In 2026, I’m going to be closely watching the price of lithium.
If you’re not in the habit of obsessively tracking commodity markets, I certainly don’t blame you. (Though the news lately definitely makes the case that minerals can have major implications for global politics and the economy.)
But lithium is worthy of a close look right now.
The metal is crucial for lithium-ion batteries used in phones and laptops, electric vehicles, and large-scale energy storage arrays on the grid. Prices have been on quite the roller coaster over the last few years, and they’re ticking up again after a low period. What happens next could have big implications for mining and battery technology.
Before we look ahead, let’s take a quick trip down memory lane. In 2020, global EV sales started to really take off, driving up demand for the lithium used in their batteries. Because of that growing demand and a limited supply, prices shot up dramatically, with lithium carbonate going from under $10 per kilogram to a high of roughly $70 per kilogram in just two years.
And the tech world took notice. During those high points, there was a ton of interest in developing alternative batteries that didn’t rely on lithium. I was writing about sodium-based batteries, iron-air batteries, and even experimental ones that were made with plastic.
Researchers and startups were also hunting for alternative ways to get lithium, including battery recycling and processing methods like direct lithium extraction (more on this in a moment).
But soon, prices crashed back down to earth. We saw lower-than-expected demand for EVs in the US, and developers ramped up mining and processing to meet demand. Through late 2024 and 2025, lithium carbonate was back around $10 a kilogram again. Avoiding lithium or finding new ways to get it suddenly looked a lot less crucial.
That brings us to today: lithium prices are ticking up again. So far, it’s nowhere close to the dramatic rise we saw a few years ago, but analysts are watching closely. Strong EV growth in China is playing a major role—EVs still make up about 75% of battery demand today. But growth in stationary storage, batteries for the grid, is also contributing to rising demand for lithium in both China and the US.
Higher prices could create new opportunities. The possibilities include alternative battery chemistries, specifically sodium-ion batteries, says Evelina Stoikou, head of battery technologies and supply chains at BloombergNEF. (I’ll note here that we recently named sodium-ion batteries to our 2026 list of 10 Breakthrough Technologies.)
It’s not just batteries, though. Another industry that could see big changes from a lithium price swing: extraction.
Today, most lithium is mined from rocks, largely in Australia, before being shipped to China for processing. There’s a growing effort to process the mineral in other places, though, as countries try to create their own lithium supply chains. Tesla recently confirmed that it’s started production at its lithium refinery in Texas, which broke ground in 2023. We could see more investment in processing plants outside China if prices continue to climb.
This could also be a key year for direct lithium extraction, as Katie Brigham wrote in a recent story for Heatmap. That technology uses chemical or electrochemical processes to extract lithium from brine (salty water that’s usually sourced from salt lakes or underground reservoirs), quickly and cheaply. Companies including Lilac Solutions, Standard Lithium, and Rio Tinto are all making plans or starting construction on commercial facilities this year in the US and Argentina.
If there’s anything I’ve learned about following batteries and minerals over the past few years, it’s that predicting the future is impossible. But if you’re looking for tea leaves to read, lithium prices deserve a look.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
Happy New Year! I know it’s a bit late to say, but it never quite feels like the year has started until the new edition of our 10 Breakthrough Technologies list comes out.
For 25 years, MIT Technology Review has put together this package, which highlights the technologies that we think are going to matter in the future. This year’s version has some stars, including gene resurrection (remember all the dire wolf hype last year?) and commercial space stations.
I’ve been covering sodium-ion batteries for years, but this moment feels like a breakout one for the technology.
Today, lithium-ion cells power everything from EVs, phones, and computers to huge stationary storage arrays that help support the grid. But researchers and battery companies have been racing to develop an alternative, driven by the relative scarcity of lithium and the metal’s volatile price in recent years.
Sodium-ion batteries could be that alternative. Sodium is much more abundant than lithium, and it could unlock cheaper batteries that hold a lower fire risk.
There are limitations here: Sodium-ion batteries won’t be able to pack as much energy into cells as their lithium counterparts. But it might not matter, especially for grid storage and smaller EVs.
In recent years, we’ve seen a ton of interest in sodium-based batteries, particularly from major companies in China. Now the new technology is starting to make its way into the world—CATL says it started manufacturing these batteries at scale in 2025.
Next-generation nuclear
Nuclear reactors are an important part of grids around the world today—massive workhorse reactors generate reliable, consistent electricity. But the countries with the oldest and most built-out fleets have struggled to add to them in recent years, since reactors are massive and cost billions. Recent high-profile projects have gone way over budget and faced serious delays.
Next-generation reactor designs could help the industry break out of the old blueprint and get more nuclear power online more quickly, and they’re starting to get closer to becoming reality.
There’s a huge variety of proposals when it comes to what’s next for nuclear. Some companies are building smaller reactors, which they say could make it easier to finance new projects, and get them done on time.
Other companies are focusing on tweaking key technical bits of reactors, using alternative fuels or coolants that help ferry heat out of the reactor core. These changes could help reactors generate electricity more efficiently and safely.
Kairos Power was the first US company to receive approval to begin construction on a next-generation reactor to produce electricity. China is emerging as a major center of nuclear development, with the country’s national nuclear company reportedly working on several next-gen reactors.
Hyperscale data centers
This one isn’t quite what I would call a climate technology, but I spent most of last year reporting on the climate and environmental impacts of AI, and the AI boom is deeply intertwined with climate and energy.
Data centers aren’t new, but we’re seeing a wave of larger centers being proposed and built to support the rise of AI. Some of these facilities require a gigawatt or more of power—that’s like the output of an entire conventional nuclear power plant, just for one data center.
(This feels like a good time to mention that our Breakthrough Technologies list doesn’t just highlight tech that we think will have a straightforwardly positive influence on the world. I think back to our 2023 list, which included mass-market military drones.)
There’s no denying that new, supersize data centers are an important force driving electricity demand, sparking major public pushback, and emerging as a key bit of our new global infrastructure.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
Emissions from air freight have increased by 25% since 2019, according to a 2024 analysis by environmental advocacy organization Stand.Earth.
The researchers found that the expansion of cargo-only fleets to transport goods during the pandemic — as air travel halted, slower freight modes faced disruption, but demand for rapid delivery soared — has led to a yearly increase of almost 20 million tons of carbon dioxide, making up 93.8m tonnes from air freight overall.
And though fleet modernization and operational improvements by freight operators have contributed to ongoing decarbonization efforts, sustainable aviation fuel (SAF) looks set to be instrumental in helping the sector achieve its ambitions to reduce environmental footprint in the long-term.
When used neat, or pure and unblended, SAF can help reduce the life cycle of greenhouse gas emissions from aviation by as much as 80% relative to conventional fuel. It’s why the International Air Transport Association (IATA) estimates that SAF could account for as much as 65% of total reduction of emissions.
For Christoph Wolff, CEO of the Smart Freight Centre, “SAF is the main pathway” to decarbonization across both freight and the wider aviation ecosystem.
“The great thing about SAF is it’s chemically identical to Jet A fuel,” he says. “You can blend it [which means] you have a pathway to ramp it up. You can start small and you can scale it. By scaling it there is the promise or the hope that the price comes down.”
At at least twice the price of conventional jet fuel, cost is a significant barrier hindering broader adoption.
And it isn’t the only one standing between SAF and wider penetration.
Bridging the gap between a concentrated supply of SAF and global demand also remains a major hurdle.
Though the number of verified SAF outlets has increased from fewer than 20 locations in 2021 to 114 as of April 2025, according to sustainability solutions framework 4Air, that accounts for only 92 airports worldwide out of more than 40,000.
“SAF is central to the decarbonization of the aviation sector,” believes Raman Ojha, president of Shell Aviation. “Having said that, adoption and penetration of SAF hasn’t really picked up massively. It’s not due to lack of production capacity, but there are lots of things that are at play. And book and claim in that context helps to bridge that gap.”
Bridging the gap with book and claim
Book and claim is a chain of custody model, where the flow of administrative records is not necessarily connected to the physical product through the supply chain (source: ISO 22095:2020).
Book and claim potentially enables airlines and corporations to access the life cycle GHG emissions reduction benefits of SAF relative to conventional jet fuel even when SAF is not physically available at their location; this model helps bridge the gap between that concentrated supply and global demand, until SAF’s availability improves.
“To be bold, without book and claim, no short-term science-based target will be achieved,” says Bettina Paschke, vice president of ESG accounting, reporting and controlling at DHL Express. “Book and claim is essential to achieving science-based targets.”
“SAF production facilities are not everywhere,” she reiterates. “They’re very focused on one location, and if a customer wants to fulfil a mass balance obligation, SAF would need to be shipped around the world just to be at that airport for that customer. That would be very complicated, and very unrealistic.” It would also, counterintuitively, increase total emissions. By using book and claim instead, air freight operators can unlock the life cycle greenhouse gas emissions reduction benefits of SAF relative to conventional jet fuel now, without waiting for supply to broaden. “It might no longer be needed when we have SAF product facilities at each airport in the future,” she points out. “But at the moment, that’s not the case.”
At DHL itself, the mechanism has become central to achieving its own three interconnected sustainability pillars, which focus on decarbonizing logistics supply chains, supporting customers toward their decarbonization goals, and ensuring credible emission claims can be shared along the value chain.
Demonstrating the importance of a credible and viable framework for book and claim systems is also what inspired the 2022 launch of Shell’s Avelia, one of the first blockchain-powered digital SAF book and claim solutions for aviation, which expanded in 2024 to encompass air freight in addition to business travel. Depending on the offering, Avelia offers freight forwarders the opportunity to share the life cycle greenhouse gas emissions reduction benefits of SAF relative to conventional jet fuel across the value chain with shippers using their services.
“It’s also backed by a physical supply chain, which gives our customers — whether those be corporates or freight forwarders or even airlines — a peace of mind that the SAF has been injected at a certain airport, it’s been used and environmental attributes, with the help of blockchain, have been tracked to where they’re getting retired,” says Ojha.
He adds: “The most important or critical part is the transparency that it’s providing to our customers to be sure that they’re not saying something which they can’t confidently stand behind.”
Moving beyond early adoption
To scale up SAF via book and claim and help make it a more commercially viable lower-carbon solution, its adoption will need to be a coordinated “ecosystem play,” says Wolff. That includes early adopters, such as DHL, inspiring action from peers, solution providers such as Shell, working with various stakeholders to drive joint advocacy, and industry associations, like the Smart Freight Centre creating the required frameworks, educational resources, and industry alignment.
An active book and claim community made up of many forward-thinking advocates is already driving much of this work forward with a common goal to develop greater standardization and consensus, Wolff points out. “It helps to make sure all definitions on the system are compatible and they can talk to one another, provide educational support, and [also that] there’s a repository of transactions so that it can be documented in a way that people can see and think, ‘oh this is how we do it.’ There are some early adopters that are very experienced, but it needs a lot more people for it to get comfortable.”
In early 2024, discussions were held with a diverse group of expert book and claim stakeholders to develop and refine 11 key principles and best practices book and claim models. These represent an aligned set of principles informed by practical successes and challenges faced by practitioners working to decarbonize the heavy transport sector.
Adherence to such a framework is crucial given that book and claim is not yet accepted by the Greenhouse Gas (GHG) Protocol nor the Science Based Targets Initiative (SBTi) as a recognized model for reducing greenhouse gas emissions — though there are hopes that might change.
“The industrialization of book and claim delivery systems is key to credibility and recognition,” says Wolff. “The Greenhouse Gas Protocol and the Science Based Targets Initiative are making steps in recognizing that. There’s a pathway that the Smart Freight Centre is very closely involved in the technical working groups for [looking]to build such a system where, in addition to physical inventory, you also pursue market-based inventories.”
Paschke urges companies not to sit back and wait for policy to change before taking action, though. “The solution is there,” she says. “There are companies like DHL that are making huge upfront investments, and every single contribution helps to scale the industry and give a strong signal to the eco-space.”
As pressure to accelerate decarbonization gains pace, it’s critical that air freight operators consider this now, agrees Ojha. “Don’t wait for perfection in guidelines, regulations, or platforms — act now,” he says. “That’s very, very critical. Second, learn by doing and join hands with others. Don’t try to do everything independently or in-house.
“Third, make use of registries and platforms, such as Avelia, that can give credibility. Join them, utilize them, and leverage them so that you won’t have to establish auditability from scratch.
“And fourth, don’t look at scope book and claim as a means for acquiring a certificate for environmental attributes. Think in terms of your decarbonisation commitment and think of this as a tool for exposure management. Think in terms of the bigger picture.”
That bigger picture being a significant sector-wide push toward faster decarbonization — and turning the tide on emissions’ steep upward ascent.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.
This content is produced by MIT Technology Review Insights in association with Avelia. Avelia is a Shell owned solution and brand that was developed with support from Amex GBT, Accenture and Energy Web Foundation. The views from individuals not affiliated with Shell are their own and not those of Shell PLC or its affiliates. Cautionary note | Shell Global
Commercial nuclear reactors all work pretty much the same way. Atoms of a radioactive material split, emitting neutrons. Those bump into other atoms, splitting them and causing them to emit more neutrons, which bump into other atoms, continuing the chain reaction.
That reaction gives off heat, which can be used directly or help turn water into steam, which spins a turbine and produces electricity. Today, such reactors typically use the same fuel (uranium) and coolant (water), and all are roughly the same size (massive). For decades, these giants have streamed electrons into power grids around the world. Their popularity surged in recent years as worries about climate change and energy independence drowned out concerns about meltdowns and radioactive waste. The problem is, building nuclear power plants is expensive and slow.
A new generation of nuclear power technology could reinvent what a reactor looks like—and how it works. Advocates hope that new tech can refresh the industry and help replace fossil fuels without emitting greenhouse gases.
China’s Linglong One, the world’s first land-based commercial small modular reactor, should come online in 2026. Construction crews installed the core module in August 2023.
GETTY IMAGES
Demand for electricity is swelling around the world. Rising temperatures and growing economies are bringing more air conditioners online. Efforts to modernize manufacturing and cut climate pollution are changing heavy industry. The AI boom is bringing more power-hungry data centers online.
Nuclear could help, but only if new plants are safe, reliable, cheap, and able to come online quickly. Here’s what that new generation might look like.
