❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

κΈ°μ—… μ „λ°˜μ— μŠ€λ©°λ“œλŠ” 에이전틱 AIΒ·Β·Β·λ³€ν™”ν•˜λŠ” μ•„ν‚€ν…νŠΈμ˜ μ—­ν• 

4 December 2025 at 00:36

μ—”ν„°ν”„λΌμ΄μ¦ˆ μ•„ν‚€ν…νŠΈ κ΄€λ ¨ 기획 κΈ°μ‚¬μ—μ„œ μƒμ„±ν˜• AIκ°€ μ–ΈκΈ‰λœ 적은 μžˆμ§€λ§Œ, κΈ°μ—… 기술 μ „λ°˜μ— λ―ΈμΉ˜λŠ” 영ν–₯은 μ§€κΈˆκΉŒμ§€ 크게 λ“œλŸ¬λ‚˜μ§€ μ•Šμ•˜λ‹€. κ·ΈλŸ¬λ‚˜ μ§€κΈˆμ€ μ£Όμš” μ„œλΉ„μŠ€ν˜• μ†Œν”„νŠΈμ›¨μ–΄(SaaS) 기업이 에이전틱 AI μ†”λ£¨μ…˜μ„ μž‡λ‹¬μ•„ λ‚΄λ†“μœΌλ©΄μ„œ μ•„ν‚€ν…μ²˜μ™€ μ•„ν‚€ν…νŠΈ μ—­ν•  μžμ²΄κ°€ λ³€ν™”ν•˜κ³  μžˆλ‹€. κ·Έλ ‡λ‹€λ©΄ μ§€κΈˆ CIO와 μ•„ν‚€ν…νŠΈλŠ” 무엇을 μ•Œμ•„μ•Ό ν• κΉŒ?

κΈ°μ—…, 특히 CEOλŠ” 생산성을 높이고 μ„±μž₯μ„Έλ₯Ό νšŒλ³΅ν•˜κΈ° μœ„ν•΄ AI λ„μž…μ΄ ν•„μš”ν•˜λ‹€κ³  κΎΈμ€€νžˆ λͺ©μ†Œλ¦¬λ₯Ό λ‚΄μ™”κ³ , 뢄석가듀도 같은 μ˜κ²¬μ„ μ „ν•˜κ³  μžˆλ‹€. 예λ₯Ό λ“€μ–΄ κ°€νŠΈλ„ˆλŠ” ν–₯ν›„ 5λ…„ λ™μ•ˆ IT μ—…λ¬΄μ˜ 75%κ°€ AIλ₯Ό ν™œμš©ν•œ 직원에 μ˜ν•΄ μˆ˜ν–‰λ  것이라고 μ „λ§ν–ˆλ‹€. μ΄λŠ” μƒˆλ‘œμš΄ μ‹œμž₯ μ§„μΆœ, μΆ”κ°€ μ œν’ˆΒ·μ„œλΉ„μŠ€ 개발, λ§ˆμ§„μ„ 높일 κΈ°λŠ₯ ν™•μΆ©μ²˜λŸΌ IT 업무가 μƒˆλ‘œμš΄ κ°€μΉ˜λ₯Ό λ§Œλ“€μ–΄λ‚΄λ„λ‘ 적극적으둜 λ‚˜μ„œμ•Ό ν•œλ‹€λŠ” 의미일 수 μžˆλ‹€.

생산성이 이처럼 근본적으둜 λ³€ν™”ν•œλ‹€λ©΄, κΈ°μ—…μ—λŠ” λΉ„μ¦ˆλ‹ˆμŠ€ ν”„λ‘œμ„ΈμŠ€μ™€ 이λ₯Ό μš΄μ˜ν•˜λŠ” 기술 μ „λ°˜μ— λŒ€ν•œ μƒˆλ‘œμš΄ κ³„νšμ΄ ν•„μš”ν•˜λ‹€. 졜근 사둀듀은 기업이 μƒˆλ‘œμš΄ 운영 λͺ¨λΈμ„ λ„μž…ν•˜μ§€ μ•ŠμœΌλ©΄ 기술 투자 효과λ₯Ό μ œλŒ€λ‘œ μ–»κΈ° μ–΄λ ΅λ‹€λŠ” 점을 보여주고 μžˆλ‹€.

에이전틱 AI λ„μž…μ€ κΈ°μ—…μ˜ ν”„λ‘œμ„ΈμŠ€λΏ μ•„λ‹ˆλΌ μ†Œν”„νŠΈμ›¨μ–΄ 개발 방식, λ§žμΆ€ν™”, 기술 κ΅¬ν˜„ λ°©μ‹κΉŒμ§€ λͺ¨λ‘ λ°”κΏ€ κ°€λŠ₯성이 λ†’λ‹€. λ”°λΌμ„œ μ•„ν‚€ν…νŠΈλŠ” μ†Œν”„νŠΈμ›¨μ–΄κ°€ μ–΄λ–»κ²Œ 개발되고 μ‘°μ •λ˜λ©° λ°°ν¬λ˜λŠ”μ§€ μž¬μ„€κ³„ν•˜λŠ” μ΅œμ „μ„ μ— μ„œκ²Œ λœλ‹€.

