จๆ€งใŒไธŠใŒใ‚‹ใ€‚ๆŠŠๆŒใ‚„ๆŠผใ—ๆ“ไฝœใงใฏใ€่งฆใ‚ŒใŸ็›ดๅพŒใฎๅๅฟœใŒ่ชญใ‚ใ‚Œใฐๅคฑๆ•—ใŒๆธ›ใ‚‹ใ€‚้•ทๆœŸ็š„ใซๅฎŒ็’งใชๆœชๆฅใŒ่ชญใ‚ใชใใฆใ‚‚ใ€ใ€Œๆฌกใฎไธ€ๆ‰‹ใ€ใ‚’่ณขใใ™ใ‚‹ใ ใ‘ใงๆˆๆžœใŒๅ‡บใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ใใฎ็ŸญๆœŸไบˆๆธฌใ‚’ใƒ‡ใƒผใ‚ฟ้ง†ๅ‹•ใง้›ใˆใ€MPC็š„ใชๆž ็ต„ใฟใซๆตใ—่พผใ‚ใ‚‹ใฎใŒๅผทใฟใซใชใ‚‹ใ€‚

ใŸใ ใ—ใ€ใ“ใ“ใงๅ•้กŒใŒๅ‡บใ‚‹ใ€‚ใƒญใƒœใƒƒใƒˆใฎไธ–็•Œใฏใ€่ฆณๆธฌใงใใชใ„็Šถๆ…‹ใŒๅคšใ„ใ€‚ใ‚ซใƒกใƒฉใ‹ใ‚‰ใฏ่ฆ‹ใˆใฆใ‚‚ใ€ๆ‘ฉๆ“ฆไฟ‚ๆ•ฐใ‚„ๅ†…้ƒจๅฟœๅŠ›ใ€ๆŽฅ่งฆ้ขใฎๅพฎ็ดฐใชๅ‡นๅ‡ธใฏ่ฆ‹ใˆใชใ„ใ€‚ใ•ใ‚‰ใซใฏใ€ใ‚ปใƒณใ‚ตใƒผ่‡ชไฝ“ใŒ้…ใ‚ŒใŸใ‚ŠใƒŽใ‚คใ‚บใŒไน—ใฃใŸใ‚Šใ™ใ‚‹ใ€‚ใ ใ‹ใ‚‰ไธ–็•Œใƒขใƒ‡ใƒซใงใฏใ€่ฆณๆธฌใใฎใ‚‚ใฎใงใฏใชใใ€ๆฝœๅœจ็Šถๆ…‹ใจๅ‘ผใฐใ‚Œใ‚‹ๅ†…้ƒจ่กจ็พใ‚’ๆŒใคใ“ใจใŒๅคšใ„ใ€‚ๆฝœๅœจ็Šถๆ…‹ใฏใ€่ฆ‹ใˆใชใ„่ฆๅ› ใ‚‚ๅซใ‚ใฆใ€Œใ„ใพๆœฌๅฝ“ใฏใ“ใ†ใ„ใ†็Šถๆณใ ใ‚ใ†ใ€ใจใ„ใ†ๆŽจๅฎšใ‚’ใพใจใ‚ใŸใ‚‚ใฎใ ใ€‚ใใ—ใฆๆฝœๅœจ็Šถๆ…‹ใฎ้ท็งปใ‚’ๅญฆใถใ“ใจใงใ€่ฆณๆธฌใซๆบใ‚‰ใŽใŒใ‚ใฃใฆใ‚‚ใ€ๅ†…้ƒจใงใฏๆป‘ใ‚‰ใ‹ใซไธ–็•ŒใŒๅ‹•ใ„ใฆใ„ใ‚‹ใ‚ˆใ†ใซๆ‰ฑใˆใ‚‹ใ€‚

ใ“ใ“ใงๅคงไบ‹ใชใฎใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏโ€œไฝ•ใ‚’ไบˆๆธฌใ™ใ‚‹ใ‹โ€ใ‚’่จญ่จˆใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใจใ„ใ†็‚นใ ใ€‚ใ‚ซใƒกใƒฉ็”ปๅƒใฎ็”ป็ด ใ‚’ไธธใ”ใจไบˆๆธฌใ™ใ‚‹ใฎใฏ้‡ใ„ใ—ใ€ใƒญใƒœใƒƒใƒˆใŒๅฟ…่ฆใจใ™ใ‚‹ใฎใฏ็”ป็ด ใใฎใ‚‚ใฎใงใฏใชใ„ใ“ใจใŒๅคšใ„ใ€‚็‰ฉไฝ“ใฎไฝ็ฝฎใ€ๅงฟๅ‹ขใ€ๆŽฅ่งฆใฎๆœ‰็„กใ€ๅŠ›ใฎๅ‘ใใจใ„ใฃใŸใ€่กŒๅ‹•้ธๆŠžใซ็›ดๆŽฅๅŠนใ่ฆ็ด ใŒใ‚ใ‹ใ‚Œใฐๅๅˆ†ใชๅ ดๅˆใŒๅคšใ„ใ€‚ใคใพใ‚Šใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€Œ่กŒๅ‹•ใซๅฟ…่ฆใชๆŠฝ่ฑกๅบฆใ€ใงไธ–็•Œใ‚’่กจ็พใงใใ‚‹ใปใฉๅผทใใชใ‚‹ใ€‚

ใใ—ใฆใ€็พๅฎŸใซๆฌ ใ‹ใ›ใชใ„ใฎใŒไธ็ขบๅฎŸๆ€งใฎๆ‰ฑใ„ใ ใ€‚ใƒญใƒœใƒƒใƒˆใฎๆ“ไฝœใฏใ€ๅŒใ˜่กŒๅ‹•ใงใ‚‚็ตๆžœใŒใถใ‚Œใ‚‹ใ€‚็ฎฑใ‚’ๆŠผใ™ใจใใ€ใ‚ใšใ‹ใช่ง’ๅบฆใฎ้•ใ„ใงๅ›ž่ปขใ—ใŸใ‚Šๆป‘ใฃใŸใ‚Šใ™ใ‚‹ใ€‚ใ‚‚ใ—ไธ–็•Œใƒขใƒ‡ใƒซใŒไธ€ใคใฎๆœชๆฅใ‚’ๆ–ญๅฎšใ™ใ‚‹ใจใ€ใใฎๆœชๆฅใŒๅค–ใ‚ŒใŸ็žฌ้–“ใซ่จˆ็”ปใŒๅดฉใ‚Œใ‚‹ใ€‚ใ ใ‹ใ‚‰ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ๆœชๆฅใซๅน…ใ‚’ๆŒใŸใ›ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใ€‚่ค‡ๆ•ฐใฎๅฏ่ƒฝๆ€งใ‚’ๅ‡บใ—ใ€ใใฎไธญใงใ€Œๆœ€ๆ‚ชใฎใ‚ฑใƒผใ‚นใงใ‚‚ๅฎ‰ๅ…จใ€ใชๆ‰‹ใ‚’้ธใถใ€ใ‚ใ‚‹ใ„ใฏใ€Œไธ็ขบๅฎŸๆ€งใŒๅฐใ•ใใชใ‚‹่กŒๅ‹•ใ€ใ‚’ๅ…ˆใซ้ธใถใ€ใจใ„ใฃใŸๆˆฆ็•ฅใŒๅ–ใ‚Šใ‚„ใ™ใใชใ‚‹ใ€‚ใ“ใ“ใŒใ€ๅ˜ใชใ‚‹ไบˆๆธฌๅ™จใงใฏใชใใ€ๆ„ๆ€ๆฑบๅฎšใฎใŸใ‚ใฎไธ–็•Œใƒขใƒ‡ใƒซใจใ—ใฆไพกๅ€คใŒๅ‡บใ‚‹ใจใ“ใ‚ใ ใ€‚

