โŒ

Reading view

There are new articles available, click to refresh the page.

6 maxims for todayโ€™s digital leader playbook

Modern CIOs and tech leaders carry responsibility not only for an organizationโ€™s technology but, as key partners, for its entire business success. So having access to readily transferable lessons is critical in order to solve real business challenges, and lead with clarity, confidence, and purpose.

As a jumping off point, Iโ€™ve distilled here some of my favourite maxims from different business functions.

Maxim 2: Try to be human

Youโ€™re more interesting than you think. Try to be human. I realize this is a tough ask for us classic IT introvert types, but with many interactions now conducted remotely, itโ€™s even more important to find opportunities to meet in person.

Letting people know what makes you tick personally is of more interest than you could probably imagine. Colleagues are interested in you as a whole person, not simply as the person they work with. So donโ€™t be afraid to bring yourself to work, as the phrase goes. This allows others to do the same, and to talk about their own feelings and circumstances.

As an INTP (an introverted, intuitive, thinking, and perceiving type from the Myers-Briggs personality assessment), social events arenโ€™t my natural environment. And weโ€™ve probably all experienced how work and socializing sometimes donโ€™t mix. Is an orchestrated corporate event all that comfortable for anyone? But try to show up and meet people, relax a bit, and have some fun.

Maxim 6: Beware the IT cultural cringe

IT people often prefer to vent about the technology-ignorant business rather than stand up and explain the tech. Instead of declaring somethingโ€™s bad for the company or a dead-end, they shrug and say the business just doesnโ€™t get it.

No matter how great your strategy is, your plans will fail without a company culture that encourages people to implement it. I know from speaking to other CIOs that a frequent role for them is standing up for IT and defending their teams in a culture where the business blames IT for its failures.

Itโ€™s therefore vital to coach your teams to deal on equal terms with their internal business customers. Key to this is talking in business terms, not IT jargon. The reason for not adopting a nonstandard piece of tech is itโ€™ll inflate future company running costs, not that it doesnโ€™t neatly fit the IT estate. So stand up and be counted on a matter of tech principle, and win the debate.

Maxim 8: There are no IT projects, only business projects.

When IT projects fail, itโ€™s often because of a lack of ownership by the business.

The entire purpose of your IT department is to move the organization forward. So any investment must deliver on quantifiable financial targets or defined business objectives. If it doesnโ€™t, move on. This is fundamental. Forgetting to do so is easy when under pressure, as others press you with their own agendas, but dangerous for you and the business.

Everything Iโ€™ve learned and seen reinforces this. Without this focus, youโ€™re just an IT supplier taking orders, not the executive IT partner of the business. Question any actions by your team that canโ€™t be linked back to the companyโ€™s core objectives.

It all comes down to building relationships based on trust with your business colleagues who recognize that you understand what the business needs and can afford, so challenge projects not owned by the business leaders.

Maxim 10: The CIO as the personification of IT

Be vocal about your teamโ€™s successes and be honest about your mistakes. As CIO, youโ€™re the face of the IT function in your organization, and you set the tone for everyone in IT.

Try not to talk about the business and IT as separate entities. You and your team are just as integral to the company as sales, operations, or finance. Always talk about our business needs and what we should do.

Remember, youโ€™re accountable for all the IT. These days, we talk about being authentic, so being honest about your slip-ups, and how you feel about them, is important in establishing your reputation, both internally and externally.

Explain a success to others in the organization and why it worked. Bring out how collaboration between their teams and IT, working to aligned plans and objectives, made good things happen for everyone involved.

Maxim 36: Join up digital and IT

Digital natives need to work together with old techies. Advances of the last decade have been delivered by fast-moving digital startups, financed by deep-pocketed investors. Unsurprisingly, this has spawned organizational impatience with the costs and time taken by traditional or legacy IT functions. This frustration can then translate into setting up a completely separate digital department under a CDO, charged with implementing the new and faster-moving business.

Your current business is built on long-established ways of working, and processes that remain necessary, unless youโ€™re going to build them all a second time for the new digital channel. If not, then new components, including services and products, will have to interface with existing systems, as well as firmly established and mission-critical business processes. So with this dynamic, ensure that both traditional IT and new digital report to you.

Maxim 56: AI is a tech-driven business revolution

AI is the most overhyped bandwagon in technology, more than bitcoin, big data, and augmented and virtual reality. Nevertheless, itโ€™s the most far-reaching tech-driven change since the advent of the internet. In a matter of months, AI and AI agents are doing to white-collar jobs what production line robots did to blue-collar jobs 20 years ago.

AI is transforming the world and weโ€™re just at the beginning of this revolution. So what are you doing about it?

Your challenge as CIO is that AI has cut through to your board and executive leadership like nothing before. Furthermore, all your partners and suppliers are building AI agents into their software and services. Plus, all your best digital innovators in the business, and definitely all your recent grad hires, are using Chat GPT and bespoke AI tools in their day jobs. As CIO, you hold the keys to AI working well by effectively wielding the data in your systems. After all, you and your team are the ones who best understand how the AI works as the means to achieve business value.

โ€œ6๊ฐœ์›” ROI๋ฅผ ์ฆ๋ช…ํ•˜๋ผโ€ ์„ฑ๊ณตํ•˜๋Š” CIO์˜ AI ์ „๋žต ์ˆ˜์ •

๊ธฐ์—…์˜ AI ํ”„๋กœ์ ํŠธ๊ฐ€ ๊ธฐ๋Œ€์— ๋ชป ๋ฏธ์ณค๋‹ค๋Š” ํ‰๊ฐ€๊ฐ€ ์ž‡๋”ฐ๋ฅด๊ณ  ์žˆ๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ๋‚˜์˜จ ์—ฐ๊ตฌ ๋Œ€๋ถ€๋ถ„์ด ๊ฐ™์€ ๊ฒฐ๋ก ์„ ๋‚ด๋ฆฐ๋‹ค. MIT๋Š” ๊ธฐ์—…์˜ ์ƒ์„ฑํ˜• AI ํ”„๋กœ์ ํŠธ ์ค‘ 95%๊ฐ€ ์‹คํŒจํ–ˆ๋‹ค๊ณ  ๋ถ„์„ํ•˜๊ธฐ๋„ ํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์‹คํŒจโ€™๋Š” 6๊ฐœ์›” ์•ˆ์— ์ธก์ • ๊ฐ€๋Šฅํ•œ ์žฌ๋ฌด์  ์ˆ˜์ต์„ ๋ณด์—ฌ์ฃผ์ง€ ๋ชปํ•œ ๊ฒฝ์šฐ๋ฅผ ๋œปํ•œ๋‹ค.

๋ฌธ์ œ๋Š” ์ด์ œ โ€˜์„ฑ๊ณผ ๋ถ€์ง„โ€™์„ ๋ˆˆ๊ฐ์•„์ฃผ๋Š” ์‹œ๊ธฐ๊ฐ€ ์ง€๋‚ฌ๋‹ค๋Š” ์ ์ด๋‹ค. CEO์™€ ์ด์‚ฌํšŒ, ํˆฌ์ž์ž๋“ค์€ AI ํˆฌ์ž์—์„œ ๋ˆˆ์— ๋ณด์ด๋Š” ROI๋ฅผ ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. IT ์„œ๋น„์Šค ๊ธฐ์—… ํ‚จ๋“œ๋ฆด(Kyndryl)์˜ ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, ์„ค๋ฌธ์— ์ฐธ์—ฌํ•œ 3,700๋ช…์˜ ๊ณ ์œ„ ๊ฒฝ์˜์ง„ยท์˜์‚ฌ๊ฒฐ์ •์ž ์ค‘ 61%๋Š” โ€œ1๋…„ ์ „๋ณด๋‹ค ์ง€๊ธˆ AI ํˆฌ์ž ROI๋ฅผ ์ž…์ฆํ•ด์•ผ ํ•œ๋‹ค๋Š” ์••๋ฐ•์ด ๋” ์ปค์กŒ๋‹คโ€๊ณ  ๋‹ตํ–ˆ๋‹ค. ๊ธ€๋กœ๋ฒŒ CEO ์ž๋ฌธ์‚ฌ ํ…Œ๋„ค์˜ค(Teneo)์˜ ์„ค๋ฌธ ์กฐ์‚ฌ์—์„œ๋„ โ€œAI๊ฐ€ ๊ณผ๋Œ€๊ด‘๊ณ ์—์„œ ์‹คํ–‰์œผ๋กœ ๋ฌด๊ฒŒ ์ค‘์‹ฌ์ด ์ด๋™ํ•˜๋ฉด์„œ, AI ์ง€์ถœ์˜ ROI๋ฅผ ๋ณด์—ฌ๋‹ฌ๋ผ๋Š” ์••๋ฐ•์ด ์ปค์ง€๊ณ  ์žˆ๋‹คโ€๋ฉฐ, ๋น„์Šทํ•œ ํ๋ฆ„์„ ํ™•์ธํ–ˆ๋‹ค. ๋ณด๊ณ ์„œ๋Š” ํˆฌ์ž์ž 53%๊ฐ€ โ€˜6๊ฐœ์›” ์ด๋‚ด์˜ ํ‘์ž ROIโ€™๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

IBM ์ปจ์„คํŒ…์˜ ๊ธ€๋กœ๋ฒŒ ๋งค๋‹ˆ์ง• ํŒŒํŠธ๋„ˆ ๋‹ ๋‹ค๋ฅด๋Š” โ€œCEO์™€ CIO์—๊ฒŒ ์ˆ˜์ต์„ ๋‚ด๋ผ๋Š” ์••๋ฐ•์ด ์ง€์†๋˜๊ณ , ๊ฒฐ๊ตญ โ€˜AI๋กœ ํšŒ์‚ฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๋” ๋‚˜์•„์ง€๊ฒŒ ๋งŒ๋“ค ๊ฒƒ์ธ๊ฐ€โ€™๋ผ๋Š” ์งˆ๋ฌธ์œผ๋กœ ์ˆ˜๋ ดํ•œ๋‹คโ€๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์„ฑ๊ณต์˜ ์ดˆ์„์€ ๊ฐ€์น˜ ์ค‘์‹ฌ AI

๋ณดํ—˜์‚ฌ ๋‰ด์š•๋ผ์ดํ”„(New York Life) ์‚ฐํ•˜ ๋‰ด์š•๋ผ์ดํ”„ ๊ทธ๋ฃน ๋ฒ ๋„คํ• ์†”๋ฃจ์…˜์ฆˆ์˜ CIO ๋งท ๋งˆ์ฆˆ๋Š” 2026๋…„์—๋„ AI ROI๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ž์‹ ํ–ˆ๋‹ค. ํ•ต์‹ฌ์€ โ€˜์˜ˆ์ƒ ๊ฐ€์น˜โ€™๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ฐฐํฌ ์šฐ์„ ์ˆœ์œ„๋ฅผ ์ •ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋งˆ์ฆˆ๋Š” โ€œ2023๋…„ 12์›” CEO์˜ ์ด‰๊ตฌ๋กœ AI ์—ฌ์ •์„ ์‹œ์ž‘ํ–ˆ๊ณ , ์ถœ๋ฐœ์ ๋ถ€ํ„ฐ ๊ณ ๊ฐยทํŒŒํŠธ๋„ˆยท์ง์› ๊ฒฝํ—˜์„ ๋Œ์–ด์˜ฌ๋ฆด ๊ธฐ์ˆ ยท๋ฐ์ดํ„ฐยทAI ๊ธฐ์—…์ด ๋˜์ž๋Š” ๋ชฉํ‘œ๋ฅผ ์„ธ์› ๋‹ค. ๊ทธ๋ž˜์„œ ์ฒ˜์Œ๋ถ€ํ„ฐ ๊ฐ€์น˜์™€ ROI๊ฐ€ ์ตœ์šฐ์„  ๊ธฐ์ค€์ด์—ˆ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