Sizing down
Every nuclear power plant built today is basically bespoke, designed and built for a specific site. But small modular reactors (SMRs) could bring the assembly line to nuclear reactor development. By making projects smaller, companies could build more of them, and costs could come down as the process is standardized.
Small modular reactors (SMRs) work like their gigawatt-producing predecessors, but they are a fraction of the size and produce a fraction of the power. The reactor core can be just two meters tall. That makes them easier to install—and because they are modular, builders can put as many as they need or can fit on a site.
JOHN MACNEILL
If it works, SMRs could also mean new uses for nuclear. Military bases, isolated sites like mines, or remote communities that need power after a disaster could use mobile reactors, like one under development from US-based BWXT in partnership with the Department of Defense. Or industrial facilities that need heat for things like chemical manufacturing could install a small reactor, as one chemical plant plans to do in cooperation with the nuclear startup X-energy.
Two plants with SMRs are operational in China and Russia today, and other early units will likely follow their example and provide electricity to the grid. In China, the Linglong One demonstration project is under construction at a site where two large reactors are already operating. The SMR should come online by the end of the year. In the US, Kairos Power recently got regulatory approval to build Hermes 2, a small demonstration reactor. It should be operating by 2030.
One major question for smaller reactor designs is just how much an assembly-line approach will actually help cut costs. While SMRs might not themselves be bespoke, they’ll still be installed in different sites—and planning for the possibility of earthquakes, floods, hurricanes, or other site-specific conditions will still require some costly customization.
Fueling up
When it comes to uranium, the number that really matters is the concentration of uranium-235, the type that can sustain a chain reaction (most uranium is a heavier isotope, U-238, which can’t). Naturally occurring uranium contains about 0.7% uranium-235, so to be useful it needs to be enriched, concentrating that isotope.
Material used for nuclear weapons is highly enriched, to U-235 concentrations over 90%. Today’s commercial nuclear reactors use a much less concentrated material for fuel, generally between 3% and 5% U-235. But new reactors could bump that concentration up, using a class of material called high-assay low-enriched uranium (HALEU), which ranges from 5% to 20% U-235 (still well below weapons-level enrichment).
Tri-structural isotropic (TRISO) fuel particles are tiny — less than a millimeter in diameter. They’re structurally more resistant to neutron irradiation, corrosion, oxidation, and high temperatures than traditional reactor fuels.
X-ENERGY
That higher concentration means HALEU can sustain a chain reaction for much longer before the reactor needs refueling. (How much longer varies with concentration: higher enrichment, longer time between refuels.) Those higher percentages also allow for alternative fuel architectures.
Typical nuclear power plants today use fuel that’s pressed into small pellets, which in turn are stacked inside large rods encased in zirconium cladding. But higher-concentration uranium can be made into tri-structural isotropic fuel, or TRISO.
JOHN MACNEILL
TRISO uses tiny kernels of uranium, less than a millimeter across, coated in layers of carbon and ceramic that contain the radioactive material and any products from the fission reactions. Manufacturers embed these particles in cylindrical or spherical pellets of graphite. (The actual fuel makes up a relatively small proportion of these pellets’ volume, which is why using higher-enriched material is important.)
The pellets are a built-in safety mechanism, a containment system that can resist corrosion and survive neutron irradiation and temperatures over 3,200 °F (1,800 °C). Fission reactions happen safely inside all these protective layers, which are designed to let heat seep out to be ferried away by the coolant and used.
Cooling off
The coolant in a reactor controls temperature and ferries heat from the core to wherever it’s used to make steam, which can then generate electricity. Most reactors use water for this job, keeping it under super-high pressures so it remains liquid as it circulates. But new companies are reinventing that process with other materials—gas, liquid metal, or molten salt.
Molten salt or other coolants soak up heat from the reactor core, reaching temperatures of about 650 °C (red). That turns water (blue) into steam, which generates electricity. Cooled back to a mere 550 °C (yellow), the coolant starts the cycle again.
JOHN MACNEILL
These reactors can run their coolant loops much hotter than is possible with water—upwards of 500 °C as opposed to a maximum of around 300 °C. That’s helpful because it’s easier to move heat around at high temperatures, and hotter stuff produces steam more efficiently.
Alternative coolants can also help with safety. A water coolant loop runs at over 100 times standard atmospheric pressure. Maintaining containment is complicated but vital: A leak that allows coolant to escape could cause the reactor to melt down.
Metal and salt coolants, on the other hand, remain liquid at high temperatures but more manageable pressures, closer to one atmosphere. So those next-generation designs don’t need reinforced, high-pressure containment equipment.
These new coolants certainly introduce their own complications, though. Molten salt can be corrosive in the presence of oxygen, for example, so builders have to carefully choose the materials used to build the cooling system. And since sodium metal can explode when it contacts water, containment is key with designs that rely on it.
Kairos Power uses molten salt, rather than the high-pressure water that’s used in conventional reactors, to cool its reactions and transfer heat. When its 50-megawatt reactor comes online in 2030, Kairos will sell its power to the Tennessee Valley Authority.
COURTESY OF KAIROS POWER
Ultimately, reactors that use alternative coolants or new fuels will need to show not only that they can generate power but also that they’re robust enough to operate safely and economically for decades.
For decades, lithium-ion batteries have powered our phones, laptops, and electric vehicles. But lithium’s limited supply and volatile price have led the industry to seek more resilient alternatives.
A sodium-ion battery works much like a lithium-ion one: It stores and releases energy by shuttling ions between two electrodes. But unlike lithium, a somewhat rare element that is currently mined in only a handful of countries, sodium is cheap and found everywhere. And while today’s sodium-ion cells are not meaningfully cheaper, costs are expected to drop as production scales.
China, with its powerful EV industry, has led the early push. Battery giants CATL and BYD have invested heavily in the technology. CATL, which announced its first-generation sodium-ion battery in 2021, launched a sodium-ion product line called Naxtra in 2025 and claims to have already started manufacturing it at scale. BYD is also building a massive production facility for sodium-ion batteries in China.
And the technology is already making it into cars. In 2024, JMEV began offering the option of buying its EV3 vehicle with a sodium-ion battery pack. HiNa Battery is putting sodium-ion batteries into low-speed EVs.
The most significant impact of sodium-ion technology may be not on our roads but on our power grids. Storing clean energy generated by solar and wind has long been a challenge. Sodium-ion batteries, with their low cost, enhanced thermal stability, and long cycle life, are an attractive alternative. Peak Energy, a startup in the US, is already deploying grid-scale sodium-ion energy storage.
Sodium-ion cells’ energy density is still lower than that of high-end lithium-ion ones, but it continues to improve each year—and it’s already sufficient for small passenger cars and logistics vehicles.
The new batteries are also being tested in smaller electric vehicles. In China, the scooter maker Yadea launched four models of two-wheelers powered by the technology in 2025, as cities including Shenzhen started piloting swapping stations for sodium-ion batteries to support commuters and delivery drivers.
For offshore wind power in the US, the new year is bringing new legal battles.
On December 22, the Trump administration announced it would pause the leases of five wind farms currently under construction off the US East Coast. Developers were ordered to stop work immediately.
The cited reason? National security, specifically concerns that turbines can cause radar interference. But that’s a known issue, and developers have worked with the government to deal with it for years.
Companies have been quick to file lawsuits, and the court battles could begin as soon as this week. Here’s what the latest kerfuffle might mean for the struggling offshore wind industry in the US.
This pause affects $25 billion in investment in five wind farms: Vineyard Wind 1 off Massachusetts, Revolution Wind off Rhode Island, Sunrise Wind and Empire Wind off New York, and Coastal Virginia Offshore Wind off Virginia. Together, those projects had been expected to create 10,000 jobs and power more than 2.5 million homes and businesses.
In a statement announcing the move, the Department of the Interior said that “recently completed classified reports” revealed national security risks, and that the pause would give the government time to work through concerns with developers. The statement specifically says that turbines can create radar interference (more on the technical details here in a moment).
Three of the companies involved have already filed lawsuits, and they’re seeking preliminary injunctions that would allow construction to continue. Orsted and Equinor (the developers for Revolution Wind and Empire Wind, respectively) told the New York Times that their projects went through lengthy federal reviews, which did address concerns about national security.
This is just the latest salvo from the Trump administration against offshore wind. On Trump’s first day in office, he signed an executive order stopping all new lease approvals for offshore wind farms. (That order was struck down by a judge in December.)
The administration previously ordered Revolution Wind to stop work last year, also citing national security concerns. A federal judge lifted the stop-work order weeks later, after the developer showed that the financial stakes were high, and that government agencies had previously found no national security issues with the project.
There are real challenges that wind farms introduce for radar systems, which are used in everything from air traffic control to weather forecasting to national defense operations. A wind turbine’s spinning can create complex signatures on radar, resulting in so-called clutter.
Previous government reports, including one 2024 report from the Department of Energy and a 2025 report from the Government Accountability Office (an independent government watchdog), have pointed out this issue in the past.
“To date, no mitigation technology has been able to fully restore the technical performance of impacted radars,” as the DOE report puts it. However, there are techniques that can help, including software that acts to remove the signatures of wind turbines. (Think of this as similar to how noise-canceling headphones work, but more complicated, as one expert told TechCrunch.)
But the most widespread and helpful tactic, according to the DOE report, is collaboration between developers and the government. By working together to site and design wind farms strategically, the groups can ensure that the projects don’t interfere with government or military operations. The 2025 GAO report found that government officials, researchers, and offshore wind companies were collaborating effectively, and any concerns could be raised and addressed in the permitting process.
This and other challenges threaten an industry that could be a major boon for the grid. On the East Coast where these projects are located, and in New England specifically, winter can bring tight supplies of fossil fuels and spiking prices because of high demand. It just so happens that offshore winds blow strongest in the winter, so new projects, including the five wrapped up in this fight, could be a major help during the grid’s greatest time of need.
One 2025 study found that if 3.5 gigawatts’ worth of offshore wind had been operational during the 2024-2025 winter, it would have lowered energy prices by 11%. (That’s the combined capacity of Revolution Wind and Vineyard Wind, two of the paused projects, plus two future projects in the pipeline.) Ratepayers would have saved $400 million.
Before Donald Trump was elected, the energy consultancy BloombergNEF projected that the US would build 39 gigawatts of offshore wind by 2035. Today, that expectation has dropped to just 6 gigawatts. These legal battles could push it lower still.
What’s hardest to wrap my head around is that some of the projects being challenged are nearly finished. The developers of Revolution Wind have installed all the foundations and 58 of 65 turbines, and they say the project is over 87% complete. Empire Wind is over 60% done and is slated to deliver electricity to the grid next year.
To hit the pause button so close to the finish line is chilling, not just for current projects but for future offshore wind efforts in the US. Even if these legal battles clear up and more developers can technically enter the queue, why would they want to? Billions of dollars are at stake, and if there’s one word to describe the current state of the offshore wind industry in the US, it’s “unpredictable.”
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
Pollution from textile production—dyes, chemicals, and heavy metals like lead and cadmium—is common in the waters of the Buriganga River as it runs through Dhaka, Bangladesh. It’s among many harms posed by a garment sector that was once synonymous with tragedy: In 2013, the eight-story Rana Plaza factory building collapsed, killing 1,134 people and injuring some 2,500 others.
Wastewater from Bangladesh’s garment industry flows into the Buriganga River.
ZAKIR HOSSAIN CHOWDHURY
But things are starting to change. In recent years the country has quietly become an unlikely leader in “frugal” factories that use a combination of resource-efficient technologies to cut waste, conserve water, and build resilience against climate impacts and global supply disruptions. Bangladesh now boasts 268 LEED-certified garment factories—more than any other country. Dye plants are using safer chemicals, tanneries are adoptingcleaner tanning methods and treating wastewater, workshops are switching to more efficient LED lighting, and solar panels glint from rooftops. The hundreds of factories along the Buriganga’s banks and elsewhere in Bangladesh are starting to stitch together a new story, woven from greener threads.
These energy-efficient, automated template sewing machines at the Fakir Eco Knitwears factory near Bangladesh’s capital help workers reduce waste.
ZAKIR HOSSAIN CHOWDHURY
In Fakir Eco Knitwears’ LEED Gold–certified factory in Narayanganj, a city near Dhaka, skylights reduce energy consumption from electric lighting by 40%, and AI-driven cutters allow workers to recycle 95% of fabric scraps into new yarns. “We save energy by using daylight, solar power, and rainwater instead of heavy AC and boilers,” says Md. Anisuzzaman, an engineer at the company. “It shows how local resources can make production greener and more sustainable.”
The shift to green factories in Bangladesh is financed through a combination of factory investments, loans from Bangladesh Bank’s Green Transformation Fund, and pressure from international buyers who reward compliance with ongoing orders. One prominent program is the Partnership for Cleaner Textile (PaCT), an initiative run by the World Bank Group’s International Finance Corporation. Launched in 2013, PaCT has worked with more than 450 factories on cleaner production methods. By its count, the effort now saves 35 billion liters of fresh water annually, enough to meet the needs of 1.9 million people.
Solar panels on top of the factory help reduce its energy footprint.
ZAKIR HOSSAIN CHOWDHURY
An exhaust gas absorption chiller absorbs heat and helps maintain the factory floor’s temperature at around 28 °C (82 °F).
ZAKIR HOSSAIN CHOWDHURY
Water reclaimed at the factory’s sewage treatment plant is used in the facility’s restrooms.
ZAKIR HOSSAIN CHOWDHURY
It’s a good start, but Bangladesh’s $40 billion garment industry still has a long way to go. The shift to environmentalism at the factory level hasn’t translated to improved outcomes for the sector’s 4.4 million workers.
Wage theft and delayed payments are widespread. The minimum wage, some 12,500 taka per month (about $113), is far below the $200 proposed by unions—which has meant frequent strikes and protests over pay, overtime, and job security. “Since Rana Plaza, building safety and factory conditions have improved, but the mindset remains unchanged,” says A.K.M. Ashraf Uddin, executive director of the Bangladesh Labour Foundation, a nonprofit labor rights group. “Profit still comes first, and workers’ freedom of speech is yet to be realized.”
The smaller factories that dominate the garment sector may struggle to invest in green upgrades.
ZAKIR HOSSAIN CHOWDHURY
In the worst case, greener industry practices could actually exacerbate inequality. Smaller factories dominate the sector, and they struggle to afford upgrades. But without those upgrades, businesses could find themselves excluded from certain markets. One of those is the European Union, which plans to require companies to address human rights and environmental problems in supply chains starting in 2027. A cleaner Buriganga River mends just a small corner of a vast tapestry of need.