ไธ€ๆ–นใงใ€้•ทๆœŸไบˆๆธฌใ‚’ๅ‰ๆใซใ™ใ‚‹ใจ่ชคๅทฎใŒ็ฉใฟไธŠใŒใ‚‹ๅ•้กŒใŒๅ‡บใ‚‹ใ€‚ๅ†…้ƒจใงไธ€ๆญฉใšใคๆœชๆฅใ‚’็”Ÿๆˆใ—ใฆใ„ใใจใ€ๅฐ‘ใ—ใฎใ‚บใƒฌใŒ้›ชใ ใ‚‹ใพๅผใซๅข—ใˆใ€ๆ•ฐ็ง’ๅพŒใซใฏ็พๅฎŸใจๅˆฅใฎไธ–็•Œใซๅ…ฅใ‚Š่พผใ‚€ใ“ใจใŒใ‚ใ‚‹ใ€‚ใ“ใ‚Œใ‚’้ฟใ‘ใ‚‹ใŸใ‚ใซใ€็Ÿญใ„ๅœฐๅนณใงๅ›žใ—็ถšใ‘ใŸใ‚Šใ€่ฆณๆธฌใง้ ป็นใซ่ฃœๆญฃใ—ใŸใ‚Šใ€ใƒขใƒ‡ใƒซใฎโ€œไฟก้ ผใงใใ‚‹็ฏ„ๅ›ฒโ€ใ‚’ๆ˜Ž็คบ็š„ใซๆ‰ฑใ†่จญ่จˆใŒ้‡่ฆใซใชใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ใƒญใƒœใƒƒใƒˆใซ่ผ‰ใ›ใ‚‹ใจใ„ใ†ใฎใฏใ€ใƒขใƒ‡ใƒซใ‚’ไฝœใ‚‹ใ“ใจไปฅไธŠใซใ€ใƒขใƒ‡ใƒซใจ็พๅฎŸใฎไป˜ใๅˆใ„ๆ–นใ‚’ไฝœใ‚‹ใ“ใจใงใ‚‚ใ‚ใ‚‹ใ€‚

็พๅฎŸไธ–็•Œใงใฎ่ฝใจใ—็ฉดใจใ€ๅฎ‰ๅ…จใซๅฏ„ใ›ใ‚‹่จญ่จˆ

ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ใƒญใƒœใƒƒใƒˆใฎๅคฑๆ•—ใ‚’ๆธ›ใ‚‰ใ™้“ๅ…ทใซใชใ‚Šใ†ใ‚‹ใ€‚ใ—ใ‹ใ—ใ€ๅฐŽๅ…ฅใ™ใ‚Œใฐใ™ใใซ่ณขใใชใ‚‹ใ‚ˆใ†ใช้ญ”ๆณ•ใงใฏใชใ„ใ€‚ใ‚€ใ—ใ‚ใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ๅ…ฅใ‚ŒใŸ้€”็ซฏใซๅคฑๆ•—ใฎ็จฎ้กžใŒๅค‰ใ‚ใ‚‹ใ“ใจใŒใ‚ใ‚‹ใ€‚ๅ…ธๅž‹ใฏใ€Œใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ„่ชคไบˆๆธฌใ€ใซๅผ•ใฃๅผตใ‚‰ใ‚Œใ‚‹ๅคฑๆ•—ใ ใ€‚ใƒญใƒœใƒƒใƒˆใŒๅ†…้ƒจใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใงใ€Œใ“ใฎๅ‹•ใใชใ‚‰ๆˆๅŠŸใ™ใ‚‹ใ€ใจๅˆคๆ–ญใ—ใฆใ‚‚ใ€็พๅฎŸใงใฏๆ‘ฉๆ“ฆใŒ้•ใฃใฆๆป‘ใ‚Šใ€้šœๅฎณ็‰ฉใซ่งฆใ‚Œใฆใ—ใพใ†ใ€‚ใ“ใ“ใงๆ€–ใ„ใฎใฏใ€ๅ†…้ƒจใงใฏๆ•ดๅˆใŒๅ–ใ‚Œใฆใ„ใ‚‹ใฎใงใ€ๅคฑๆ•—ใฎ็†็”ฑใŒ่ฆ‹ใˆใซใใ„ใ“ใจใ ใ€‚ๅค–้ƒจใ‹ใ‚‰่ฆ‹ใ‚‹ใจใ€ใƒญใƒœใƒƒใƒˆใŒ่‡ชไฟกๆบ€ใ€…ใซๅฑ้™บใชๅ‹•ใใ‚’้ธใ‚“ใ ใ‚ˆใ†ใซ่ฆ‹ใˆใ‚‹ใ€‚

ใ“ใฎๅ•้กŒใฎๆ นใฃใ“ใซใฏใ€ใƒ‡ใƒผใ‚ฟใฎๅใ‚ŠใŒใ‚ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏ่ฆณๆธฌใ•ใ‚ŒใŸใƒ‡ใƒผใ‚ฟใ‹ใ‚‰ๅญฆใถใฎใงใ€ใƒ‡ใƒผใ‚ฟใŒ่–„ใ„้ ˜ๅŸŸใฎไบˆๆธฌใฏๅผฑใ„ใ€‚็พๅ ดใฎใƒญใƒœใƒƒใƒˆใฏใ€ๆฅญๅ‹™ใงใ‚ˆใๅ‡บใ‚‹็Šถๆณใฎใƒ‡ใƒผใ‚ฟใฏๆบœใพใ‚‹ไธ€ๆ–นใ€ๅฑ้™บใช็Šถๆณใ‚„็•ฐๅธธ็ณปใฎใƒ‡ใƒผใ‚ฟใฏๆ„ๅ›ณ็š„ใซ้ฟใ‘ใ‚‹ใŸใ‚ใ€ใใ‚‚ใใ‚‚ๅญฆใณใซใใ„ใ€‚็ตๆžœใจใ—ใฆใ€ใ„ใ–ไพ‹ๅค–ใŒ่ตทใใ‚‹ใจไธ–็•Œใƒขใƒ‡ใƒซใฏ่„†ใใชใ‚‹ใ€‚็พๅฎŸใฏ็šฎ่‚‰ใงใ€ๅฎ‰ๅ…จใฎใŸใ‚ใซ้ฟใ‘ใŸใƒ‡ใƒผใ‚ฟใŒใ€ๅฎ‰ๅ…จใ‚’ไฝœใ‚‹ใŸใ‚ใซๅฟ…่ฆใ ใฃใŸใ‚Šใ™ใ‚‹ใ€‚

ใ ใ‹ใ‚‰่จญ่จˆใจใ—ใฆใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใซ้ ผใ‚Šๅˆ‡ใ‚‰ใชใ„ๆง‹้€ ใŒ้‡่ฆใซใชใ‚‹ใ€‚ใพใšๅŸบๆœฌใฏใ€ไฟๅฎˆ็š„ใชๅˆถ็ด„ใ‚’ๅˆฅใƒฌใ‚คใƒคใƒผใง็ฝฎใใ“ใจใ ใ€‚้€Ÿๅบฆใ‚„ๅŠ›ใฎไธŠ้™ใ€็ซ‹ใกๅ…ฅใ‚Š็ฆๆญข้ ˜ๅŸŸใ€่ก็ชใŒ็ขบๅฎŸใช่กŒๅ‹•ใฎ็ฆๆญขใชใฉใ€ไธ–็•Œใƒขใƒ‡ใƒซใŒใฉใ†ๅˆคๆ–ญใ—ใ‚ˆใ†ใจ่ถŠใˆใฆใฏใ„ใ‘ใชใ„ๆŸตใ‚’ไฝœใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใใฎๆŸตใฎไธญใงๆœ€้ฉๅŒ–ใ‚’่กŒใ†ใ€‚ใ“ใฎๅˆ†ๆฅญใŒใ‚ใ‚‹ใ ใ‘ใงใ€่ชคไบˆๆธฌใŒ่‡ดๅ‘ฝๅ‚ทใซใชใ‚Šใซใใ„ใ€‚