AI ํˆฌ์ž ํŒ๋‹จ๋„ ๋‹ค๋ฅธ ํˆฌ์ž์™€ ๋™์ผํ•œ ์žฃ๋Œ€๋ฅผ ์ ์šฉํ•œ๋‹ค. ์šด์˜๋น„ ์ ˆ๊ฐ, ๋งˆ์ง„ ๊ฐœ์„ , ๋งค์ถœ ์„ฑ์žฅ, ๊ณ ๊ฐ ๋งŒ์กฑ, ๊ณ ๊ฐ ์œ ์ง€ ๋“ฑ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๋ฅผ ๋ณด๋˜, ์ตœ์ข…์ ์œผ๋กœ๋Š” โ€˜์ด์ต ๊ธฐ์—ฌโ€™๋กœ ๊ท€๊ฒฐ๋œ๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค. ๋งˆ์ฆˆ๋Š” โ€œ์šฐ๋ฆฌ๋Š” ์†์ต์„ ๊ธฐ์ค€์œผ๋กœ ํˆฌ์ž๋ฅผ ์ง‘ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ง€์ถœ์— ๋ฏผ๊ฐํ•˜๋‹คโ€๋ผ๋ฉฐ, โ€œ๋ฏผ์ฒฉํ•˜๊ฒŒ ์›€์ง์ด๋˜, ๋ˆ์„ ๋‚ญ๋น„ํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ROI ์ค‘์  ์ „๋žต์„ ์ถ”์ง„ํ•˜๊ธฐ ์œ„ํ•œ ์‹ค๋ฌด ๋ฐฉ์‹๋„ ์†Œ๊ฐœํ–ˆ๋‹ค. ๋ฐ์ดํ„ฐยท์‹œ์Šคํ…œยท์—ญ๋Ÿ‰ ์ธก๋ฉด์—์„œ AI์— ๋Œ€ํ•œ ์ค€๋น„๊ฐ€ ๋œ, ์ด๋ฅธ๋ฐ” โ€˜AI Readyโ€™ ย ์˜์—ญ์„ ์šฐ์„  ๊ณต๋žตํ•˜๊ณ , ์—ฌ๊ธฐ์„œ ๋‚˜์˜จ ์ˆ˜์ต์œผ๋กœ ๋‹ค์Œ ํ”„๋กœ์ ํŠธ๋ฅผ ์žฌํˆฌ์žํ•œ๋‹ค. ๋˜ํ•œ AI ์‹œ์Šคํ…œ์„ ์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•˜๊ฒŒ ์„ค๊ณ„ํ•ด ์ดํ›„ ํ”„๋กœ์ ํŠธ๊ฐ€ ๋” ๋นจ๋ฆฌ ์ถœ๋ฐœํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ๋งˆ์ฆˆ๋Š” โ€œ๋ง‰์—ฐํ•œ ๊ฐœ์„ ์„ ๊ธฐ๋Œ€ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ํ˜„์‹ค์ ์ธ ROI๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ณผ์ œ๋ฅผ ๊ณ ๋ฅด๊ธฐ ์œ„ํ•œ ์ „๋žต์  ์ ‘๊ทผโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์—ฌ๊ธฐ์— ์ง€์†์ ์ธ IT ํ˜„๋Œ€ํ™”๋„ ์ค‘์š”ํ•œ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ผฝ์•˜๋‹ค. ๋งˆ์ฆˆ๋Š” โ€œ๊ธฐ๋ฐ˜์„ ๋จผ์ € ๊ตฌ์ถ•ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— AI๋ฅผ ํ™œ์šฉํ•  ์ข‹์€ ์œ„์น˜์— ์„ฐ๋‹คโ€๋ผ๋ฉฐ, โ€œAI๋กœ ROI๋ฅผ ๋‚ด๋ ค๋ฉด ์ „๋žต์  ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ, ์ปดํ“จํŒ…ยท์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ํ˜„๋Œ€ํ™”, ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ ์†”๋ฃจ์…˜์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ํ–ฅํ›„์—๋Š” AI๋กœ ์—…๋ฌด๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๊ณ  ํ•ต์‹ฌ ํ”„๋กœ์„ธ์Šค์— โ€˜์—์ด์ „ํ‹ฑ ์†”๋ฃจ์…˜โ€™์„ ๋ณธ๊ฒฉ์ ์œผ๋กœ ๋„์ž…ํ•˜๊ฒ ๋‹ค๋Š” ๊ตฌ์ƒ๋„ ๋‚ด๋†จ๋‹ค. ๋‹ค๋งŒ ํˆฌ์ž์•ˆ์— ๋”ฐ๋ผ ํšŒ์ˆ˜ ๊ธฐ๊ฐ„์€ ์ˆ˜๋…„์ด ๊ฑธ๋ฆด ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ง๋ถ™์˜€๋‹ค.

โ€œROI๊ฐ€ ํ•„์š”ํ•˜๋‹คโ€ ์„ฑ๊ณผ ์ธก์ • ๊ธฐ์ค€๋„ ์žฌ์ •์˜

ํ•˜์ง€๋งŒ, ๋งŽ์€ ๊ธฐ์—…์ด ROI๊ฐ€ ๋นจ๋ฆฌ ๋‚˜์˜ค์ง€ ์•Š์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋” ํฌ๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค. ํ…Œ๋„ค์˜ค์˜ ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, CEO 84%๋Š” โ€œ์ƒˆ AI ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ์˜ ์ˆ˜์ต์ด ๋‚˜์˜ค๋Š” ๋ฐ 6๊ฐœ์›”๋ณด๋‹ค ๋” ์˜ค๋ž˜ ๊ฑธ๋ฆด ๊ฒƒโ€์ด๋ผ๊ณ  ์˜ˆ์ƒํ–ˆ๋‹ค.

์ปจ์„คํŒ… ๊ธฐ์—… ์›จ์ŠคํŠธ๋ชฌ๋กœ(West Monroe)์˜ CAIO ๋ธŒ๋ › ๊ทธ๋ฆฐ์Šคํƒ€์ธ์€ โ€œ์ดˆ๊ธฐ AI ํ”„๋กœ์ ํŠธ ์ƒ๋‹น์ˆ˜๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค์™€ ๋ฌด๊ด€ํ•œ ์‹คํ—˜ยทํ•™์Šต์— ๊ฐ€๊นŒ์› ๊ณ , ์กฐ์ง์˜ ๋ชฉํ‘œ๋ฅผ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•ด ์—†์–ด์กŒ๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค. ์‹ค์ œ ๊ณผ์ œ๋ฅผ ๊ฒจ๋ƒฅํ–ˆ๋”๋ผ๋„ ํ™•์žฅ์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐยท๊ธฐ์ˆ  ๊ธฐ๋ฐ˜์ด ์—†๊ฑฐ๋‚˜, ํ˜„๋Œ€ํ™” ๋น„์šฉ์ด ์˜ˆ์ƒ ROI๋ณด๋‹ค ์ปค์„œ ๋ฌด์‚ฐ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜๋‹ค๋Š” ๋ถ„์„์ด๋‹ค. ์„ฑ๊ณผ๊ฐ€ ์žˆ์–ด๋„ ์ •๋Ÿ‰ํ™”๊ฐ€ ์–ด๋ ต๊ฑฐ๋‚˜ โ€˜์กฐ์ง์˜ ํŒ๋„๋ฅผ ๋ฐ”๊พธ๊ธฐ์—”โ€™ ๋„ˆ๋ฌด ์ž‘์€ ๊ฐœ์„ ์— ๊ทธ์น˜๊ธฐ๋„ ํ–ˆ๋‹ค.

๊ทธ๋ฆฐ์Šคํƒ€์ธ์€ โ€œ์›น๊ณผ ๋ชจ๋ฐ”์ผ ์ดˆ๊ธฐ์—๋„ ๋น„์Šทํ•œ ์ผ์ด ์žˆ์—ˆ๋‹ค. ์ค‘์š”ํ•œ ์ง€ํ‘œ๊ฐ€ ๋ฌด์—‡์ธ์ง€ ์ƒˆ๋กœ ์ฐพ์•„๋‚ด๋Š” ๋ฐ๋Š” ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฐ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋‹ค๋งŒ ์ฑ—GPT ๋“ฑ์žฅ ์ดํ›„ 3๋…„์ด ์ง€๋‚˜๋ฉฐ ๊ธฐ์—…์˜ ์ดํ•ด๋„๊ฐ€ ์„ฑ์ˆ™ํ•ด์กŒ๋‹ค๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ๋ฆฐ์Šคํƒ€์ธ์€ โ€œ์ง€๊ธˆ์€ ๊ณ ๊ฐ๋“ค์ด AI์˜ ํ˜์‹  ๊ฐ€์น˜๋ฅผ ์ดํ•ดํ•˜๊ณ  โ€˜์ƒˆ๋กœ์šด ์—…๋ฌด ๋ฐฉ์‹โ€™์œผ๋กœ ๋ณด๋Š” 3๋ฒˆ์งธ ๋ณ€ํ™”์˜ ๋ฌผ๊ฒฐ ์†์— ์žˆ๋‹คโ€๋ผ๋ฉฐ, โ€œROI๊ฐ€ ๋‚˜์˜ค๋Š” ๊ณณ์€ AI๋ฅผ ํ˜์‹ ์œผ๋กœ ๋ณด๊ณ , ํ˜„์—…๊ณผ ํ•จ๊ป˜ ์—…๋ฌด ๋ฐฉ์‹์„ ๋‹ค์‹œ ์„ค๊ณ„ํ•œ๋‹ค. ROI๋ฅผ ์–ป์œผ๋ ค๋ฉด ๋ณ€ํ˜ ์ž‘์—…์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฑธ ์•„๋Š” ์กฐ์งโ€์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

ํŒ”๋กœ์•Œํ†  ๋„คํŠธ์›์Šค์˜ CIO ๋ฏธ๋ผ ๋ผ์ž๋ฒจ์€ AI ๊ณผ์ œ๋ฅผ ๊ณ ๋ฅผ ๋•Œ โ€˜์†๋„โ€™, โ€˜ํšจ์œจโ€™, โ€˜๊ฒฝํ—˜โ€™ ์„ธ ๊ฐ€์ง€๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์‚ผ๋Š”๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๋ผ์ž๋ฒจ์€ โ€œ์†๋„๊ฐ€ ํ•ต์‹ฌโ€์ด๋ผ๋ฉฐ, โ€œ๋” ์ ์€ ์ž์›์œผ๋กœ ๋” ๋งŽ์€ ์ผ์„ ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€, ๊ฒฝํ—˜์„ ์–ผ๋งˆ๋‚˜ ๊ฐœ์„ ํ•˜๋Š”๊ฐ€๊ฐ€ ํŒ๋‹จ ๊ธฐ์ค€โ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋ผ์ž๋ฒจ์€ ์ด๋ฅผ ํ† ๋Œ€๋กœ IT ์šด์˜์˜ 90%๋ฅผ AI๋กœ ์ž๋™ํ™”ํ•˜๋Š” ํ”„๋กœ์ ํŠธ๋ฅผ ์ถ”์ง„ ์ค‘์ด๋ผ๊ณ  ์†Œ๊ฐœํ–ˆ๋‹ค. ํ•ด๋‹น ํ”„๋กœ์ ํŠธ๋Š” 2024๋…„ ์ดˆ ์ž๋™ํ™” ๋น„์œจ 12%์—์„œ 2025๋…„ ๋ง ๊ธฐ์ค€ 75%๋กœ ๋†’์•„์กŒ๊ณ , ๊ทธ ๊ณผ์ •์—์„œ IT ์šด์˜ ๋น„์šฉ์„ ์ ˆ๋ฐ˜์œผ๋กœ ์ค„์˜€๋‹ค๊ณ  ์ „ํ–ˆ๋‹ค.

์ง€ํ‘œ์™€ ๋ชฉํ‘œ ์ˆ˜๋ฆฝ์ด ๋จผ์ €

๋‹ค๋ฅด๋Š” AI ROI๊ฐ€ ์žกํžˆ์ง€ ์•Š์•˜๋˜ ์ด์œ ๋กœ โ€˜์ „๋žต ๋ถ€์žฌโ€™๋ฅผ ์ง€๋ชฉํ–ˆ๋‹ค. ๋‹ค๋ฅด๋Š” โ€œ์–ด๋””์— AI๋ฅผ ์ ์šฉํ• ์ง€ ์ฒด๊ณ„์ ์œผ๋กœ ๋ฌป๊ธฐ๋ณด๋‹ค, โ€˜์ผ๋‹จ ํ•ด๋ณด์žโ€™๋ฉฐ ๋ฌด์ž‘์ • ํ™•์‚ฐ์‹œํ‚ค๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์—ˆ๋‹คโ€๊ณ  ์ง€์ ํ–ˆ๋‹ค.

ํ•˜์ง€๋งŒ ์ ์  ๋” ๋งŽ์€ ์ตœ๊ณ  ๊ฒฝ์˜์ง„์ด AI๋ฅผ โ€˜๋Œ€๋Œ€์  ํ˜์‹ โ€™ ์ˆ˜๋‹จ์ด์ž ์ž์‚ฌ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ๊ทน์ ์œผ๋กœ ์ „ํ™˜ํ•  ๊ธฐ์ˆ ๋กœ ๋ณด๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ๋‹ค๋ฅด๋Š” โ€œ์ด๋Ÿฐ ๊ธฐ์—…์€ ๊ธฐ๋Šฅ๋ณ„๋กœ ์žฌ์ฐฝ์กฐํ•˜๊ณ , ๋” ์ข‹๊ณ  ๊ฐ•ํ•˜๊ณ  ์ €๋ ดํ•˜๊ฒŒ ํ˜์‹ ํ•˜๊ณ , ๊ฒฝ์šฐ์— ๋”ฐ๋ผ ๋งค์ถœ๋„ ์„ฑ์žฅํ•˜๊ณ  ์žˆ๋‹ค. 2๋…„ ์ „์—๋Š” ์‹คํ—˜๊ณผ PoC๊ฐ€ ๋งŽ์•˜์ง€๋งŒ, ์ง€๊ธˆ์€ ํ˜์‹ ์˜ ๋‹จ๊ณ„๋กœ ๋„˜์–ด์™”๊ณ  ์„ฑ์ˆ™ํ•œ ์กฐ์ง์€ 12๊ฐœ์›” ๋‚ด์— ์ˆ˜์ต์„ ๋‚ผ ๊ฒƒ์„ ์š”๊ตฌํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์• ํ”Œ ๊ธฐ๊ธฐ ๊ด€๋ฆฌ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ์—… ์žผํ”„(Jamf)์˜ CIO ๋ฆฐ ๋žจ๋„ ๊ด€์  ๋ณ€ํ™”๋ฅผ ์–ธ๊ธ‰ํ–ˆ๋‹ค. ๋žจ์€ โ€œ๊ทธ๋™์•ˆ์€ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด AI๋ฅผ ์ ์šฉํ–ˆ์ง€๋งŒ, ์ด์ œ๋Š” ์ผํ•˜๋Š” ๋ฐฉ์‹ ์ž์ฒด๋ฅผ ๋‹ค์‹œ ์ƒ๊ฐํ•  ๋ชฉ์ ์œผ๋กœ AI๋ฅผ ์‚ฌ์šฉํ•œ๋‹คโ€๋ผ๋ฉฐ, โ€œ์ง„์งœ ํฐ ๊ฐ€์น˜๋Š” ๊ทธ ์ง€์ ์—์„œ ๋‚˜์˜จ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํ˜„์žฌ ์žผํ”„๊ฐ€ ์šฐ์„ ์‹œํ•˜๋Š” AI ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋„ ๋ถ„๋ช… ์ด๋ ‡๋‹ค. ๋žจ์€ โ€œ2๋…„ ์ „์—๋Š” โ€˜์ผ๋‹จ ํ•ด๋ณด์žโ€™๊ฐ€ ํ†ตํ–ˆ์ง€๋งŒ, ์ง€๊ธˆ์€ ๊ทธ ๋‹จ๊ณ„๋ฅผ ๋„˜์—ˆ๋‹ค. ๋ˆ„๊ตฐ๊ฐ€ ์ž ์žฌ ๊ฐ€์น˜์˜ ๊ทผ๊ฑฐ๊ฐ€ ์—†๋Š” ์ œ์•ˆ์„ ํ•˜๋ฉด, ๋ฐ˜๋Œ€ํ•  ๊ฒƒ์ด๋‹ค. ์ง€๊ธˆ์€ ์ดํ•ด๊ด€๊ณ„์ž์˜ ๋ชฉํ‘œ๋ฅผ ํ™•์ธํ•˜๊ณ , ์„ฑ๊ณผ๋ฅผ ์ธก์ •ํ•  ์ง€ํ‘œ๋ฅผ ๋จผ์ € ์„ธ์šด๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค. ์ด์–ด โ€œAI์™€ AI ์—์ด์ „ํŠธ๋กœ ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์˜ ๊ฐ€๋Šฅ์„ฑ์€ ๊ฑฐ์˜ ๋ฌดํ•œํ•ด ๋ณด์ด์ง€๋งŒ, ๊ฒฐ๊ตญ ์šฐ๋ฆฌ๋Š” ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์šด์˜ํ•œ๋‹ค. ๋…ผ๋ฆฌ์ ์ด๊ณ  ์˜๋ฆฌํ•˜๊ฒŒ ์˜์‚ฌ๊ฒฐ์ •์„ ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