Zakir Hossain Chowdhury is a visual journalist based in Bangladesh.
It’s getting harder to beat the heat. During the summer of 2025, heat waves knocked out power grids in North America, Europe, and the Middle East. Global warming means more people need air-conditioning, which requires more power and strains grids. But a millennia-old idea (plus 21st-century tech) might offer an answer: radiative cooling. Paints, coatings, and textiles can scatter sunlight and dissipate heat—no additional energy required.
“Radiative cooling is universal—it exists everywhere in our daily life,” says Qiaoqiang Gan, a professor of materials science and applied physics at King Abdullah University of Science and Technology in Saudi Arabia. Pretty much any object will absorb heat from the sun during the day and radiate some of it back at night. It’s why cars parked outside overnight are often covered with condensation, Gan says—their metal roofs dissipate heat into the sky, cooling the surfaces below the ambient air temperature. That’s how you get dew.
Humans have harnessed this basic natural process for thousands of years. Desert peoples in Iran, North Africa, and India manufactured ice by leaving pools of water exposed to clear desert skies overnight, when radiative cooling happens naturally; other cultures constructed “cool roofs” capped with reflective materials that scattered sunlight and lowered interior temperatures. “People have taken advantage of this effect, either knowingly or unknowingly, for a very long time,” says Aaswath Raman, a materials scientist at UCLA and cofounder of the radiativecooling startup SkyCool Systems.
Modern approaches, as demonstrated everywhere from California supermarket rooftops to Japan’s Expo 2025 pavilion, go even further. Normally, if the sun is up and pumping in heat, surfaces can’t get cooler than the ambient temperature. But back in 2014, Raman and his colleagues achieved radiative cooling in the daytime. They customized photonic films to absorb and then radiate heat at infrared wavelengths between eight and 13 micrometers—a range of electromagnetic wavelengths called an “atmospheric window,” because that radiation escapes to space rather than getting absorbed. Those films could dissipate heat even under full sun, cooling the inside of a building to 9 °F below ambient temperatures, with no AC or energy source required.
That was proof of concept; today, Raman says, the industry has mostly shifted away from advanced photonics that use the atmospheric-window effect to simpler sunlight-scattering materials. Ceramic cool roofs, nanostructure coatings, and reflective polymers all offer the possibility of diverting more sunlight across all wavelengths, and they’re more durable and scalable.
Now the race is on. Startups such as SkyCool, Planck Energies, Spacecool, and i2Cool are competing to commercially manufacture and sell coatings that reflect at least 94% of sunlight in most climates, and above 97% in humid tropical ones. Pilot projects have already provided significant cooling to residential buildings, reducing AC energy needs by 15% to 20% in some cases.
This idea could go way beyond reflective rooftops and roads. Researchers are developing reflective textiles that can be worn by people most at risk of heat exposure. “This is personal thermal management,” says Gan. “We can realize passive cooling in T-shirts, sportswear, and garments.”
A thermal image captured during a SkyCool installation shows treated areas (white, yellow) that are roughly 35 ºC cooler than the surrounding rooftop.
COURTESY OF SKYCOOL SYSTEMS
Of course, these technologies and materials have limits. Like solar power grids, they’re vulnerable to weather. Clouds prevent reflected sunlight from bouncing into space. Dust and air pollution dim materials’ bright surfaces. Lots of coatings lose their reflectivity after a few years. And the cheapest and toughest materials used in radiative cooling tend to rely on Teflon and other fluoropolymers, “forever chemicals” that don’t biodegrade, posing an environmental risk. “They are the best class of products that tend to survive outdoors,” says Raman. “So for long-term scale-up, can you do it without materials like those fluoropolymers and still maintain the durability and hit this low cost point?”
As with any other solution to the problems of climate change, one size won’t fit all. “We cannot be overoptimistic and say that radiative cooling can address all our future needs,” Gan says. “We still need more efficient active air-conditioning.” A shiny roof isn’t a panacea, but it’s still pretty cool.
We’re in a severe situation with climate change. But for those looking for bright spots, there was some good news in 2025. Here are a few of the positive stories our climate reporters noticed this year.
China’s flattening emissions
GETTY IMAGES
One of the most notable and encouraging signs of progress this year occurred in China. The world’s second-biggest economy and biggest climate polluter has managed to keep carbon dioxide emissions flat for the last year and a half, according to an analysis in Carbon Brief.
That’s happened before, but only when the nation’s economy was retracting, including in the midst of the covid-19 pandemic. But emissions are now falling even as China’s economy is on track to grow about 5% this year, and electricity demands continue to rise.
So what’s changed? China has now installed so much solar and wind, and put so many EVs on the road, that its economy can continue to expand without increasing the amount of carbon dioxide it’s pumping into the atmosphere, decoupling the traditional link between emissions and growth.
Specifically, China added an astounding 240 gigawatts of solar power capacity and 61 gigawatts of wind power in the first nine months of the year, the Carbon Brief analysis noted. That’s nearly as much solar power as the US has installed in total, in just the first three quarters of this year.
It’s too early to say China’s emissions have peaked, but the country has said it will officially reach that benchmark before 2030.
To be clear, China still isn’t moving fast enough to keep the world on track for meeting relatively safe temperature targets. (Indeed, very few countries are.) But it’s now both producing most of the world’s clean energy technologies and curbing its emissions growth, providing a model for cleaning up industrial economies without sacrificing economic prosperity—and setting the stage for faster climate progress in the coming years.
Batteries on the grid
AP PHOTO/SAM HODDE
It’s hard to articulate just how quickly batteries for grid storage are coming online. These massive arrays of cells can soak up electricity when sources like solar are available and prices are low, and then discharge power back to the grid when it’s needed most.
Back in 2015, the battery storage industry had installed only a fraction of a gigawatt of battery storage capacity across the US. That year, it set a seemingly bold target of adding 35 gigawatts by 2035. The sector passed that goal a decade early this year and then hit 40 gigawatts a couple of months later.
Costs are still falling, which could help maintain the momentum for the technology’s deployment. This year, battery prices for EVs and stationary storage fell yet again, reaching a record low, according to data from BloombergNEF. Battery packs specifically used for grid storage saw prices fall even faster than the average; they cost 45% less than last year.
We’re starting to see what happens on grids with lots of battery capacity, too: in California and Texas, batteries are already helping meet demand in the evenings, reducing the need to run natural-gas plants. The result: a cleaner, more stable grid.
AI’s energy funding influx
GETTY IMAGES
The AI boom is complicated for our energy system, as we covered at length this year. Electricity demand is ticking up: the amount of power utilities supplied to US data centers jumped 22% this year and will more than double by 2030.
But at least one positive shift is coming out of AI’s influence on energy: It’s driving renewed interest and investment in next-generation energy technologies.
In the near term, much of the energy needed for data centers, including those that power AI, will likely come from fossil fuels, especially new natural-gas power plants. But tech giants like Google, Microsoft, and Meta all have goals on the books to reduce their greenhouse-gas emissions, so they’re looking for alternatives.
Meta signed a deal with XGS Energy in June to purchase up to 150 megawatts of electricity from a geothermal plant. In October, Google signed an agreement that will help reopen Duane Arnold Energy Center in Iowa, a previously shuttered nuclear power plant.
Geothermal and nuclear could be key pieces of the grid of the future, as they can provide constant power in a way that wind and solar don’t. There’s a long way to go for many of the new versions of the tech, but more money and interest from big, powerful players can’t hurt.
Good news, bad news
ADOBE STOCK
Perhaps the strongest evidence of collective climate progress so far: We’ve already avoided the gravest dangers that scientists feared just a decade ago.
The world is on track for about 2.6 °C of warming over preindustrial conditions by 2100, according to Climate Action Tracker, an independent scientific effort to track the policy progress that nations have made toward their goals under the Paris climate agreement.
That’s a lot warmer than we want the planet to ever get. But it’s also a whole degree better than the 3.6 °C path that we were on a decade ago, just before nearly 200 countries signed the Paris deal.
That progress occurred because more and more nations passed emissions mandates, funded subsidies, and invested in research and development—and private industry got busy cranking out vast amounts of solar panels, wind turbines, batteries, and EVs.
The bad news is that progress has stalled. Climate Action Tracker notes that its warming projections have remained stubbornly fixed for the last four years, as nations have largely failed to take the additional action needed to bend that curve closer to the 2 °C goal set out in the international agreement.
But having shaved off a degree of danger is still demonstrable proof that we can pull together in the face of a global threat and address a very, very hard problem. And it means we’ve done the difficult work of laying down the technical foundation for a society that can largely run without spewing ever more greenhouse gas into the atmosphere.
Hopefully, as cleantech continues to improve and climate change steadily worsens, the world will find the collective will to pick up the pace again soon.
The earth around Lake Naivasha, a shallow freshwater basin in south-central Kenya, does not seem to want to lie still.
Ash from nearby Mount Longonot, which erupted as recently as the 1860s, remains in the ground. Obsidian caves and jagged stone towers preside over the steam that spurts out of fissures in the soil and wafts from pools of boiling-hot water—produced by magma that, in some areas, sits just a few miles below the surface.
It’s a landscape born from violent geologic processes some 25 million years ago, when the Nubian and Somalian tectonic plates pulled apart. That rupture cut a depression in the earth some 4,000 miles long—from East Africa up through the Middle East—to create what’s now called the Great Rift Valley.
This volatility imbues the land with vast potential, much of it untapped. The area, no more than a few hours’ drive from Nairobi, is home to five geothermal power stations, which harness the clouds of steam to generate about a quarter of Kenya’s electricity. But some energy from this process escapes into the atmosphere, while even more remains underground for lack of demand.
That’s what brought Octavia Carbon here.
In June, just north of the lake in the small but strategically located town of Gilgil, the startup began running a high-stakes test. It’s harnessing some of that excess energy to power four prototypes of a machine that promises to remove carbon dioxide from the air in a manner that the company says is efficient, affordable, and—crucially—scalable.
In the short term, the impact will be small—each device’s initial capacity is just 60 tons per year of CO₂—but the immediate goal is simply to demonstrate that carbon removal here is possible. The longer-term vision is far more ambitious: to prove that direct air capture (DAC), as the process is known, can be a powerful tool to help the world keep temperatures from rising to ever more dangerous levels.
“We believe we are doing what we can here in Kenya to address climate change and lead the charge for positioning Kenya as a climate vanguard,” Specioser Mutheu, Octavia’s communications lead, told me when I visited the country last year.
The United Nations’ Intergovernmental Panel on Climate Change has stated that in order to keep the world from warming more than 1.5 °C over preindustrial levels (the threshold set out in the Paris Agreement), or even the more realistic but still difficult 2 °C, it will need to significantly reduce future fossil-fuel emissions—and also pull from the atmosphere billions of tons of carbon that have already been released.
Some argue that DAC, which uses mechanical and chemical processes to suck carbon dioxide from the air and store it in a stable form (usually underground), is the best way to do that. It’s a technology with immense promise, offering the possibility that human ingenuity and innovation can get us out of the same mess that development caused in the first place.
Last year, the world’s largest DAC plant, Mammoth, came online in Iceland, offering the eventual capacity to remove up to 36,000 tons of CO₂ per year—roughly equal to the emissions of 7,600 gas-powered cars. The idea is that DAC plants like this one will remove and permanently store carbon and create carbon credits that can be purchased by corporations, governments, and local industrial producers, which will collectively help keep the world from experiencing the most dangerous effects of climate change.
Climeworks’ Mammoth carbon removal plant near Reykjavik, Iceland.
JOHN MOORE/GETTY IMAGES
Now, Octavia and a growing number of other companies, politicians, and investors from Africa, the US, and Europe are betting that Kenya’s unique environment holds the keys to reaching this lofty goal—which is why they’re pushing a sweeping vision to remake the Great Rift Valley into the “Great Carbon Valley.” And they hope to do so in a way that provides a genuine economic boost for Kenya, while respecting the rights of the Indigenous people who live on this land. If they can do so, the project could not just give a needed jolt to the DAC industry—it could also provide proof of concept for DAC across the Global South, which is particularly vulnerable to the ravages of climate change despite bearing very little responsibility for it.
But DAC is also a controversial technology, unproven at scale and wildly expensive to operate. In May, an Icelandic news outlet published an investigation into Climeworks, which runs the Mammoth plant, finding that it didn’t even pull in enough carbon dioxide to offset its own emissions, let alone the emissions of other companies.
Critics also argue that the electricity DAC requires can be put to better use cleaning up our transportation systems, heating our homes, and powering other industries that still rely largely on fossil fuels. What’s more, they say that relying on DAC can give polluters an excuse to delay the transition to renewables indefinitely. And further complicating this picture is shrinking demand from governments and corporations that would be DAC’s main buyers, which has left some experts questioning whether the industry will even survive.
Carbon removal is a technology that seems always on the verge of kicking in but never does, says Fadhel Kaboub, a Tunisian economist and advocate for an equitable green transition. “You need billions of dollars of investment in it, and it’s not delivering, and it’s not going to deliver anytime soon. So why do we put the entire future of the planet in the hands of a few people and a technology that doesn’t deliver?”
Layered on top of concerns about the viability and wisdom of DAC is a long history of distrust from the Maasai people who have called the Great Rift Valley home for generations but have been displaced in waves by energy companies coming in to tap the land’s geothermal reserves. And many of those remaining don’t even have access to the electricity generated by these plants.
Maasai men walk along the road beside the Olkaria geothermal plant.
REDUX PICTURES
It’s an immensely complicated landscape to navigate. But if the project can indeed make it through, Benjamin Sovacool, an energy policy researcher and director of the Boston University Institute for Global Sustainability, sees immense potential for countries that have been historically marginalized from climate policy and green energy investment. Though he’s skeptical about DAC as a near-term climate solution, he says these nations could still see big benefits from what could be a multitrillion-dollar industry.
“[Of] all the technologies we have available to fight climate change, the idea of reversing it by sucking CO₂ out of the air and storing it is really attractive. It’s something even an ordinary person can just get,” Sovacool says. “If we’re able to do DAC at scale, it could be the next huge energy transition.”
But first, of course, the Great Carbon Valley has to actually deliver.