ๆฌกใซๅคงไบ‹ใชใฎใŒใ€็•ฐๅธธใ‚’ๆคœ็Ÿฅใ—ใฆโ€œ็–‘ใ†โ€่ƒฝๅŠ›ใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒไบˆๆธฌใ—ใŸ็ตๆžœใจใ€ๅฎŸ้š›ใซ่ฆณๆธฌใ•ใ‚ŒใŸ็ตๆžœใฎๅทฎใŒๅคงใใใชใฃใŸใ‚‰ใ€ใ€Œใ„ใพใƒขใƒ‡ใƒซใŒๅฝ“ใŸใฃใฆใ„ใชใ„ใ€ใ‚ตใ‚คใƒณใซใชใ‚‹ใ€‚ใ“ใ“ใง่จˆ็”ปใ‚’็Ÿญใใ™ใ‚‹ใ€ไฟๅฎˆ็š„ใชๅ‹•ใใซๅˆ‡ใ‚Šๆ›ฟใˆใ‚‹ใ€ใ‚ใ‚‹ใ„ใฏไธ€ๆ—ฆๅœๆญขใ—ใฆๅ†ๆŽจๅฎšใ™ใ‚‹ใ€‚ใ“ใ†ใ—ใŸใƒขใƒผใƒ‰ๅˆ‡ใ‚Šๆ›ฟใˆใŒใ‚ใ‚‹ใจใ€ไธ–็•Œใƒขใƒ‡ใƒซใฎๅผฑ็‚นใ‚’้‹็”จใงใ‚ซใƒใƒผใงใใ‚‹ใ€‚ใ“ใ“ใฏใ€็พๅ ดใงใฎๅฎ‰ๅ…จๆ–‡ๅŒ–ใซ่ฟ‘ใ„ใ€‚่ˆช็ฉบๆฉŸใ‚„ๅทฅๅ ด่จญๅ‚™ใŒใ€็•ฐๅธธๆ™‚ใซใƒ•ใ‚งใ‚คใƒซใ‚ปใƒผใƒ•ใธ็งปใ‚‹ใฎใจๅŒใ˜็™บๆƒณใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใซใ‚‚โ€œ้™ใ‚Šๆ–นโ€ใ‚’็”จๆ„ใ™ใ‚‹ใ€‚

ใพใŸใ€็พๅฎŸ็š„ใซใฏใƒ‡ใƒผใ‚ฟๅŽ้›†ใฎ่จญ่จˆใŒไธ–็•Œใƒขใƒ‡ใƒซใฎๆˆๅฆใ‚’ๆฑบใ‚ใ‚‹ใ€‚ใƒญใƒœใƒƒใƒˆใŒๆ—ฅๅธธๆฅญๅ‹™ใง้›†ใ‚ใ‚‹ใƒญใ‚ฐใ ใ‘ใงใฏ่ถณใ‚Šใชใ„ใ“ใจใŒๅคšใ„ใ€‚ใ‚ใ–ใจๅพฎๅฆ™ใซ้•ใ†ๆกไปถใงๅ‹•ใ‹ใ—ใฆใฟใ‚‹ใ€ๆ“ไฝœๅฏพ่ฑกใ‚’ๅค‰ใˆใฆใฟใ‚‹ใ€ใ‚ปใƒณใ‚ตใƒผใ‚’ๅค‰ใˆใฆใฟใ‚‹ใ€‚ใใ†ใ—ใฆใ€Œใƒขใƒ‡ใƒซใŒๆบใ•ใถใ‚‰ใ‚Œใ‚‹ใ€ใƒ‡ใƒผใ‚ฟใ‚’็ขบไฟใ™ใ‚‹ใจใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏ้ ‘ๅฅใซใชใ‚‹ใ€‚ใ‚‚ใกใ‚ใ‚“ใ€ๅฑ้™บใชๆบใ•ใถใ‚Šใฏใงใใชใ„ใ‹ใ‚‰ใ€ๅฎ‰ๅ…จใช็ฏ„ๅ›ฒใงใฎๆŽข็ดขใ‚„ใ€ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ฟใƒผใงใฎ่ฃœๅŠฉใŒๅฟ…่ฆใซใชใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏโ€œๅฎ‰ๅ…จใซ่ณขใใชใ‚‹ใŸใ‚ใฎ่ฃ…็ฝฎโ€ใ ใŒใ€่ณขใใ™ใ‚‹ใŸใ‚ใซใฏใ‚„ใฏใ‚Šๅญฆ็ฟ’ใŒๅฟ…่ฆใงใ€ใใฎๅญฆ็ฟ’ใ‚’ๅฎ‰ๅ…จใซ่กŒใ†ใŸใ‚ใฎ่จญ่จˆใŒ่ฆใ‚‹ใ€‚

ๆœ€ๅพŒใซใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏโ€œ่ฒฌไปปใฎๅˆ†็•Œโ€ใ‚‚ๅค‰ใˆใ‚‹ใ€‚ๅพ“ๆฅใฎใƒญใƒœใƒƒใƒˆใฏใ€ๅˆถๅพกๅ‰‡ใ‚„ใƒซใƒผใƒซใƒ™ใƒผใ‚นใฎใƒญใ‚ธใƒƒใ‚ฏใงๅ‹•ใใ€ๅ‹•ไฝœใฎ็†็”ฑใŒๆฏ”่ผƒ็š„่ฟฝใ„ใ‚„ใ™ใ‹ใฃใŸใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ๅ…ฅใ‚Œใ‚‹ใจใ€่กŒๅ‹•ใŒๅ†…้ƒจใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใฎ็ตๆžœใงๆฑบใพใ‚‹ใŸใ‚ใ€่ชฌๆ˜Žใ‚„็›ฃๆŸปใŒ้›ฃใ—ใใชใ‚‹ใ€‚็พๅ ดใง้‹็”จใ™ใ‚‹ใชใ‚‰ใ€ไธ–็•Œใƒขใƒ‡ใƒซใŒใฉใฎๆƒ…ๅ ฑใ‚’ๆ นๆ‹ ใซใฉใ‚“ใชไบˆๆธฌใ‚’ใ—ใฆใ„ใ‚‹ใ‹ใ€ๅฐ‘ใชใใจใ‚‚ใƒ‡ใƒใƒƒใ‚ฐๅฏ่ƒฝใชๅฝขใงๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใ€‚็พๅ ดใฎไบบใŒใ€ŒไปŠๆ—ฅใฏๅบŠใŒๆป‘ใ‚‹ใ‹ใ‚‰ๅฑใชใ„ใ€ใจๆ„Ÿใ˜ใŸใจใใ€ใƒขใƒ‡ใƒซใŒใใ‚Œใ‚’ๅๆ˜ ใงใใ‚‹ใฎใ‹ใ€ๅๆ˜ ใงใใชใ„ใชใ‚‰ๆ‰‹ๅ‹•ใงไฟๅฎˆใƒขใƒผใƒ‰ใซๅ…ฅใ‚Œใ‚‰ใ‚Œใ‚‹ใฎใ‹ใ€‚ใ“ใ†ใ—ใŸไบบ้–“ใจใฎใ‚คใƒณใ‚ฟใƒผใƒ•ใ‚งใƒผใ‚นใ‚’่จญ่จˆใ—ใชใ„ใจใ€ๆŠ€่ก“ใจใ—ใฆใฏ้€ฒใ‚“ใงใ‚‚็พๅ ดใงๅซŒใ‚ใ‚Œใ‚‹ใ€‚