IT ๊ณผ์ œ๋ฅผ AI ํ˜์‹ ์˜ ์„ ์ˆœํ™˜ ์ž์›์œผ๋กœ ์ „ํ™˜

๋ฌผ๋ก  ROI์— ์ดˆ์ ์„ ๋งž์ถ˜ ํ˜์‹ ์—๋„ ํ˜„์‹ค์  ์žฅ์• ๋ฌผ์€ ๋‚จ์•„ ์žˆ๋‹ค. IT ์„œ๋น„์Šค ๊ธฐ์—… ํƒ€ํƒ€ ์ปจ์„คํŒ… ์„œ๋น„์Šค(Tata Consultancy Services, TCS) ๋ถ๋ฏธ AIยท๊ธฐ์ˆ  ํ˜์‹  ์‚ฌ์—…๋ถ€๋ฅผ ์ด๋„๋Š” ์ œ๋‹ˆํผ ํŽ˜๋ฅด๋‚œ๋ฐ์Šค๋Š” โ€œ๋ ˆ๊ฑฐ์‹œ ๊ธฐ์ˆ , ํ”„๋กœ์„ธ์Šค ๋ถ€์ฑ„, ๋ฐ์ดํ„ฐ ๋ถ€์ฑ„๊ฐ€ AI ํ™•์žฅ์„ ๋ง‰๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ•˜๋ฉฐ, โ€œ์ด ๋ถ€์ฑ„๋ฅผ ๊ฐš์ง€ ์•Š์œผ๋ฉด AI ์•ผ์‹ฌ์„ ํ‚ค์šฐ๊ธฐ๋„, ์˜๋ฏธ ์žˆ๋Š” ์„ฑ๊ณผ๋ฅผ ๋‚ด๊ธฐ๋„ ์–ด๋ ต๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์‹œ์Šค์ฝ”์˜ โ€˜AI ์ค€๋น„๋„ ์ง€ํ‘œโ€™๋„ ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์กฐ์‚ฌ ๋Œ€์ƒ ์ค‘ IT ์ธํ”„๋ผ๊ฐ€ โ€˜AI ๋Œ€ํ•œ ์ค€๋น„๊ฐ€ ๋˜์–ด ์žˆ๋‹คโ€๋ผ๊ณ  ๋‹ตํ•œ ์กฐ์ง์€ 32%์— ๊ทธ์ณค๊ณ , ๋ฐ์ดํ„ฐ ์ค€๋น„๋„๋Š” 34%, ๊ฑฐ๋ฒ„๋„Œ์Šค ํ”„๋กœ์„ธ์Šค ์ค€๋น„๋„๋Š” 23%๋กœ ๋” ๋‚ฎ์•˜๋‹ค.

ํŽ˜๋ฅด๋‚œ๋ฐ์Šค๋Š” โ€˜๋ถ€์ฑ„๋ฅผ ์ „๋žต์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋˜, AI๋กœ ๊ทธ ๋ถ€์ฑ„๋ฅผ ๊ฐš๋Š” ๋ฐฉ์‹โ€™์„ ๊ถŒํ–ˆ๋‹ค. AI๋กœ IT๋ฅผ ํ˜„๋Œ€ํ™”ํ•˜๋ฉด ์šด์˜ ํšจ์œจ์ด ์˜ฌ๋ผ๊ฐ€๊ณ , ๋” ๋งŽ์€ AI ์‚ฌ์šฉ๋ก€๋ฅผ ์ง€์›ํ•  ์—ญ๋Ÿ‰๋„ ํ•จ๊ป˜ ์ปค์ง€๋ฉฐ, ๋ฐ์ดํ„ฐ ๊ณ„์ธต์˜ ๊ฒฐํ•จ๋„ ๋ณด์™„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ. ์ด๋Ÿฐ ๊ฐœ์„ ์„ ํ†ตํ•ด ์ ˆ๊ฐํ•œ ๋น„์šฉ๊ณผ ์—ญ๋Ÿ‰์„ ๋‹ค์‹œ ๋‹ค๋ฅธ AI ํ”„๋กœ์ ํŠธ์— ์žฌํˆฌ์žํ•˜๋ฉด, ํ˜„๋Œ€ํ™” ํšจ๊ณผ ๋•๋ถ„์— ํ›„์† ํ”„๋กœ์ ํŠธ์˜ ROI ๊ฐ€๋Šฅ์„ฑ๋„ ๋†’์•„์ง„๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค.

ํŽ˜๋ฅด๋‚œ๋ฐ์Šค๋Š” โ€œ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ๋ถ€์ฑ„๋ฅผ ์ค„์ด๊ณ , ๋‹จ๊ณ„์ ์œผ๋กœ ๊ตฌ์ถ•ํ•˜๋ฉด์„œ ๋ณ€ํ˜์„ ์ด์–ด๊ฐˆ ์ˆ˜ ์žˆ๋‹ค. CIO๊ฐ€ โ€˜๊ณ ์ณ์•ผ ํ•˜๋‹ˆ ๋ˆ์„ ๋‹ฌ๋ผโ€™๊ณ  ๋งํ•˜๋Š” ๋Œ€์‹  โ€˜AI๋ฅผ ๋„์ž…ํ•ด ์ˆ˜์ต์„ ๋งŒ๋“ค๊ณ , ๊ทธ ์ˆ˜์ต์œผ๋กœ ๋‹ค๋ฅธ ํ˜์‹ ์— ์žฌํˆฌ์žํ•˜๊ฒ ๋‹คโ€™๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค. CIO๊ฐ€ AI๋ฅผ ์œ„ํ•œ ์žฌ์›์„ ๋งŒ๋“ค์–ด์ฃผ๋Š” ์…ˆโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

2026: The year AI ROI gets real

AI initiatives by and large have fallen short of expectations.

Thatโ€™s the conclusion of most research to date, including MITโ€™s The GenAI Divide: State of AI in Business 2025, which found a staggering 95% failure rate for enterprise generative AI projects, defined as not having shown measurable financial returns within six months.

Moreover, tolerance for poor returns is running out, as CEOs, boards, and investors are making it clear they want to see demonstrable ROI on AI initiatives.

According to Kyndrylโ€™s 2025 Readiness Report, 61% of the 3,700 senior business leaders and decision-makers surveyed feel more pressure to prove ROI on their AI investments now versus a year ago.

And the Vision 2026 CEO and Investor Outlook Survey, from global CEO advisory firm Teneo, noted a similar trend, writing that โ€œas efforts shift from hype to execution, businesses are under pressure to show ROI from rising AI spend,โ€ noting that 53% of investors expect positive ROI in six months or less.

โ€œThere is pressure on CEOs and CIOs to deliver returns, and that pressure is going to continue, and with that pressure is the question, โ€˜How will you use AI to make the company better?โ€™โ€ says Neil Dhar, global managing partner at IBM Consulting.

Laying the foundation for success

Matt Marze, CIO of New York Life Group Benefit Solutions, is confident he can deliver AI ROI in 2026 because heโ€™s been getting positive returns all along. The key? Pursuing and prioritizing AI deployments based on the anticipated value each will produce.

โ€œWe started our AI journey with a call to action in December 2023 by the CEO, and from the start we wanted to be a technology, data, and AI company to drive unparalleled experiences for our customers, partners, and employees. So all along the value question, the ROI was very top of mind,โ€ Marze explains.

Marze and his executive colleagues approach AI investments โ€œthe same way we think about all our investmentsโ€ โ€” that is, considering how theyโ€™d impact the companyโ€™s earnings plan. โ€œWe look at operating expense reduction, margin improvement, top-line revenue growth, customer satisfaction, and client retention, but at the end of the day it boils down to our earnings contribution,โ€ he says.

Marze highlights practices that keeps the organization focused on ROI, such as prioritizing AI initiatives for areas that are AI-ready in terms of available data, systems, and skills; using returns from those to fund subsequent initiatives; and designing AI systems in ways that allow for reusability so that subsequent projects can get off the ground more efficiently.

โ€œWeโ€™re doing all that very strategically,โ€ Marze says, explaining that this approach enables the organization to select AI projects where there are realistic expectations for ROI rather than merely hopes for vague improvements.

โ€œWe want to be nimble and move with urgency, but we also want to do things the right way. And because we fund our investments out of our P&L, we think about spending. We have that P&L mindset. We donโ€™t like to waste money,โ€ he adds.

Marze also credits the companyโ€™s ongoing commitment to modernization as helping ensure AI projects can deliver returns. โ€œWe built a foundation, and that put us in a good position to capitalize on AI,โ€ he says. โ€œThere is a readiness component to leveraging AI effectively and to driving AI ROI. You have to have strategic data management, modernized computing, modernized apps, and cloud-native solutions to take advantage of AI.โ€

Marze expects those same disciplines and approaches to continue enabling him to pick AI initiatives that deliver measurable value for the organization as his company looks to reimagine work using AI and to bring full agentic solutions into its core processes.

The payback on the various proposals vary, he notes, and the anticipated timeline for payback for some can be a few years out, but heโ€™s confident that the positive returns will be there.

Moving from elusive to realized ROI

Others are not as confident that their AI projects will deliver ROI โ€” or at least ROI as quickly as some would like. Some 84% of CEOs predict that positive returns from new AI initiatives will take longer than six months to achieve, according to the Teneo report.

Their perspective may be colored by the past few years, when ROI has been elusive for many reasons, say researchers, analysts, and IT execs.

Many early AI initiatives were experiments and learning opportunities with little or no relevance to the business, says Bret Greenstein, CAIO at West Monroe. They often didnโ€™t address the organizationโ€™s needs or goals and atrophied as a result. And even when the AI projects did address real pain points or business opportunities, they often failed to deliver value because the data or technology needed to scale wasnโ€™t there or cost more to modernize than the anticipated ROI. And while some delivered modest gains or improved experience, they were either difficult to quantify or small enough to not move the needle.

โ€œIf you go back to the early days of the web and mobile, the same thing happened, before people learned there are new metrics that mattered. It just takes time to figure those out,โ€ Greenstein says.

Now, three years after the arrival of ChatGPT and generative AI, the enterprise has matured its understanding of AIโ€™s potential.

โ€œWeโ€™re clearly in the third wave where more clients understand the transformational value of AI and that itโ€™s about new ways of working,โ€ Greenstein says. โ€œThose who are getting ROIs are the ones who see it as a transformation and work with the business to rethink what theyโ€™re doing and to get people to work differently. They know transformation work is required to see an ROI.โ€

To ensure AI projects deliver ROI, Palo Alto Networks CIO Meerah Rajavel selects initiatives that deliver velocity (โ€œSpeed is the name of the game,โ€ she says), efficiency (โ€œCan I do more with less?โ€), and improved experience. โ€œThis forces us to reimagine experiences and processes, and it absolutely changes the game,โ€ she says.

Rajavel assesses each AI initiativeโ€™s success on the outcomes it produces in those categories, noting that her company has adopted that focus all along and continues to use it to determine which AI investments to make.

As a case in point, she cites a current project that uses AI to automate 90% of IT operations โ€” a project that is already delivering gains in velocity, efficiency, and experience. Rajavel says automated IT operations jumped from 12% when the project started in early 2024 to 75% as of late 2025 โ€” an improvement that has halved the costs of IT operations.

Metrics and targets

Many organizations havenโ€™t taken a strategic approach when deciding where to implement AI, which helps explain why AI ROI has been so elusive, says IBMโ€™s Dhar. โ€œSome sprayed and prayed rather than systematically asking, โ€˜How will the technology make my company better?โ€™โ€ he adds.

But top management teams are increasingly looking at AI โ€œas a way to transform โ€” and to transform their businesses dramatically,โ€ he says. โ€œTheyโ€™re reinventing all their functions, and theyโ€™re transforming functions to make them better, stronger, and cheaper, and in some cases theyโ€™re also getting top-line growth. Two years ago, there was a lot of experimentation, proofs of concept; now it is transformation, with the most sophisticated management teams looking for returns within 12 months.โ€

Linh Lam, CIO of Jamf, had been deploying AI to solve pain points but is now using AI โ€œto rethink how we do things.โ€ She sees those as the opportunities to generate the biggest gains.

โ€œI feel like weโ€™re going to see more and more of that, where the technology forces us to rethink how weโ€™re doing things, and thatโ€™s where the real value is,โ€ she says.

Thatโ€™s certainly the case in terms of the AI initiatives Jamf now prioritizes.