기술 업계 μΌλΆ€μ—μ„œλŠ” μƒμ„±ν˜• AIκ°€ κΈ°μ—…μš© μ†Œν”„νŠΈμ›¨μ–΄μ™€ 이λ₯Ό μ œκ³΅ν•˜λŠ” λŒ€ν˜• 벀더에 근본적 λ³€ν™”λ₯Ό κ°€μ Έμ˜¬ κ²ƒμœΌλ‘œ 보고 μžˆλ‹€. κ·ΈλŸ¬λ‚˜ ν¬λ ˆμŠ€ν„°(Forrester) 총괄 μ• λ„λ¦¬μŠ€νŠΈ 디에고 둜 μ£Όλ””μ²΄λŠ” β€œAIκ°€ λ³Έκ²©ν™”λœλ‹€κ³  ν•΄μ„œ μ†Œν”„νŠΈμ›¨μ–΄ 산업이 λΆ•κ΄΄λœλ‹€λŠ” μ£Όμž₯은 ν„°λ¬΄λ‹ˆμ—†λ‹€. 그런 결둠을 λ‚΄λ €λ©΄ AI에 κ°€μž₯ 낙관적인 μ „λ¬Έκ°€μ˜ μ˜ˆμƒμ‘°μ°¨ λ›°μ–΄λ„˜λŠ” μˆ˜μ€€μ˜ μ™„μ „λ¬΄κ²°ν•œ AIκ°€ μ „μ œλΌμ•Ό ν•œλ‹€β€λΌκ³  λ§ν–ˆλ‹€. 둜 μ£Όλ””μ²΄λŠ” 졜근 μ—΄λ¦° 원 μ»¨νΌλŸ°μŠ€μ—μ„œ λΉ„μ¦ˆλ‹ˆμŠ€ 기술 리더 4,000λͺ…μ—κ²Œ β€œλ³€ν™”λŠ” λΆ„λͺ… μ§„ν–‰λ˜κ³  μžˆμ§€λ§Œ, μ΄λŠ” 졜근 μΆ•μ λœ μ„±κ³Όλ₯Ό 기반으둜 μΌμ–΄λ‚˜λŠ” 것”이라고 μ„€λͺ…ν–ˆλ‹€.

둜 μ£Όλ””μ²΄λŠ” β€œμ• μžμΌμ€ 쑰직 κ°„ μ‘°μœ¨μ„ κ°œμ„ ν–ˆκ³ , λ°λΈŒμ˜΅μŠ€λŠ” 개발과 운영 μ‚¬μ΄μ˜ 벽을 ν—ˆλ¬Όμ—ˆλ‹€. μ΄λŠ” λͺ¨λ‘ λͺ©ν‘œκ°€ κ°™μ•˜λ‹€. λ°”λ‘œ 아이디어와 κ΅¬ν˜„ μ‚¬μ΄μ˜ 간극을 μ€„μ΄λŠ” 것이닀”라고 λ§ν–ˆλ‹€. κ·ΈλŠ” AIκ°€ κΈ°μ—…μš© μ†Œν”„νŠΈμ›¨μ–΄ 개발 방식을 λ°”κΏ€ κ²ƒμ΄λΌλŠ” 점을 λΆ€μ •ν•˜μ§€λŠ” μ•Šμ•˜μ§€λ§Œ, μ• μžμΌκ³Ό λ°λΈŒμ˜΅μŠ€κ°€ κ·Έλž¬λ“― AI도 μ†Œν”„νŠΈμ›¨μ–΄ 개발 생애주기λ₯Ό κ°œμ„ ν•˜κ³  κ²°κ΅­ μ•„ν‚€ν…μ²˜ μ „λ°˜μ„ κ³ λ„ν™”ν•˜κ²Œ 될 것이라고 κ°•μ‘°ν–ˆλ‹€. λ‹€λ₯Έ 점은 λ³€ν™”μ˜ 속도닀. μ½˜ν…μΈ  관리 μ†Œν”„νŠΈμ›¨μ–΄ κΈ°μ—… μ—„λΈŒλΌμ½”μ˜ AI μŠ€νƒœν”„ μ—”μ§€λ‹ˆμ–΄ ν•„ νœ˜νƒœμ»€λŠ” β€œκ°œλ°œ 역사상 이런 μ†λ„μ˜ λ³€ν™”λŠ” μ—†μ—ˆλ‹€β€λΌκ³  μ§„λ‹¨ν–ˆλ‹€.