ใƒญใƒœใƒƒใƒˆใŒๅคฑๆ•—ใ™ใ‚‹ใฎใฏใ€ไธ–็•ŒใŒ่ค‡้›‘ใงใ€ใ—ใ‹ใ‚‚ใใฎ่ค‡้›‘ใ•ใŒโ€œไพ‹ๅค–โ€ใจใ—ใฆ็พใ‚Œใ‚‹ใ‹ใ‚‰ใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ใใฎ่ค‡้›‘ใ•ใ‚’ๅ†…้ƒจใซๅ–ใ‚Š่พผใฟใ€่กŒๅ‹•ใฎๅ‰ใซ็ตๆžœใ‚’ๆƒณๅƒใ•ใ›ใ‚‹ใ“ใจใงใ€ๅคฑๆ•—ใฎ็ขบ็އใ‚’ไธ‹ใ’ใ‚‹ใ€‚ใ—ใ‹ใ—ๅŒๆ™‚ใซใ€ไธ–็•Œใƒขใƒ‡ใƒซใŒ้–“้•ใˆใฐใ€้–“้•ใฃใŸๆœชๆฅใ‚’ไฟกใ˜ใฆ็ชใฃ่พผใ‚€ๅฑ้™บใ‚‚็”Ÿใ‚€ใ€‚ใ ใ‹ใ‚‰้ตใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’่ณขใ„่„ณใจใ—ใฆ็ฅžๆ ผๅŒ–ใ™ใ‚‹ใฎใงใฏใชใใ€ไธ็ขบๅฎŸใชไปฎ่ชฌใ‚’ไฝœใ‚‹้“ๅ…ทใจใ—ใฆไฝ็ฝฎใฅใ‘ใ€ใใฎไปฎ่ชฌใ‚’็พๅฎŸใฎ่ฆณๆธฌใจๅˆถ็ด„ใง็Ÿฏๆญฃใ—็ถšใ‘ใ‚‹่จญ่จˆใซใ‚ใ‚‹ใ€‚ใƒญใƒœใƒƒใƒˆใซใ€Œใ‚„ใ‚‹ๅ‰ใซใ‚ใ‹ใ‚‹ใ€ใ‚’ไธŽใˆใ‚‹ใจใฏใ€ๆœชๆฅใ‚’ๅฝ“ใฆใ‚‹ใ“ใจใงใฏใชใใ€ๅฝ“ใฆใ‚‰ใ‚Œใชใ„ๆœชๆฅใจๅฎ‰ๅ…จใซไป˜ใๅˆใ†ไป•็ต„ใฟใ‚’ไฝœใ‚‹ใ“ใจใชใฎใ ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใจใฏไฝ•ใ‹ใ€‚็”ŸๆˆAIๆ™‚ไปฃใซโ€œไบˆๆธฌใ™ใ‚‹็Ÿฅ่ƒฝโ€ใŒๅ†ๆณจ็›ฎใ•ใ‚Œใ‚‹็†็”ฑ

19 January 2026 at 09:59

ไธ–็•Œใƒขใƒ‡ใƒซใฎๅฎš็พฉใจใ€ใ‚ˆใใ‚ใ‚‹่ชค่งฃ

ไธ–็•Œใƒขใƒ‡ใƒซ๏ผˆWorld Model๏ผ‰ใจใ„ใ†่จ€่‘‰ใฏใ€ใ–ใฃใใ‚Š่จ€ใˆใฐใ€Œไธ–็•ŒใŒใฉใ†ๅ‹•ใใ‹ใ€ใ‚’ๅ†…้ƒจใซๆŒใคใŸใ‚ใฎ่กจ็พใ ใ€‚ใ“ใ“ใง่จ€ใ†ไธ–็•Œใฏใ€ๅฟ…ใšใ—ใ‚‚ๅœฐ็ƒๅ…จไฝ“ใ‚„็คพไผšๅ…จไฝ“ใฎใ“ใจใงใฏใชใ„ใ€‚ใƒญใƒœใƒƒใƒˆใŒๆœบใฎไธŠใง็‰ฉใ‚’ๆŠผใ—ใŸใจใใซไฝ•ใŒ่ตทใใ‚‹ใ‹ใ€ใ‚ฒใƒผใƒ ใฎไธญใงใ‚ญใƒฃใƒฉใ‚ฏใ‚ฟใƒผใŒๆ›ฒใŒใฃใŸใจใใซ่ฆ–็•ŒใŒใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ€ใ‚ใ‚‹ใ„ใฏไผš่ฉฑใง็›ธๆ‰‹ใฎๆ„Ÿๆƒ…ใŒใฉใ†ๆŽจ็งปใ—ใใ†ใ‹ใ€ใใ†ใ„ใ†โ€œ่‡ชๅˆ†ใŒ้–ขใ‚ใ‚‹็ฏ„ๅ›ฒใฎ็’ฐๅขƒโ€ใ‚’ๅซใ‚€ใ€‚้‡่ฆใชใฎใฏใ€ใใฎๅ†…้ƒจ่กจ็พใŒใ€Œๆฌกใซไฝ•ใŒ่ตทใใ‚‹ใ‹ใ€ใ‚’ไบˆๆธฌใ™ใ‚‹ใŸใ‚ใซไฝฟใˆใ‚‹ใ€ใจใ„ใ†็‚นใ ใ€‚

ใ“ใ“ใงๆœ€ๅˆใฎ่ชค่งฃใŒ็”Ÿใพใ‚Œใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏๅ˜ใชใ‚‹ใ€Œ็Ÿฅ่ญ˜ใฎ้›†ใพใ‚Šใ€ใงใฏใชใ„ใ€‚็™พ็ง‘ไบ‹ๅ…ธ็š„ใซไบ‹ๅฎŸใ‚’่ฉฐใ‚่พผใ‚“ใ ใ‚‚ใฎใ‚’ไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใชใ‚‰ใ€ๆคœ็ดขใ‚จใƒณใ‚ธใƒณใฎใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นใ‚‚ไธ–็•Œใƒขใƒ‡ใƒซใซใชใฃใฆใ—ใพใ†ใ€‚ใ—ใ‹ใ—ใ€ไธ–็•Œใƒขใƒ‡ใƒซใŒ็‹™ใ†ไธญๅฟƒใฏใ€Œ็Šถๆ…‹ใฎๆŠŠๆกใ€ใจใ€Œ็Šถๆ…‹ใฎ้ท็งปใ€ใ€ใคใพใ‚ŠไปŠใŒใฉใ†ใ„ใ†็Šถๆณใงใ€ใใ‚ŒใŒๆฌกใซใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใจใ„ใ†ๅ‹•ๅŠ›ๅญฆใฎๅดใซใ‚ใ‚‹ใ€‚ใ‚‚ใกใ‚ใ‚“็Ÿฅ่ญ˜ใฏไฝฟใ†ใฎใ ใŒใ€็Ÿฅ่ญ˜ใŒโ€œไบˆๆธฌใซๆŽฅ็ถšใ•ใ‚Œใฆใ„ใ‚‹โ€ใ‹ใฉใ†ใ‹ใŒๅขƒ็›ฎใซใชใ‚‹ใ€‚

ๆฌกใฎ่ชค่งฃใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ใ€ŒๅฎŒ็’งใช็‰ฉ็†ใ‚จใƒณใ‚ธใƒณใ€ใ ใจๆ‰ใˆใฆใ—ใพใ†ใ“ใจใ ใ€‚็ขบใ‹ใซ็†ๆƒณๅฝขใจใ—ใฆใฏใ€ไธ–็•Œใ‚’ๆญฃ็ขบใซใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใงใใ‚Œใฐๅผทใ„ใ€‚ใ ใŒ็พๅฎŸใฎไธ–็•Œใฏใ€ๆœช็Ÿฅใฎ่ฆๅ› ใจใƒŽใ‚คใ‚บใ ใ‚‰ใ‘ใงใ€ๆญฃ็ขบใ•ใ ใ‘ใ‚’่ฟฝใ†ใจใ™ใใซ็ ด็ถปใ™ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ๆญฃ็ขบใ•ใ‚ˆใ‚Šใ‚‚ใพใšใ€Œๆ„ๆ€ๆฑบๅฎšใซไฝฟใˆใ‚‹็จ‹ๅบฆใซใ€ไธ–็•Œใ‚’ๅœง็ธฎใ—ใฆ่กจใ™ใ€ใ“ใจใŒๅคšใ„ใ€‚ใŸใจใˆใฐ่ปŠใฎ้‹่ปขใงใ€ไบบใฏใ‚ฟใ‚คใƒคใฎใ‚ดใƒ ๅˆ†ๅญใฎ้‹ๅ‹•ใ‚’่จˆ็ฎ—ใ—ใฆใ„ใชใ„ใ€‚่ฆ‹ใˆใ‚‹็ฏ„ๅ›ฒใฎ่ปŠ้–“่ท้›ขใ€็›ธๆ‰‹ใฎ้€Ÿๅบฆใ€ไฟกๅทใฎ็Šถๆ…‹ใ‚’้ ญใฎไธญใงใพใจใ‚ใฆใ€ŒไปŠใฏๆธ›้€Ÿใ ใชใ€ใจๅˆคๆ–ญใ™ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใจใฏใ€ใใ†ใ„ใ†โ€œๅฟ…่ฆใชใจใ“ใ‚ใ ใ‘ๆŽดใ‚€โ€่ƒฝๅŠ›ใฎๆฉŸๆขฐ็‰ˆใงใ‚‚ใ‚ใ‚‹ใ€‚