โ€œTwo years ago, there was more tolerance to say, โ€˜Letโ€™s try it.โ€™ Now weโ€™ve moved well beyond that, so if someone is bringing something in and they have no semblance of the potential value except itโ€™s going to make life better, weโ€™re going to push back on that. Weโ€™re looking at the goals stakeholders have and setting metrics to measure outcomes,โ€ she says. โ€œI feel like the realm of possibility with what you can do with AI and AI agents almost feels limitless. But youโ€™re still running a business, and you want to make decisions in a logical, smart way. So we have to make sure weโ€™re bringing the right value.โ€

Turning IT challenges into a virtuous cycle for AI transformation

There are challenges, of course, to getting positive returns on AI initiatives โ€” even when theyโ€™re carefully selected for their potential, says Jennifer Fernandes, lead of the AI and technology transformation unit at Tata Consultancy Services in North America.

According to Fernandes, many organizations are stymied by legacy technology, process debt, and data debt that keeps them from being able to scale AI projects and see measurable value.

And they wonโ€™t be able to scale their AI ambitions and see impactful returns until they pay off that debt, she adds.

Ciscoโ€™s AI Readiness Index found that only 32% of organizations rate their IT infrastructure as being fully AI ready, only 34% rated their data preparedness as such, and just 23% considered their governance processes primed for AI.

Fernandes advises CIOs to tackle that debt strategically and use AI to pay it down. Moreover, using AI to modernize IT will bring efficiencies to IT operations while also building ITโ€™s capacity to support more AI use cases and addressing deficits in the organizationโ€™s data layer, she says.

The increased efficiency produces returns that can be reinvested in other AI projects, which will be more likely to produce ROI due to the modernization that resulted from the earlier AI project, Fernandes explains.

Moreover, this self-funding model not only helps build the modern tech stack and data program needed to power AI in IT and other business units but also focuses attention on ROI from the start, helping ensure CIOs and their business peers pursue AI initiatives that generate positive returns.

โ€œYouโ€™re generating enough savings to pay down your debt, and youโ€™re building incrementally, youโ€™re transforming as you go,โ€ Fernandes says. โ€œAnd with this [approach], CIOs donโ€™t have to go and say, โ€˜Give me money to fix these things.โ€™ Instead they can say, โ€˜I have this model, and if we bring AI in here, we can generate returns, and we can then reinvest to drive these other transformations. Now the CIO can say, โ€˜I am generating the funding for AI for you.โ€™โ€

Why IT transformations donโ€™t stick

What ever happened to Digital? The Cloud? Agile? Flattening ITโ€™s org chart? ITIL/ITSM? Or whatever other transformational change was supposed to, well, transform IT but instead petered out into just another disappointing management fad?
Thereโ€™s no one culprit. But here are a few of the more popular preventable reasons that IT change efforts die on the vine.

Culprit #1: Wrong methodology

Sometimes, the change methodology is, not to put too fine a point on it, a chumpโ€™s game. Most reorganizations fall into this category.

Preventing reorganization failures is simple: Donโ€™t reorganize. Recognize that if you want a more effective organization, redrawing the IT org chart is about as promising as the legendary Save-the-Titanic methodology of rearranging its deck chairs.

Culprit #2: Cheaping out

Sometimes the hoped-for change was underbudgeted. Understanding this one might take a history lesson.

Back in the late 1990s IT planners figured out that its data architectsโ€™ practice of saving money by only storing the last two digits of any date field had outlived its usefulness and had become lethal in the extremis. Remarkably, addressing this โ€” the Y2K crisis โ€” turned into what just might have been the most successful IT change effort in history.

Which led to the most colossal failure of appreciation in the history of the business world. In any event, in the months following the worldwide success of ITโ€™s Y2K remediation efforts, various groups conducted post-non-mortem analyses to figure out what had, mystifyingly, gone right.

Among the critical success factors, one stood out: Around the world, Y2K remediation efforts werenโ€™t starved for resources. And oh, by the way, the Y2K crisis was neither a hoax nor the result of incompetence. But given our speciesโ€™ proclivity to assign blame whenever we have the opportunity, thereโ€™s little point trying to convince anyone.

But still, we might decide to learn from this success and give our change efforts a chance by giving them enough staff and budget.

Culprit #3: What starts out as a fad stays a fad

Ready for another organizational change killer? Hereโ€™s a simple one: They became failed fads because the whole reason for trying them in the first place was that they were a trend someone influential had spotted and promoted. They became fads, that is, because they started out as fads.

Culprit #4: The 7x7x7 challenge

The first three culprits are the easy ones. Or at least, theyโ€™re conceptually easy. Increasing project budgets, for example, certainly isnโ€™t easy to do. Itโ€™s just easy to understand.

Now comes the hard one โ€” the one where even if you do everything right the hill youโ€™ll have to climb is steep. Itโ€™s like this:

Among the factors that make change hard is the need for all participants and stakeholders to have a deep and intuitive understanding of what the change will feel like when theyโ€™re living in it.

To understand the challenge, imagine that someone invented a flying car, and for some strange reason IT received the assignment of making a corporate fleet of airborne automotive vehicles real. What would that feel like. Pretty cool, right?

Well โ€ฆ

If you wanted flying cars to succeed, youโ€™d need to give everyone who might drive one of the cars an intuitive feeling of what navigating through heavy traffic would be like.

โ€œTerrifyingโ€ is the word that comes to mind. Spotting bikes, motorized scooters, other drivers, and the occasional fearless pedestrian is hard enough in a 2D driving environment. Your companyโ€™s drivers would have to spot vehicles above and below, and at all diagonal vectors, too. Even something as seemingly simple as a 3D turn signal gets complicated in a hurry.

Making this change successful would call for more than a souped-up driversโ€™ education course. Youโ€™re going to need future drivers to gain an intuitive sense of what driving in 3D traffic feels like. Youโ€™ll need photo- and haptically-realistic simulators.

Which gets us (finally!) to the 7x7x7 challenge.

Think about how you might describe how things are done right now in their pre-change state, as you would to train new employees. That might call for a PowerPoint slide with seven linked boxes on it, seven being the number of items viewers can easily grasp at a glance.

Itโ€™s a view thatโ€™s easy to grasp, but too superficial to be complete. To be useful, each of those boxes would need more explanation. So, figure youโ€™d have to create explanatory PowerPoint slides for each box in the higher-level slides, with โ€œexplanatoryโ€ meaning that each of the seven boxes would need seven explanatory boxes of their own. Thatโ€™s seven by seven: 49 boxes.

The 49-box view of things is more helpful but still oversimplifies the current state by quite a lot. It isnโ€™t until you craft seven-box views for each of these seven boxes to provide enough information โ€” 343 boxes worth in total โ€” to fully describe how things happen now.

Thatโ€™s the level of depth that the changeโ€™s stakeholders will need in order to understand what living inside the change will feel like โ€” for it to be real.

Making a change sticky calls for an equivalent 343-box account of the future state.

And oh, by the way, this has little to do with the essential analysis required to make sure these new 343 boxes deliver the old results, and deliver them better. Living inside them doesnโ€™t make them better.

And โ€œbetterโ€ wonโ€™t happen immediately either. The current way of doing things has, by now, been sanded and varnished to a shine. Even if the new way of doing things would theoretically be an improvement, it wonโ€™t be an actual improvement until itโ€™s been sanded and varnished to its own shine.

The 343-box perspective isnโ€™t limited to processes and practices. It describes the process optimization methodologies and frameworks organizations use to design the new 343 boxes; the new organizational chart (the real one, not the oversimplified version that shows only a couple of layers); not to mention the business culture a leader might want to change.

In the end, large-scale changes are hard to nail into place. Sometimes thatโ€™s because leaders make easy-to-avoid mistakes. But often itโ€™s because of how difficult it is to help everyone feel what the result is supposed to feel like once the organization tries to make the change real.

See also:

์นผ๋Ÿผ | AI ์‹คํŒจ ์›์ธ์ด IT ๋ถ€์„œ ํƒ“? ์‹ค์ œ ์ด์œ ๋ฅผ ์ฐพ์•„์•ผ ํ•  ๋•Œ

๊ธฐ์ˆ ์˜ ๊ฐ€์น˜์— ๋Œ€ํ•œ ๋…ผ์Ÿ์ด ๋‹ค์‹œ ํ•œ๋ฒˆ ์ˆ˜๋ฉด ์œ„๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์ €๋„๋ฆฌ์ŠคํŠธ ๋‹ˆ์ฝœ๋ผ์Šค ์นด๊ฐ€ ํ•˜๋ฒ„๋“œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋ทฐ์— ๊ธฐ๊ณ ํ•œ ๊ธ€์—์„œ โ€œIT๋Š” ๊ฒฝ์Ÿ์ , ์ „๋žต์ ์ธ ์šฐ์œ„๋ฅผ ๊ฑฐ์˜ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š” ๋ฒ”์šฉ์žฌ์— ๋ถˆ๊ณผํ•˜๋‹คโ€๋ผ๊ณ  ์„ ์–ธํ•œ ์ง€ ์•ฝ 22๋…„ ๋งŒ์˜ ์ผ์ด๋‹ค.

IT ๋ถ„์•ผ์—์„œ ์ผํ–ˆ๊ฑฐ๋‚˜ ๊ทธ ์ฃผ๋ณ€์—์„œ ๊ฒฝํ—˜ํ•ด ๋ณธ ์‚ฌ๋žŒ์ด๋ผ๋ฉด ์ด๋Ÿฐ ๋…ผ์Ÿ์˜ ํ๋ฆ„์ด ์ต์ˆ™ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค๋งŒ ์ด๋ฒˆ์—๋Š” ๊ด‘๋Œ€์—ญ ํ†ต์‹ ์ด๋‚˜ ERP ์‹œ์Šคํ…œ์ด ์•„๋‹ˆ๋ผ AI์™€ ์ž๋™ํ™”, ๊ทธ๋ฆฌ๊ณ  ๋’ค์ฒ˜์งˆ ๊ฒƒ์„ ์šฐ๋ คํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”๋“ค์ด ๋…ผ์˜์˜ ๋Œ€์ƒ์ด ๋๋‹ค. ์—ฌ๊ธฐ์— ํ˜์‹  ๊ธฐ์ˆ ๊ณผ IT, IT ๋ถ€์„œ๋ฅผ ์„œ๋กœ ๋‹ค๋ฅธ ๊ฐœ๋…์œผ๋กœ ๋ณด์ง€ ์•Š๊ณ  ๋™์ผ์‹œํ•˜๋Š” ๋Œ€์ค‘์ ์ธ ์ธ์‹์ด ๋”ํ•ด์ง€๋ฉด์„œ ์ฃผ์ œ๋Š” ๋”์šฑ ํ˜ผ๋ž€์Šค๋Ÿฌ์›Œ์กŒ๋‹ค.

์นด์˜ ์ „์ œ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ ํƒ€๋‹นํ•˜๋‹ค. ๊ธฐ์—…์€ ์ธํ„ฐ๋„ท ์—ฐ๊ฒฐ ์†๋„๋‚˜ ๋…ธํŠธ๋ถ์˜ ์„ฑ๋Šฅ, ๋„คํŠธ์›Œํฌ ์ž์ฒด๋กœ ์ธํ•ด ์„ฑ์žฅํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Ÿฐ ์š”์†Œ๋Š” ์–ด๋””์„œ๋‚˜ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฒ”์šฉ ์ž์‚ฐ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ์˜ ์ฃผ์žฅ์€ ํ•„์ˆ˜์ ์ธ ๋ฒ”์šฉ ์ž์‚ฐ์ด ์—†์„ ๊ฒฝ์šฐ ๊ธฐ์—…์ด ๊ฒฝ์Ÿ๋ ฅ์„ ์žƒ์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ์ถฉ๋ถ„ํžˆ ๊ณ ๋ คํ•˜์ง€ ์•Š์•˜๋‹ค. ์ง€๋‚œ 20๋…„๊ฐ„์˜ ๋ชจ๋“  ๊ฒฝ์Ÿ ์šฐ์œ„, ์˜ˆ๋ฅผ ๋“ค์–ด ์•„๋งˆ์กด์˜ ๊ณต๊ธ‰๋ง์ด๋‚˜ ์—์–ด๋น„์•ค๋น„์˜ ๋งˆ์ผ“ํ”Œ๋ ˆ์ด์Šค๋Š” ์นด๊ฐ€ ์ „๋žต์ ์œผ๋กœ ๋ฌด์˜๋ฏธํ•˜๋‹ค๊ณ  ์น˜๋ถ€ํ–ˆ๋˜ IT ์ธํ”„๋ผ ์œ„์—์„œ ๊ตฌ์ถ•๋๋‹ค.

๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , IT ๋ถ„์•ผ์˜ ์ฃผ์š” ์—ฐ๊ตฌ์ž๋“ค์€ IT ์ „๋ฌธ๊ฐ€๋“ค์ด ๋‹น์—ฐํ•˜๊ฒŒ ์—ฌ๊ฒจ์˜จ ์ธ์‹์— ๊ณ„์†ํ•ด์„œ ๋ฌธ์ œ๋ฅผ ์ œ๊ธฐํ•ด ์™”๋‹ค.