λ³΅μž‘μ„± 증가와 ν”„λ‘œμ„ΈμŠ€ λ³€ν™”

μ†Œν”„νŠΈμ›¨μ–΄ 개발 및 λ§žμΆ€ν™” μ£ΌκΈ°κ°€ λ°”λ€Œκ³  에이전틱 μ• ν”Œλ¦¬μΌ€μ΄μ…˜μ΄ λ³΄νŽΈν™”λ˜λ©΄μ„œ, μ•„ν‚€ν…νŠΈλŠ” λ³΅μž‘μ„±κ³Ό μƒˆλ‘œμš΄ λΉ„μ¦ˆλ‹ˆμŠ€ ν”„λ‘œμ„ΈμŠ€λ₯Ό 염두에 λ‘” κ³„νšμ„ μˆ˜λ¦½ν•΄μ•Ό ν•˜λŠ” 상황이닀. 에이전틱 AIκ°€ μ§€κΈˆκΉŒμ§€ 직원이 μˆ˜λ™μœΌλ‘œ μ²˜λ¦¬ν•˜λ˜ 업무λ₯Ό 맑게 λœλ‹€λ©΄ κΈ°μ‘΄ λΉ„μ¦ˆλ‹ˆμŠ€ ν”„λ‘œμ„ΈμŠ€λ₯Ό κ·ΈλŒ€λ‘œ μœ μ§€ν•˜κΈ°λŠ” μ–΄λ ΅λ‹€.

둜 μ£Όλ””μ²΄λŠ” μ•„λ§ˆμ‘΄μ›Ήμ„œλΉ„μŠ€(AWS) 같은 AI 선도 기업이 λŒ€κ·œλͺ¨ 인λ ₯ 감좕에 λ‚˜μ„  이후 κ³Όμ—΄λœ λ…ΌμŸμ— λ‹€μ‹œ ν•œλ²ˆ μ˜κ²¬μ„ μ „ν–ˆλ‹€. κ·ΈλŠ” 원 μ»¨νΌλŸ°μŠ€μ—μ„œ β€œλͺ¨λ“  직원이 μžμ‹ μ˜ 일을 λ„μ™€μ£ΌλŠ” 봇 ν•˜λ‚˜μ”©μ„ κ°–κ²Œ 될 κ²ƒμ΄λΌλŠ” 생각은 λ‹¨μˆœν•œ λ°œμƒμ΄λ‹€β€λΌλ©°, β€œκΈ°μ—…μ€ 각 μ—­ν• κ³Ό λΉ„μ¦ˆλ‹ˆμŠ€ ν”„λ‘œμ„ΈμŠ€λ₯Ό λ©΄λ°€νžˆ 뢄석해, μ μ ˆν•œ μž‘μ—…μ— μ μ ˆν•œ μ—μ΄μ „νŠΈλ₯Ό λ°°μΉ˜ν•˜λŠ” 데 μ˜ˆμ‚°κ³Ό μžμ›μ„ μ“°κ³  μžˆλŠ”μ§€ 확인해야 ν•œλ‹€. 이 과정을 κ±°μΉ˜μ§€ μ•ŠμœΌλ©΄ ν•„μš”ν•˜μ§€ μ•Šμ€ 곳에 에이전틱 κΈ°μˆ μ„ λ„μž…ν•΄ λ³΅μž‘ν•œ 업무λ₯Ό μ²˜λ¦¬ν•˜μ§€λ„ λͺ»ν•˜λ©΄μ„œ κΈ°μ—…μ˜ ν΄λΌμš°λ“œ λΉ„μš©λ§Œ λŠ˜λ¦¬λŠ” κ²°κ³Όλ₯Ό μ΄ˆλž˜ν•˜κ²Œ λœλ‹€β€λΌκ³  κ²½κ³ ν–ˆλ‹€.

AI 기반 λ‘œμš°μ½”λ“œ ν”Œλž«νΌ κΈ°μ—… μ•„μ›ƒμ‹œμŠ€ν…œμ¦ˆ(OutSystems)의 CIO ν‹°μ•„κ³  μ•„μ œλ² λ‘λŠ” β€œμ€‘μš”ν•œ 정보에 μ ‘κ·Όν•  수 μžˆλŠ” μ—μ΄μ „νŠΈλ₯Ό λ§Œλ“œλŠ” 일은 생각보닀 쉽닀”라고 λ§ν–ˆλ‹€. κ·ΈλŠ” β€œκ·Έλž˜μ„œ 데이터 ꡬ뢄이 ν•„μš”ν•˜λ‹€. μ—μ΄μ „νŠΈλ₯Ό 배포할 λ•ŒλŠ” 이λ₯Ό ν†΅μ œν•  수 μžˆμ–΄μ•Ό ν•œλ‹€. μ—μ΄μ „νŠΈκ°€ λ§Žμ•„μ§ˆμˆ˜λ‘ λΉ„μš©λ„ ν•¨κ»˜ λŠ˜μ–΄λ‚œλ‹€β€λΌκ³  μ„€λͺ…ν–ˆλ‹€.

