Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

America’s coming war over AI regulation

23 January 2026 at 05:00

MIT Technology Review’s What’s Next series looks across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here.

In the final weeks of 2025, the battle over regulating artificial intelligence in the US reached a boiling point. On December 11, after Congress failed twice to pass a law banning state AI laws, President Donald Trump signed a sweeping executive order seeking to handcuff states from regulating the booming industry. Instead, he vowed to work with Congress to establish a “minimally burdensome” national AI policy, one that would position the US to win the global AI race. The move marked a qualified victory for tech titans, who have been marshaling multimillion-dollar war chests to oppose AI regulations, arguing that a patchwork of state laws would stifle innovation.

In 2026, the battleground will shift to the courts. While some states might back down from passing AI laws, others will charge ahead, buoyed by mounting public pressure to protect children from chatbots and rein in power-hungry data centers. Meanwhile, dueling super PACs bankrolled by tech moguls and AI-safety advocates will pour tens of millions into congressional and state elections to seat lawmakers who champion their competing visions for AI regulation. 

Trump’s executive order directs the Department of Justice to establish a task force that sues states whose AI laws clash with his vision for light-touch regulation. It also directs the Department of Commerce to starve states of federal broadband funding if their AI laws are “onerous.” In practice, the order may target a handful of laws in Democratic states, says James Grimmelmann, a law professor at Cornell Law School. “The executive order will be used to challenge a smaller number of provisions, mostly relating to transparency and bias in AI, which tend to be more liberal issues,” Grimmelmann says.

For now, many states aren’t flinching. On December 19, New York’s governor, Kathy Hochul, signed the Responsible AI Safety and Education (RAISE) Act, a landmark law requiring AI companies to publish the protocols used to ensure the safe development of their AI models and report critical safety incidents. On January 1, California debuted the nation’s first frontier AI safety law, SB 53—which the RAISE Act was modeled on—aimed at preventing catastrophic harms such as biological weapons or cyberattacks. While both laws were watered down from earlier iterations to survive bruising industry lobbying, they struck a rare, if fragile, compromise between tech giants and AI safety advocates.

If Trump targets these hard-won laws, Democratic states like California and New York will likely take the fight to court. Republican states like Florida with vocal champions for AI regulation might follow suit. Trump could face an uphill battle. “The Trump administration is stretching itself thin with some of its attempts to effectively preempt [legislation] via executive action,” says Margot Kaminski, a law professor at the University of Colorado Law School. “It’s on thin ice.”

But Republican states that are anxious to stay off Trump’s radar or can’t afford to lose federal broadband funding for their sprawling rural communities might retreat from passing or enforcing AI laws. Win or lose in court, the chaos and uncertainty could chill state lawmaking. Paradoxically, the Democratic states that Trump wants to rein in—armed with big budgets and emboldened by the optics of battling the administration—may be the least likely to budge.

In lieu of state laws, Trump promises to create a federal AI policy with Congress. But the gridlocked and polarized body won’t be delivering a bill this year. In July, the Senate killed a moratorium on state AI laws that had been inserted into a tax bill, and in November, the House scrapped an encore attempt in a defense bill. In fact, Trump’s bid to strong-arm Congress with an executive order may sour any appetite for a bipartisan deal. 

The executive order “has made it harder to pass responsible AI policy by hardening a lot of positions, making it a much more partisan issue,” says Brad Carson, a former Democratic congressman from Oklahoma who is building a network of super PACs backing candidates who support AI regulation. “It hardened Democrats and created incredible fault lines among Republicans,” he says. 

While AI accelerationists in Trump’s orbit—AI and crypto czar David Sacks among them—champion deregulation, populist MAGA firebrands like Steve Bannon warn of rogue superintelligence and mass unemployment. In response to Trump’s executive order, Republican state attorneys general signed a bipartisan letter urging the FCC not to supersede state AI laws.

With Americans increasingly anxious about how AI could harm mental health, jobs, and the environment, public demand for regulation is growing. If Congress stays paralyzed, states will be the only ones acting to keep the AI industry in check. In 2025, state legislators introduced more than 1,000 AI bills, and nearly 40 states enacted over 100 laws, according to the National Conference of State Legislatures.