๊ฐ€๋ น ์ตœ๊ทผ ์บ˜๋ฆฌํฌ๋‹ˆ์•„ ๋งค๋‹ˆ์ง€๋จผํŠธ ๋ฆฌ๋ทฐ(California Management Review)์— ๊ฒŒ์žฌ๋œ ๊ธ€์—์„œ ํ•™์ž ์กฐ ํŽ˜ํผ๋“œ์™€ ๋งˆํ‹ด ๋ชจ์ปค๋Š” ๋Œ€๋ถ€๋ถ„์˜ AI ํˆฌ์ž๊ฐ€ ๊ธฐ๋Œ€ํ•œ ๋งŒํผ์˜ ํˆฌ์ž ๋Œ€๋น„ ์ˆ˜์ต(ROI)์„ ๋‚ด์ง€ ๋ชปํ•  ๊ฒƒ์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ์ง€๋‚œ 3๋…„๊ฐ„ AI ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ ๊ฐ€์šด๋ฐ ๊ธฐ๋Œ€์— ๋ถ€ํ•ฉํ•œ ์‚ฌ๋ก€๊ฐ€ 25%์— ๋ถˆ๊ณผํ•˜๋‹ค๋Š” IBM ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๊ฐ€ ๊ทผ๊ฑฐ๋กœ ์ œ์‹œ๋๋‹ค. ์ด๋“ค์˜ ๋ฌธ์ œ ์ œ๊ธฐ๋Š” ๊ธฐ์ˆ ์ด ์•„๋ฌด๋ฆฌ ํ˜์‹ ์ ์ด๋”๋ผ๋„ ๊ทธ ์ž์ฒด๋กœ ๊ฒฝ์Ÿ ์šฐ์œ„๋ฅผ ๋ณด์žฅํ•˜์ง€๋Š” ์•Š๋Š”๋‹ค๋Š” ์นด์˜ ๊ฒฌํ•ด์™€ ๋งž๋‹ฟ์•„ ์žˆ๋‹ค. ๋ฐ”๊ฟ” ๋งํ•˜๋ฉด AI ํˆฌ์ž ์‹คํŒจ์˜ ์‹ค์ œ ์›์ธ์ด ๊ธฐ์ˆ  ์ž์ฒด์— ์žˆ์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ง€์ ์ด๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ ์ฑ…์ž„ ์†Œ์žฌ๋‹ค. ์ด๋“ค์˜ ๊ด€์ ์—์„œ ๋ณด๋ฉด, ์ง„์งœ ๋ฌธ์ œ๋Š” IT๊ฐ€ ์•„๋‹ˆ๋ผ ํ•ต์‹ฌ์ ์ธ ๊ธฐ์ˆ  ๊ด€๋ จ ๊ฒฐ์ •์„ IT์— ๋– ๋„˜๊ธด ๋’ค ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ํƒ“ํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”์‹ญ์— ์žˆ๋‹ค.

ํ•œ์ธต ๋” ๊นŠ์ด ๋“ค์–ด๊ฐ€๋ฉด, ํŽ˜ํผ๋“œ๋Š” ๋งŽ์€ ๊ธฐ์—…์ด โ€˜IT ์šด์˜ ๋ชจ๋ธโ€™๊ณผ โ€˜IT ์กฐ์ง ๋ชจ๋ธโ€™์„ ํ˜ผ๋™ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ง€์ ํ•œ๋‹ค. IT ์šด์˜ ๋ชจ๋ธ์€ ๋””์ง€ํ„ธ ์ž์‚ฐ๊ณผ ์—…๋ฌด ํ๋ฆ„์ด ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€๋ฅผ ๋œปํ•˜๊ณ , IT ์กฐ์ง ๋ชจ๋ธ์€ ๊ธฐ์ˆ  ์ง€์‹์„ ๊ฐ€์ง„ ์ธ์žฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ตฌ์„ฑ๋ผ ์žˆ๋Š”์ง€๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์ˆ  ๋ถ„์•ผ ์•ˆํŒŽ์˜ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์€ ์ „๋žต์€ ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ€์„œ์—์„œ ๋‚˜์˜ค๊ณ  ์‹คํ–‰์€ IT ๋ถ€์„œ์˜ ๋ชซ์ด๋ผ๊ณ  ๋ฏฟ๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์˜ค๋Š˜๋‚  ๊ฒฝ์Ÿ์„ ์ฐจ๋ณ„ํ™”ํ•˜๋Š” ์š”์†Œ์˜ ์•ฝ 90%๊ฐ€ ์†Œํ”„ํŠธ์›จ์–ด์™€ ๋ฐ์ดํ„ฐ, ๋””์ง€ํ„ธ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ํ†ตํ•ด ๊ตฌํ˜„๋˜๊ณ  ์žˆ๋‹ค. ์นด๊ฐ€ 2003๋…„์— IT๊ฐ€ ๋ฒ”์šฉ์žฌ๋กœ ์ „๋ฝํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค๋ฉด, ํŽ˜ํผ๋“œ์˜ ์ฃผ์žฅ์€ IT๋ฅผ ์˜ค์ง ๋ฒ”์šฉ์žฌ๋กœ๋งŒ ์ทจ๊ธ‰ํ•˜๋Š” ํ•œ ๊ทธ ์ด์ƒ์˜ ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ๋Š” ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

์„œ๋กœ ๋‹ค๋ฅธ IT ์ ‘๊ทผ๋ฒ•, ๋น„์Šทํ•œ ๊ฒฐ๊ณผ

์ด ๋‚œ์ œ๋ฅผ ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜๋ ค๋ฉด ์˜ค๋Š˜๋‚  ๊ธฐ์—…์˜ IT ๋ถ€์„œ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ 2๊ฐœ์˜ ํ‰ํ–‰ ์„ธ๊ณ„์— ์œ„์น˜ํ•ด ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์‹ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ํ•˜๋‚˜๋Š” ๊ธฐ์ˆ ์˜ ์†Œ์œ ๊ถŒ์ด ๋ชจํ˜ธํ•œ ๋Œ€๊ธฐ์—… ํ™˜๊ฒฝ์ด๋‹ค. ๋Œ€๊ธฐ์—…์—์„œ ํ”ํžˆ ๋งˆ์ผ€ํŒ… ๋ถ€์„œ๋Š” ๋ฏผ์ฒฉ์„ฑ์„ ์š”๊ตฌํ•˜๊ณ , ์žฌ๋ฌด ๋ถ€์„œ๋Š” ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ์„ ์›ํ•˜๋ฉฐ, ์šด์˜ ๋ถ€๋ฌธ์€ ์•ˆ์ •์„ฑ์„ ์ค‘์‹œํ•œ๋‹ค. IT ๋ถ€์„œ๋Š” ์ด๋Ÿฌํ•œ ์ƒ์ถฉ๋œ ์š”๊ตฌ ์†์—์„œ ํ˜์‹ ์ ์ด๋ฉด์„œ๋„ ๋ฆฌ์Šคํฌ๋ฅผ ํ”ผํ•ด์•ผ ํ•˜๊ณ , ์ „๋žต์ ์ด๋ฉด์„œ๋„ ๋น„์šฉ ํšจ์œจ์ ์ด์–ด์•ผ ํ•˜๋ฉฐ, ๋น ๋ฅด๋ฉด์„œ๋„ ์•ˆ์ „ํ•ด์•ผ ํ•œ๋‹ค๋Š” ์š”๊ตฌ๋ฅผ ๋ฐ›๋Š”๋‹ค. ์—ฌ๊ธฐ์— ๋ณต์žกํ•œ ์˜์‚ฌ๊ฒฐ์ •๊ณผ ๋ฒค๋” ๊ตฌ์กฐ, ๋ถ€์„œ๋ณ„๋กœ ๋”ฐ๋กœ ์›€์ง์ด๋Š” ์ธ์„ผํ‹ฐ๋ธŒ ์ฒด๊ณ„๊นŒ์ง€ ๊ฒน์น˜๋ฉด์„œ, ์ถฉ๋ถ„ํžˆ ํ•ฉ๋ฆฌ์ ์ธ ํ”„๋กœ์ ํŠธ์กฐ์ฐจ๋„ ์ดํ•ด๊ด€๊ณ„ ์‹ธ์›€์ด ์ด์–ด์ง€๋Š” ๊ธด ์ •์น˜์  ๊ณผ์ •์œผ๋กœ ๋ณ€ํ•ด๋ฒ„๋ฆฐ๋‹ค.

๊ทธ ๊ฒฐ๊ณผ ๋Œ€๊ธฐ์—…์˜ ํŠน์ง•์€ ์ฑ…์ž„์ง€์ง€ ์•Š๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”์‹ญ์œผ๋กœ ๊ท€๊ฒฐ๋œ๋‹ค. ํŽ˜ํผ๋“œ๊ฐ€ ๋น„ํŒํ•˜๋Š” ์ง€์ ๋„ ๋ฐ”๋กœ ์—ฌ๊ธฐ๋‹ค. ๊ธฐ์ˆ  ๊ฒฐ์ •์— ๋Œ€ํ•œ ์ฑ…์ž„์„ ์ง€์ง€ ์•Š๊ฑฐ๋‚˜ ๊ทธ๋Ÿด ์˜์‚ฌ๊ฐ€ ์—†๋Š” ๋ฆฌ๋”๋ฅผ ๋Œ€์‹ ํ•ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” IT ๋ถ€์„œ๋Š” ์—†๋‹ค.

๋‘ ๋ฒˆ์งธ IT ์„ธ๊ณ„๋Š” ์ค‘์†Œ๊ธฐ์—… ํ™˜๊ฒฝ์ด๋‹ค. ์ด๊ณณ์—๋Š” ์กฐ์ง์„ ์ง€ํ‚ค๋ ค๊ณ  ์• ์“ฐ๋Š” CIO๋„ ์—†๊ณ , ํ˜์‹ ์„ ๊ฐ€๋กœ๋ง‰๋Š” CFO๋„ ์—†์œผ๋ฉฐ, ๋ชจ๋“  ๊ฒฐ์ •์„ ๋Šฆ์ถ”๋Š” ์•„ํ‚คํ…์ฒ˜ ์‹ฌ์˜ ์œ„์›ํšŒ๋„ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์„ค๋ฆฝ์ž์™€ ์†Œ์œ ์ฃผ๊ฐ€ ์ง์ ‘ ๊ธฐ์ˆ  ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋ฉฐ, ํ˜„๊ธˆ ํ๋ฆ„๊ณผ ๊ณ ๊ฐ ์œ ์ง€, ์„ฑ์žฅ ๋ชฉํ‘œ๋ฅผ ๋ˆ„๊ตฌ๋ณด๋‹ค ํ˜„์‹ค์ ์œผ๋กœ ์ธ์‹ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค์€ ๊ฐ€๋Šฅํ•œ ํ•œ ๋งŽ์€ ์—…๋ฌด๋ฅผ ์™ธ๋ถ€์— ๋งก๊ธฐ๊ณ , SaaS๋ฅผ ์ ๊ทน์ ์œผ๋กœ ๋„์ž…ํ•˜๋ฉฐ, ๋ถˆํ•„์š”ํ•œ IT ๊ด€๋ฃŒ์ฃผ์˜๋กœ ์ธํ•œ ๋ถ€๋‹ด์„ ๊ฒช์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ERP ํ”„๋กœ์ ํŠธ๋Š” ์—ฌ์ „ํžˆ ์‹คํŒจํ•˜๊ณ , CRM ๋„์ž…์€ ๊ธฐ๋Œ€์— ๋ชป ๋ฏธ์น˜๋ฉฐ, ์‹œ์Šคํ…œ ํ†ตํ•ฉ์€ ํ˜„์‹ค์˜ ๋ณต์žก์„ฑ ์•ž์—์„œ ๋ฌด๋„ˆ์ง„๋‹ค. ์˜์‚ฌ๊ฒฐ์ • ์ฃผ์ฒด๋งŒ ๋‹ฌ๋ผ์กŒ์„ ๋ฟ, ๋ฌธ์ œ์˜ ์–‘์ƒ์€ ๋Œ€๊ธฐ์—…๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅด์ง€ ์•Š๋‹ค.

์ •๋ฐ˜๋Œ€์˜ ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ชจ๋ธ์„ ๊ฐ€์ง„ ๋‘ ์„ธ๊ณ„๊ฐ€ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ๊ฒช๊ณ  ์žˆ๋‹ค๋ฉด, ๋ฌธ์ œ์˜ ์›์ธ์€ IT์— ์žˆ์ง€ ์•Š์„ ๊ฐ€๋Šฅ์„ฑ์ด ์ปค์ง„๋‹ค. IT๊ฐ€ ๋ถ€์กฑํ•ด์„œ๊ฐ€ ์•„๋‹ˆ๋‹ค. ํ•ต์‹ฌ์€ IT๊ฐ€ ์•„๋‹ˆ๋ผ, ์กฐ์ง์ด ๋‹น๋ฉดํ•œ ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์—ญ๋Ÿ‰์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋А๋ƒ๋‹ค. ํŽ˜ํผ๋“œ์˜ ์ฃผ์žฅ์ฒ˜๋Ÿผ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ˆ˜์˜ ์ค‘์†Œ๊ธฐ์—…์ด ์ด๋ฏธ ์ฒด๊ฐํ•˜๊ณ  ์žˆ๋“ฏ์ด ๋„คํŠธ์›Œํฌ, ๋‹จ๋ง, ์ธ์ฆ ์ฒด๊ณ„, ๋ฐฑ์—…, ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋“ฑ โ€˜ํ•ญ์ƒ ์œ ์ง€ํ•ด์•ผ ํ•˜๋Š”โ€™ ์ œํ’ˆ์€ ์™ธ์ฃผํ™”ํ•˜๊ฑฐ๋‚˜ ์ž๋™ํ™”ํ•˜๊ณ , ํ‘œ์ค€ํ™”ํ•˜๊ฑฐ๋‚˜ ์„œ๋น„์Šค ํ˜•ํƒœ๋กœ ์†Œ๋น„ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋ฐ์ดํ„ฐ ์ „๋žต๊ณผ AI ์ค€๋น„๋„, ๋””์ง€ํ„ธ ์ œํ’ˆ ๊ด€๋ฆฌ, ์šด์˜ ๋ชจ๋ธ ์žฌ์„ค๊ณ„, ๊ณ ๊ฐ ๊ฒฝํ—˜ ํ˜์‹  ๋“ฑ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฒฝ์Ÿ๋ ฅ๊ณผ ์ง๊ฒฐ๋œ ์—ญ๋Ÿ‰์€ ์ „ํ†ต์ ์ธ IT ์˜์—ญ ์•ˆ์— ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ž๋ฆฌ ์žก๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋Š” ๊ธฐ์ˆ ์„ ์ดํ•ดํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ์ „๋žต๊ฐ€์™€ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ธฐ์ˆ ์ž๊ฐ€ ํ•จ๊ป˜ํ•  ๋•Œ ๋น„๋กœ์†Œ ์ œ๋Œ€๋กœ ์ž‘๋™ํ•œ๋‹ค.