ν•˜μ§€λ§Œ νœ˜νƒœμ»€λŠ” 결정둠적 방식과 비결정둠적 방식 μ‚¬μ΄μ˜ 차이가 무엇보닀 크닀고 μ§€μ ν–ˆλ‹€. 비결정둠적 방식은 κ²°κ³Όκ°€ 맀번 λ‹¬λΌμ§ˆ 수 있기 λ•Œλ¬Έμ—, 항상 λ™μΌν•œ κ²°κ³Όλ₯Ό λ‚΄λŠ” 결정둠적 μ—μ΄μ „νŠΈλ₯Ό μΌμ’…μ˜ κ°€λ“œλ ˆμΌλ‘œ 둬야 ν•œλ‹€λŠ” 것이닀. κ·ΈλŠ” μ–΄λ–€ λΉ„μ¦ˆλ‹ˆμŠ€ κ²°κ³Όλ₯Ό 결정둠적·비결정둠적 방식 쀑 어디에 λ‘˜ 것인지 μ •μ˜ν•˜λŠ” 일이 μ•„ν‚€ν…μ²˜μ˜ 핡심 역할이라고 μ„€λͺ…ν–ˆλ‹€. λ˜ν•œ νœ˜νƒœμ»€λŠ” μ—¬κΈ°μ„œ AIκ°€ 쑰직의 λΉˆν‹ˆμ„ λ©”μš°λŠ” 데 도움을 쀄 수 μžˆλ‹€κ³  λ§λΆ™μ˜€λ‹€. μ•„ν‚€ν…νŠΈλ‘œ μΌν•œ κ²½ν—˜μ΄ μžˆλŠ” νœ˜νƒœμ»€λŠ” 기업이 AIλ₯Ό 적극 μ‹€ν—˜ν•΄ μžμ‚¬ μ•„ν‚€ν…μ²˜μ— μ–΄λ–€ 이점을 쀄 수 μžˆλŠ”μ§€, 그리고 ꢁ극적으둜 λΉ„μ¦ˆλ‹ˆμŠ€ 성과에 μ–΄λ–€ 영ν–₯을 λ―ΈμΉ  수 μžˆλŠ”μ§€ ν™•μΈν•˜λŠ” 일이 맀우 μ€‘μš”ν•΄μ§ˆ 것이라고 κ°•μ‘°ν–ˆλ‹€.

κ°€νŠΈλ„ˆ μ• λ„λ¦¬μŠ€νŠΈ λŒ€λ¦΄ ν”ŒλŸ¬λ¨Έμ™€ μ•Œλ¦¬μ‹œμ•„ λ©€λŸ¬λ¦¬λŠ” β€œμ‹€μ§ˆμ  경쟁λ ₯을 ν™•λ³΄ν•˜λŠ” 길은 κ³Όμž₯된 κΈ°λŒ€λ₯Ό μ«“κ±°λ‚˜ AI의 잠재λ ₯을 κΉŽμ•„λ‚΄λ¦¬λŠ” 데 μžˆμ§€ μ•Šλ‹€. κ°€μΉ˜λ₯Ό μ°½μΆœν•˜λŠ” 쀑간지점을 μ°ΎλŠ” 데 μžˆλ‹€β€λΌκ³  λ°ν˜”λ‹€. 두 μ‚¬λžŒμ€ β€œAI의 κ°€λŠ₯성은 λΆ„λͺ…ν•˜μ§€λ§Œ, κ·Έ κ°€μΉ˜λ₯Ό μ˜¨μ „νžˆ μ‹€ν˜„ν•  κ°€λŠ₯성은 보μž₯λ˜μ§€ μ•ŠλŠ”λ‹€. κ°€νŠΈλ„ˆ 쑰사에 λ”°λ₯΄λ©΄ AI ν”„λ‘œμ νŠΈ κ°€μš΄λ° ROIλ₯Ό λ‹¬μ„±ν•˜λŠ” κ²½μš°λŠ” 5개 쀑 1κ°œμ— λΆˆκ³Όν•˜κ³ , μ§„μ •ν•œ λ³€ν™”λ₯Ό μ΄λ„λŠ” μ‚¬λ‘€λŠ” 50개 쀑 1개 μˆ˜μ€€μ— κ·ΈμΉœλ‹€β€λΌκ³  μ „ν–ˆλ‹€. 또 λ‹€λ₯Έ μ‘°μ‚¬μ—μ„œλŠ” 쑰직의 리더가 λ””μ§€ν„Έ μ „ν™˜μ„ μ œλŒ€λ‘œ 이끌 수 μžˆλ‹€κ³  μ‹ λ’°ν•˜λŠ” 직원이 32%에 λΆˆκ³Όν•˜λ‹€λŠ” 결과도 λ‚˜μ™”λ‹€. 이에 λŒ€ν•΄ μ•„μ œλ² λ‘λŠ” β€œμ—μ΄μ „νŠΈλŠ” μ•„ν‚€ν…μ²˜ λ³΅μž‘μ„±μ„ 더해주기 λ•Œλ¬Έμ— μ•„ν‚€ν…νŠΈ 역할이 더 μ€‘μš”ν•΄μ§€κ³  μžˆλ‹€β€λΌκ³  λΆ„μ„ν–ˆλ‹€.