Efforts to protect children from chatbots may inspire rare consensus. On January 7, Google and Character Technologies, a startup behind the companion chatbot Character.AI, settled several lawsuits with families of teenagers who killed themselves after interacting with the bot. Just a day later, the Kentucky attorney general sued Character Technologies, alleging that the chatbots drove children to suicide and other forms of self-harm. OpenAI and Meta face a barrage of similar suits. Expect more to pile up this year. Without AI laws on the books, it remains to be seen how product liability laws and free speech doctrines apply to these novel dangers. “It’s an open question what the courts will do,” says Grimmelmann. 

While litigation brews, states will move to pass child safety laws, which are exempt from Trump’s proposed ban on state AI laws. On January 9, OpenAI inked a deal with a former foe, the child-safety advocacy group Common Sense Media, to back a ballot initiative in California called the Parents & Kids Safe AI Act, setting guardrails around how chatbots interact with children. The measure proposes requiring AI companies to verify users’ age, offer parental controls, and undergo independent child-safety audits. If passed, it could be a blueprint for states across the country seeking to crack down on chatbots. 

Fueled by widespread backlash against data centers, states will also try to regulate the resources needed to run AI. That means bills requiring data centers to report on their power and water use and foot their own electricity bills. If AI starts to displace jobs at scale, labor groups might float AI bans in specific professions. A few states concerned about the catastrophic risks posed by AI may pass safety bills mirroring SB 53 and the RAISE Act. 

Meanwhile, tech titans will continue to use their deep pockets to crush AI regulations. Leading the Future, a super PAC backed by OpenAI president Greg Brockman and the venture capital firm Andreessen Horowitz, will try to elect candidates who endorse unfettered AI development to Congress and state legislatures. They’ll follow the crypto industry’s playbook for electing allies and writing the rules. To counter this, super PACs funded by Public First, an organization run by Carson and former Republican congressman Chris Stewart of Utah, will back candidates advocating for AI regulation. We might even see a handful of candidates running on anti-AI populist platforms.

In 2026, the slow, messy process of American democracy will grind on. And the rules written in state capitals could decide how the most disruptive technology of our generation develops far beyond America’s borders, for years to come.

What’s next for AI in 2026

MIT Technology Review’s What’s Next series looks across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here.

In an industry in constant flux, sticking your neck out to predict what’s coming next may seem reckless. (AI bubble? What AI bubble?) But for the last few years we’ve done just that—and we’re doing it again. 

How did we do last time? We picked five hot AI trends to look out for in 2025, including what we called generative virtual playgrounds, a.k.a world models (check: From Google DeepMind’s Genie 3 to World Labs’s Marble, tech that can generate realistic virtual environments on the fly keeps getting better and better); so-called reasoning models (check: Need we say more? Reasoning models have fast become the new paradigm for best-in-class problem solving); a boom in AI for science (check: OpenAI is now following Google DeepMind by setting up a dedicated team to focus on just that); AI companies that are cozier with national security (check: OpenAI reversed position on the use of its technology for warfare to sign a deal with the defense-tech startup Anduril to help it take down battlefield drones); and legitimate competition for Nvidia (check, kind of: China is going all in on developing advanced AI chips, but Nvidia’s dominance still looks unassailable—for now at least). 

So what’s coming in 2026? Here are our big bets for the next 12 months. 

More Silicon Valley products will be built on Chinese LLMs

The last year shaped up as a big one for Chinese open-source models. In January, DeepSeek released R1, its open-source reasoning model, and shocked the world with what a relatively small firm in China could do with limited resources. By the end of the year, “DeepSeek moment” had become a phrase frequently tossed around by AI entrepreneurs, observers, and builders—an aspirational benchmark of sorts. 

It was the first time many people realized they could get a taste of top-tier AI performance without going through OpenAI, Anthropic, or Google.

Open-weight models like R1 allow anyone to download a model and run it on their own hardware. They are also more customizable, letting teams tweak models through techniques like distillation and pruning. This stands in stark contrast to the “closed” models released by major American firms, where core capabilities remain proprietary and access is often expensive.

As a result, Chinese models have become an easy choice. Reports by CNBC and Bloomberg suggest that startups in the US have increasingly recognized and embraced what they can offer.