์ด ๋•Œ๋ฌธ์— ํŽ˜ํผ๋“œ๋Š” ๊ธฐ์ˆ  ์ง€์‹์„ ํŠน์ • ๋ถ€์„œ์— ๊ฐ€๋‘ฌ๋‘๋Š” ๋ฐฉ์‹์ด ์•„๋‹ˆ๋ผ, ์กฐ์ง ์ „๋ฐ˜์— ๋‚ด์žฌํ™”ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ๋‹ค. ์ด๋Š” ์•ˆ์ •์„ฑ๊ณผ ๋ณด์•ˆ, ์—ฐ์†์„ฑ ์ธก๋ฉด์—์„œ๋Š” ๋›ฐ์–ด๋‚œ ์—ญ๋Ÿ‰์„ ์ง€๋‹Œ ์ „ํ†ต์ ์ธ IT ์ „๋ฌธ๊ฐ€๋“ค์ด ํ˜์‹  ๋žฉ์„ ์šด์˜ํ•˜๊ฑฐ๋‚˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™ํŒ€์„ ์ด๋Œ๊ณ  ๊ณ ๊ฐ ์ค‘์‹ฌ์˜ ๋””์ง€ํ„ธ ๊ฒฝํ—˜์„ ์„ค๊ณ„ํ•˜๋Š” ์—ญํ• ์„ ๋งก์„ ๋•Œ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ์ด์œ ์ด๊ธฐ๋„ ํ•˜๋‹ค. ์„œ๋กœ ๋‹ค๋ฅธ ์„ฑ๊ฒฉ์˜ ์—…๋ฌด์ด๋ฉฐ, ๊ฐ๊ฐ ๋‹ค๋ฅธ ์—ญ๋Ÿ‰๊ณผ ๋ณด์ƒ ์ฒด๊ณ„, ์šด์˜ ๋ชจ๋ธ์„ ์š”๊ตฌํ•œ๋‹ค.

๋ฆฌ์Šคํฌ๋ฅผ ๋†’์ด๊ณ  ๊ฒฉ์ฐจ๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋Š” AI

CEO์˜ ๊ธฐ๋Œ€๊ฐ์— ์ด๋Œ๋ ค, ๋งŽ์€ ์กฐ์ง์ด AI๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ฐ”๊ฟ€ ๊ฒƒ์ด๋ผ๋Š” ๋ฏฟ์Œ์œผ๋กœ ์„œ๋‘˜๋Ÿฌ ๋„์ž…์— ๋‚˜์„œ๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ IBM ๊ธฐ์—…๊ฐ€์น˜์—ฐ๊ตฌ์†Œ์˜ 2025๋…„ CEO ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด ์ „์ฒด AI ํ”„๋กœ์ ํŠธ์˜ 60%๋Š” ์—ฌ์ „ํžˆ ํŒŒ์ผ๋Ÿฟ ๋‹จ๊ณ„์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋‹ค. ์ด๋•Œ ์ตœ๊ณ ๋ฐ์ดํ„ฐ์ฑ…์ž„์ž๋Š” ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ๊ณผ ๊ฑฐ๋ฒ„๋„Œ์Šค, ๋ช…ํ™•ํ•˜์ง€ ์•Š์€ ์‚ฌ์šฉ๋ก€๋ฅผ ์ฃผ์š” ๊ฑธ๋ฆผ๋Œ๋กœ ๊ผฝ๋Š”๋‹ค. ์ด๋Ÿฐ ๋ฌธ์ œ์˜ ์›์ธ์€ IT๊ฐ€ ์•„๋‹ˆ๋‹ค. ๋ฆฌ๋”์‹ญ๊ณผ ์ „๋žต, ์กฐ์ง ์—ญ๋Ÿ‰์˜ ๋ฌธ์ œ๋‹ค. ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”๊ฐ€ AI ์‚ฌ์šฉ๋ก€๋ฅผ ์ •์˜ํ•˜๊ฑฐ๋‚˜ ๊ธฐ์ˆ  ํˆฌ์ž๋ฅผ ํ‰๊ฐ€ํ•  ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ”์ง€ ๋ชปํ–ˆ์„ ๋•Œ, ๋ฐ˜์‘์€ ์‰ฝ๊ฒŒ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฒฐ์ •๊ถŒ์„ IT์— ๋„˜๊ธฐ๊ณ , IT๊ฐ€ ๋ณธ๋ž˜์˜ ๋ฐฉ์‹๋Œ€๋กœ ์›€์ง์ด๋ฉด ๊ฒฐ๊ณผ์— ๋ถˆ๋งŒ์„ ์ œ๊ธฐํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

์ด๋Ÿฐ ๊ฒฉ์ฐจ๋ฅผ ํ•ด์†Œํ•˜๋ ค๋ฉด ๊ธฐ์—…์—๋Š” ํฌ๊ฒŒ 3๊ฐ€์ง€ ๋ณ€ํ™”๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Š” IT ๋ถ€์„œ๋ฅผ ์—†์• ์ž๋Š” ์ด์•ผ๊ธฐ๊ฐ€ ์•„๋‹ˆ๋ผ, IT์˜ ์—ญํ• ๊ณผ ๋ชฉ์ ์„ ๋‹ค์‹œ ์ •์˜ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค.

1. โ€˜ํ•ญ์ƒ ์œ ์ง€ํ•ด์•ผ ํ•˜๋Š”โ€™ IT ์š”์†Œ๋ฅผ ์œ ํ‹ธ๋ฆฌํ‹ฐ์ฒ˜๋Ÿผ ๋‹ค๋ค„์•ผ ํ•œ๋‹ค. ์ฆ‰, ์ „๊ธฐ์ฒ˜๋Ÿผ ์•ˆ์ •์ ์ด๊ณ  ํšจ์œจ์ ์ด๋ฉฐ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜๊ฒŒ ์šด์˜๋ผ์•ผ ํ•œ๋‹ค. ๋ฒ”์šฉ ์„œ๋น„์Šค๋Š” ๋…ผ์Ÿ์˜ ๋Œ€์ƒ์ด ์•„๋‹ˆ๋ผ ๊ด€๋ฆฌ์˜ ๋Œ€์ƒ์ด๋‹ค. ๊ฒฝ์Ÿ ์šฐ์œ„๋ฅผ ๋งŒ๋“ค์–ด์ฃผ์ง€๋Š” ์•Š์ง€๋งŒ, ์ด๊ฒƒ์ด ์—†์œผ๋ฉด ๋น„์ฆˆ๋‹ˆ์Šค๋Š” ์ฆ‰์‹œ ๋งˆ๋น„๋œ๋‹ค.

2. ๋””์ง€ํ„ธ๊ณผ AI ์—ญ๋Ÿ‰์€ ์ „ํ†ต์ ์ธ IT ์˜์—ญ ๋ฐ–์—์„œ ๊ตฌ์ถ•ํ•œ๋‹ค. ์• ์ž์ผ ์ œํ’ˆํŒ€๊ณผ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค, ๋ถ„์„, ํ˜์‹  ๊ด€๋ จ ํŒ€์€ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ์ด ํ˜•์„ฑ๋˜๋Š” ์ง€์ , ์ฆ‰ ๋งค์ถœ, ๊ณ ๊ฐ ๊ฒฝํ—˜, ์šด์˜๊ณผ ํ›จ์”ฌ ๊ฐ€๊นŒ์šด ๊ณณ์— ์žˆ์–ด์•ผ ํ•œ๋‹ค.

3. ๊ธฐ์ˆ  ์„ฑ๊ณผ์— ๋Œ€ํ•œ ์ฑ…์ž„์„ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”๊ฐ€ ์ ธ์•ผ ํ•œ๋‹ค. ๊ธฐ์ˆ  ํˆฌ์ž๋Š” ๊ณง ๋น„์ฆˆ๋‹ˆ์Šค ํˆฌ์ž๋‹ค. IT ๋ถ€์„œ์— ๋‹จ์ˆœํ•œ ํ”„๋กœ์ ํŠธ ์ˆ˜ํ–‰ ๊ณผ์ œ๋กœ ๋„˜๊ธธ ์ผ์ด ์•„๋‹ˆ๋‹ค. ์ด๋Š” IT ๋ถ€์„œ๋ฅผ ๊ฐ€์น˜ ์ฐฝ์ถœ์˜ ๊ณต๋™ ์„ค๊ณ„์ž๊ฐ€ ์•„๋‹Œ ๊ณต๊ธ‰์ž๋กœ๋งŒ ๊ทœ์ •ํ•ด ์˜จ ์ž˜๋ชป๋œ ํŒŒํŠธ๋„ˆ์‹ญ ๋ชจ๋ธ์„ ๋๋‚ด์•ผ ํ•œ๋‹ค๋Š” ํŽ˜ํผ๋“œ์˜ ์ฃผ์žฅ๊ณผ ์ผ์น˜ํ•œ๋‹ค. ์ค‘์†Œ๊ธฐ์—…์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ฑ…์ž„ ๊ตฌ์กฐ๊ฐ€ ์ด๋ฏธ ์ž‘๋™ํ•˜๊ณ  ์žˆ๋‹ค. ๋Œ€๊ธฐ์—…์—์„œ๋Š” ์ด๋ฅผ ์ƒˆ๋กœ ๋งŒ๋“ค์–ด์•ผ ํ•œ๋‹ค.

๋ฌผ๋ก  ์ด๋Ÿฌํ•œ ์ธ์‹ ์ „ํ™˜์ด ๊ณง๋ฐ”๋กœ IT ๋ถ€์„œ์˜ ์ฑ…์ž„์„ ์ค„์ด์ง€๋Š” ์•Š์„ ๊ฒƒ์ด๋‹ค. ๋ถ€์‹คํ•œ ํ”„๋กœ์„ธ์Šค ์„ค๊ณ„์™€ ์ทจ์•ฝํ•œ ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค, ๋น„ํ˜„์‹ค์ ์ธ ๊ธฐ๋Œ€์น˜, ๋ฒค๋” ๊ด€๋ฆฌ ์‹คํŒจ๋กœ ์ธํ•œ ๋ฌธ์ œ์—์„œ IT ๋ถ€์„œ๋Š” ์—ฌ์ „ํžˆ ์ฑ…์ž„์„ ๋– ์•ˆ๊ฒŒ ๋  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค. IT๋Š” ์‹ค๋ง์ด ๊ต์ฐจํ•˜๊ณ  ์ฆ์ƒ์ด ๋“œ๋Ÿฌ๋‚˜๋Š” ์œ ์ผํ•œ ์ง€์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๊ทผ๋ณธ ์›์ธ์ด ๋‹ค๋ฅธ ๊ณณ์— ์žˆ๋”๋ผ๋„ ์†์‰ฝ๊ฒŒ ํฌ์ƒ์–‘์ด ๋  ์ˆ˜ ์žˆ๋‹ค.

์นด๊ฐ€ 20์—ฌ ๋…„ ์ „ ์ฃผ์žฅํ•œ ๋‚ด์šฉ์ฒ˜๋Ÿผ IT ํ•˜๋“œ์›จ์–ด์™€ ์ธํ”„๋ผ๋Š” ๋ฒ”์šฉ์žฌ๊ฐ€ ๋๋‹ค. ๋˜ํ•œ ๋””์ง€ํ„ธ ๊ฐ€์น˜๋ฅผ ์ฐฝ์ถœํ•˜๊ธฐ ์œ„ํ•ด IT์˜ ์—ญํ• ์„ ์žฌ๊ณ ํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์—์„œ ํŽ˜ํผ๋“œ์™€ ๋ชจ์ปค์˜ ์ง€์ ๋„ ํƒ€๋‹นํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋” ๊ทผ๋ณธ์ ์ธ ์ง„์‹ค์€ ๊ธฐ์ˆ  ์ž์ฒด๊ฐ€ ์‹คํŒจํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๊ธฐ์—…์ด ๊ธฐ์ˆ ์ด ์„ฑ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๋งŒ๋“ค์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค.
dl-ciokorea@foundryco.com

โ€œ๊ธฐ์ˆ  ๋ถ€์ฑ„๋ถ€ํ„ฐ ์„€๋„์šฐ IT, ํ•™์Šต ๋ถ€์žฌ๊นŒ์ง€โ€ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ฃฝ์ด๋Š” IT์˜ 7๊ฐ€์ง€ ํŒจํ„ด

๋Œ€๋ถ€๋ถ„ CIO๋Š” ์ž์‹ ์˜ ์—ญํ• ์ด ์‹œ์Šคํ…œ ๊ฐ€๋™๋ฅ  ๊ฐ™์€ ์šด์˜ ์ง€ํ‘œ๋ณด๋‹ค ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ผ์ด๋ผ๋Š” ์ ์„ ์ด๋ฏธ ์ดํ•ดํ•˜๊ณ  ์žˆ๋‹ค. 2๋…„๋งˆ๋‹ค ์ƒˆ๋กœ์šด ํ˜์‹ ์˜ ๊ธฐํšŒ๊ฐ€ ๋“ฑ์žฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด์ œ ๋ฌธ์ œ๋Š” IT๊ฐ€ ์ผ๊ด€๋˜๊ฒŒ ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š”์ง€์ด๋‹ค.

์• ์ž์ผ, ๋ฐ๋ธŒ์˜ต์Šค, ITSM ํ”„๋ž™ํ‹ฐ์Šค๋Š” ๋”œ๋ฆฌ๋ฒ„๋ฆฌ ์—ญ๋Ÿ‰๊ณผ ์„œ๋น„์Šค ์—ญ๋Ÿ‰์„ ๊ฐœ์„ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ๊ฐ ๋ฐฐํฌ๊ฐ€ ์„ฑ๊ณตํ• ์ˆ˜๋ก ์ดํ•ด๊ด€๊ณ„์ž์˜ ๊ธฐ๋Œ€์น˜๋Š” ๋” ๋†’์•„์ง„๋‹ค. ํ•˜์ง€๋งŒ, ๊ฐ€์น˜ ์ œ๊ณต์„ ์ผ๊ด€๋˜๊ฒŒ ์œ ์ง€ํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š์œผ๋ฉฐ, ์ง์› ์ด์ง ๊ด€๋ฆฌ, ๊ธฐ๋Œ€์— ๋ชป ๋ฏธ์น˜๋Š” ๊ธฐ์ˆ  ํŒŒํŠธ๋„ˆ ๋Œ€์‘, ๋ณด์•ˆ ์šฐ์„ ์ˆœ์œ„ ๊ท ํ˜•, ๊ธฐ์ˆ  ๋ถ€์ฑ„ ํ•ด๊ฒฐ ๋“ฑ์˜ ๊ณผ์ œ๊ฐ€ ์‚ฐ์žฌํ•ด ์žˆ๋‹ค.

