❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

NDSS 2025 – Machine Learning-Based loT Device Identification Models For Security Applications

26 November 2025 at 11:00

Session4A: IoT Security

Authors, Creators & Presenters: Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

PAPER
Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

With the proliferation of IoT devices, network device identification is essential for effective network management and security. Many exhibit performance degradation despite the potential of machine learning-based IoT device identification solutions. Degradation arises from the assumption of static IoT environments that do not account for the diversity of real-world IoT networks, as devices operate in various modes and evolve over time. In this paper, we evaluate current IoT device identification solutions using curated datasets and representative features across different settings. We consider key factors that affect real-world device identification, including modes of operation, spatio-temporal variations, and traffic sampling, and organise them into a set of attributes by which we can evaluate current solutions. We then use machine learning explainability techniques to pinpoint the key causes of performance degradation. This evaluation uncovers empirical evidence of what continuously identifies devices, provides valuable insights, and practical recommendations for network operators to improve their IoT device identification in operational deployments

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.

Permalink

The post NDSS 2025 – Machine Learning-Based loT Device Identification Models For Security Applications appeared first on Security Boulevard.

NDSS 2025 – Hidden And Lost Control: On Security Design Risks In loT User-Facing Matter Controller

25 November 2025 at 15:00

Session4A: IoT Security

Authors, Creators & Presenters: Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph (Indiana University Bloomington), Xiaojiang Du (Stevens Institute of Technology), Qixu Liu (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Luyi Xing (Indiana University Bloomington)


PAPER

Hidden and Lost Control: on Security Design Risks in IoT User-Facing Matter Controller

Matter is emerging as an IoT industry--unifying standard, aiming to enhance the interoperability among diverse smart home products, enabling them to work securely and seamlessly together. With many popular IoT vendors increasingly supporting Matter in consumer IoT products, we perform a systematic study to investigate how and whether vendors can integrate Matter securely into IoT systems and how well Matter as a standard supports vendors' secure integration. By analyzing Matter development model in the wild, we reveal a new kind of design flaw in user-facing Matter control capabilities and interfaces, called UMCCI flaws, which are exploitable vulnerabilities in the design space and seriously jeopardize necessary control and surveillance capabilities of Matter-enabled devices for IoT users. Therefore we built an automatic tool called UMCCI Checker, enhanced by the large-language model in UI analysis, which enables automatically detecting UMCCI flaws without relying on real IoT devices. Our tool assisted us with studying and performing proof-of-concept attacks on 11 real Matter devices of 8 popular vendors to confirm that the UMCCI flaws are practical and common. We reported UMCCI flaws to related vendors, which have been acknowledged by CSA, Apple, Tuya, Aqara, etc. To help CSA and vendors better understand and avoid security flaws in developing and integrating IoT standards like Matter, we identify two categories of root causes and propose immediate fix recommendations.

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.

Permalink

The post NDSS 2025 – Hidden And Lost Control: On Security Design Risks In loT User-Facing Matter Controller appeared first on Security Boulevard.

NDSS 2025 – EAGLEYE: Exposing Hidden Web Interfaces In loT Devices Via Routing Analysis

25 November 2025 at 11:00

Session4A: IoT Security

Authors, Creators & Presenters: Hangtian Liu (Information Engineering University), Lei Zheng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Shuitao Gan (Laboratory for Advanced Computing and Intelligence Engineering), Chao Zhang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zicong Gao (Information Engineering University), Hongqi Zhang (Henan Key Laboratory of Information Security), Yishun Zeng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zhiyuan Jiang (National University of Defense Technology), Jiahai Yang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University)