κ³Όκ±° μ•„ν‚€ν…νŠΈλŠ” 주둜 ν”„λ ˆμž„μ›Œν¬ μ€‘μ‹¬μ˜ 업무λ₯Ό μˆ˜ν–‰ν•΄μ™”λ‹€. νœ˜νƒœμ»€λŠ” 이제 직원, μ• ν”Œλ¦¬μΌ€μ΄μ…˜, λ°μ΄ν„°λ² μ΄μŠ€, 에이전틱 AIκ°€ μ–½ν˜€ μžˆλŠ” μ—”ν„°ν”„λΌμ΄μ¦ˆ ν™˜κ²½μ„ κ΄€λ¦¬ν•˜λ €λ©΄ μƒˆλ‘œμš΄ 기술 λͺ¨λΈμ„ μ΄ν•΄ν•˜κ³  λ„μž…ν•΄μ•Ό ν•œλ‹€κ³  μ„€λͺ…ν–ˆλ‹€. κ·ΈλŠ” 그쀑 ν•˜λ‚˜λ‘œ MCPλ₯Ό μ–ΈκΈ‰ν•˜λ©΄μ„œ, MCPκ°€ AI λͺ¨λΈμ„ 데이터 μ†ŒμŠ€μ™€ μ—°κ²°ν•˜λŠ” ν‘œμ€€ 방식을 μ œκ³΅ν•΄, μ§€κΈˆμ²˜λŸΌ 각기 λ‹€λ₯Έ λ°©μ‹μœΌλ‘œ κ΅¬μ„±λœ 톡합 κ΅¬μ‘°λ‚˜ 검색 증강 생성(RAG) κ΅¬ν˜„μ˜ λ³΅μž‘μ„±μ„ 쀄여쀄 수 μžˆλ‹€κ³  μ–ΈκΈ‰ν–ˆλ‹€. AIλŠ” μ΄λŸ¬ν•œ μƒˆλ‘œμš΄ λ³΅μž‘μ„±μ„ λ‹€λ£¨λŠ” 데도 도움을 μ œκ³΅ν•  전망이닀. 둜 μ£Όλ””μ²΄λŠ” β€œκΈ°νš, μš”κ΅¬μ‚¬ν•­ 관리, 에픽 생성, μ‚¬μš©μž μŠ€ν† λ¦¬ μž‘μ„±, μ½”λ“œ 생성, μ½”λ“œ λ¬Έμ„œν™”, λ²ˆμ—­κΉŒμ§€ μ§€μ›ν•˜λŠ” λ‹€μ–‘ν•œ 도ꡬ가 λ“±μž₯ν•˜κ³  μžˆλ‹€β€λΌκ³  μ„€λͺ…ν–ˆλ‹€.

μƒˆλ‘œμš΄ μ±…μž„

ν¬λ ˆμŠ€ν„°(Forrester) μ‹œλ‹ˆμ–΄ μ• λ„λ¦¬μŠ€νŠΈ μŠ€ν…ŒνŒ λ°˜λ ˆμΌμ€ 이제 에이전틱 AIκ°€ μ£Όμš” μ—”ν„°ν”„λΌμ΄μ¦ˆ μ•„ν‚€ν…μ²˜ λ„κ΅¬μ˜ 핡심 κΈ°λŠ₯으둜 자리 작고 μžˆλ‹€κ³  μ„€λͺ…ν•œλ‹€. κ·ΈλŠ” β€œμ—μ΄μ „νŠΈλŠ” 데이터 검증, μ—­λŸ‰ λ§€ν•‘, μ•„ν‹°νŒ©νŠΈ 생성 같은 μž‘μ—…μ„ μžλ™ν™”ν•΄ μ•„ν‚€ν…νŠΈκ°€ μ „λž΅κ³Ό μ „ν™˜ 업무에 집쀑할 수 있게 ν•œλ‹€β€λΌκ³  λ§ν–ˆλ‹€. λ°˜λ ˆμΌμ€ μ…€λ‘œλ‹ˆμŠ€, SAP μ‹œκ·Έλ‚˜λΉ„μ˜€, μ„œλΉ„μŠ€λ‚˜μš°κ°€ λ„μž…ν•œ 에이전틱 톡합 κΈ°μˆ μ„ μ‚¬λ‘€λ‘œ λ“€μ—ˆλ‹€. νœ˜νƒœμ»€λŠ” μ•„ν‚€ν…νŠΈκ°€ 쑰직을 λ³΄ν˜Έν•˜κ³  에이전틱 AI의 μ˜μ‚¬κ²°μ •κ³Ό 결과에 μ±…μž„μ„ μ§€λŠ” μ—­ν• λ‘œ λ”μš± μ€‘μš”ν•΄μ§€κ³  μžˆλ‹€κ³  μ§„λ‹¨ν–ˆλ‹€.

일뢀 μ•„ν‚€ν…νŠΈλŠ” 이런 λ³€ν™”κ°€ κΈ°μ‘΄ μ „λ¬Έ μ˜μ—­μ„ μ•½ν™”μ‹œν‚¨λ‹€κ³  생각할 μˆ˜λ„ μžˆλ‹€. κ·ΈλŸ¬λ‚˜ νœ˜νƒœμ»€λŠ” 였히렀 μ—­ν• μ˜ λ²”μœ„λ₯Ό λ„“νž 기회라고 λ΄€λ‹€. κ·ΈλŠ” β€œμ•„ν‚€ν…νŠΈλŠ” μ—¬λŸ¬ μ˜μ—­μ„ 깊이 있게 νŒŒκ³ λ“€ 수 μžˆλ‹€. μ‚¬λžŒμ„ ν•œ κ°€μ§€ 범주에 κ°€λ‘¬λ‘λŠ” 방식은 κ²°μ½” λ°”λžŒμ§ν•˜μ§€ μ•Šλ‹€β€λΌκ³  λ§ν–ˆλ‹€.