Challenging the power dynamic
The “Great Carbon Valley” is both a broad vision for the region and a company founded to shepherd that vision into reality.
Bilha Ndirangu, a 42-year-old MIT electrical engineering graduate who grew up in Nairobi, has long worried about the impacts of climate change on Kenya. But she doesn’t want the country to be a mere victim of rising temperatures, she tells me; she hopes to see it become a source of climate solutions. So in 2021, Ndirangu cofounded Jacob’s Ladder Africa, a nonprofit with the goal of preparing African workers for green industries.
COURTESY OF BILHA NDIRANGU
She also began collaborating with the Kenyan entrepreneur James Irungu Mwangi, the CEO of Africa Climate Ventures, an investment firm focused on building and accelerating climate-smart businesses. He’d been working on an idea that spoke to their shared belief in the potential for the country’s vast geothermal capacity; the plan was to find buyers for Kenya’s extra geothermal energy in order to kick-start the development of even more renewable power. One energy-hungry, climate-positive industry stood out: direct air capture of carbon dioxide.
The Great Rift Valley was the key to this vision. The thinking was that it could provide the cheap energy needed to power affordable DAC at scale while offering an ideal geology to effectively store carbon deep underground after it was extracted from the air. And with nearly 90% of the country’s grid already powered by renewable energy, DAC wouldn’t be siphoning power away from other industries that need it. Instead, attracting DAC to Kenya could provide the boost needed for energy providers to build out their infrastructure and expand the grid—ideally connecting the roughly 25% of people in the country who lack electricity and reducing scenarios in which power has to be rationed.
“This push for renewable energy and the decarbonization of industries is providing us with a once-in-a-lifetime sort of opportunity,” Ndirangu tells me.
So in 2023, the pair founded Great Carbon Valley, a project development company whose mission is attracting DAC companies to the area, along with other energy-intensive industries looking for renewable power.
It has already brought on high-profile companies like the Belgian DAC startup Sirona Technologies, the French DAC company Yama, and Climeworks, the Swiss company that operates Mammoth and another DAC plant in Iceland (and was on MIT Technology Review’s 10 Breakthrough Technologies list in 2022, and the list of Climate Tech Companies to Watch in 2023). All are planning on launching pilot projects in Kenya in the coming years, with Climeworks announcing plans to complete its Kenyan DAC plant by 2028. GCV has also partnered with Cella, an American carbon-storage company that works with Octavia, and is facilitating permits for the Icelandic company Carbfix, which injects the carbon from Climeworks’ DAC facilities.
Cella and Sirona Technologies have a pilot program in the Great Rift Valley called Project Jacaranda.
SIRONA TECHNOLOGIES
“Climate change is disproportionately impacting this part of the world, but it’s also changing the rules of the game all over the world,” Cella CEO and cofounder Corey Pattison tells me, explaining the draw of Mwangi and Ndirangu’s concept. “This is also an opportunity to be entrepreneurial and creative in our thinking, because there are all of these assets that places like Kenya have.”
Not only can the country offer cheap and abundant renewable energy, but supporters of Kenyan DAC hope that the young and educated local workforce can supply the engineers and scientists needed to build out this infrastructure. In turn, the business could open opportunities to the country’s roughly 6 million un- or under-employed youths.
“It’s not a one-off industry,” Ndirangu says, highlighting her faith in the idea that jobs will flow from green industrialization. Engineers will be needed to monitor the DAC facilities, and the additional demand for renewable power will create jobs in the energy sector, along with related services like water and hospitality.
“You’re developing a whole range of infrastructure to make this industry possible,” she adds. “That infrastructure is not just good for the industry—it’s also just good for the country.”
The chance to solve a “real-world issue”
In June of last year, I walked up a dirt path to the HQ of Octavia Carbon, just off Nairobi’s Eastern Bypass Road, on the far outskirts of the city.
The staffers I met on my tour exuded the kind of boundless optimism that’s common in early-stage startups. “People used to write academic articles about the fact that no human will ever be able to run a marathon in less than two hours,” Octavia CEO Martin Freimüller told me that day. The Kenyan marathon runner Eliud Kipchoge broke that barrier in a race in 2019. A mural of him features prominently on the wall, along with the athlete’s slogan, “No human is limited.”
“It’s impossible, until Kenya does it,” Freimüller added.
In June, Octavia started testing its technology in the field in a pilot project in Gilgil.
OCTAVIA CARBON
Although not an official partner of Ndirangu’s Great Carbon Valley venture, Octavia aligns with the larger vision, he told me. The company got its start in 2022, when Freimüller, an Austrian development consultant, met Duncan Kariuki, an engineering graduate from the University of Nairobi, in the OpenAir Collective, an online forum devoted to carbon removal. Kariuki introduced Freimüller to his classmates Fiona Mugambi and Mike Bwondera, and the four began working on a DAC prototype, first in lab space borrowed from the university and later in an apartment. It didn’t take long for neighbors to complain about the noise, and within six months, the operation had moved to its current warehouse.
That same year, they announced their first prototype, affectionately called Thursday after the day it was unveiled at a Nairobi Climate Network event. Soon, Octavia was showing off its tech to high-profile visitors including King Charles III and President Joe Biden’s ambassador to Kenya, Meg Whitman.
Three years later, the team has more than 40 engineers and has built its 12th DAC unit: a metal cylinder about the size of a large washing machine, containing a chemical filter using an amine, an organic compound derived from ammonia. (Octavia declined to provide further details about the arrangement of the filter inside the machine because the company is awaiting approval of a patent for the design.)
Octavia relies on an amine absorption method similar to the one used by other DAC plants around the world, but its project stands apart—having been tailored to suit the local climate and run on more than 80% thermal energy.
OCTAVIA CARBON
Hannah Wanjau, an engineer at the company, explained how it works: Fans draw air from the outside across the filter, causing carbon dioxide (which is acidic) to react with the basic amine and form a carbonate salt. When that mixture is heated inside a vacuum to 80 to 100 °C, the CO₂ is released, now as a gas, and collected in a special chamber, while the amine can be reused for the next round of carbon capture.
The amine absorption method has been used in other DAC plants around the world, including those operated by Climeworks, but Octavia’s project stands apart on several key fronts. Wanjau explained that its technology is tailored to suit the local climate; the company has adjusted the length of time for absorption and the temperature for CO₂ release, making it a potential model for other countries in the tropics.
And then there’s its energy source: The device operates on more than 80% thermal energy, which in the field will consist of the extra geothermal energy that the power plants don’t convert into electricity. This energy is typically released into the atmosphere, but it will be channeled instead to Octavia’s machines. What’s more, the device’s modular design can fit inside a shipping container, allowing the company to easily deploy dozens of these units once the demand is there, Mutheu told me.
This technology is being tested in the field in Gilgil, where Mutheu told me the company is “continuing to capture and condition CO₂ as part of our ongoing operations and testing cycles.” (She declined to provide specific data or results at this stage.)
Once the CO₂ is captured, it will be heated and pressurized. Then it will be pumped to a nearby storage facility operated by Cella, where the company will inject the gas into fissures underground. The region’s special geology again offers an advantage: Much of the rock found underground here is basalt, a volcanic mineral that contains high concentrations of calcium and magnesium ions. They react with carbon dioxide to form substances like calcite, dolomite, and magnesite, locking the carbon atoms away in the form of solid minerals.
This process is more durable than other forms of carbon storage, making it potentially more attractive to buyers of carbon credits, says Pattison, the Cella CEO. Non-geologic carbon mitigation methods, such as cookstove replacement programs or nature-based solutions like tree planting, have recently been rocked by revelations of fraud or exaggeration. The money for Cella’s pilot, which will see the injection of 200 tons of CO₂ this year, has come mainly from the Frontier advance market commitment, under which a group of companies including Stripe, Google, Shopify, Meta, and others has collectively pledged to spend $1 billion on carbon removal by 2030.
The modular design of Octavia’s device can fit inside a shipping container, allowing the company to easily deploy dozens of these units once demand is there.
OCTAVIA CARBON
These projects have already opened up possibilities for young Kenyans like Wanjau. She told me there were not a lot of opportunities for aspiring mechanical engineers like her to design and test their own devices; many of her classmates were working for construction or oil companies, or were unemployed. But almost immediately after graduation, Wanjau began working for Octavia.
“I’m happy that I’m trying to solve a problem that’s a real-world issue,” she told me. “Not many people in Africa get a chance to do that.”
An uphill climb
Despite the vast enthusiasm from partners and investors, the Great Carbon Valley faces multiple challenges before Ndirangu and Mwangi’s vision can be fully realized.
Since its start, the venture has had to contend with “this perception that doing projects in Africa is risky,” says Ndirangu. Of the dozens of DAC facilities planned or in existence today, only a handful are in the Global South. Indeed, Octavia has described itself as the first DAC plant to be located there. “Even just selling Kenya as a destination for DAC was quite a challenge,” she says.
So Ndirangu played up Kenya’s experience developing geothermal resources, as well as local engineering talent and a lower cost of labor. GCV has also offered to work with the Kenyan government to help companies secure the proper permits to break ground as soon as possible.
In pitching the Great Carbon Valley, Ndirangu has played up Kenya’s experience developing geothermal resources, as well as local engineering talent and a lower cost of labor.
ALAMY
Ndirangu says that she’s already seen “a real appetite” from power producers who want to build out more renewable-energy infrastructure, but at the same time they’re waiting for proof of demand. She envisions that once that power is in place, lots of other industries—from data centers to producers of green steel, green ammonia, and sustainable aviation fuels—will consider basing themselves in Kenya, attracting more than a dozen projects to the valley in the next few years.
But recent events could dampen demand (which some experts already worried was insufficient). Global governments are retreating from climate action, particularly in the US. The Trump administration has dramatically slashed funding for development related to climate change and renewable energy. The Department of Energy appears poised to terminate a $50 million grant to a proposed Louisiana DAC plant that would have been partially operated by Climeworks, and in May, not long after that announcement, the company said it was cutting 22% of its staff.
At the same time, many companies that would have likely been purchasers of carbon credits—and that a few years ago had voluntarily pledged to reduce or eliminate their carbon emissions—are quietly walking back their commitments. Over the long term, experts warn, there are limits to the amount of carbon removal that companies will ever voluntarily buy. They argue that governments will ultimately have to pay for it—or require polluters to do so.
Further compounding all these challenges are costs. Critics say DAC investments are a waste of time and money compared with other forms of carbon drawdown. As of mid-December, carbon removal credits in the European Union’s Emissions Trading System, one of the world’s largest carbon markets, were priced at around $84 per ton. The average price per DAC credit, for comparison, is nearly $450. Natural processes like reforestation absorb millions of tons of carbon annually and are far cheaper (though programs to harness them for carbon credits are beset with their own controversies). Ultimately, DAC continues to operate on a small scale, removing only about 10,000 metric tons of CO₂ each year.
Even if DAC suppliers do manage to push past these obstacles, there are still thorny questions coming from inside Kenya. Groups like Power Shift Africa, a Nairobi-based think tank that advocates for climate action on the continent, have derided carbon credits as “pollution permits” and blamed them for delaying the move toward electrification.
“The ultimate goal of [carbon removal] is that you can say at the end, well, we can actually continue our emissions and just recapture them with this technology,” says Kaboub, the Tunisian economist, who has worked with Power Shift Africa. “So there’s no need to end fossil fuels, which is why you get a lot of support from oil countries and companies.”
Another problem he sees is not limited to DAC but extends to the way that Kenya and other African nations are pursuing their goal of green industrialization. While Kenyan president William Ruto has courted international financial investment to turn Kenya into a green energy hub, his administration’s policies have deepened the country’s external debt, which in 2024 was equal to around 30% of its GDP. Geothermal energy development in Kenya has often been financed by loans from international institutions or other governments. As its debt has risen, the country has enacted national austerity measures that have sparked deadly protests.
Kenya may indeed have advantages over other countries, and DAC costs will most likely go down eventually. But some experts, such as Boston University’s Sovacool, aren’t quite sold on the idea that the Great Carbon Valley—or any DAC venture—can significantly mitigate climate change. Sovacool’s research has found that at best, DAC will be ready to deploy on the necessary scale by midcentury, much too late to make it a viable climate solution. And that’s if it can overcome additional costs—such as the losses associated with corruption in the energy sector, which Sovacool and others have found is a widespread problem in Kenya.
MIRIAM MARTINCIC
Nevertheless, others within the carbon removal industry remain more optimistic about DAC’s overall prospects and are particularly hopeful that Kenya can address some of the challenges the technology has encountered elsewhere. Cost is “not the most important thing,” says Erin Burns, executive director of Carbon180, a nonprofit that advocates for the removal and reuse of carbon dioxide. “There’s lots of things we pay for.” She notes that governments in Japan, Singapore, Canada, Australia, the European Union, and elsewhere are all looking at developing compliance markets for carbon, even though the US is stagnating on this front.
The Great Carbon Valley, she believes, stands poised to benefit from these developments. “It’s big. It’s visionary,” Burns says. “You’ve got to have some ambition here. This isn’t something that is like deploying a technology that’s widely deployed already. And that comes with an enormous potential for huge opportunity, huge gains.”
Back to the land
More than any external factor, the Great Carbon Valley’s future is perhaps most intimately intertwined with the restless earth on which it’s being built, and the community that has lived here for centuries.
To the Maasai people, nomadic pastoralists who inhabit swathes of Eastern Africa, including Kenya, this land around Lake Naivasha is “ol-karia,” meaning “ochre,” a reference to the bright red clay found in abundance.
South of the lake is Hell’s Gate National Park, a 26-square-mile nature reserve where the region’s five geothermal power complexes—with a sixth under construction—churn on top of the numerous steam vents. The first geothermal power plant here was brought into service in 1981 by KenGen, a majority-state-owned electricity company; it was named Olkaria.
But for decades most of the Maasai haven’t had access to that electricity. And many of them have been forced off the land in a wave of evictions. In 2014, construction on a KenGen geothermal complex expelled more than 2,000 people and led to a number of legal complaints. At the same time, locals living near a different, privately owned geothermal complex 50 miles north of Naivasha have complained of noise and air pollution; in March, a Kenyan court revoked the operating license of one of the project’s three plants.
Neither Octavia or Cella is powered by output from these two geothermal producers, but activists have warned that similar environmental and social harms could resurface if demand for new geothermal infrastructure grows in Kenya—demand that could be driven by DAC.