PAPER

EAGLEYE: Exposing Hidden Web Interfaces in IoT Devices via Routing Analysis [https://www.ndss-symposium.org/wp-con...](https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbEEzMmJxSkNwUUhDUkMteHZraTQ1blZ5Sk0zUXxBQ3Jtc0tuZldzQXZxQXJaOGt0VDU2RGNPdGVSbnMzcWxiTVZ1UmJsTzcyaUlCTFdvbmhoWnZRdWQ0UlJiUEs4ekR1UXNCNF9KQmp4UGxKOG5kMHdBdHBiaWh6ckxFaGphY0JVRDZDQ21jUWcyREx2Qy1XVTJqWQ&q=https%3A%2F%2Fwww.ndss-symposium.org%2Fwp-content%2Fuploads%2F2025-399-paper.pdf&v=qXDD2iiIeCg) Hidden web interfaces, i.e., undisclosed access channels in IoT devices, introduce great security risks and have resulted in severe attacks in recent years. However, the definition of such threats is vague, and few solutions are able to discover them. Due to their hidden nature, traditional bug detection solutions (e.g., taint analysis, fuzzing) are hard to detect them. In this paper, we present a novel solution EAGLEYE to automatically expose hidden web interfaces in IoT devices. By analyzing input requests to public interfaces, we first identify routing tokens within the requests, i.e., those values (e.g., actions or file names) that are referenced and used as index by the firmware code (routing mechanism) to find associated handler functions. Then, we utilize modern large language models to analyze the contexts of such routing tokens and deduce their common pattern, and then infer other candidate values (e.g., other actions or file names) of these tokens. Lastly, we perform a hidden-interface directed black-box fuzzing, which mutates the routing tokens in input requests with these candidate values as the high-quality dictionary. We have implemented a prototype of EAGLEYE and evaluated it on 13 different commercial IoT devices. EAGLEYE successfully found 79 hidden interfaces, 25X more than the state-of-the-art (SOTA) solution IoTScope. Among them, we further discovered 29 unknown vulnerabilities including backdoor, XSS (cross-site scripting), command injection, and information leakage, and have received 7 CVEs.

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.

Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.

Permalink

The post NDSS 2025 – EAGLEYE: Exposing Hidden Web Interfaces In loT Devices Via Routing Analysis appeared first on Security Boulevard.

NDSS 2025 – Deanonymizing Device Identities Via Side-Channel Attacks In Exclusive-Use IoTs

24 November 2025 at 15:00

Session4A: IoT Security

Authors, Creators & Presenters: Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

PAPER

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs & Mitigation Wireless technologies like Bluetooth Low Energy (BLE) and Wi-Fi are essential to the Internet of Things (IoT), facilitating seamless device communication without physical connections. However, this convenience comes at a cost--exposed data exchanges that are susceptible to observation by attackers, leading to serious security and privacy threats such as device tracking. Although protocol designers have traditionally relied on strategies like address and identity randomization as a countermeasure, our research reveals that these attacks remain a significant threat due to a historically overlooked, fundamental flaw in exclusive-use wireless communication. We define exclusive-use as a scenario where devices are designed to provide functionality solely to an associated or paired device. The unique communication patterns inherent in these relationships create an observable boolean side-channel that attackers can exploit to discover whether two devices "trust" each other. This information leak allows for the deanonymization of devices, enabling tracking even in the presence of modern countermeasures. We introduce our tracking attacks as IDBleed and demonstrate that BLE and Wi-Fi protocols that support confidentiality, integrity, and authentication remain vulnerable to deanonymization due to this fundamental flaw in exclusive-use communication patterns. Finally, we propose and quantitatively evaluate a generalized, privacy-preserving mitigation we call Anonymization Layer to find a negligible 2% approximate overhead in performance and power consumption on tested smartphones and PCs.

ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.


Our thanks to the Network and Distributed System Security (NDSS) Symposium for publishing their Creators, Authors and Presenter’s superb NDSS Symposium 2025 Conference content on the Organizations' YouTube Channel.

Permalink

The post NDSS 2025 – Deanonymizing Device Identities Via Side-Channel Attacks In Exclusive-Use IoTs appeared first on Security Boulevard.

❌
❌