One popular group of models is Qwen, created by Alibaba, the company behind China’s largest e-commerce platform, Taobao. Qwen2.5-1.5B-Instruct alone has 8.85 million downloads, making it one of the most widely used pretrained LLMs. The Qwen family spans a wide range of model sizes alongside specialized versions tuned for math, coding, vision, and instruction-following, a breadth that has helped it become an open-source powerhouse.

Other Chinese AI firms that were previously unsure about committing to open source are following DeepSeek’s playbook. Standouts include Zhipu’s GLM and Moonshot’s Kimi. The competition has also pushed American firms to open up, at least in part. In August, OpenAI released its first open-source model. In November, the Allen Institute for AI, a Seattle-based nonprofit, released its latest open-source model, Olmo 3. 

Even amid growing US-China antagonism, Chinese AI firms’ near-unanimous embrace of open source has earned them goodwill in the global AI community and a long-term trust advantage. In 2026, expect more Silicon Valley apps to quietly ship on top of Chinese open models, and look for the lag between Chinese releases and the Western frontier to keep shrinking—from months to weeks, and sometimes less.

Caiwei Chen

The US will face another year of regulatory tug-of-war

T​​he battle over regulating artificial intelligence is heading for a showdown. On December 11, President Donald Trump signed an executive order aiming to neuter state AI laws, a move meant to handcuff states from keeping the growing industry in check. In 2026, expect more political warfare. The White House and states will spar over who gets to govern the booming technology, while AI companies wage a fierce lobbying campaign to crush regulations, armed with the narrative that a patchwork of state laws will smother innovation and hobble the US in the AI arms race against China.

Under Trump’s executive order, states may fear being sued or starved federal funding if they clash with his vision for light-touch regulation. Big Democratic states like California—which just enacted the nation’s first frontier AI law requiring companies to publish safety testing for their AI models—will take the fight to court, arguing that only Congress can override state laws. But states that can’t afford to lose federal funding, or fear getting in Trump’s crosshairs, might fold. Still, expect to see more state lawmaking on hot-button issues, especially where Trump’s order gives states a green light to legislate. With chatbots accused of triggering teen suicides and data centers sucking up more and more energy, states will face mounting public pressure to push for guardrails. 

In place of state laws, Trump promises to work with Congress to establish a federal AI law. Don’t count on it. Congress failed to pass a moratorium on state legislation twice in 2025, and we aren’t holding out hope that it will deliver its own bill this year. 

AI companies like OpenAI and Meta will continue to deploy powerful super-PACs to support political candidates who back their agenda and target those who stand in their way. On the other side, super-PACs supporting AI regulation will build their own war chests to counter. Watch them duke it out at next year’s midterm elections.

The further AI advances, the more people will fight to steer its course, and 2026 will be another year of regulatory tug-of-war—with no end in sight.

Michelle Kim

Chatbots will change the way we shop

Imagine a world in which you have a personal shopper at your disposal 24-7—an expert who can instantly recommend a gift for even the trickiest-to-buy-for friend or relative, or trawl the web to draw up a list of the best bookcases available within your tight budget. Better yet, they can analyze a kitchen appliance’s strengths and weaknesses, compare it with its seemingly identical competition, and find you the best deal. Then once you’re happy with their suggestion, they’ll take care of the purchasing and delivery details too.

But this ultra-knowledgeable shopper isn’t a clued-up human at all—it’s a chatbot. This is no distant prediction, either. Salesforce recently said it anticipates that AI will drive $263 billion in online purchases this holiday season. That’s some 21% of all orders. And experts are betting on AI-enhanced shopping becoming even bigger business within the next few years. By 2030, between $3 trillion and $5 trillion annually will be made from agentic commerce, according to research from the consulting firm McKinsey. 

Unsurprisingly, AI companies are already heavily invested in making purchasing through their platforms as frictionless as possible. Google’s Gemini app can now tap into the company’s powerful Shopping Graph data set of products and sellers, and can even use its agentic technology to call stores on your behalf. Meanwhile, back in November, OpenAI announced a ChatGPT shopping feature capable of rapidly compiling buyer’s guides, and the company has struck deals with Walmart, Target, and Etsy to allow shoppers to buy products directly within chatbot interactions. 