μ „ν†΅μ μœΌλ‘œ μ•„ν‚€ν…μ²˜λŠ” 무언가λ₯Ό μ„€κ³„ν•˜κ³  κ΅¬μΆ•ν•œ λ’€ κ³ μ •λœ ν˜•νƒœλ‘œ μ‘΄μž¬ν•˜λŠ” ꡬ쑰λ₯Ό μ˜λ―Έν–ˆλ‹€. ν•˜μ§€λ§Œ 에이전틱 AIκ°€ 기업에 ν™•μ‚°λ˜λ©΄μ„œ μ•„ν‚€ν…μ²˜λ₯Ό κ΄€λ¦¬ν•˜λŠ” μ•„ν‚€ν…νŠΈμ˜ 역할은 λ”μš± μœ λ™μ μœΌλ‘œ λ³€ν•˜κ³  μžˆλ‹€. μ΄μ œλŠ” 섀계 및 ꡬ좕 감독뿐 μ•„λ‹ˆλΌ, κ³„νšμ„ κΎΈμ€€νžˆ λͺ¨λ‹ˆν„°λ§ν•˜κ³  μ‘°μ •ν•˜λŠ” μ—­ν• κΉŒμ§€ μš”κ΅¬λœλ‹€. 이λ₯Ό β€˜μ˜€μΌ€μŠ€νŠΈλ ˆμ΄μ…˜β€™μ΄λΌκ³  λΆ€λ₯΄κΈ°λ„ ν•˜λ©°, μΌμ’…μ˜ 지도 읽기에 κ°€κΉλ‹€λŠ” λΉ„μœ λ„ λ‚˜μ˜¨λ‹€. μ•„ν‚€ν…νŠΈκ°€ 경둜λ₯Ό μ„€κ³„ν•˜λ”λΌλ„, μ‹€μ œ ν™˜κ²½μ˜ λ‹€μ–‘ν•œ λ³€μˆ˜λ‘œ 인해 길이 λ‹¬λΌμ§ˆ 수 있기 λ•Œλ¬Έμ΄λ‹€. 날씨 λ³€ν™”λ‚˜ μ“°λŸ¬μ§„ λ‚˜λ¬΄ λ•Œλ¬Έμ— 길을 μš°νšŒν•΄μ•Ό ν•˜λ“―, μ•„ν‚€ν…νŠΈ μ—­μ‹œ λΉ„μ¦ˆλ‹ˆμŠ€ ν™˜κ²½μ΄ λ°”λ€Œλ©΄ κ³„νšμ„ μˆ˜μ •ν•˜κ³  μƒˆλ‘œμš΄ λ°©ν–₯을 μ΄λŒμ–΄μ•Ό ν•œλ‹€.

λ˜ν•œ μƒˆλ‘œμš΄ μ•„ν‚€ν…νŠΈ μ—­ν•  μ—­μ‹œ 기술 λ°œμ „μ— 따라 계속 λ³€ν•˜κ²Œ 될 전망이닀. 둜 μ£Όλ””μ²΄λŠ” 쑰직의 μžλ™ν™” μˆ˜μ€€μ΄ 더 λ†’μ•„μ§ˆ 것이라고 λ‚΄λ‹€λ΄€κ³ , μ•„μ œλ² λ‘λŠ” 쑰직 μ „λ°˜μ— κ΅¬μΆ•λ˜λŠ” μ—μ΄μ „νŠΈλ₯Ό λ¬Άμ–΄ μΉ΄νƒˆλ‘œκ·Έ ν˜•νƒœλ‘œ κ΄€λ¦¬ν•˜λŠ” β€˜μ˜€μΌ€μŠ€νŠΈλ ˆμ΄μ…˜β€™ 관점에 νž˜μ„ μ‹€μ—ˆλ‹€. μ•„ν‚€ν…νŠΈμ™€ CIOκ°€ 쑰직 μ „μ²΄μ˜ 쑰율자둜 역할을 ν™•μž₯ν•  수 μžˆλŠ” κΈ°νšŒλΌλŠ” μ„€λͺ…이닀.

직함이 무엇이든, μ•„ν‚€ν…μ²˜μ˜ μ€‘μš”μ„±μ€ κ·Έ μ–΄λŠ λ•Œλ³΄λ‹€ 컀지고 μžˆλ‹€. νœ˜νƒœμ»€λŠ” β€œAIκ°€ 더 λ§Žμ€ μ½”λ“œλ₯Ό μž‘μ„±ν•˜κ²Œ 될수둝 μ•„ν‚€ν…νŠΈκ°€ λ˜λŠ” μ‚¬λžŒλ„ 더 λŠ˜μ–΄λ‚  것”이라며 β€œμ•žμœΌλ‘œλŠ” λˆˆμ•žμ— μžˆλŠ” μˆ˜λ§Žμ€ μ—μ΄μ „νŠΈλ₯Ό μ‘°μœ¨ν•˜κ³  ν†΅μ œν•˜λŠ” 일이 μ•„ν‚€ν…νŠΈμ˜ 본래 역할이 될 것”이라고 λ§ν–ˆλ‹€. κ·ΈλŠ” 기술 λ‹΄λ‹Ήμžκ°€ 점점 더 λ§Žμ€ 개발 업무λ₯Ό μ—μ΄μ „νŠΈμ™€ AI에 맑기게 λ˜λ©΄μ„œ, κ°œλ³„ μ—μ΄μ „νŠΈμ™€ ν”„λ‘œμ„ΈμŠ€κ°€ μ–΄λ–»κ²Œ μž‘λ™ν•΄μ•Ό ν•˜λŠ”μ§€λ₯Ό μ„€κ³„ν•˜λŠ” μ±…μž„μ΄ λ”μš± ν™•λŒ€λ˜κ³  λ§Žμ€ 기술 직원이 이 역할을 λΆ„λ‹΄ν•˜κ²Œ 될 것이라고 μ„€λͺ…ν–ˆλ‹€.