ใ•ใ‚‰ใซใ‚„ใ‚„ใ“ใ—ใ„ใฎใŒใ€่ฟ‘ๅนดใฎๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซ๏ผˆLLM๏ผ‰ใจใฎ้–ขไฟ‚ใ ใ€‚LLMใฏๅคง้‡ใฎๆ–‡็ซ ใ‹ใ‚‰ใ€ๆฌกใฎๅ˜่ชžใ‚’ไบˆๆธฌใ™ใ‚‹่จ“็ทดใ‚’ๅ—ใ‘ใฆใ„ใ‚‹ใ€‚ใใฎ็ตๆžœใ€ไธ–็•Œใฎ็Ÿฅ่ญ˜ใ‚„ๅ› ๆžœ้–ขไฟ‚ใฃใฝใ„ใ‚‚ใฎใŒๅ†…้ƒจใซ่กจ็พใ•ใ‚Œใ€ใ€Œใใ‚Œใฏไธ–็•Œใƒขใƒ‡ใƒซใงใฏ๏ผŸใ€ใจใ„ใ†่ญฐ่ซ–ใŒ่ตทใใ‚‹ใ€‚ใ“ใ“ใงใฎใƒใ‚คใƒณใƒˆใฏใ€่จ€่ชžใƒขใƒ‡ใƒซใŒๆŒใคๅ†…้ƒจ่กจ็พใŒไธ–็•Œใƒขใƒ‡ใƒซ็š„ใซๅƒใๅ ด้ขใฏ็ขบใ‹ใซใ‚ใ‚‹ไธ€ๆ–นใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใจใ„ใ†ๆฆ‚ๅฟตใŒๆœฌๆฅ้‡่ฆ–ใ™ใ‚‹ใฎใฏใ€Œไธ–็•Œใจใฎ็›ธไบ’ไฝœ็”จใ€ใจใ€ŒไบˆๆธฌใŒ่กŒๅ‹•ใซใƒ•ใ‚ฃใƒผใƒ‰ใƒใƒƒใ‚ฏใ™ใ‚‹ใ€ๆง‹้€ ใ ใจใ„ใ†ใ“ใจใ ใ€‚ๆ–‡็ซ ไธŠใฎๆ•ดๅˆๆ€งใŒๅ–ใ‚Œใฆใ„ใฆใ‚‚ใ€็‰ฉ็†็š„ใชๅ› ๆžœใ‚„ใ€ไป‹ๅ…ฅใ—ใŸใจใใฎ็ตๆžœใŒๆ•ดๅˆใ—ใชใ„ใ“ใจใฏ่ตทใ“ใ‚Šใ†ใ‚‹ใ€‚่จ€ใ„ๆ›ใˆใ‚‹ใจใ€่จ€่ชžใจใ—ใฆใฎโ€œใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ•โ€ใจใ€ไธ–็•Œใจใ—ใฆใฎโ€œๆˆใ‚Š็ซ‹ใกโ€ใฏไธ€่‡ดใ™ใ‚‹ใจใฏ้™ใ‚‰ใชใ„ใ€‚

ใใ‚Œใงใ‚‚ไธ–็•Œใƒขใƒ‡ใƒซใŒ้‡่ฆใชใฎใฏใ€AIใŒๆฌกใซ้€ฒใ‚€ๆ–นๅ‘ใŒใ€Œ็”Ÿๆˆใ€ใ‹ใ‚‰ใ€Œ่จˆ็”ปใ€ใธๅฏ„ใ‚Šๅง‹ใ‚ใฆใ„ใ‚‹ใ‹ใ‚‰ใ ใ€‚ไฝ•ใ‹ใ‚’ๅ‡บๅŠ›ใงใใ‚‹ใ ใ‘ใงใฏใชใใ€ใใฎๅ‡บๅŠ›ใŒ็พๅฎŸใซใฉใ†ๅฝฑ้Ÿฟใ™ใ‚‹ใ‹ใ‚’่ฆ‹็ฉใ‚‚ใ‚Šใ€็›ฎๆจ™ใซๆฒฟใฃใฆๆ‰‹้ †ใ‚’็ต„ใฟ็ซ‹ใฆใ‚‹ใ€‚ใใ“ใซๅฟ…่ฆใชใฎใŒใ€ไธ–็•ŒใŒใฉใ†ๅ‹•ใใ‹ใ‚’ๅ†…้ƒจใซๆŒใคไป•็ต„ใฟใงใ‚ใ‚Šใ€ใใ‚Œใ‚’ไธ–็•Œใƒขใƒ‡ใƒซใจๅ‘ผใถใ€‚

ใฉใ†ใ‚„ใฃใฆไธ–็•Œใƒขใƒ‡ใƒซใฏๅญฆ็ฟ’ใ•ใ‚Œใ‚‹ใฎใ‹

ไธ–็•Œใƒขใƒ‡ใƒซใฎๅญฆ็ฟ’ใฏใ€ไธ€่จ€ใงใพใจใ‚ใ‚‹ใชใ‚‰ใ€Œ่ฆณๆธฌใ‚’ใ†ใพใใพใจใ‚ใฆใ€ๆฌกใ‚’ๅฝ“ใฆใ‚‹ใ€ใ ใ€‚ใŸใจใˆใฐใ€ใ‚ซใƒกใƒฉ็”ปๅƒใฎ้€ฃ็ถšใ€ใ‚ปใƒณใ‚ตใƒผใฎๆ™‚็ณปๅˆ—ใ€ใƒญใ‚ฐใƒ‡ใƒผใ‚ฟใ€ไผš่ฉฑใฎๅฑฅๆญดใชใฉใ€ไธ–็•Œใ‹ใ‚‰ๅพ—ใ‚‰ใ‚Œใ‚‹ๆƒ…ๅ ฑใฏใใฎใพใพใ ใจ่ค‡้›‘ใ™ใŽใ‚‹ใ€‚ใใ“ใงใพใšใ€่ฆณๆธฌใ‚’ๅœง็ธฎใ—ใฆโ€œ็Šถๆ…‹โ€ใจใ—ใฆ่กจใ™ใ€‚ๆฌกใซใ€ใใฎ็Šถๆ…‹ใŒๆ™‚้–“ใจใจใ‚‚ใซใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ€ใ‚ใ‚‹ใ„ใฏ่‡ชๅˆ†ใŒไฝ•ใ‹่กŒๅ‹•ใ—ใŸใจใใซใฉใ†ๅค‰ใ‚ใ‚‹ใ‹ใ‚’ๅญฆใถใ€‚ใ“ใ“ใพใง่žใใจๅคๅ…ธ็š„ใชไบˆๆธฌใƒขใƒ‡ใƒซใจๅŒใ˜ใซ่ฆ‹ใˆใ‚‹ใŒใ€ไธ–็•Œใƒขใƒ‡ใƒซใฎๆ–‡่„ˆใงใฏใ€Œ็Šถๆ…‹ใŒ็›ดๆŽฅ่ฆ‹ใˆใชใ„ใ€ใ“ใจใ‚’ๅ‰ๆใซใ™ใ‚‹ใ“ใจใŒๅคšใ„ใ€‚

็พๅฎŸใฏใ€ๅฟ…่ฆใชๆƒ…ๅ ฑใŒใ„ใคใ‚‚่ฆณๆธฌใงใใ‚‹ใ‚ใ‘ใงใฏใชใ„ใ€‚ใŸใจใˆใฐใ€ๆœบใฎไธŠใซ็ฝฎใ„ใŸใ‚ณใƒƒใƒ—ใฏ่ฆ‹ใˆใฆใ„ใ‚‹ใŒใ€ใ‚ณใƒƒใƒ—ใฎๅบ•ใฎๆป‘ใ‚Šใ‚„ใ™ใ•ใฏ่ฆ‹ใˆใชใ„ใ€‚็›ธๆ‰‹ใŒๆ€’ใฃใฆใ„ใ‚‹ใ‹ใฉใ†ใ‹ใ‚‚ใ€ๅฟƒใฎไธญใฏ่ฆ‹ใˆใชใ„ใ€‚ใใ“ใงไธ–็•Œใƒขใƒ‡ใƒซใฏใ€่ฆ‹ใˆใชใ„่ฆๅ› ใ‚’ๅซใ‚ใŸโ€œๆฝœๅœจ็Šถๆ…‹โ€ใจใ„ใ†่€ƒใˆๆ–นใ‚’ไฝฟใ†ใ€‚่ฆณๆธฌใ‹ใ‚‰ๆฝœๅœจ็Šถๆ…‹ใ‚’ๆŽจๅฎšใ—ใ€ใใฎๆฝœๅœจ็Šถๆ…‹ใ‹ใ‚‰ๆฌกใฎๆฝœๅœจ็Šถๆ…‹ใ‚’ไบˆๆธฌใ—ใ€ๅฟ…่ฆใชใ‚‰ใใ“ใ‹ใ‚‰่ฆณๆธฌใ‚’ๅ†ๆง‹ๆˆใ™ใ‚‹ใ€‚ใ“ใฎๆง‹้€ ใŒใ‚ใ‚‹ใจใ€่ฆ‹ใˆใชใ„้ƒจๅˆ†ใ‚’ใ†ใพใๅธๅŽใ—ใชใŒใ‚‰ใ€้•ทๆœŸ็š„ใชไบˆๆธฌใ‚„่จˆ็”ปใซใคใชใ’ใ‚„ใ™ใใชใ‚‹ใ€‚