Expect plenty more of these kinds of deals to be struck within the next year as consumer time spent chatting with AI keeps on rising, and web traffic from search engines and social media continues to plummet. 

Rhiannon Williams

An LLM will make an important new discovery

I’m going to hedge here, right out of the gate. It’s no secret that large language models spit out a lot of nonsense. Unless it’s with monkeys-and-typewriters luck, LLMs won’t discover anything by themselves. But LLMs do still have the potential to extend the bounds of human knowledge.

We got a glimpse of how this could work in May, when Google DeepMind revealed AlphaEvolve, a system that used the firm’s Gemini LLM to come up with new algorithms for solving unsolved problems. The breakthrough was to combine Gemini with an evolutionary algorithm that checked its suggestions, picked the best ones, and fed them back into the LLM to make them even better.

Google DeepMind used AlphaEvolve to come up with more efficient ways to manage power consumption by data centers and Google’s TPU chips. Those discoveries are significant but not game-changing. Yet. Researchers at Google DeepMind are now pushing their approach to see how far it will go.

And others have been quick to follow their lead. A week after AlphaEvolve came out, Asankhaya Sharma, an AI engineer in Singapore, shared OpenEvolve, an open-source version of Google DeepMind’s tool. In September, the Japanese firm Sakana AI released a version of the software called SinkaEvolve. And in November, a team of US and Chinese researchers revealed AlphaResearch, which they claim improves on one of AlphaEvolve’s already better-than-human math solutions.

There are alternative approaches too. For example, researchers at the University of Colorado Denver are trying to make LLMs more inventive by tweaking the way so-called reasoning models work. They have drawn on what cognitive scientists know about creative thinking in humans to push reasoning models toward solutions that are more outside the box than their typical safe-bet suggestions.

Hundreds of companies are spending billions of dollars looking for ways to get AI to crack unsolved math problems, speed up computers, and come up with new drugs and materials. Now that AlphaEvolve has shown what’s possible with LLMs, expect activity on this front to ramp up fast.    

Will Douglas Heaven

Legal fights heat up

For a while, lawsuits against AI companies were pretty predictable: Rights holders like authors or musicians would sue companies that trained AI models on their work, and the courts generally found in favor of the tech giants. AI’s upcoming legal battles will be far messier.

The fights center on thorny, unresolved questions: Can AI companies be held liable for what their chatbots encourage people to do, as when they help teens plan suicides? If a chatbot spreads patently false information about you, can its creator be sued for defamation? If companies lose these cases, will insurers shun AI companies as clients?

In 2026, we’ll start to see the answers to these questions, in part because some notable cases will go to trial (the family of a teen who died by suicide will bring OpenAI to court in November).

At the same time, the legal landscape will be further complicated by President Trump’s executive order from December—see Michelle’s item above for more details on the brewing regulatory storm.

No matter what, we’ll see a dizzying array of lawsuits in all directions (not to mention some judges even turning to AI amid the deluge).

James O’Donnell

What’s next for AlphaFold: A conversation with a Google DeepMind Nobel laureate

24 November 2025 at 11:21

In 2017, fresh off a PhD on theoretical chemistry, John Jumper heard rumors that Google DeepMind had moved on from building AI that played games with superhuman skill and was starting up a secret project to predict the structures of proteins. He applied for a job.

Just three years later, Jumper celebrated a stunning win that few had seen coming. With CEO Demis Hassabis, he had co-led the development of an AI system called AlphaFold 2 that was able to predict the structures of proteins to within the width of an atom, matching the accuracy of painstaking techniques used in the lab, and doing it many times faster—returning results in hours instead of months.

AlphaFold 2 had cracked a 50-year-old grand challenge in biology. “This is the reason I started DeepMind,” Hassabis told me a few years ago. “In fact, it’s why I’ve worked my whole career in AI.” In 2024, Jumper and Hassabis shared a Nobel Prize in chemistry.

It was five years ago this week that AlphaFold 2’s debut took scientists by surprise. Now that the hype has died down, what impact has AlphaFold really had? How are scientists using it? And what’s next? I talked to Jumper (as well as a few other scientists) to find out.

“It’s been an extraordinary five years,” Jumper says, laughing: “It’s hard to remember a time before I knew tremendous numbers of journalists.”