Ndirangu says she believes some of the complaints about displacement are “exaggerated,” but she nonetheless acknowledges the need for stronger community engagement, as does Octavia. In the long term, Ndirangu says, she plans to provide job training to residents living near the affected areas and integrate them into the industry, although she also says those plans need to be realistic. “You don’t want to create the wrong expectation that you will hire everyone from the community,” she says.
That’s part of the problem for Maasai activists like Agnes Koilel, a teacher living near the Olkaria geothermal field. Despite past promises of employment at the power plants, the jobs that are offered are lower-paying positions in cleaning or security. “Maasai people are not [as] employed as they think,” she says.
The Maasai people have inhabited swathes of Eastern Africa, including Kenya, for centuries, but many still lack access to the power that’s now produced there.
ALAMY
DAC is a small industry, and it can’t do everything. But if it’s going to become as big as Ndirangu, Freimüller, and other proponents of the Great Carbon Valley hope it will be, creating jobs and driving Kenya’s green industrialization, communities like Koilel’s will be among those most directly affected—much as they are by climate change.
When I asked Koilel what she thought about DAC development near her home, she told me she had never heard of the Great Carbon Valley idea, or of carbon removal in general. She wasn’t necessarily against geothermal power development on principle, or opposed to any of the industries that might push it to expand. She just wants to see some benefits, like a health center for her community. She wants to reverse the evictions that have pushed her neighbors off their land. And she wants electricity—the same kind that would power the fans and pumps of future DAC hubs.
Power “is generated from these communities,” Koilel said. “But they themselves do not have that light.”
Diana Kruzman is a freelance journalist covering environmental and human rights issues around the world. Her writing has appeared in New Lines Magazine, The Intercept, Inside Climate News, and other publications. She lives in New York City.
In August 2025, Wang Lei decided it was finally time to say goodbye to his electric vehicle.
Wang, who is 39, had bought the car in 2016, when EVs still felt experimental in Beijing. It was a compact Chinese brand. The subsidies were good, and the salesman talked about “supporting domestic innovation.” At the time, only a few people around him were driving on batteries. He liked being early.
But now, the car’s range had started to shrink as the battery’s health declined. He could have replaced the battery, but the warranty had expired; the cost and trouble no longer felt worth it. He also wanted an upgrade, so selling became the obvious choice.
His vague plans turned into action after he started seeing ads on Douyin from local battery recyclers. He asked around at a few recycling places, and the highest offer came from a smaller shop on the outskirts of town. He added the contact on WeChat, and the next day someone drove over to pick up his car. He got paid 8,000 yuan. With the additional automobile scrappage subsidy offered by the Chinese government, Wang ultimately pocketed about 28,000 yuan.
Wang is part of a much larger trend. In the past decade, China has seen an EV boom, thanks in part to government support. Buying an electric car has gone from a novel decision to a routine one; by late 2025, nearly 60% of new cars sold were electric or plug-in hybrids.
But as the batteries in China’s first wave of EVs reach the end of their useful life, early owners are starting to retire their cars, and the country is now under pressure to figure out what to do with those aging components.
The issue is putting strain on China’s still-developing battery recycling industry and has given rise to a gray market that often cuts corners on safety and environmental standards. National regulators and commercial players are also stepping in, building out formal recycling networks and take-back programs, but so far these efforts have struggled to keep pace with the flood of batteries coming off the road.
Like the batteries in our phones and laptops, those in EVs today are mostly lithium-ion packs. Their capacity drops a little every year, making the car slower to charge, shorter in range, and more prone to safety issues. Three professionals who work in EV retail and battery recycling told MIT Technology Review that a battery is often considered to be ready to retire from a car after its capacity has degraded to under 80%. The research institution EVtank estimates that the year’s total volume of retired EV batteries in China will come in at 820,000 tons, with annual totals climbing toward 1 million tons by 2030.
In China, this growing pile of aging batteries is starting to test a recycling ecosystem that is still far from fully built out but is rapidly growing. By the end of November 2025, China had close to 180,000 enterprises involved in battery recycling, and more than 30,000 of them had been registered since January 2025. Over 60% of the firms were founded within the past three years. This does not even include the unregulated gray market of small workshops.
Typically, one of two things happens when an EV’s battery is retired. One is called cascade utilization, in which usable battery packs are tested and repurposed for slower applications like energy storage or low-speed vehicles. The other is full recycling: Cells are dismantled and processed to recover metals such as lithium, nickel, cobalt, and manganese, which are then reused to manufacture new batteries. Both these processes, if done properly, take significant upfront investment that is often not available to small players.
But smaller, illicit battery recycling centers can offer higher prices to consumers because they ignore costs that formal recyclers can’t avoid, like environmental protection, fire safety, wastewater treatment, compliance, and taxes, according to the three battery recycling professionals MIT Technology Review spoke to.
“They [workers] crack them open, rearrange the cells into new packs, and repackage them to sell,” says Gary Lin, a battery recycling worker who worked in several unlicensed shops from 2022 to 2024. Sometimes, the refurbished batteries are even sold as “new” to buyers, he says. When the batteries are too old or damaged, workers simply crush them and sell them by weight to rare-metal extractors. “It’s all done in a very brute-force way. The wastewater used to soak the batteries is often just dumped straight into the sewer,” he says.
This poorly managed battery waste can release toxic substances, contaminate water and soil, and create risks of fire and explosion. That is why the Chinese government has been trying to steer batteries into certified facilities. Since 2018, China’s Ministry of Industry and Information Technology has issued five “white lists” of approved power-battery recyclers, now totaling 156 companies. Despite this, formal recycling rates remain low compared with the rapidly growing volume of waste batteries.
China is not only the world’s largest EV market; it has also become the main global manufacturing hub for EVs and the batteries that power them. In 2024, the country accounted for more than 70% of global electric-car production and more than half of global EV sales, and firms like CATL and BYD together control close to half of global EV battery output, according to a report by the International Energy Agency. These companies are stepping in to offer solutions to customers wishing to offload their old batteries. Through their dealers and 4S stores, many carmakers now offer take-back schemes or opportunities to trade in old batteries for discount when owners scrap a vehicle or buy a new one.
BYD runs its own recycling operations that process thousands of end-of-life packs a year and has launched dedicated programs with specialist recyclers to recover materials from its batteries. Geely has built a “circular manufacturing” system that combines disassembly of scrapped vehicles, cascade use of power batteries, and high recovery rates for metals and other materials.
CATL, China’s biggest EV maker, has created one of the industry’s most developed recycling systems through its subsidiary Brunp, with more than 240 collection depots, an annual disposal capacity of about 270,000 tons of waste batteries, and metal recovery rates above 99% for nickel, cobalt, and manganese.
“No one is better equipped to handle these batteries than the companies that make them,” says Alex Li, a battery engineer based in Shanghai. That’s because they already understand the chemistry, the supply chain, and the uses the recovered materials can be put to next. Carmakers and battery makers “need to create a closed loop eventually,” he says.
But not every consumer can receive that support from the maker of their EV, because many of those manufacturers have ceased to exist. In the past five years, over 400 smaller EV brands and startups have gone bankrupt as the price war made it hard to stay afloat, leaving only 100 active brands today.
Analysts expect many more used batteries to hit the market in the coming years, as the first big wave of EVs bought under generous subsidies reach retirement age. Li says, “China is going to need to move much faster toward a comprehensive end-of-life system for EV batteries—one that can trace, reuse and recycle them at scale, instead of leaving so many to disappear into the gray market.”
Judging from headlines and social media posts in recent years, one might reasonably assume that AI is going to fix the power grid, cure the world’s diseases, and finish my holiday shopping for me. But maybe there’s just a whole lot of hype floating around out there.
This week, we published a new package called Hype Correction. The collection of stories takes a look at how the world is starting to reckon with the reality of what AI can do, and what’s just fluff.
One of my favorite stories in that package comes from my colleague David Rotman, who took a hard look at AI for materials research. AI could transform the process of discovering new materials—innovation that could be especially useful in the world of climate tech, which needs new batteries, semiconductors, magnets, and more.
But the field still needs to prove it can make materials that are actually novel and useful. Can AI really supercharge materials research? What could that look like?
For researchers hoping to find new ways to power the world (or cure disease or achieve any number of other big, important goals), a new material could change everything.
The problem is, inventing materials is difficult and slow. Just look at plastic—the first totally synthetic plastic was invented in 1907, but it took until roughly the 1950s for companies to produce the wide range we’re familiar with today. (And of course, though it is incredibly useful, plastic also causes no shortage of complications for society.)
In recent decades, materials science has fallen a bit flat—David has been covering this field for nearly 40 years, and as he puts it, there have been just a few major commercial breakthroughs in that time. (Lithium-ion batteries are one.)
Could AI change everything? The prospect is a tantalizing one, and companies are racing to test it out.
Lila Sciences, based in Cambridge, Massachusetts, is working on using AI models to uncover new materials. The company can not only train an AI model on all the latest scientific literature, but also plug it into an automated lab, so it can learn from experimental data. The goal is to speed up the iterative process of inventing and testing new materials and look at research in ways that humans might miss.
At an MIT Technology Review event earlier this year, I got to listen to David interview Rafael Gómez-Bombarelli, one of Lila’s cofounders. As he described what the company is working on, Gómez-Bombarelli acknowledged that AI materials discovery hasn’t yet seen a big breakthrough moment. Yet.
Gómez-Bombarelli described how models Lila has trained are providing insights that are “as deep [as] or deeper than our domain scientists would have.” In the future, AI could “think” in ways that depart from how human scientists approach a problem, he added: “There will be a need to translate scientific reasoning by AI to the way we think about the world.”
It’s exciting to see this sort of optimism in materials research, but there’s still a long and winding road before we can satisfyingly say that AI has transformed the field. One major difficulty is that it’s one thing to take suggestions from a model about new experimental methods or new potential structures. It’s quite another to actually make a material and show that it’s novel and useful.
You might remember that a couple of years ago, Google’s DeepMind announced it had used AI to predict the structures of “millions of new materials” and had made hundreds of them in the lab.
But as David notes in his story, after that announcement, some materials scientists pointed out that some of the supposedly novel materials were basically slightly different versions of known ones. Others couldn’t even physically exist in normal conditions (the simulations were done at ultra-low temperatures, where atoms don’t move around much).
It’s possible that AI could give materials discovery a much-needed jolt and usher in a new age that brings superconductors and batteries and magnets we’ve never seen before. But for now, I’m calling hype.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
Omar Yaghi was a quiet child, diligent, unlikely to roughhouse with his nine siblings. So when he was old enough, his parents tasked him with one of the family’s most vital chores: fetching water. Like most homes in his Palestinian neighborhood in Amman, Jordan, the Yaghis’ had no electricity or running water. At least once every two weeks, the city switched on local taps for a few hours so residents could fill their tanks. Young Omar helped top up the family supply. Decades later, he says he can’t remember once showing up late. The fear of leaving his parents, seven brothers, and two sisters parched kept him punctual.
Yaghi proved so dependable that his father put him in charge of monitoring how much the cattle destined for the family butcher shop ate and drank. The best-quality cuts came from well-fed, hydrated animals—a challenge given that they were raised in arid desert.
Specially designed materials called metal-organic frameworks can pull water from the air like a sponge—and then give it back.
But at 10 years old, Yaghi learned of a different occupation. Hoping to avoid a rambunctious crowd at recess, he found the library doors in his school unbolted and sneaked in. Thumbing through a chemistry textbook, he saw an image he didn’t understand: little balls connected by sticks in fascinating shapes. Molecules. The building blocks of everything.
“I didn’t know what they were, but it captivated my attention,” Yaghi says. “I kept trying to figure out what they might be.”
That’s how he discovered chemistry—or maybe how chemistry discovered him. After coming to the United States and, eventually, a postdoctoral program at Harvard University, Yaghi devoted his career to finding ways to make entirely new and fascinating shapes for those little sticks and balls. In October 2025, he was one of three scientists who won a Nobel Prize in chemistry for identifying metal-organic frameworks, or MOFs—metal ions tethered to organic molecules that form repeating structural landscapes. Today that work is the basis for a new project that sounds like science fiction, or a miracle: conjuring water out of thin air.
When he first started working with MOFs, Yaghi thought they might be able to absorb climate-damaging carbon dioxide—or maybe hold hydrogen molecules, solving the thorny problem of storing that climate-friendly but hard-to-contain fuel. But then, in 2014, Yaghi’s team of researchers at UC Berkeley had an epiphany. The tiny pores in MOFs could be designed so the material would pull water molecules from the air around them, like a sponge—and then, with just a little heat, give back that water as if squeezed dry. Just one gram of a water-absorbing MOF has an internal surface area of roughly 7,000 square meters.
Yaghi wasn’t the first to try to pull potable water from the atmosphere. But his method could do it at lower levels of humidity than rivals—potentially shaking up a tiny, nascent industry that could be critical to humanity in the thirsty decades to come. Now the company he founded, called Atoco, is racing to demonstrate a pair of machines that Yaghi believes could produce clean, fresh, drinkable water virtually anywhere on Earth, without even hooking up to an energy supply.
That’s the goal Yaghi has been working toward for more than a decade now, with the rigid determination that he learned while doing chores in his father’s butcher shop.
“It was in that shop where I learned how to perfect things, how to have a work ethic,” he says. “I learned that a job is not done until it is well done. Don’t start a job unless you can finish it.”
Most of Earth is covered in water, but just 3% of it is fresh, with no salt—the kind of water all terrestrial living things need. Today, desalination plants that take the salt out of seawater provide the bulk of potable water in technologically advanced desert nations like Israel and the United Arab Emirates, but at a high cost. Desalination facilities either heat water to distill out the drinkable stuff or filter it with membranes the salt doesn’t pass through; both methods require a lot of energy and leave behind concentrated brine. Typically desal pumps send that brine back into the ocean, with devastating ecological effects.
Heiner Linke, chair of the Nobel Committee for Chemistry, uses a model to explain how metalorganic frameworks (MOFs) can trap smaller molecules inside. In October 2025, Yaghi and two other scientists won the Nobel Prize in chemistry for identifying MOFs.