CIO๋Š” ์ƒ์„ฑํ˜• AI๋กœ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋ผ๋Š” ์••๋ฐ•์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ตœ๊ณ  ๊ฒฝ์˜์ง„์€ ์‹คํ—˜์„ ๋„˜์–ด AI ํˆฌ์ž์—์„œ ๋‹จ๊ธฐ์ ์ธ ROI์™€ ์žฅ๊ธฐ์ ์ธ ์ „๋žต์  ๊ฐ€์น˜๋ฅผ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค. ํ•„์ž๋Š” ์ตœ๊ทผ ์ƒ์„ฑํ˜• AI ์‹œ๋Œ€์˜ IT ์กฐ์ง ์žฌ๊ตฌ์ƒ๊ณผ ์„ธ๊ณ„ ์ˆ˜์ค€์˜ IT๋Š” ์–ด๋–ค ๋ชจ์Šต์ด์–ด์•ผ ํ•˜๋Š”์ง€ ์ œ์‹œํ•œ ๋ฐ” ์žˆ๋‹ค. ์ด์™€ ํ•จ๊ป˜ CIO๋Š” IT์˜ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์Šค์Šค๋กœ ์ฃฝ์ด๋Š” ํ”„๋ž™ํ‹ฐ์Šค์™€ ํ–‰์œ„๋„ ๊ฒฝ๊ณ„ํ•ด์•ผ ํ•œ๋‹ค. ์ „๋ฌธ๊ฐ€๋“ค์ด ์ง€์ ํ•˜๋Š” โ€˜ํ•˜์ง€ ๋ง์•„์•ผ ํ•  ์ผโ€™ 7๊ฐ€์ง€๋ฅผ ์ •๋ฆฌํ–ˆ๋‹ค.

1. ๋น…๋ฑ… ๋ฐฉ์‹ ๋ฐฐํฌ๋ฅผ ๋ชฉํ‘œ๋กœ ์„ค์ •ํ•œ๋‹ค

AI์— ๋Œ€ํ•œ ๊ณผ๋Œ€ํฌ์žฅ์€ ์ƒ์„ฑํ˜• AI ์—ญ๋Ÿ‰ ์ œ๊ณต์— ๋Œ€ํ•œ ๊ฒฝ์˜์ง„์˜ ๊ธฐ๋Œ€์น˜๋ฅผ ๋Œ์–ด์˜ฌ๋ ธ๋‹ค. ์ ์ง€ ์•Š์€ ๊ธฐ์—…์˜ ๊ฒฝ์˜์ง„์ด ์ž์œจ ์šด์˜, ๊ณ ๋„ํ™”ํ•œ ์—์ด์ „ํ‹ฑ AI ๊ธฐ๋Šฅ, ๊ฐœ์ธํ™”๋œ AI ๊ธฐ๋ฐ˜ ๊ณ ๊ฐ ์—ฌ์ •๊นŒ์ง€ ๋ชฉํ‘œ๋กœ ์‚ผ๊ณ  ์žˆ๋‹ค.

์„ฑ๊ณผ๊ฐ€ ๋‚ฎ์€ IT ๋ถ€์„œ๋Š” ์š”๊ตฌ๊ฐ€ ํฐ ์ดํ•ด๊ด€๊ณ„์ž์—๊ฒŒ ํœ˜๋‘˜๋ฆฌ๊ธฐ ์‰ฝ๋‹ค. ๋ฐ˜๋ฉด์— ์ œํ’ˆ ๊ธฐ๋ฐ˜ IT ๋ถ€์„œ๋Š” ๋น…๋ฑ… ๋ฐฉ์‹ ๋ฐฐํฌ๋ฅผ ์•ฝ์†ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์‹คํ—˜๊ณผ ์ตœ์†Œ๊ธฐ๋Šฅ์ œํ’ˆ(MVP)์„ ์šฐ์„ ์‹œํ•˜๊ณ , ์ ์ง„์ ์œผ๋กœ ๊ฐœ์„ ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์• ์ž์ผ ๋ฐฉ์‹์œผ๋กœ ์ œ๊ณตํ•œ๋‹ค๋Š” ์›์น™์„ ๊ฐ–์ถ”๊ณ  ์žˆ๋‹ค.

๋ฒ ๋ฆฐํŠธ(Verint)์˜ ๊ณ ๊ฐ AI ํ˜์‹  ๋‹ด๋‹น ๊ธ€๋กœ๋ฒŒ ๋ถ€์‚ฌ์žฅ ๋ผ์ง€ ๋ฐœ๋ผ์ˆœ๋‹ค๋žŒ์€ โ€œ๋””์ง€ํ„ธ ์ „ํ™˜ ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋ฅผ ๊ณ„ํšํ•˜๊ณ  ์‹คํ–‰ํ•  ๋•Œ ๊ธฐ์—…์€ ์ž‘์€ ๊ทœ๋ชจ๋กœ ์‹œ์ž‘ํ•ด ์ค‘๋‹จ ์—†์ด ํ™•์žฅํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋˜, โ€œํ•ต์‹ฌ ๋ชฉํ‘œ๋Š” ๋ช‡ ๋…„์งœ๋ฆฌ ํ”„๋กœ์ ํŠธ๋ฅผ ๊ธฐ๋‹ค๋ฆฌ๊ธฐ๋ณด๋‹ค ์ธก์ • ๊ฐ€๋Šฅํ•œ ์„ฑ๊ณผ๋ฅผ ๋น ๋ฅด๊ฒŒ ์‹คํ˜„ํ•˜๋Š” ๋ฐ ์žˆ์–ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

๊ถŒ๊ณ  ์‚ฌํ•ญ. ์ดํ•ด๊ด€๊ณ„์ž๋ฅผ ์Šคํ”„๋ฆฐํŠธ ๋ฆฌ๋ทฐ์— ์ดˆ๋Œ€ํ•˜๊ณ  ์ž์ฃผ ๋ธŒ๋ ˆ์ธ์Šคํ† ๋ฐ ์„ธ์…˜์„ ์ž์ฃผ ์ง„ํ–‰ํ•˜๋ฉฐ, ์• ์ž์ผ ๋”œ๋ฆฌ๋ฒ„๋ฆฌ ๋ฐฉ์‹์œผ๋กœ ๋” ์‰ฝ๊ฒŒ ํ˜‘๋ ฅ๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค.

2. ๋ฐฐํฌ ๊ณ„ํš ์—†์ด AI PoC๋ฅผ ์ถ”์ง„ํ•œ๋‹ค

์ตœ์ƒ์œ„ SaaS ๋ฐ ๋ณด์•ˆ ์„œ๋น„์Šค ์—…์ฒด๋Š” ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๊ฐ•ํ™”ํ•˜๋Š” AI ์—์ด์ „ํŠธ๋ฅผ ์ถœ์‹œํ•˜๊ณ  ์žˆ๋‹ค. CIO๋Š” ์–ด๋–ค ๊ธฐ๋Šฅ์ด ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•˜๋Š”์ง€, ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ ๊ฐœ์„ ์ด ํ•„์š”ํ•œ ์ง€์ ์€ ์–ด๋””์ธ์ง€, ๋กค์•„์›ƒ์„ ์–ด๋–ป๊ฒŒ ํ™•์žฅํ• ์ง€ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ์‹คํ—˜์ด ํ•„์š”ํ•˜๋‹ค.

ํ•˜์ง€๋งŒ ๋งŽ์€ IT ๋ถ€์„œ๊ฐ€ ์ด๋Ÿฐ ์‹คํ—˜์—์„œ ์ตœ์ข… ์‚ฌ์šฉ์ž์™€ ์ง์ ‘ ํ˜‘์—…ํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ „์ฒด ๋ฐฐํฌ์— ํ•„์š”ํ•œ ์‚ฌํ•ญ์„ ๋‹ด์€ ์• ์ž์ผ ๊ณ„ํš์„ ์ถฉ๋ถ„ํžˆ ๊ณต์œ ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ๋‹ค. ๊ฒฐ๊ณผ๋Š” ์ดํ•ด๊ด€๊ณ„์ž ๊ธฐ๋Œ€์น˜ ๋ฏธ์ถฉ์กฑ ๋˜๋Š” ํ”„๋กœ๋•์…˜๊นŒ์ง€ ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•œ PoC์˜ ๋‚œ๋ฆฝ์œผ๋กœ ์ด์–ด์ง„๋‹ค.

์—์ด์˜ค๋‹ฅ์Šค(AODocs) ์ฐฝ์—…์ž ๊ฒธ CEO ์Šคํ…ŒํŒ ๋ˆ์ œ๋Š” โ€œ๋งŽ์€ ํŒ€์ด ๋ช‡ ์ฃผ ๋งŒ์— ๋ฒˆ์ฉ์ด๋Š” ํŒŒ์ผ๋Ÿฟ์„ ๊ณต๊ฐœํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ํ”ํ•œ๋ฐ, ์ด๋Š” AI๊ฐ€ ๋‹จ์ˆœํ•˜๊ณ  ์ฆ‰๊ฐ์ ์ด๋ผ๋Š” ์ธ์‹์„ ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ€์„œ์— ์‹ฌ์–ด์ค€๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋˜, โ€œ๊ทธ ๋’ค์—๋Š” ๊ฑฐ๋ฒ„๋„Œ์Šค๊ฐ€ ์ ์šฉ๋œ ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ ๋ถ€์žฌ, ์ง€์‹์„ ์ตœ์‹ ์œผ๋กœ ์œ ์ง€ํ•  ๊ณ„ํš ๋ถ€์žฌ, ๊ธฐ๋ฐ€ ์ •๋ณด ์œ ์ถœ์„ ๋ง‰๋Š” ํ†ต์ œ ๋ถ€์žฌ, ๋ชจ๋ธ ๋น„์šฉ ๊ด€๋ฆฌ ์ „๋žต ๋ถ€์žฌ ๊ฐ™์€ ํ˜„์‹ค์„ ๋งˆ์ฃผํ•˜๋ฉด์„œ ๋ชจ๋“  ์ผ์ด ๋А๋ ค์ง„๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

ํŒŒ์ผ๋Ÿฟ์—๋Š” ๋ช…ํ™•ํ•œ ๋ชฉํ‘œ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ํŒ€์€ ๋ฐฉํ–ฅ ์ „ํ™˜์ด๋‚˜ ๋ถ€์ง„ํ•œ ์‹คํ—˜์˜ ์ข…๋ฃŒ ์‹œ์ ์„ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ์„ฑ๊ณต์ ์œผ๋กœ ๋ชฉํ‘œ์— ๋„๋‹ฌํ•œ๋‹ค๋ฉด, ๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ, ์‚ฌ์šฉ์ž, ์‚ฌ์šฉ๋ก€๋กœ ํŒŒ์ผ๋Ÿฟ์„ ํ™•์žฅํ•˜๋Š” ๋ฐฉ์•ˆ์„ ๋งˆ๋ จํ•ด์•ผ ํ•œ๋‹ค.

๋ฐ์ดํ„ฐ์ด์ฟ (Dataiku) AI ์ „๋žต ์ฑ…์ž„์ž ์ปคํŠธ ๋ฎˆ๋ฉœ์€ IT ๋ถ€์„œ๊ฐ€ ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ์˜ ์„ฑ๊ณต์„ AI ์—์ด์ „ํŠธ๊ฐ€ ํ”„๋กœ๋•์…˜์—์„œ๋„ ์ž‘๋™ํ•œ๋‹ค๋Š” ์ฆ๊ฑฐ๋กœ ์ทจ๊ธ‰ํ•˜๋Š” ๊ฒƒ์ด ์‹ค์ˆ˜๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋ฎˆ๋ฉœ์€ โ€œํŒŒ์ผ๋Ÿฟ์€ ๋ฐ์ดํ„ฐ์…‹์ด ์ž‘๊ณ , ์‚ฌ์šฉ์ž๊ฐ€ ๊ด€๋Œ€ํ•˜๋ฉฐ, ๋ฌธ์ œ๊ฐ€ ํ„ฐ์งˆ ๋•Œ ์ธ๊ฐ„์ด ๊ฐ๋…ํ•˜๋Š” ๋“ฑ ์‹ค์ œ ์ œ์•ฝ์ด ์—†๋Š” ํ™˜๊ฒฝ์—์„œ ๋Œ์•„๊ฐ€๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๊ณตํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ถŒ๊ณ  ์‚ฌํ•ญ. IT๋Š” PoC์˜ ์„ฑ๊ณต ๊ธฐ์ค€์„ ์ •์˜ํ•˜๋Š” ๋ฌธ์„œ๋ฅผ ์ดํ•ด๊ด€๊ณ„์ž์™€ ํ•จ๊ป˜ ์ž‘์„ฑํ•˜๊ณ , ์• ์ž์ผ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•ด PoC์™€ ์—ฌ๋Ÿฌ ํŒŒ์ผ๋Ÿฟ ๋‹จ๊ณ„๋ฅผ ๊ด€๋ฆฌํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ์›์น™์€ ์ดํ•ด๊ด€๊ณ„์ž๊ฐ€ ์—ฌ์ •์— ํ•จ๊ป˜ํ•˜๋„๋ก ๋งŒ๋“ค๊ณ , ์‹คํ—˜์ด ๋ฐฐํฌ ๋ชฉํ‘œ ์ค‘ ํ•˜๋‚˜๋ผ๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ํ•œ๋‹ค.