ๅญฆ็ฟ’ใฎๅŸบๆœฌใฎๅฝขใฏใ€Œ่‡ชๅทฑๆ•™ๅธซใ‚ใ‚Šใ€ใซใชใ‚Šใ‚„ใ™ใ„ใ€‚ใคใพใ‚Šใ€ๆ•™ๅธซใŒใ€Œๆญฃ่งฃใƒฉใƒ™ใƒซใ€ใ‚’็”จๆ„ใ—ใฆใใ‚Œใชใใฆใ‚‚ใ€ไธ–็•Œใฏๅ‹ๆ‰‹ใซๆฌกใฎ็žฌ้–“ใ‚’่ฆ‹ใ›ใฆใใ‚Œใ‚‹ใฎใงใ€ใใ‚Œใ‚’ๆญฃ่งฃใจใ—ใฆๅญฆในใ‚‹ใ€‚ๅ‹•็”ปใชใ‚‰ๆฌกใƒ•ใƒฌใƒผใƒ ใ€ๆ™‚็ณปๅˆ—ใชใ‚‰ๆฌกใฎๅ€คใ€ไผš่ฉฑใชใ‚‰ๆฌกใฎ็™บ่ฉฑใฎๆตใ‚ŒใŒใƒฉใƒ™ใƒซใซใชใ‚‹ใ€‚ใ“ใ†ใ„ใ†ๅญฆใณๆ–นใฏใ€ใƒ‡ใƒผใ‚ฟใฎ้‡ใ‚’็ขบไฟใ—ใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒไผธใณใ‚„ใ™ใ„่ƒŒๆ™ฏใซใฏใ€ใ‚ปใƒณใ‚ตใƒผใ‚„ใƒญใ‚ฐใŒๅคง้‡ใซๅ–ใ‚Œใ‚‹็’ฐๅขƒใŒๅข—ใˆใŸใ“ใจใ‚‚ใ‚ใ‚‹ใ€‚

ใ“ใ“ใงไธ€ๆฎตๆทฑใ„่ฉฑใจใ—ใฆใ€ใ€Œไบˆๆธฌใ™ในใใ‚‚ใฎใฏไฝ•ใ‹ใ€ใŒ้›ฃๆ‰€ใซใชใ‚‹ใ€‚ๆฌกใƒ•ใƒฌใƒผใƒ ใฎ็”ป็ด ใ‚’ๅ…จ้ƒจๅฝ“ใฆใซใ„ใใจใ€ไธ–็•Œใฏ็ดฐ้ƒจใพใง่ค‡้›‘ใ™ใŽใฆๅญฆ็ฟ’ใŒ้‡ใใชใ‚‹ใ€‚้€†ใซๆŠฝ่ฑกๅŒ–ใ—ใ™ใŽใ‚‹ใจใ€ๅคงไบ‹ใชๅ› ๆžœใŒๆŠœใ‘ใ‚‹ใ€‚ใ ใ‹ใ‚‰ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ใฉใฎใƒฌใƒ™ใƒซใงไธ–็•Œใ‚’่กจ็พใ™ใ‚‹ใ‹ใ€ใคใพใ‚Š่กจ็พใฎ็ฒ’ๅบฆใ‚’่จญ่จˆใ™ใ‚‹ใฎใŒๅ‹่ฒ ใซใชใ‚‹ใ€‚ไบบ้–“ใ‚‚ๅŒใ˜ใงใ€ใŸใจใˆใฐใ‚นใƒใƒผใƒ„่ฆณๆˆฆใงใƒœใƒผใƒซใฎๅ›ž่ปขๆ•ฐใฎๅพฎ็ดฐๅค‰ๅŒ–ใ‚’้€ไธ€่ฟฝใ‚ใชใ„ไปฃใ‚ใ‚Šใซใ€้ธๆ‰‹ใฎไฝ็ฝฎ้–ขไฟ‚ใ‚„ใƒชใ‚บใƒ ใงๅฑ•้–‹ใ‚’ไบˆๆธฌใ—ใฆใ„ใ‚‹ใ€‚AIใงใ‚‚ใ€ๆ„ๅ‘ณใฎใ‚ใ‚‹ๅ˜ไฝใงไธ–็•Œใ‚’ๅˆ‡ใ‚Šๅ‡บใ—ใ€ไบˆๆธฌใ‚’ๆˆ็ซ‹ใ•ใ›ใ‚‹ๅทฅๅคซใŒ่ฆใ‚‹ใ€‚

ใ‚‚ใ†ไธ€ใคใฎใ‚ญใƒขใฏใ€ไธ็ขบๅฎŸๆ€งใ‚’ใใกใ‚“ใจๆ‰ฑใ†ใ“ใจใ ใ€‚ไธ–็•Œใฏไธ€ใคใฎๆœชๆฅใ ใ‘ใ‚’ๆŒใŸใชใ„ใ€‚้›จใŒ้™ใ‚Šใใ†ใงใ‚‚้™ใ‚‰ใชใ„ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ—ใ€็›ธๆ‰‹ใŒ็ฌ‘ใ†ใ‹ๆ€’ใ‚‹ใ‹ใฏ็Šถๆณๆฌก็ฌฌใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๅ˜ไธ€ใฎๆœชๆฅใ‚’ๆ–ญๅฎšใ™ใ‚‹ใจใ€ๅค–ใ‚ŒใŸใจใใฎใƒ€ใƒกใƒผใ‚ธใŒๅคงใใ„ใ€‚ใ ใ‹ใ‚‰ใ€ๅคšๆง˜ใชๅฏ่ƒฝๆ€งใ‚’ๆŒใฃใŸๆœชๆฅใ‚’่กจ็พใงใใ‚‹ใƒขใƒ‡ใƒซใŒๅฅฝใพใ‚Œใ‚‹ใ€‚ใ“ใ‚ŒใŒใ€Œ็”Ÿๆˆใƒขใƒ‡ใƒซใ€ใจๆŽฅ็ถšใ™ใ‚‹ใƒใ‚คใƒณใƒˆใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏใ—ใฐใ—ใฐใ€Œๆœชๆฅใ‚’็”Ÿๆˆใ™ใ‚‹ใ€ๅฝขใง่จญ่จˆใ•ใ‚Œใ‚‹ใ€‚ๅ˜ใซๅนณๅ‡ใ‚’ๅ–ใ‚‹ไบˆๆธฌใงใฏใชใใ€่ค‡ๆ•ฐใฎ็ญ‹ใฎ้€šใฃใŸใ‚ทใƒŠใƒชใ‚ชใ‚’ๅ‡บใ—ใ€ใใฎไธญใ‹ใ‚‰็›ฎ็š„ใซๅˆใ†่กŒๅ‹•ใ‚’้ธใถใ€ใจใ„ใ†ๆตใ‚ŒใŒไฝœใ‚Šใ‚„ใ™ใ„ใ€‚