AlphaFold 2 was followed by AlphaFold Multimer, which could predict structures that contained more than one protein, and then AlphaFold 3, the fastest version yet. Google DeepMind also let AlphaFold loose on UniProt, a vast protein database used and updated by millions of researchers around the world. It has now predicted the structures of some 200 million proteins, almost all that are known to science.

Despite his success, Jumper remains modest about AlphaFold’s achievements. “That doesn’t mean that we’re certain of everything in there,” he says. “It’s a database of predictions, and it comes with all the caveats of predictions.”

A hard problem

Proteins are the biological machines that make living things work. They form muscles, horns, and feathers; they carry oxygen around the body and ferry messages between cells; they fire neurons, digest food, power the immune system; and so much more. But understanding exactly what a protein does (and what role it might play in various diseases or treatments) involves figuring out its structure—and that’s hard.

Proteins are made from strings of amino acids that chemical forces twist up into complex knots. An untwisted string gives few clues about the structure it will form. In theory, most proteins could take on an astronomical number of possible shapes. The task is to predict the correct one.

Jumper and his team built AlphaFold 2 using a type of neural network called a transformer, the same technology that underpins large language models. Transformers are very good at paying attention to specific parts of a larger puzzle.

But Jumper puts a lot of the success down to making a prototype model that they could test quickly. “We got a system that would give wrong answers at incredible speed,” he says. “That made it easy to start becoming very adventurous with the ideas you try.”

They stuffed the neural network with as much information about protein structures as they could, such as how proteins across certain species have evolved similar shapes. And it worked even better than they expected. “We were sure we had made a breakthrough,” says Jumper. “We were sure that this was an incredible advance in ideas.”

What he hadn’t foreseen was that researchers would download his software and start using it straight away for so many different things. Normally, it’s the thing a few iterations down the line that has the real impact, once the kinks have been ironed out, he says: “I’ve been shocked at how responsibly scientists have used it, in terms of interpreting it, and using it in practice about as much as it should be trusted in my view, neither too much nor too little.”

Any projects stand out in particular? 

Honeybee science

Jumper brings up a research group that uses AlphaFold to study disease resistance in honeybees. “They wanted to understand this particular protein as they look at things like colony collapse,” he says. “I never would have said, ‘You know, of course AlphaFold will be used for honeybee science.’”

He also highlights a few examples of what he calls off-label uses of AlphaFold—“in the sense that it wasn’t guaranteed to work”—where the ability to predict protein structures has opened up new research techniques. “The first is very obviously the advances in protein design,” he says. “David Baker and others have absolutely run with this technology.”

Baker, a computational biologist at the University of Washington, was a co-winner of last year’s chemistry Nobel, alongside Jumper and Hassabis, for his work on creating synthetic proteins to perform specific tasks—such as treating disease or breaking down plastics—better than natural proteins can.

Baker and his colleagues have developed their own tool based on AlphaFold, called RoseTTAFold. But they have also experimented with AlphaFold Multimer to predict which of their designs for potential synthetic proteins will work.    

“Basically, if AlphaFold confidently agrees with the structure you were trying to design then you make it and if AlphaFold says ‘I don’t know,’ you don’t make it. That alone was an enormous improvement.” It can make the design process 10 times faster, says Jumper.

Another off-label use that Jumper highlights: Turning AlphaFold into a kind of search engine. He mentions two separate research groups that were trying to understand exactly how human sperm cells hooked up with eggs during fertilization. They knew one of the proteins involved but not the other, he says: “And so they took a known egg protein and ran all 2,000 human sperm surface proteins, and they found one that AlphaFold was very sure stuck against the egg.” They were then able to confirm this in the lab.

“This notion that you can use AlphaFold to do something you couldn’t do before—you would never do 2,000 structures looking for one answer,” he says. “This kind of thing I think is really extraordinary.”

Five years on

When AlphaFold 2 came out, I asked a handful of early adopters what they made of it. Reviews were good, but the technology was too new to know for sure what long-term impact it might have. I caught up with one of those people to hear his thoughts five years on.

Kliment Verba is a molecular biologist who runs a lab at the University of California, San Francisco. “It’s an incredibly useful technology, there’s no question about it,” he tells me. “We use it every day, all the time.”