JONATHAN NACKSTRAND/GETTY IMAGES
I was talking to Atoco executives about carbon dioxide capture earlier this year when they mentioned the possibility of harvesting water from the atmosphere. Of course my mind immediately jumped to Star Wars, and Luke Skywalker working on his family’s moisture farm, using “vaporators” to pull water from the atmosphere of the arid planet Tatooine. (Other sci-fi fans’ minds might go to Dune, and the water-gathering technology of the Fremen.) Could this possibly be real?
It turns out people have been doing it for millennia. Archaeological evidence of water harvesting from fog dates back as far as 5000 BCE. The ancient Greeks harvested dew, and 500 years ago so did the Inca, using mesh nets and buckets under trees.
Today, harvesting water from the air is a business already worth billions of dollars, say industry analysts—and it’s on track to be worth billions more in the next five years. In part that’s because typical sources of fresh water are in crisis. Less snowfall in mountains during hotter winters means less meltwater in the spring, which means less water downstream. Droughts regularly break records. Rising seas seep into underground aquifers, already drained by farming and sprawling cities. Aging septic tanks leach bacteria into water, and cancer-causing “forever chemicals” are creating what the US Government Accountability Office last year said “may be the biggest water problem since lead.” That doesn’t even get to the emerging catastrophe from microplastics.
So lots of places are turning to atmospheric water harvesting. Watergen, an Israel-based company working on the tech, initially planned on deploying in the arid, poorer parts of the world. Instead, buyers in Europe and the United States have approached the company as a way to ensure a clean supply of water. And one of Watergen’s biggest markets is the wealthy United Arab Emirates. “When you say ‘water crisis,’ it’s not just the lack of water—it’s access to good-quality water,” says Anna Chernyavsky, Watergen’s vice president of marketing.
In other words, the technology “has evolved from lab prototypes to robust, field-deployable systems,” says Guihua Yu, a mechanical engineer at the University of Texas at Austin. “There is still room to improve productivity and energy efficiency in the whole-system level, but so much progress has been steady and encouraging.”
MOFs are just the latest approach to the idea. The first generation of commercial tech depended on compressors and refrigerant chemicals—large-scale versions of the machine that keeps food cold and fresh in your kitchen. Both use electricity and a clot of pipes and exchangers to make cold by phase-shifting a chemical from gas to liquid and back; refrigerators try to limit condensation, and water generators basically try to enhance it.
That’s how Watergen’s tech works: using a compressor and a heat exchanger to wring water from air at humidity levels as low as 20%—Death Valley in the spring. “We’re talking about deserts,” Chernyavsky says. “Below 20%, you get nosebleeds.”
A Watergen unit provides drinking water to students and staff at St. Joseph’s, a girls’ school in Freetown, Sierra Leone. “When you say ‘water crisis,’ it’s not just the lack of water— it’s access to good-quality water,” says Anna Chernyavsky, Watergen’s vice president of marketing.
COURTESY OF WATERGEN
That still might not be good enough. “Refrigeration works pretty well when you are above a certain relative humidity,” says Sameer Rao, a mechanical engineer at the University of Utah who researches atmospheric water harvesting. “As the environment dries out, you go to lower relative humidities, and it becomes harder and harder. In some cases, it’s impossible for refrigeration-based systems to really work.”
So a second wave of technology has found a market. Companies like Source Global use desiccants—substances that absorb moisture from the air, like the silica packets found in vitamin bottles—to pull in moisture and then release it when heated. In theory, the benefit of desiccant-based tech is that it could absorb water at lower humidity levels, and it uses less energy on the front end since it isn’t running a condenser system. Source Global claims its off-grid, solar-powered system is deployed in dozens of countries.
But both technologies still require a lot of energy, either to run the heat exchangers or to generate sufficient heat to release water from the desiccants. MOFs, Yaghi hopes, do not. Now Atoco is trying to prove it. Instead of using heat exchangers to bring the air temperature to dew point or desiccants to attract water from the atmosphere, a system can rely on specially designed MOFs to attract water molecules. Atoco’s prototype version uses an MOF that looks like baby powder, stuck to a surface like glass. The pores in the MOF naturally draw in water molecules but remain open, making it theoretically easy to discharge the water with no more heat than what comes from direct sunlight. Atoco’s industrial-scale design uses electricity to speed up the process, but the company is working on a second design that can operate completely off grid, without any energy input.
Yaghi’s Atoco isn’t the only contender seeking to use MOFs for water harvesting. A competitor, AirJoule, has introduced MOF-based atmospheric water generators in Texas and the UAE and is working with researchers at Arizona State University, planning to deploy more units in the coming months. The company started out trying to build more efficient air-conditioning for electric buses operating on hot, humid city streets. But then founder Matt Jore heard about US government efforts to harvest water from air—and pivoted. The startup’s stock price has been a bit of a roller-coaster, but Jore says the sheer size of the market should keep him in business. Take Maricopa County, encompassing Phoenix and its environs—it uses 1.2 billion gallons of water from its shrinking aquifer every day, and another 874 million gallons from surface sources like rivers.
“So, a couple of billion gallons a day, right?” Jore tells me. “You know how much influx is in the atmosphere every day? Twenty-five billion gallons.”
My eyebrows go up. “Globally?”
“Just the greater Phoenix area gets influx of about 25 billion gallons of water in the air,” he says. “If you can tap into it, that’s your source. And it’s not going away. It’s all around the world. We view the atmosphere as the world’s free pipeline.”
Besides AirJoule’s head start on Atoco, the companies also differ on where they get their MOFs. AirJoule’s system relies on an off-the-shelf version the company buys from the chemical giant BASF; Atoco aims to use Yaghi’s skill with designing the novel material to create bespoke MOFs for different applications and locations.
“Given the fact that we have the inventor of the whole class of materials, and we leverage the stuff that comes out of his lab at Berkeley—everything else equal, we have a good starting point to engineer maybe the best materials in the world,” says Magnus Bach, Atoco’s VP of business development.
Yaghi envisions a two-pronged product line. Industrial-scale water generators that run on electricity would be capable of producing thousands of liters per day on one end, while units that run on passive systems could operate in remote locations without power, just harnessing energy from the sun and ambient temperatures. In theory, these units could someday replace desalination and even entire municipal water supplies. The next round of field tests is scheduled for early 2026, in the Mojave Desert—one of the hottest, driest places on Earth.
“That’s my dream,” Yaghi says. “To give people water independence, so they’re not reliant on another party for their lives.”
Both Yaghi and Watergen’s Chernyavsky say they’re looking at more decentralized versions that could operate outside municipal utility systems. Home appliances, similar to rooftop solar panels and batteries, could allow households to generate their own water off grid.
That could be tricky, though, without economies of scale to bring down prices. “You have to produce, you have to cool, you have to filter—all in one place,” Chernyavsky says. “So to make it small is very, very challenging.”
Difficult as that may be, Yaghi’s childhood gave him a particular appreciation for the freedom to go off grid, to liberate the basic necessity of water from the whims of systems that dictate when and how people can access it.
“That’s really my dream,” he says. “To give people independence, water independence, so that they’re not reliant on another party for their livelihood or lives.”
Toward the end of one of our conversations, I asked Yaghi what he would tell the younger version of himself if he could. “Jordan is one of the worst countries in terms of the impact of water stress,” he said. “I would say, ‘Continue to be diligent and observant. It doesn’t really matter what you’re pursuing, as long as you’re passionate.’”
I pressed him for something more specific: “What do you think he’d say when you described this technology to him?”
Yaghi smiled: “I think young Omar would think you’re putting him on, that this is all fictitious and you’re trying to take something from him.” This reality, in other words, would be beyond young Omar’s wildest dreams.
Alexander C. Kaufman is a reporter who has covered energy, climate change, pollution, business, and geopolitics for more than a decade.
Solar geoengineering aims to manipulate the climate by bouncing sunlight back into space. In theory, it could ease global warming. But as interest in the idea grows, so do concerns about potential consequences.
A startup called Stardust Solutions recently raised a $60 million funding round, the largest known to date for a geoengineering startup. My colleague James Temple has a new story out about the company, and how its emergence is making some researchers nervous.
So far, the field has been limited to debates, proposed academic research, and—sure—a few fringe actors to keep an eye on. Now things are getting more serious. What does it mean for geoengineering, and for the climate?
Researchers have considered the possibility of addressing planetary warming this way for decades. We already know that volcanic eruptions, which spew sulfur dioxide into the atmosphere, can reduce temperatures. The thought is that we could mimic that natural process by spraying particles up there ourselves.
The prospect is a controversial one, to put it lightly. Many have concerns about unintended consequences and uneven benefits. Even public research led by top institutions has faced barriers—one famous Harvard research program was officially canceled last year after years of debate.
One of the difficulties of geoengineering is that in theory a single entity, like a startup company, could make decisions that have a widespread effect on the planet. And in the last few years, we’ve seen more interest in geoengineering from the private sector.
Three years ago, James broke the story that Make Sunsets, a California-based company, was already releasing particles into the atmosphere in an effort to tweak the climate.
The company’s CEO Luke Iseman went to Baja California in Mexico, stuck some sulfur dioxide into a weather balloon, and sent it skyward. The amount of material was tiny, and it’s not clear that it even made it into the right part of the atmosphere to reflect any sunlight.
You can still buy cooling credits from Make Sunsets, and the company was just granted a patent for its system. But the startup is seen as something of a fringe actor.
Enter Stardust Solutions. The company has been working under the radar for a few years, but it has started talking about its work more publicly this year. In October, it announced a significant funding round, led by some top names in climate investing. “Stardust is serious, and now it’s raised serious money from serious people,” as James puts it in his new story.
That’s making some experts nervous. Even those who believe we should be researching geoengineering are concerned about what it means for private companies to do so.
“Adding business interests, profit motives, and rich investors into this situation just creates more cause for concern, complicating the ability of responsible scientists and engineers to carry out the work needed to advance our understanding,” write David Keith and Daniele Visioni, two leading figures in geoengineering research, in a recent opinion piece for MIT Technology Review.
Stardust insists that it won’t move forward with any geoengineering until and unless it’s commissioned to do so by governments and there are rules and bodies in place to govern use of the technology.
But there’s no telling how financial pressure might change that, down the road. And we’re already seeing some of the challenges faced by a private company in this space: the need to keep trade secrets.
Stardust is currently not sharing information about the particles it intends to release into the sky, though it says it plans to do so once it secures a patent, which could happen as soon as next year. The company argues that its proprietary particles will be safe, cheap to manufacture, and easier to track than the already abundant sulfur dioxide. But at this point, there’s no way for external experts to evaluate those claims.
As Keith and Visioni put it: “Research won’t be useful unless it’s trusted, and trust depends on transparency.”
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
Stardust Solutions believes that it can solve climate change—for a price.
The Israel-based geoengineering startup has said it expects nations will soon pay it more than a billion dollars a year to launch specially equipped aircraft into the stratosphere. Once they’ve reached the necessary altitude, those planes will disperse particles engineered to reflect away enough sunlight to cool down the planet, purportedly without causing environmental side effects.
The proprietary (and still secret) particles could counteract all the greenhouse gases the world has emitted over the last 150 years, the company stated in a 2023 pitch deck it presented to venture capital firms. In fact, it’s the “only technologically feasible solution” to climate change, the company said.
The company disclosed it raised $60 million in funding in October, marking by far the largest known funding round to date for a startup working on solar geoengineering.
Stardust is, in a sense, the embodiment of Silicon Valley’s simmering frustration with the pace of academic research on the technology. It’s a multimillion-dollar bet that a startup mindset can advance research and development that has crept along amid scientific caution and public queasiness.
But numerous researchers focused on solar geoengineering are deeply skeptical that Stardust will line up the government customers it would need to carry out a global deployment as early as 2035, the plan described in its earlier investor materials—and aghast at the suggestion that it ever expected to move that fast. They’re also highly critical of the idea that a company would take on the high-stakes task of setting the global temperature, rather than leaving it to publicly funded research programs.
“They’ve ignored every recommendation from everyone and think they can turn a profit in this field,” says Douglas MacMartin, an associate professor at Cornell University who studies solar geoengineering. “I think it’s going to backfire. Their investors are going to be dumping their money down the drain, and it will set back the field.”
The company has finally emerged from stealth mode after completing its funding round, and its CEO, Yanai Yedvab, agreed to conduct one of the company’s first extensive interviews with MIT Technology Review for this story.
Yedvab walked back those ambitious projections a little, stressing that the actual timing of any stratospheric experiments, demonstrations, or deployments will be determined by when governments decide it’s appropriate to carry them out. Stardust has stated clearly that it will move ahead with solar geoengineering only if nations pay it to proceed, and only once there are established rules and bodies guiding the use of the technology.
That decision, he says, will likely be dictated by how bad climate change becomes in the coming years.
“It could be a situation where we are at the place we are now, which is definitely not great,” he says. “But it could be much worse. We’re saying we’d better be ready.”
“It’s not for us to decide, and I’ll say humbly, it’s not for these researchers to decide,” he adds. “It’s the sense of urgency that will dictate how this will evolve.”
The building blocks
No one is questioning the scientific credentials of Stardust. The company was founded in 2023 by a trio of prominent researchers, including Yedvab, who served as deputy chief scientist at the Israeli Atomic Energy Commission. The company’s lead scientist, Eli Waxman, is the head of the department of particle physics and astrophysics at the Weizmann Institute of Science. Amyad Spector, the chief product officer, was previously a nuclear physicist at Israel’s secretive Negev Nuclear Research Center.
Stardust CEO Yanai Yedvab (right) and Chief Product Officer Amyad Spector (left) at the company’s facility in Israel.
ROBY YAHAV, STARDUST
Stardust says it employs 25 scientists, engineers, and academics. The company is based in Ness Ziona, Israel, and plans to open a US headquarters soon.
Yedvab says the motivation for starting Stardust was simply to help develop an effective means of addressing climate change.
“Maybe something in our experience, in the tool set that we bring, can help us in contributing to solving one of the greatest problems humanity faces,” he says.
Lowercarbon Capital, the climate-tech-focused investment firm cofounded by the prominent tech investor Chris Sacca, led the $60 million investment round. Future Positive, Future Ventures, and Never Lift Ventures, among others, participated as well.
Yedvab says the company will use that money to advance research, development, and testing for the three components of its system, which are also described in the pitch deck: safe particles that could be affordably manufactured; aircraft dispersion systems; and a means of tracking particles and monitoring their effects.
“Essentially, the idea is to develop all these building blocks and to upgrade them to a level that will allow us to give governments the tool set and all the required information to make decisions about whether and how to deploy this solution,” he says.