ใ“ใ†ใ—ใฆๅญฆ็ฟ’ใ•ใ‚ŒใŸไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ไฝฟใ„ๆ–นใซใ‚ˆใฃใฆๆ€งๆ ผใŒๅค‰ใ‚ใ‚‹ใ€‚็ŸญๆœŸใฎไบˆๆธฌใŒๅพ—ๆ„ใชใ‚‚ใฎใ€้•ทๆœŸใฎ่จˆ็”ปใซ่€ใˆใ‚‹ใ‚‚ใฎใ€่กŒๅ‹•ใ‚’ๅ…ฅใ‚Œใ‚‹ใจๅๅฟœใŒ่ฟ”ใ‚‹ใ‚‚ใฎใ€่ฆณๆธฌใฎๆฌ ่ฝใซๅผทใ„ใ‚‚ใฎใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏๅ˜ไฝ“ใฎๆŠ€่ก“ๅใจใ„ใ†ใ‚ˆใ‚Šใ€ใ€Œไบˆๆธฌใงใใ‚‹ๅ†…้ƒจ่กจ็พใ‚’ใฉใ†ไฝœใ‚Šใ€ใฉใ†ไฝฟใ†ใ‹ใ€ใจใ„ใ†่จญ่จˆๆ€ๆƒณใฎๆŸใจใ—ใฆ็†่งฃใ—ใŸใปใ†ใŒใ€ๅฎŸๆ…‹ใซ่ฟ‘ใ„ใ€‚

ไธ–็•Œใƒขใƒ‡ใƒซใŒใ‚‚ใŸใ‚‰ใ™ไพกๅ€คใจใ€้™็•Œใฎๆญฃไฝ“

ไธ–็•Œใƒขใƒ‡ใƒซใฎไพกๅ€คใฏใ€็ซฏ็š„ใซ่จ€ใˆใฐใ€Œใ‚„ใ‚‹ๅ‰ใซ่ฉฆใ›ใ‚‹ใ€ใ“ใจใซใ‚ใ‚‹ใ€‚็พๅฎŸไธ–็•Œใงใฎ่ฉฆ่กŒ้Œฏ่ชคใฏใ‚ณใ‚นใƒˆใŒ้ซ˜ใ„ใ€‚ใƒญใƒœใƒƒใƒˆใŒ่ปขๅ€’ใ™ใ‚ŒใฐๅฃŠใ‚Œใ‚‹ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ—ใ€่ฃฝ้€ ใƒฉใ‚คใƒณใฎๅฎŸ้จ“ใฏๆญขใ‚ใ‚‰ใ‚Œใชใ„ใ—ใ€ใƒ“ใ‚ธใƒใ‚นๆ–ฝ็ญ–ใฎๅคฑๆ•—ใฏๆๅคฑใซใชใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒใ‚ใ‚Œใฐใ€ๅ†…้ƒจใงใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใ—ใฆๅฑใชใ„ๆ‰‹ใ‚’้ฟใ‘ใŸใ‚Šใ€ๆˆๅŠŸ็ขบ็އใฎ้ซ˜ใ„ๆ‰‹ใ‚’ๅ„ชๅ…ˆใ—ใŸใ‚Šใงใใ‚‹ใ€‚ๅผทๅŒ–ๅญฆ็ฟ’ใฎๆ–‡่„ˆใงใฏใ€็’ฐๅขƒใจใฎใ‚„ใ‚Šใจใ‚Šใ‚’็ฏ€็ด„ใงใใ‚‹ใ“ใจใŒๅผทใฟใจใ—ใฆ่ชžใ‚‰ใ‚Œใ‚‹ใŒใ€็พๅฎŸใฎ็พๅ ดใงใฏใ€Œๅฎ‰ๅ…จใ€ใจใ€Œ่ฒป็”จใ€ใฎๅ•้กŒใจใ—ใฆใ€ใ‚ˆใ‚Šๅˆ‡ๅฎŸใซๅŠนใ„ใฆใใ‚‹ใ€‚

ใพใŸใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏใ€ŒๆฑŽๅŒ–ใ€ใซ้–ขไฟ‚ใ™ใ‚‹ใ€‚ๆฑŽๅŒ–ใจใฏใ€่ฆ‹ใŸใ“ใจใฎใชใ„็Šถๆณใงใ‚‚ใ†ใพใใ‚„ใ‚‹่ƒฝๅŠ›ใ ใ€‚ๅ˜ใชใ‚‹ใƒ‘ใ‚ฟใƒผใƒณๆš—่จ˜ใฏใ€็’ฐๅขƒใŒๅฐ‘ใ—ๅค‰ใ‚ใ‚‹ใจๅดฉใ‚Œใ‚‹ใ€‚ใ ใŒใ€ๅ› ๆžœใ‚„ๆง‹้€ ใ‚’ๅ†…้ƒจใซๆŒใฆใ‚Œใฐใ€่กจ้ขใŒ้•ใฃใฆใ‚‚ๆœฌ่ณชใŒๅŒใ˜ใชใ‚‰ๅฏพๅฟœใงใใ‚‹ๅฏ่ƒฝๆ€งใŒไธŠใŒใ‚‹ใ€‚ใŸใจใˆใฐใ€ๆœบใŒๆœจ่ฃฝใ‹ใ‚‰้‡‘ๅฑžใซใชใฃใฆใ‚‚ใ€Œๆป‘ใ‚Šใ‚„ใ™ใ•ใŒๅค‰ใ‚ใ‚‹ใ€็จ‹ๅบฆใฎๅทฎใจใ—ใฆๆ‰ฑใˆใ‚Œใฐใ€ๆŠผใ™ๅŠ›ใ‚„้€Ÿๅบฆใ‚’่ชฟๆ•ดใ—ใฆ็›ฎ็š„ใ‚’้”ๆˆใงใใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฎ็›ฎๆจ™ใฏใ€ไธ–็•Œใฎ็ดฐ้ƒจใ‚’ไธธๆš—่จ˜ใ™ใ‚‹ใ“ใจใงใฏใชใใ€ๅค‰ๅŒ–ใฎไป•ๆ–นใ‚’ๆŽดใ‚€ใ“ใจใซใ‚ใ‚‹ใ€‚

ใŸใ ใ—ใ€ใ“ใ“ใ‹ใ‚‰ใŒๅคงไบ‹ใงใ€ไธ–็•Œใƒขใƒ‡ใƒซใฎ้™็•Œใ‚‚ใ“ใฎไพกๅ€คใจๅŒใ˜ๅ ดๆ‰€ใ‹ใ‚‰็”Ÿใพใ‚Œใ‚‹ใ€‚ๅ†…้ƒจใง่ฉฆใ™ใจใ„ใ†ใ“ใจใฏใ€ๅ†…้ƒจใฎไธ–็•ŒใŒ้–“้•ใฃใฆใ„ใŸใ‚‰ใ€้–“้•ใฃใŸใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใงๆ„ๆ€ๆฑบๅฎšใ—ใฆใ—ใพใ†ใจใ„ใ†ใ“ใจใ ใ€‚ใ—ใ‹ใ‚‚ๆ€–ใ„ใฎใฏใ€ไบˆๆธฌใŒๅฐ‘ใ—ใ ใ‘ๅค–ใ‚Œใ‚‹ใจใใปใฉใ€้•ทๆœŸ็š„ใซใฏๅคงๅค–ใ‚Œใซใชใ‚‹ใ“ใจใŒใ‚ใ‚‹็‚นใ ใ€‚ๆœชๆฅใ‚’ไธ€ๆญฉใšใคไบˆๆธฌใ—ใฆใ„ใใจใ€่ชคๅทฎใŒ็ฉใฟไธŠใŒใ‚Šใ€้€”ไธญใ‹ใ‚‰็พๅฎŸใจๅˆฅไธ–็•Œใซ่ฟทใ„่พผใ‚€ใ€‚ใ“ใ‚Œใฏใ€Œใƒญใƒผใƒซใ‚ขใ‚ฆใƒˆใฎ็ ด็ถปใ€ใจๅ‘ผใฐใ‚Œใ‚‹ใ“ใจใŒใ‚ใ‚‹ใŒใ€่ฆใ™ใ‚‹ใซ้•ทๆœŸใฎใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใปใฉไฟก็”จใŒ้›ฃใ—ใ„ใ€‚