But it’s far from perfect. A lot of scientists use AlphaFold to study pathogens or to develop drugs. This involves looking at interactions between multiple proteins or between proteins and even smaller molecules in the body. But AlphaFold is known to be less accurate at making predictions about multiple proteins or their interaction over time.

Verba says he and his colleagues have been using AlphaFold long enough to get used to its limitations. “There are many cases where you get a prediction and you have to kind of scratch your head,” he says. “Is this real or is this not? It’s not entirely clear—it’s sort of borderline.”

“It’s sort of the same thing as ChatGPT,” he adds. “You know—it will bullshit you with the same confidence as it would give a true answer.”

Still, Verba’s team uses AlphaFold (both 2 and 3, because they have different strengths, he says) to run virtual versions of their experiments before running them in the lab. Using AlphaFold’s results, they can narrow down the focus of an experiment—or decide that it’s not worth doing.

It can really save time, he says: “It hasn’t really replaced any experiments, but it’s augmented them quite a bit.”

New wave  

AlphaFold was designed to be used for a range of purposes. Now multiple startups and university labs are building on its success to develop a new wave of tools more tailored to drug discovery. This year, a collaboration between MIT researchers and the AI drug company Recursion produced a model called Boltz-2, which predicts not only the structure of proteins but also how well potential drug molecules will bind to their target.  

Last month, the startup Genesis Molecular AI released another structure prediction model called Pearl, which the firm claims is more accurate than AlphaFold 3 for certain queries that are important for drug development. Pearl is interactive, so that drug developers can feed any additional data they may have to the model to guide its predictions.

AlphaFold was a major leap, but there’s more to do, says Evan Feinberg, Genesis Molecular AI’s CEO: “We’re still fundamentally innovating, just with a better starting point than before.”

Genesis Molecular AI is pushing margins of error down from less than two angstroms, the de facto industry standard set by AlphaFold, to less than one angstrom—one 10-millionth of a millimeter, or the width of a single hydrogen atom.

“Small errors can be catastrophic for predicting how well a drug will actually bind to its target,” says Michael LeVine, vice president of modeling and simulation at the firm. That’s because chemical forces that interact at one angstrom can stop doing so at two. “It can go from ‘They will never interact’ to ‘They will,’” he says.

With so much activity in this space, how soon should we expect new types of drugs to hit the market? Jumper is pragmatic. Protein structure prediction is just one step of many, he says: “This was not the only problem in biology. It’s not like we were one protein structure away from curing any diseases.”

Think of it this way, he says. Finding a protein’s structure might previously have cost $100,000 in the lab: “If we were only a hundred thousand dollars away from doing a thing, it would already be done.”

At the same time, researchers are looking for ways to do as much as they can with this technology, says Jumper: “We’re trying to figure out how to make structure prediction an even bigger part of the problem, because we have a nice big hammer to hit it with.”

In other words, make everything into nails? “Yeah, let’s make things into nails,” he says. “How do we make this thing that we made a million times faster a bigger part of our process?”

What’s next?

Jumper’s next act? He wants to fuse the deep but narrow power of AlphaFold with the broad sweep of LLMs.  

“We have machines that can read science. They can do some scientific reasoning,” he says. “And we can build amazing, superhuman systems for protein structure prediction. How do you get these two technologies to work together?”

That makes me think of a system called AlphaEvolve, which is being built by another team at Google DeepMind. AlphaEvolve uses an LLM to generate possible solutions to a problem and a second model to check them, filtering out the trash. Researchers have already used AlphaEvolve to make a handful of practical discoveries in math and computer science.    

Is that what Jumper has in mind? “I won’t say too much on methods, but I’ll be shocked if we don’t see more and more LLM impact on science,” he says. “I think that’s the exciting open question that I’ll say almost nothing about. This is all speculation, of course.”

Jumper was 39 when he won his Nobel Prize. What’s next for him?

“It worries me,” he says. “I believe I’m the youngest chemistry laureate in 75 years.” 

He adds: “I’m at the midpoint of my career, roughly. I guess my approach to this is to try to do smaller things, little ideas that you keep pulling on. The next thing I announce doesn’t have to be, you know, my second shot at a Nobel. I think that’s the trap.”

❌
❌