κ·ΈλŠ” β€œAIκ°€ μ½”λ“œλ₯Ό 생성해쀄 μˆ˜λŠ” μžˆμ§€λ§Œ, μ½”λ“œμ˜ λ³΄μ•ˆμ„ ν™•μΈν•˜λŠ” μ±…μž„μ€ μ—¬μ „νžˆ μ‚¬λžŒμ—κ²Œ μžˆλ‹€β€λΌκ³  κ°•μ‘°ν–ˆλ‹€. 이에 따라 IT 쑰직은 μ½”λ“œλ₯Ό 직접 κ°œλ°œν•˜λŠ” νŒ€μ—μ„œ, AIκ°€ λ§Œλ“  κΈ°μˆ μ„ μ κ²€Β·μˆ˜μš©ν•˜κ³  이λ₯Ό μ‹€μ œ λΉ„μ¦ˆλ‹ˆμŠ€ ν”„λ‘œμ„ΈμŠ€μ— λ°°μΉ˜ν•˜λŠ” 역할을 μˆ˜ν–‰ν•˜λŠ” μ•„ν‚€ν…μ²˜ 쀑심 쑰직으둜 λ³€ν™”ν•˜κ²Œ 될 것이라고 μ „λ§ν–ˆλ‹€.

이미 쑰직 내에 μ„€λ„μš° AIκ°€ κΉŠμˆ™μ΄ μŠ€λ©°λ“  μƒν™©μ—μ„œ, νœ˜νƒœμ»€λŠ” 기업이 λ„μž…ν•œ AI μ—μ΄μ „νŠΈμ™€ λΉ„μ¦ˆλ‹ˆμŠ€κ°€ μ‘°μœ¨ν•˜λ„λ‘ μ§€μ›ν•˜λ©΄μ„œ λ™μ‹œμ— 고객 데이터와 사이버 λ³΄μ•ˆ 체계λ₯Ό λ³΄ν˜Έν•  수 μžˆλŠ” μ•„ν‚€ν…νŠΈ νŒ€μ˜ ν•„μš”μ„±μ΄ 컀지고 μžˆλ‹€κ³  κ°•μ‘°ν–ˆλ‹€. AI μ—μ΄μ „νŠΈλŠ” κΈ°μ—…μ˜ 운영 ꡬ쑰λ₯Ό λ‹€μ‹œ κ·Έλ €λ‚΄κ³  있으며, λ™μ‹œμ— μ•„ν‚€ν…νŠΈ μ—­ν• μ˜ 미래 λ˜ν•œ μƒˆλ‘­κ²Œ μ •μ˜ν•˜κ³  μžˆλ‹€.
dl-ciokorea@foundryco.com

Agentic AI’s rise is making the enterprise architect role more fluid

3 December 2025 at 05:00

In a previous feature about enterprise architects, gen AI had emerged, but its impact on enterprise technology hadn’t been felt. Today, gen AI has spawned a plethora of agentic AI solutions from the major SaaS providers, and enterprise architecture and the role of enterprise architect is being redrawn. So what do CIOs and their architects need to know?

Organizations, especially their CEOs, have been vocal of the need for AI to improve productivity and bring back growth, and analysts have backed the trend. Gartner, for example, forecasts that 75% of IT work will be completed by human employees using AI over the next five years, which will demand, it says, a proactive approach to identifying new value-creating IT work, like expanding into new markets, creating additional products and services, or adding features that boost margins.

If this radical change in productivity takes place, organizations will need a new plan for business processes and the tech that operates those processes. Recent history shows if organizations don’t adopt new operating models, the benefits of tech investments can’t be achieved.

As a result of agentic AI, processes will change, as well as the software used by the enterprise, and the development and implementation of the technology. Enterprise architects, therefore, are at the forefront of planning and changing the way software is developed, customized, and implemented.

In some quarters of the tech industry, gen AI is seen as a radical change to enterprise software, and to its large, well-known vendors. β€œTo say AI unleashed will destroy the software industry is absurd, as it would require an AI perfection that even the most optimistic couldn’t agree to,” says Diego Lo Giudice, principal analyst at Forrester. Speaking at the One Conference in the fall, Lo Giudice reminded 4,000 business technology leaders that change is taking place, but it’s built on the foundations of recent successes.