ใ•ใ‚‰ใซใ€ใƒ‡ใƒผใ‚ฟใŒๅญ˜ๅœจใ—ใชใ„้ ˜ๅŸŸใ€ใ„ใ‚ใ‚†ใ‚‹ๅˆ†ๅธƒๅค–ใซๅ‡บใŸ็žฌ้–“ใซๅฃŠใ‚Œใ‚„ใ™ใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใฏ่ฆณๆธฌใ‹ใ‚‰ๅญฆใถไปฅไธŠใ€่ฆณๆธฌใ•ใ‚Œใชใ„ใ‚‚ใฎใ‚’ๆญฃใ—ใใฏๅญฆในใชใ„ใ€‚่ฆ‹ใŸใ“ใจใฎใชใ„้“ๅ…ทใ€ๆœช็Ÿฅใฎใƒซใƒผใƒซใ€ๆฅต็ซฏใช็Šถๆณใซๅผฑใ„ใฎใฏ่‡ช็„ถใ ใ€‚ใ“ใ“ใงใ€่จ€่ชžใƒขใƒ‡ใƒซใฎใƒใƒซใ‚ทใƒใƒผใ‚ทใƒงใƒณใจไผผใŸๆง‹ๅ›ณใŒๅ‡บใ‚‹ใ€‚ใ‚‚ใฃใจใ‚‚ใ‚‰ใ—ใ„ไบˆๆธฌใ‚’็”Ÿๆˆใงใใ‚‹ใŒใ€ใใ‚ŒใŒ็พๅฎŸใฎๆ‹˜ๆŸๆกไปถใ‚’ๆบ€ใŸใ™ใจใฏ้™ใ‚‰ใชใ„ใ€‚่ฆ‹ใŸ็›ฎใ‚„ๆ–‡็ซ ใฎๆ•ดๅˆๆ€งใŒ้ซ˜ใ„ใปใฉใ€้–“้•ใ„ใซๆฐ—ใฅใใซใใใชใ‚‹ใฎใŒๅŽ„ไป‹ใ ใ€‚

ใ ใ‹ใ‚‰ๅฎŸๅ‹™ใงใฏใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ใ€Œไธ‡่ƒฝใช้ ญ่„ณใ€ใจใ—ใฆ็ฝฎใใ‚ˆใ‚Šใ€ใ€Œไธ็ขบๅฎŸๆ€งใ‚’ๅซใ‚€ไปฎ่ชฌ็”Ÿๆˆ่ฃ…็ฝฎใ€ใจใ—ใฆๆ‰ฑใ†ใฎใŒๅฎ‰ๅ…จใ ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๅ‡บใ—ใŸๆœชๆฅไบˆๆธฌใ‚’ใ€ๅˆฅใฎใƒใ‚งใƒƒใ‚ฏๆฉŸๆง‹ใงๆคœ่จผใ™ใ‚‹ใ€‚ไฟๅฎˆ็š„ใชๅˆถ็ด„ใ‚’ใ‹ใ‘ใฆๅฑ้™บใช่กŒๅ‹•ใ‚’็ฆๆญขใ™ใ‚‹ใ€‚่ฆณๆธฌใŒๅ…ฅใฃใŸใ‚‰ใ™ใใซ็Šถๆ…‹ๆŽจๅฎšใ‚’ๆ›ดๆ–ฐใ—ใ€ๅ†…้ƒจไธ–็•Œใ‚’ๅผ•ใๆˆปใ™ใ€‚ใ“ใ†ใ„ใ†่จญ่จˆใŒใ‚ปใƒƒใƒˆใซใชใฃใฆๅˆใ‚ใฆใ€ไธ–็•Œใƒขใƒ‡ใƒซใฏๅผทใฟใจใ—ใฆๅƒใใ€‚

ใ‚‚ใ†ไธ€ใคใ€่ชฌๆ˜Žๅฏ่ƒฝๆ€งใฎๅ•้กŒใ‚‚ใ‚ใ‚‹ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๆฝœๅœจ็Šถๆ…‹ใซไธ–็•Œใ‚’ๅœง็ธฎใ™ใ‚‹ใจใ€ใใฎๆฝœๅœจ็Šถๆ…‹ใฏไบบ้–“ใฎ่จ€่‘‰ใง่ชฌๆ˜Žใ—ใซใใ„ใ“ใจใŒๅคšใ„ใ€‚ใ€Œใชใœใใ†ๅˆคๆ–ญใ—ใŸใฎใ‹ใ€ใ‚’ๅ•ใ‚ใ‚ŒใŸใจใใ€ใƒขใƒ‡ใƒซๅ†…้ƒจใฎ็Šถๆ…‹้ท็งปใฏใƒ–ใƒฉใƒƒใ‚ฏใƒœใƒƒใ‚ฏใ‚นใซใชใ‚ŠใŒใกใ ใ€‚ใ“ใ‚Œใฏ็คพไผšๅฎŸ่ฃ…ใงๅฟ…ใš็ชใฃ่พผใพใ‚Œใ‚‹ใƒใ‚คใƒณใƒˆใงใ€ๅŒป็™‚ใ€้‡‘่žใ€่ฃฝ้€ ใ€ๅฎ‰ๅ…จ้ ˜ๅŸŸใงใฏ็‰นใซ็„ก่ฆ–ใงใใชใ„ใ€‚ไธ–็•Œใƒขใƒ‡ใƒซใ‚’ๅฐŽๅ…ฅใ™ใ‚‹ใชใ‚‰ใ€่ชฌๆ˜ŽใฎใŸใ‚ใฎๅฏ่ฆ–ๅŒ–ใ‚„็›ฃๆŸปใ€ใ‚ใ‚‹ใ„ใฏ่ชฌๆ˜Žๅฏ่ƒฝๆ€งใ‚’ไธ€ๅฎšๆ‹…ไฟใ™ใ‚‹ใƒขใƒ‡ใƒซ่จญ่จˆใŒๅฟ…่ฆใซใชใ‚‹ใ€‚

ใใ‚Œใงใ‚‚ไธ–็•Œใƒขใƒ‡ใƒซใŒๅ†ๆณจ็›ฎใ•ใ‚Œใ‚‹ใฎใฏใ€AIใŒโ€œๆ–‡็ซ ใ‚’ๅ‡บใ™ๆฉŸๆขฐโ€ใ‹ใ‚‰โ€œไธ–็•Œใงๅ‹•ใๆ„ๆ€ๆฑบๅฎš่€…โ€ใธ่ฟ‘ใฅใใปใฉใ€้ฟใ‘ใฆ้€šใ‚Œใชใ„ๆฆ‚ๅฟตใ ใ‹ใ‚‰ใ ใ€‚ๆœชๆฅใ‚’ๆƒณๅƒใงใใชใ‘ใ‚Œใฐใ€่จˆ็”ปใ‚‚ใ€ๆŽข็ดขใ‚‚ใ€ๅฎ‰ๅ…จใ‚‚ไฝœใ‚Œใชใ„ใ€‚้€†ใซ่จ€ใˆใฐใ€ไธ–็•Œใƒขใƒ‡ใƒซใ‚’่ชžใ‚‹ใ“ใจใฏใ€AIใฎ่ƒฝๅŠ›ใ‚’่ชžใ‚‹ใ“ใจใจๅŒๆ™‚ใซใ€AIใฎๅฑใ†ใ•ใ‚’่ชžใ‚‹ใ“ใจใงใ‚‚ใ‚ใ‚‹ใ€‚ไบˆๆธฌใฏๅŠ›ใ ใŒใ€ไบˆๆธฌใ‚’ไฟกใ˜ใ™ใŽใ‚‹ใฎใ‚‚ๅฑ้™บใ ใ€‚ใ“ใฎ็ทŠๅผตๆ„Ÿใ”ใจๆŠฑใˆใชใŒใ‚‰ใ€ใ€Œใฉใฎไธ–็•Œใ‚’ใ€ใฉใฎ็ฒ’ๅบฆใงใ€ใฉใฎ็›ฎ็š„ใฎใŸใ‚ใซใƒขใƒ‡ใƒซๅŒ–ใ™ใ‚‹ใฎใ‹ใ€ใ‚’่จญ่จˆใงใใ‚‹ใ‹ใฉใ†ใ‹ใŒใ€็”ŸๆˆAIๆ™‚ไปฃใฎๆฌกใฎๅˆ†ๆฐดๅถบใซใชใ‚‹ใ€‚

โŒ
โŒ