The company is, in many ways, the opposite of Make Sunsets, the first company that came along offering to send particles into the stratosphere—for a fee—by pumping sulfur dioxide into weather balloons and hand-releasing them into the sky. Many researchers viewed it as a provocative, unscientific, and irresponsible exercise in attention-gathering.
But Stardust is serious, and now it’s raised serious money from serious people—all of which raises the stakes for the solar geoengineering field and, some fear, increases the odds that the world will eventually put the technology to use.
“That marks a turning point in that these types of actors are not only possible, but are real,” says Shuchi Talati, executive director of the Alliance for Just Deliberation on Solar Geoengineering, a nonprofit that strives to ensure that developing nations are included in the global debate over such climate interventions. “We’re in a more dangerous era now.”
Many scientists studying solar geoengineering argue strongly that universities, governments, and transparent nonprofits should lead the work in the field, given the potential dangers and deep public concerns surrounding a tool with the power to alter the climate of the planet.
It’s essential to carry out the research with appropriate oversight, explore the potential downsides of these approaches, and publicly publish the results “to ensure there’s no bias in the findings and no ulterior motives in pushing one way or another on deployment or not,” MacMartin says. “[It] shouldn’t be foisted upon people without proper and adequate information.”
He criticized, for instance, the company’s claims to have developed what he described as their “magic aerosol particle,” arguing that the assertion that it is perfectly safe and inert can’t be trusted without published findings. Other scientists have also disputed those scientific claims.
Plenty of other academics say solar geoengineering shouldn’t be studied at all, fearing that merely investigating it starts the world down a slippery slope toward its use and diminishes the pressures to cut greenhouse-gas emissions. In 2022, hundreds of them signed an open letter calling for a global ban on the development and use of the technology, adding the concern that there is no conceivable way for the world’s nations to pull together to establish rules or make collective decisions ensuring that it would be used in “a fair, inclusive, and effective manner.”
“Solar geoengineering is not necessary,” the authors wrote. “Neither is it desirable, ethical, or politically governable in the current context.”
The for-profit decision
Stardust says it’s important to pursue the possibility of solar geoengineering because the dangers of climate change are accelerating faster than the world’s ability to respond to it, requiring a new “class of solution … that buys us time and protects us from overheating.”
Yedvab says he and his colleagues thought hard about the right structure for the organization, finally deciding that for-profits working in parallel with academic researchers have delivered “most of the groundbreaking technologies” in recent decades. He cited advances in genome sequencing, space exploration, and drug development, as well as the restoration of the ozone layer.
He added that a for-profit structure was also required to raise funds and attract the necessary talent.
“There is no way we could, unfortunately, raise even a small portion of this amount by philanthropic resources or grants these days,” he says.
He adds that while academics have conducted lots of basic science in solar geoengineering, they’ve done very little in terms of building the technological capacities. Their geoengineering research is also primarily focused on the potential use of sulfur dioxide, because it is known to help reduce global temperatures after volcanic eruptions blast massive amounts of it into the stratospheric. But it has well-documented downsides as well, including harm to the protective ozone layer.
“It seems natural that we need better options, and this is why we started Stardust: to develop this safe, practical, and responsible solution,” the company said in a follow-up email. “Eventually, policymakers will need to evaluate and compare these options, and we’re confident that our option will be superior over sulfuric acid primarily in terms of safety and practicability.”
Public trust can be won not by excluding private companies, but by setting up regulations and organizations to oversee this space, much as the US Food and Drug Administration does for pharmaceuticals, Yedvab says.
“There is no way this field could move forward if you don’t have this governance framework, if you don’t have external validation, if you don’t have clear regulation,” he says.
Meanwhile, the company says it intends to operate transparently, pledging to publish its findings whether they’re favorable or not.
That will include finally revealing details about the particles it has developed, Yedvab says.
Early next year, the company and its collaborators will begin publishing data or evidence “substantiating all the claims and disclosing all the information,” he says, “so that everyone in the scientific community can actually check whether we checked all these boxes.”
In the follow-up email, the company acknowledged that solar geoengineering isn’t a “silver bullet” but said it is “the only tool that will enable us to cool the planet in the short term, as part of a larger arsenal of technologies.”
“The only way governments could be in a position to consider [solar geoengineering] is if the work has been done to research, de-risk, and engineer safe and responsible solutions—which is what we see as our role,” the company added later. “We are hopeful that research will continue not just from us, but also from academic institutions, nonprofits, and other responsible companies that may emerge in the future.”
Ambitious projections
Stardust’s earlier pitch deck stated that the company expected to conduct its first “stratospheric aerial experiments” last year, though those did not move ahead (more on that in a moment).
On another slide, the company said it expected to carry out a “large-scale demonstration” around 2030 and proceed to a “global full-scale deployment” by about 2035. It said it expected to bring in roughly $200 million and $1.5 billion in annual revenue by those periods, respectively.
Every researcher interviewed for this story was adamant that such a deployment should not happen so quickly.
Given the global but uneven and unpredictable impacts of solar geoengineering, any decision to use the technology should be reached through an inclusive, global agreement, not through the unilateral decisions of individual nations, Talati argues.
“We won’t have any sort of international agreement by that point given where we are right now,” she says.
A global agreement, to be clear, is a big step beyond setting up rules and oversight bodies—and some believe that such an agreement on a technology so divisive could never be achieved.
There’s also still a vast amount of research that must be done to better understand the negative side effects of solar geoengineering generally and any ecological impacts of Stardust’s materials specifically, adds Holly Buck, an associate professor at the University of Buffalo and author of After Geoengineering.
“It is irresponsible to talk about deploying stratospheric aerosol injection without fundamental research about its impacts,” Buck wrote in an email.
She says the timelines are also “unrealistic” because there are profound public concerns about the technology. Her polling work found that a significant fraction of the US public opposes even research (though polling varies widely).
Meanwhile, most academic efforts to move ahead with even small-scale outdoor experiments have sparked fierce backlash. That includes the years-long effort by researchers then at Harvard to carry out a basic equipment test for their so-called ScopeX experiment. The high-altitude balloon would have launched from a flight center in Sweden, but the test was ultimately scratched amid objections from environmentalists and Indigenous groups.
Given this baseline of public distrust, Stardust’s for-profit proposals only threaten to further inflame public fears, Buck says.
“I find the whole proposal incredibly socially naive,” she says. “We actually could use serious research in this field, but proposals like this diminish the chances of that happening.”
Those public fears, which cross the political divide, also mean politicians will see little to no political upside to paying Stardust to move ahead, MacMartin says.
“If you don’t have the constituency for research, it seems implausible to me that you’d turn around and give money to an Israeli company to deploy it,” he says.
An added risk is that if one nation or a small coalition forges ahead without broader agreement, it could provoke geopolitical conflicts.
“What if Russia wants it a couple of degrees warmer, and India a couple of degrees cooler?” asked Alan Robock, a professor at Rutgers University, in the Bulletin of the Atomic Scientists in 2008. “Should global climate be reset to preindustrial temperature or kept constant at today’s reading? Would it be possible to tailor the climate of each region of the planet independently without affecting the others? If we proceed with geoengineering, will we provoke future climate wars?”
Revised plans
Yedvab says the pitch deck reflected Stardust’s strategy at a “very early stage in our work,” adding that their thinking has “evolved,” partly in response to consultations with experts in the field.
He says that the company will have the technological capacity to move ahead with demonstrations and deployments on the timelines it laid out but adds, “That’s a necessary but not sufficient condition.”
“Governments will need to decide where they want to take it, if at all,” he says. “It could be a case that they will say ‘We want to move forward.’ It could be a case that they will say ‘We want to wait a few years.’”
“It’s for them to make these decisions,” he says.
Yedvab acknowledges that the company has conducted flights in the lower atmosphere to test its monitoring system, using white smoke as a simulant for its particles, as the Wall Street Journalreported last year. It’s also done indoor tests of the dispersion system and its particles in a wind tunnel set up within its facility.
But in response to criticisms like the ones above, Yedvab says the company hasn’t conducted outdoor particle experiments and won’t move forward with them until it has approval from governments.
“Eventually, there will be a need to conduct outdoor testing,” he says. “There is no way you can validate any solution without outdoor testing.” But such testing of sunlight reflection technology, he says, “should be done only working together with government and under these supervisions.”
Generating returns
Stardust may be willing to wait for governments to be ready to deploy its system, but there’s no guarantee that its investors will have the same patience. In accepting tens of millions in venture capital, Stardust may now face financial pressures that could “drive the timelines,” says Gernot Wagner, a climate economist at Columbia University.
And that raises a different set of concerns.
Obliged to deliver returns, the company might feel it must strive to convince government leaders that they should pay for its services, Talati says.
“The whole point of having companies and investors is you want your thing to be used,” she says. “There’s a massive incentive to lobby countries to use it, and that’s the whole danger of having for-profit companies here.”
She argues those financial incentives threaten to accelerate the use of solar geoengineering ahead of broader international agreements and elevate business interests above the broader public good.
Stardust has “quietly begun lobbying on Capitol Hill” and has hired the law firm Holland & Knight, according to Politico.
It has also worked with Red Duke Strategies, a consulting firm based in McLean, Virginia, to develop “strategic relationships and communications that promote understanding and enable scientific testing,” according to a case study on the company’s website.
“The company needed to secure both buy-in and support from the United States government and other influential stakeholders to move forward,” Red Duke states. “This effort demanded a well-connected and authoritative partner who could introduce Stardust to a group of experts able to research, validate, deploy, and regulate its SRM technology.”
Red Duke didn’t respond to an inquiry from MIT Technology Review. Stardust says its work with the consulting firm was not a government lobbying effort.
Yedvab acknowledges that the company is meeting with government leaders in the US, Europe, its own region, and the Global South. But he stresses that it’s not asking any country to contribute funding or to sign off on deployments at this stage. Instead, it’s making the case for nations to begin crafting policies to regulate solar geoengineering.
“When we speak to policymakers—and we speak to policymakers; we don’t hide it—essentially, what we tell them is ‘Listen, there is a solution,’” he says. “‘It’s not decades away—it’s a few years away. And it’s your role as policymakers to set the rules of this field.’”
“Any solution needs checks and balances,” he says. “This is how we see the checks and balances.”
He says the best-case scenario is still a rollout of clean energy technologies that accelerates rapidly enough to drive down emissions and curb climate change.
“We are perfectly fine with building an option that will sit on the shelf,” he says. “We’ll go and do something else. We have a great team and are confident that we can find also other problems to work with.”
He says the company’s investors are aware of and comfortable with that possibility, supportive of the principles that will guide Stardust’s work, and willing to wait for regulations and government contracts.
Lowercarbon Capital didn’t respond to an inquiry from MIT Technology Review.
‘Sentiment of hope’
Others have certainly imagined the alternative scenario Yedvab raises: that nations will increasingly support the idea of geoengineering in the face of mounting climate catastrophes.
In Kim Stanley Robinson’s 2020 novel, TheMinistry for the Future, India unilaterally forges ahead with solar geoengineering following a heat wave that kills millions of people.
Wagner sketched a variation on that scenario in his 2021 book, Geoengineering: The Gamble, speculating that a small coalition of nations might kick-start a rapid research and deployment program as an emergency response to escalating humanitarian crises. In his version, the Philippines offers to serve as the launch site after a series of super-cyclones batter the island nation, forcing millions from their homes.
It’s impossible to know today how the world will react if one nation or a few go it alone, or whether nations could come to agreement on where the global temperature should be set.
But the lure of solar geoengineering could become increasingly enticing as more and more nations endure mass suffering, starvation, displacement, and death.
“We understand that probably it will not be perfect,” Yedvab says. “We understand all the obstacles, but there is this sentiment of hope, or cautious hope, that we have a way out of this dark corridor we are currently in.”
“I think that this sentiment of hope is something that gives us a lot of energy to move on forward,” he adds.
Sometimes geothermal hot spots are obvious, marked by geysers and hot springs on the planet’s surface. But in other places, they’re obscured thousands of feet underground. Now AI could help uncover these hidden pockets of potential power.
A startup company called Zanskar announced today that it’s used AI and other advanced computational methods to uncover a blind geothermal system—meaning there aren’t signs of it on the surface—in the western Nevada desert. The company says it’s the first blind system that’s been identified and confirmed to be a commercial prospect in over 30 years.
Historically, finding new sites for geothermal power was a matter of brute force. Companies spent a lot of time and money drilling deep wells, looking for places where it made sense to build a plant.
Zanskar’s approach is more precise. With advancements in AI, the company aims to “solve this problem that had been unsolvable for decades, and go and finally find those resources and prove that they’re way bigger than previously thought,” says Carl Hoiland, the company’s cofounder and CEO.
To support a successful geothermal power plant, a site needs high temperatures at an accessible depth and space for fluid to move through the rock and deliver heat. In the case of the new site, which the company calls Big Blind, the prize is a reservoir that reaches 250 °F at about 2,700 feet below the surface.
As electricity demand rises around the world, geothermal systems like this one could provide a source of constant power without emitting the greenhouse gases that cause climate change.
The company has used its technology to identify many potential hot spots. “We have dozens of sites that look just like this,” says Joel Edwards, Zanskar’s cofounder and CTO. But for Big Blind, the team has done the fieldwork to confirm its model’s predictions.
The first step to identifying a new site is to use regional AI models to search large areas. The team trains models on known hot spots and on simulations it creates. Then it feeds in geological, satellite, and other types of data, including information about fault lines. The models can then predict where potential hot spots might be.
One strength of using AI for this task is that it can handle the immense complexity of the information at hand. “If there’s something learnable in the earth, even if it’s a very complex phenomenon that’s hard for us humans to understand, neural nets are capable of learning that, if given enough data,” Hoiland says.
Once models identify a potential hot spot, a field crew heads to the site, which might be roughly 100 square miles or so, and collects additional information through techniques that include drilling shallow holes to look for elevated underground temperatures.
In the case of Big Blind, this prospecting information gave the company enough confidence to purchase a federal lease, allowing it to develop a geothermal plant. With that lease secured, the team returned with large drill rigs and drilled thousands of feet down in July and August. The workers found the hot, permeable rock they expected.
Next they must secure permits to build and connect to the grid and line up the investments needed to build the plant. The team will also continue testing at the site, including long-term testing to track heat and water flow.