β€œAgile has given better alignment, and DevOps has torn down the wall between developers and operations,” he said. β€œThey’re all trying to do the same thing, reduce the gap between an idea and implementation.” He’s not denying AI will change the development of enterprise software, but like Agile and DevOps, AI will improve the lifecycle of software development and, therefore, the enterprise architecture. The difference is the speed of change. β€œIn the history of development, there’s never been anything like this,” adds Phil Whittaker, AI staff engineer at content management software provider Umbraco.

Complexity and process change

As the software development and customization cycle changes, and agentic applications become commonplace, enterprise architects will need to plan for increased complexity and new business processes. Existing business processes can’t continue if agentic AI is taking on tasks currently done manually by staff.

Again, Lo Giudice adds some levity to a debate that can often become heated, especially in the wake of major redundancies by AI leaders such as AWS. β€œThe view that everyone will get a bot that helps them do their job is naΓ―ve,” he said at the One Conference. β€œOrganizations will need to carry out a thorough analysis of roles and business processes to ensure they spend money and resources on deploying the right agents to the right tasks. Failure to do so will lead to agentic technology being deployed that’s not needed, can’t cope with complex tasks, and increases the cloud costs of the business.

β€œIt’s easy to build an agent that has access to really important information,” says Tiago Azevedo, CIO for AI-powered low-code platform provider OutSystems. β€œYou need segregation of data. When you publish an agent, you need to be able to control it, and there’ll be many agents, so costs will grow.”

The big difference, though, is deterministic and non-deterministic, says Whittaker. So non-deterministic requires guardrails of deterministic agents that produce the same output every time over the more random outcomes of non-deterministic agents. Defining business outcomes by deterministic and non-deterministic is a clear role for enterprise architecture. He adds that this is where AI can help organizations fill in gaps. Whittaker, who’s been an enterprise architect, says it’ll be vital for organizations to experiment with AI to see how it can benefit their architecture and, ultimately, business outcomes.

β€œThe path to greatness lies not in chasing hype or dismissing AI’s potential, but in finding the golden middle ground where value is truly captured,” write Gartner analysts Daryl Plummer and Alicia Mullery. β€œAI’s promise is undeniable, but realizing its full value is far from guaranteed. Our research reveals the sobering odds that only one in five AI initiatives achieve ROI, and just one in 50 deliver true transformation.” Further research also finds just 32% of employees trust the organization’s leadership to drive transformation. β€œAgents bring an additional component of complexity to architecture that makes the role so relevant,” Azevedo adds.

In the past, enterprise architects were focused on frameworks. Whittaker points out that new technology models will need to be understood and deployed by architects to manage an enterprise that comprises employees, applications, databases, and agentic AI. He cites MCP as one as it provides a standard way to connect AI models to data sources, and simplifies the current tangle of bespoke integrations and RAG implementations. AI will also help architects with this new complexity. β€œThere are tools for planning, requirements, creating epics, user stories, code generation, documenting code, and translating it,” added Lo Giudice.

New responsibilities

Agentic AI is now a core feature of every major EA tool, says StΓ©phane Vanrechem, senior analyst at Forrester. β€œThese agents automate data validation, capability mapping, and artifact creation, freeing architects to focus on strategy and transformation.” He cites the technology of Celonis, SAP Signavio, and ServiceNow for their agentic integrations. Whittaker adds that the enterprise architect has become an important human in the loop to protect the organization and be responsible for the decisions and outcomes that agentic AI delivers.

Although some enterprise architects will see this as a collapse of their specialization, Whittaker thinks it broadens the scope of the role and makes them more T-shaped. β€œI can go deep in different areas,” he says. β€œPigeon-holing people is never a great thing to do.”

Traditionally, architecture has suggested that something is planned, built, and then exists. The rise of agentic AI in the enterprise means the role of the enterprise architect is becoming more fluid as they continue to design and oversee construction. But the role will also involve continual monitoring and adjustment to the plan. Some call this orchestration, or perhaps it’s akin to map reading. An enterprise architect may plan a route, but other factors will alter the course. And just like weather or a fallen tree, which can lead to a route deviation, so too will enterprise architects plan and then lead when business conditions change.

Again, this new way of being an enterprise architect will be impacted by technology. Lo Guidice believes there’ll be increased automation, and Azevedo sides with the orchestration view, saying agents are built and a catalogue of them is created across the organization, which is an opportunity for enterprise architects and CIOs to be orchestrators.

Whatever the job title, Whittaker says enterprise architecture is more important than ever. β€œMore people will become enterprise architects as more software is written by AI,” he says. β€œThen it’s an architectural role to coordinate and conduct the agents in front of you.” He argues that as technologists allow agents and AI to do the development work for them, the responsibility of architecting how agents and processes function broadens and becomes the responsibility of many more technologists.

β€œAI can create code for you, but it’s your responsibility to make sure it’s secure,” he adds. Rather than developing the code, technology teams will become architecture teams, checking and accepting the technology that AI has developed, and then managing its deployment into the business processes.

With shadow AI already embedded in organizations, Whittaker’s view shows the need for a team of enterprise architects that can help business align with the AI agents they’ve deployed, and at the same time protect customer data and cybersecurity posture.

AI agents are redrawing the enterprise, and at the same time replanning the role of enterprise architects.

❌
❌