“There’s a tremendous need for methodology that can look for large-scale features,” says John McLennan, technical lead for resource management at Utah FORGE, a national lab field site for geothermal energy funded by the US Department of Energy. The new discovery is “promising,” McLennan adds.
Big Blind is Zanskar’s first confirmed discovery that wasn’t previously explored or developed, but the company has used its tools for other geothermal exploration projects. Earlier this year, it announced a discovery at a site that had previously been explored by the industry but not developed. The company also purchased and revived a geothermal power plant in New Mexico.
And this could be just the beginning for Zanskar. As Edwards puts it, “This is the start of a wave of new, naturally occurring geothermal systems that will have enough heat in place to support power plants.”
As many of us are ramping up with shopping, baking, and planning for the holiday season, nuclear power plants are also getting ready for one of their busiest seasons of the year.
Here in the US, nuclear reactors follow predictable seasonal trends. Summer and winter tend to see the highest electricity demand, so plant operators schedule maintenance and refueling for other parts of the year.
This scheduled regularity might seem mundane, but it’s quite the feat that operational reactors are as reliable and predictable as they are. It leaves some big shoes to fill for next-generation technology hoping to join the fleet in the next few years.
Generally, nuclear reactors operate at constant levels, as close to full capacity as possible. In 2024, for commercial reactors worldwide, the average capacity factor—the ratio of actual energy output to the theoretical maxiumum—was 83%. North America rang in at an average of about 90%.
(I’ll note here that it’s not always fair to just look at this number to compare different kinds of power plants—natural-gas plants can have lower capacity factors, but it’s mostly because they’re more likely to be intentionally turned on and off to help meet uneven demand.)
Those high capacity factors also undersell the fleet’s true reliability—a lot of the downtime is scheduled. Reactors need to refuel every 18 to 24 months, and operators tend to schedule those outages for the spring and fall, when electricity demand isn’t as high as when we’re all running our air conditioners or heaters at full tilt.
Take a look at this chart of nuclear outages from the US Energy Information Administration. There are some days, especially at the height of summer, when outages are low, and nearly all commercial reactors in the US are operating at nearly full capacity. On July 28 of this year, the fleet was operating at 99.6%. Compare that with the 77.6% of capacity on October 18, as reactors were taken offline for refueling and maintenance. Now we’re heading into another busy season, when reactors are coming back online and shutdowns are entering another low point.
That’s not to say all outages are planned. At the Sequoyah nuclear power plant in Tennessee, a generator failure in July 2024 took one of two reactors offline, an outage that lasted nearly a year. (The utility also did some maintenance during that time to extend the life of the plant.) Then, just days after that reactor started back up, the entire plant had to shut down because of low water levels.
And who can forget the incident earlier this year when jellyfish wreaked havoc on not one but two nuclear power plants in France? In the second instance, the squishy creatures got into the filters of equipment that sucks water out of the English Channel for cooling at the Paluel nuclear plant. They forced the plant to cut output by nearly half, though it was restored within days.
Barring jellyfish disasters and occasional maintenance, the global nuclear fleet operates quite reliably. That wasn’t always the case, though. In the 1970s, reactors operated at an average capacity factor of just 60%. They were shut down nearly as often as they were running.
The fleet of reactors today has benefited from decades of experience. Now we’re seeing a growing pool of companies aiming to bring new technologies to the nuclear industry.
Next-generation reactors that use new materials for fuel or cooling will be able to borrow some lessons from the existing fleet, but they’ll also face novel challenges.
That could mean early demonstration reactors aren’t as reliable as the current commercial fleet at first. “First-of-a-kind nuclear, just like with any other first-of-a-kind technologies, is very challenging,” says Koroush Shirvan, a professor of nuclear science and engineering at MIT.
That means it will probably take time for molten-salt reactors or small modular reactors, or any of the other designs out there to overcome technical hurdles and settle into their own rhythm. It’s taken decades to get to a place where we take it for granted that the nuclear fleet can follow a neat seasonal curve based on electricity demand.
There will always be hurricanes and electrical failures and jellyfish invasions that cause some unexpected problems and force nuclear plants (or any power plants, for that matter) to shut down. But overall, the fleet today operates at an extremely high level of consistency. One of the major challenges ahead for next-generation technologies will be proving that they can do the same.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
If we didn’t have pictures and videos, I almost wouldn’t believe the imagery that came out of this year’s UN climate talks.
Over the past few weeks in Belem, Brazil, attendees dealt with oppressive heat and flooding, and at one point a literal fire broke out, delaying negotiations. The symbolism was almost too much to bear.
While many, including the president of Brazil, framed this year’s conference as one of action, the talks ended with a watered-down agreement. The final draft doesn’t even include the phrase “fossil fuels.”
As emissions and global temperatures reach record highs again this year, I’m left wondering: Why is it so hard to formally acknowledge what’s causing the problem?
This is the 30th time that leaders have gathered for the Conference of the Parties, or COP, an annual UN conference focused on climate change. COP30 also marks 10 years since the gathering that produced the Paris Agreement, in which world powers committed to limiting global warming to “well below” 2.0 °C above preindustrial levels, with a goal of staying below the 1.5 °C mark. (That’s 3.6 °F and 2.7 °F, respectively, for my fellow Americans.)
Before the conference kicked off this year, host country Brazil’s president, Luiz Inácio Lula da Silva, cast this as the “implementation COP” and called for negotiators to focus on action, and specifically to deliver a road map for a global transition away from fossil fuels.
The science is clear—burning fossil fuels emits greenhouse gases and drives climate change. Reports have shown that meeting the goal of limiting warming to 1.5 °C would require stopping new fossil-fuel exploration and development.
The problem is, “fossil fuels” might as well be a curse word at global climate negotiations. Two years ago, fights over how to address fossil fuels brought talks at COP28 to a standstill. (It’s worth noting that the conference was hosted in Dubai in the UAE, and the leader was literally the head of the country’s national oil company.)
The agreement in Dubai ended up including a line that called on countries to transition away from fossil fuels in energy systems. It was short of what many advocates wanted, which was a more explicit call to phase out fossil fuels entirely. But it was still hailed as a win. As I wrote at the time: “The bar is truly on the floor.”
And yet this year, it seems we’ve dug into the basement.
At one point about 80 countries, a little under half of those present, demanded a concrete plan to move away from fossil fuels.
But oil producers like Saudi Arabia were insistent that fossil fuels not be singled out. Other countries, including some in Africa and Asia, also made a very fair point: Western nations like the US have burned the most fossil fuels and benefited from it economically. This contingent maintains that legacy polluters have a unique responsibility to finance the transition for less wealthy and developing nations rather than simply barring them from taking the same development route.
The US, by the way, didn’t send a formal delegation to the talks, for the first time in 30 years. But the absence spoke volumes. In a statement to the New York Times that sidestepped the COP talks, White House spokesperson Taylor Rogers said that president Trump had “set a strong example for the rest of the world” by pursuing new fossil-fuel development.
To sum up: Some countries are economically dependent on fossil fuels, some don’t want to stop depending on fossil fuels without incentives from other countries, and the current US administration would rather keep using fossil fuels than switch to other energy sources.
All those factors combined help explain why, in its final form, COP30’s agreement doesn’t name fossil fuels at all. Instead, there’s a vague line that leaders should take into account the decisions made in Dubai, and an acknowledgement that the “global transition towards low greenhouse-gas emissions and climate-resilient development is irreversible and the trend of the future.”
Hopefully, that’s true. But it’s concerning that even on the world’s biggest stage, naming what we’re supposed to be transitioning away from and putting together any sort of plan to actually do it seems to be impossible.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
One of the dominant storylines I’ve been following through 2025 is electricity—where and how demand is going up, how much it costs, and how this all intersects with that topic everyone is talking about: AI.
Last week, the International Energy Agency released the latest version of the World Energy Outlook, the annual report that takes stock of the current state of global energy and looks toward the future. It contains some interesting insights and a few surprising figures about electricity, grids, and the state of climate change. So let’s dig into some numbers, shall we?
We’re in the age of electricity
Energy demand in general is going up around the world as populations increase and economies grow. But electricity is the star of the show, with demand projected to grow by 40% in the next 10 years.
China has accounted for the bulk of electricity growth for the past 10 years, and that’s going to continue. But emerging economies outside China will be a much bigger piece of the pie going forward. And while advanced economies, including the US and Europe, have seen flat demand in the past decade, the rise of AI and data centers will cause demand to climb there as well.
Air-conditioning is a major source of rising demand. Growing economies will give more people access to air-conditioning; income-driven AC growth will add about 330 gigawatts to global peak demand by 2035. Rising temperatures will tack on another 170 GW in that time. Together, that’s an increase of over 10% from 2024 levels.
AI is a local story
This year, AI has been the story that none of us can get away from. One number that jumped out at me from this report: In 2025, investment in data centers is expected to top $580 billion. That’s more than the $540 billion spent on the global oil supply.
It’s no wonder, then, that the energy demands of AI are in the spotlight. One key takeaway is that these demands are vastly different in different parts of the world.
Data centers still make up less than 10% of the projected increase in total electricity demand between now and 2035. It’s not nothing, but it’s far outweighed by sectors like industry and appliances, including air conditioners. Even electric vehicles will add more demand to the grid than data centers.
But AI will be the factor for the grid in some parts of the world. In the US, data centers will account for half the growth in total electricity demand between now and 2030.
And as we’ve covered in this newsletter before, data centers present a unique challenge, because they tend to be clustered together, so the demand tends to be concentrated around specific communities and on specific grids. Half the data center capacity that’s in the pipeline is close to large cities.
Look out for a coal crossover
As we ask more from our grid, the key factor that’s going to determine what all this means for climate change is what’s supplying the electricity we’re using.
As it stands, the world’s grids still primarily run on fossil fuels, so every bit of electricity growth comes with planet-warming greenhouse-gas emissions attached. That’s slowly changing, though.
Together, solar and wind were the leading source of electricity in the first half of this year, overtaking coal for the first time. Coal use could peak and begin to fall by the end of this decade.
Nuclear could play a role in replacing fossil fuels: After two decades of stagnation, the global nuclear fleet could increase by a third in the next 10 years. Solar is set to continue its meteoric rise, too. Of all the electricity demand growth we’re expecting in the next decade, 80% is in places with high-quality solar irradiation—meaning they’re good spots for solar power.
Ultimately, there are a lot of ways in which the world is moving in the right direction on energy. But we’re far from moving fast enough. Global emissions are, once again, going to hit a record high this year. To limit warming and prevent the worst effects of climate change, we need to remake our energy system, including electricity, and we need to do it faster.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
Last week, we hosted EmTech MIT, MIT Technology Review’s annual flagship conference in Cambridge, Massachusetts. Over the course of three days of main-stage sessions, I learned about innovations in AI, biotech, and robotics.
But as you might imagine, some of this climate reporter’s favorite moments came in the climate sessions. I was listening especially closely to my colleague James Temple’s discussion with Lucia Tian, head of advanced energy technologies at Google.
They spoke about the tech giant’s growing energy demand and what sort of technologies the company is looking to to help meet it. In case you weren’t able to join us, let’s dig into that session and consider how the company is thinking about energy in the face of AI’s rapid rise.
I’ve been closely following Google’s work in energy this year. Like the rest of the tech industry, the company is seeing ballooning electricity demand in its data centers. That could get in the way of a major goal that Google has been talking about for years.
See, back in 2020, the company announced an ambitious target: by 2030, it aimed to run on carbon-free energy 24-7. Basically, that means Google would purchase enough renewable energy on the grids where it operates to meet its entire electricity demand, and the purchases would match up so the electricity would have to be generated when the company was actually using energy. (For more on the nuances of Big Tech’s renewable-energy pledges, check out James’s piece from last year.)
Google’s is an ambitious goal, and on stage, Tian said that the company is still aiming for it but acknowledged that it’s looking tough with the rise of AI.
“It was always a moonshot,” she said. “It’s something very, very hard to achieve, and it’s only harder in the face of this growth. But our perspective is, if we don’t move in that direction, we’ll never get there.”
Google’s total electricity demand more than doubled from 2020 to 2024, according to its latest Environmental Report. As for that goal of 24-7 carbon-free energy? The company is basically treading water. While it was at 67% for its data centers in 2020, last year it came in at 66%.
Not going backwards is something of an accomplishment, given the rapid growth in electricity demand. But it still leaves the company some distance away from its finish line.
To close the gap, Google has been signing what feels like constant deals in the energy space. Two recent announcements that Tian talked about on stage were a project involving carbon capture and storage at a natural-gas plant in Illinois and plans to reopen a shuttered nuclear power plant in Iowa.
Let’s start with carbon capture. Google signed an agreement to purchase most of the electricity from a new natural-gas plant, which will capture and store about 90% of its carbon dioxide emissions.
That announcement was controversial, with critics arguing that carbon capture keeps fossil-fuel infrastructure online longer and still releases greenhouse gases and other pollutants into the atmosphere.
One question that James raised on stage: Why build a new natural-gas plant rather than add equipment to an already existing facility? Tacking on equipment to an operational plant would mean cutting emissions from the status quo, rather than adding entirely new fossil-fuel infrastructure.
The company did consider many existing plants, Tian said. But, as she put it, “Retrofits aren’t going to make sense everywhere.” Space can be limited at existing plants, for example, and many may not have the right geology to store carbon dioxide underground.
“We wanted to lead with a project that could prove this technology at scale,” Tian said. This site has an operational Class VI well, the type used for permanent sequestration, she added, and it also doesn’t require a big pipeline buildout.
Tian also touched on the company’s recent announcement that it’s collaborating with NextEra Energy to reopen Duane Arnold Energy Center, a nuclear power plant in Iowa. The company will purchase electricity from that plant, which is scheduled to reopen in 2029.
As I covered in a story earlier this year, Duane Arnold was basically the final option in the US for companies looking to reopen shuttered nuclear power plants. “Just a few years back, we were still closing down nuclear plants in this country,” Tian said on stage.
While each reopening will look a little different, Tian highlighted the groups working to restart the Palisades plant in Michigan, which was the first reopening to be announced, last spring. “They’re the real heroes of the story,” she said.
I’m always interested to get a peek behind the curtain at how Big Tech is thinking about energy. I’m skeptical but certainly interested to see how Google’s, and the rest of the industry’s, goals shape up over the next few years.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.