3. ์ฑ„ํƒ์ด ์•„๋‹ˆ๋ผ ๋ฐฐํฌ์—๋งŒ ์ง‘์ค‘ํ•œ๋‹ค

๋ฐ˜๋ณต์  ๋ฐฐํฌ์— ๋Œ€ํ•œ ์กฐ์ง์˜ ๋™์˜๋ฅผ ํ™•๋ณดํ•˜๋Š” ์ผ์€ ์ผ๊ด€๋œ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜ ์ œ๊ณต์— ํ•„์š”ํ•˜์ง€๋งŒ ์ถฉ๋ถ„์กฐ๊ฑด์€ ์•„๋‹ˆ๋‹ค. ๋„ˆ๋ฌด ๋งŽ์€ ๋ฐ๋ธŒ์˜ต์Šค ๋ฐ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์ŠคํŒ€์ด ๋ฐฐํฌ๊ฐ€ ์ผ์ •๋Œ€๋กœ ์ง„ํ–‰๋˜๊ณ  ๋ชฉํ‘œ ๋ฒ”์œ„๋ฅผ ๋‹ฌ์„ฑํ•˜๋ฉด โ€œ์ผ์„ ์ž˜ ๋๋ƒˆ๋‹คโ€๋ผ๊ณ  ์ƒ๊ฐํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์ธ์‹์€ IT์˜ ๋ณ€ํ™”๊ด€๋ฆฌ ์ฑ…์ž„์„ ๊ฐ„๊ณผํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ, ํŠนํžˆ AI ์—ญ๋Ÿ‰์€ ๋ถ€์„œ ์šด์˜ ๋ฐฉ์‹์„ ํฌ๊ฒŒ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์ฃผ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

์‚ฌ๋ฆฌํƒ€์‚ฌ(Saritasa) ์ฐฝ์—…์ž ๊ฒธ CEO ๋‹‰ ํ”„๋กœ์—˜๋ฆฌ์น˜๋Š” โ€œIT ๋ถ€์„œ๋Š” ์ˆ™๋ จ๋„๊ฐ€ ๋†’์ง€๋งŒ IT ๊ตฌ์„ฑ์›์€ ๊ตฌ์ถ•ํ•œ ์ œํ’ˆ์˜ ์ตœ์ข… ์‚ฌ์šฉ์ž์ธ ๊ฒฝ์šฐ๊ฐ€ ๋“œ๋ฌผ๊ณ , ์‹ค์ œ ์‚ฌ์šฉ์ž๋กœ๋ถ€ํ„ฐ ์ถฉ๋ถ„ํ•œ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ๋„ ๋“œ๋ฌผ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ํ”„๋กœ์—˜๋ฆฌ์น˜๋Š” โ€œ๊ทธ ๊ฒฐ๊ณผ, ๊ธฐ๋Šฅ์ ์œผ๋กœ ์™„๋ฒฝํ•˜์ง€๋งŒ ์•„๋ฌด๋„ ์“ฐ์ง€ ์•Š๋Š” ์†”๋ฃจ์…˜์ด ๋  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๋ฉฐ, โ€œํ•ด๊ฒฐ์ฑ…์€ ๋‹จ์ˆœํ•˜๋‹ค. ์ตœ์ข… ์‚ฌ์šฉ์ž๋ฅผ ์ดˆ๊ธฐ๋ถ€ํ„ฐ ์ž์ฃผ ์ฐธ์—ฌ์‹œํ‚ค๊ณ  ๋ชจ๋“  ๋‹จ๊ณ„์—์„œ ํ”ผ๋“œ๋ฐฑ์„ ๋“ฃ๊ณ , ์‹ค์ œ ์‚ฌ์šฉ์ž๊ฐ€ ์ž˜ ์“ธ ์ˆ˜ ์žˆ๋Š” ์†”๋ฃจ์…˜์„ ๊ตฌ์ถ•ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

๊ถŒ๊ณ  ์‚ฌํ•ญ. CIO๊ฐ€ ์ƒ์„ฑํ˜• AI ์‹œ๋Œ€์— ์• ์ž์ผ ํ”„๋ž™ํ‹ฐ์Šค๋ฅผ ์žฌ์ ๊ฒ€ํ•ด์•ผ ํ•˜๋Š” ์ด์œ  ์ค‘ ํ•˜๋‚˜๋Š” ํ”„๋กœ์ ํŠธ์˜ โ€˜์™„๋ฃŒ(done)โ€™ ์ƒํƒœ๋ฅผ ๋‹ค์‹œ ์ •์˜ํ•ด ์• ์ž์ผํŒ€์ด ์ฑ„ํƒ๊ณผ ๋ณ€ํ™”๊ด€๋ฆฌ๋ฅผ ๊ธฐ๋Šฅ ์ˆ˜์ค€์˜ ์ˆ˜์šฉ ๊ธฐ์ค€์— ํฌํ•จํ•˜๋„๋ก ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋‹ค.

4. ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ€์„œ์˜ ์—…๋ฌด ๋ฐฉ์‹์„ ์ฒ˜๋ฐฉํ•œ๋‹ค

์ด์‚ฌํšŒ๋Š” CIO๊ฐ€ AI ์ „๋žต ๊ฑฐ๋ฒ„๋„Œ์Šค ๋ชจ๋ธ์„ ์ด์•ผ๊ธฐํ•˜๊ธธ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์ด ๋ชจ๋ธ์—๋Š” ์ง์›์ด AI ์—ญ๋Ÿ‰์„ ์–ด๋–ป๊ฒŒ ์‹คํ—˜ํ•ด์•ผ ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ํฌํ•จ๋ผ์•ผ ํ•œ๋‹ค. ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ์ง์›์ด ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” AI ๋„๊ตฌ, ์ ‘๊ทผ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ, ์‹คํ—˜์˜ ์„ฑ๊ณตยทํ•™์Šตยท์‹คํŒจ๋ฅผ ์–ด๋””์— ๋ณด๊ณ ํ•ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ์ •์˜ํ•ด์•ผ ํ•œ๋‹ค.

CIO๋Š” ์•„ํ‚คํ…ํŠธ, ๋น„์ฆˆ๋‹ˆ์Šค ๊ด€๊ณ„ ๊ด€๋ฆฌ์ž, ์• ๋„๋ฆฌ์ŠคํŠธ๋ฅผ ์ง€์ •ํ•ด ์ด๋Ÿฐ ์‹คํ—˜์„ ํ•จ๊ป˜ ์ง„ํ–‰ํ•ด์•ผ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๊ฒฝ๊ณ„ ์˜์—ญ์„ ๋„˜์–ด ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ€์„œ์˜ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์ฒ˜๋ฐฉํ•˜๋Š” ๊ฒƒ์€ ๊ฐ€์น˜๋ฅผ ์†์ƒํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, IT ๋ถ€์„œ๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ€์„œ์˜ ์šด์˜ ๋ชฉํ‘œ์™€ ์›Œํฌํ”Œ๋กœ์šฐ ์˜ˆ์™ธ๋ฅผ ์ž˜ ์•Œ์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์‹œํŠธ๋ฆญ์Šค ๋ถ€์‚ฌ์žฅ ๊ฒธ CTO์ด์ž ๋ฏธ๋ž˜ํ•™์ž์ธ ๋ธŒ๋ผ์ด์–ธ ๋งค๋“ ์€ โ€œ์ง„์งœ ๋ณ€ํ™”๋Š” ์ด์ œ ์‚ฌ๋žŒ์˜ ์‹ค์ œ ์—…๋ฌด ๋ฐฉ์‹์—์„œ ์ถœ๋ฐœํ•˜๋Š” ์ƒํ–ฅ์‹ ๋ณ€ํ™”์ด๋ฉฐ, ์กฐ์ง์ด ์ •ํ•œ ๋ฐฉ์‹์—์„œ ์ถœ๋ฐœํ•˜๋Š” ๋ณ€ํ™”๊ฐ€ ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๋งํ•œ๋‹ค.

๋งค๋“ ์€ โ€œ์ง์› ์Šค์Šค๋กœ AI ๋„๊ตฌ๋ฅผ ๋„์ž…ํ•˜๊ธฐ ์‹œ์ž‘ํ•œ ์ˆœ๊ฐ„๋ถ€ํ„ฐ ํ•˜ํ–ฅ์‹ ์žฅ๊ธฐ ๋กœ๋“œ๋งต ๋ชจ๋ธ์€ ๊นจ์กŒ์ง€๋งŒ, ์˜ค๋Š˜๋‚ ์—๋„ ๋Œ€๋ถ€๋ถ„ ๊ธฐ์—…์€ ์„œ๋“œํŒŒํ‹ฐ AI๋ฅผ ๊ฑฐ๋ฒ„๋„Œ์Šค ํ•˜์— ์•ˆ์ „ํ•˜๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋กœ๋ฅผ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๋˜ํ•œ, โ€œ์Šน์ธ๋œ ๊ฒฝ๋กœ๊ฐ€ ์—†์–ด๋„ ์‚ฌ๋žŒ์€ ์–ด์ฐจํ”ผ AI ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ๊ด€๋ฆฌ๋˜์ง€ ์•Š์€ AI ์ฑ„ํƒ์€ ์ „๋žต์  ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์ง€ ๋ชปํ•œ ์ฑ„ ์œ„ํ—˜๋งŒ ํ‚ค์šด๋‹คโ€๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๊ถŒ๊ณ  ์‚ฌํ•ญ. CIO๋Š” ํ•˜ํ–ฅ์‹ ์ „๋žต์„ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ํ•ด์•ผ ํ•˜์ง€๋งŒ, ๋””์ง€ํ„ธ ์ „ํ™˜์ด ์‹คํŒจํ•˜๋Š” 1์ˆœ์œ„ ์ด์œ ๋Š” IT๊ฐ€ ์šด์˜์˜ ๋ฐœ์ „์— ์ƒํ–ฅ์‹ ์ฐธ์—ฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์„ ์ธ์ •ํ•˜์ง€ ์•Š์„ ๋•Œ๋‹ค. IT ๋ถ€์„œ๋Š” ์‹์Šค์‹œ๊ทธ๋งˆ ๊ต์œก์„ ๋ฐ›์€ ํ”„๋กœ์„ธ์Šค ์ „๋ฌธ๊ฐ€๋ฅผ ์ง€์ •ํ•ด ์‹คํ—˜์˜ ํŒŒํŠธ๋„ˆ๋กœ ์ฐธ์—ฌ์‹œํ‚ค๊ณ , AI ์—์ด์ „ํŠธ์™€ ์‚ฌ๋žŒ์ด ํ˜‘์—…ํ•˜๋Š” ์›Œํฌํ”Œ๋กœ์šฐ ํ˜์‹ ์„ ์•ˆ๋‚ดํ•˜๋Š” ๊ฐ€์ด๋“œ ์—ญํ• ์„ ๋งก๊ฒจ์•ผ ํ•œ๋‹ค.

5. AI ๋ฐฐํฌ ๊ณผ์ •์—์„œ ๊ธฐ์ˆ  ๋ถ€์ฑ„๋ฅผ ๊ฐ€์†ํ™”ํ•œ๋‹ค

SaaS ์„œ๋น„์Šค์˜ ๋‚œ๋ฆฝ์€ ๋งŽ์€ IT ๋ถ€์„œ๊ฐ€ ๊ฒช๋Š” ๋ฌธ์ œ์ด๋ฉฐ, ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ€์„œ ๋ฆฌ๋”๊ฐ€ ๋„๊ตฌ๋ฅผ ์ง์ ‘ ์„ ํƒํ•˜๊ณ  ์„€๋„์šฐ IT ํ”„๋ž™ํ‹ฐ์Šค๋ฅผ ํ‚ค์šธ ๋•Œ ํŠนํžˆ ์‹ฌํ•ด์ง„๋‹ค. ๊ธฐ์—…์€ AI๋ฅผ ์‹คํ—˜ํ•ด์•ผ ํ•˜์ง€๋งŒ, ํ†ต์ œ๋˜์ง€ ์•Š์€ AI ์—์ด์ „ํŠธ๋ฅผ ๋ฐฐํฌํ•˜๋Š” ํ–‰์œ„๋Š” ๋ณด์•ˆ๊ณผ ์ปดํ”Œ๋ผ์ด์–ธ์Šค ์œ„ํ—˜์ด ๋œ๋‹ค.

IT/๋ณด์•ˆ ํ†ตํ•ฉ ํ”Œ๋žซํผ ํšŒ์‚ฌ ์ด๋ฃจ(Iru)์˜ ์ตœ๊ณ  ๊ธฐ์ˆ  ์ „๋ฌธ๊ฐ€ ์›ฐ๋˜ ๋„๋“œ๋Š” โ€œ๊ธฐ์—…์€ ํŠน์ • ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ์—ฌ๋Ÿฌ AI ๋„๊ตฌ๋ฅผ ๊ตฌ๋งคํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•ž์œผ๋กœ ๋ช‡ ๋…„ ๋™์•ˆ ์ด๋Ÿฐ ํ™•์‚ฐ์œผ๋กœ ์ธํ•ด IT ๋ถ€์„œ๊ฐ€ ๊ด€๋ฆฌํ•ด์•ผ ํ•  ์†”๋ฃจ์…˜ ์—…์ฒด ์ˆ˜๊ฐ€ ์ง€๋‚˜์น˜๊ฒŒ ๋Š˜์–ด๋‚  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

IT ์•„ํ‚คํ…ํŠธ๋Š” ํ‘œ์ค€์œผ๋กœ ์ด์•ผ๊ธฐํ•˜๊ณ  ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ํ”Œ๋žซํผ ์‚ฌ์šฉ์„ ํ•ต์‹ฌ ์ „๋žต์œผ๋กœ ๋ฐ€์–ด์•ผ ํ•œ๋‹ค. ์ดํ•ด๊ด€๊ณ„์ž๊ฐ€ ๊ธฐ์ˆ ๊ณผ ๋„๊ตฌ๋ฅผ ์ฒ˜๋ฐฉํ•˜๋ ค๋Š” ์••๋ฐ•์€ ์–ธ์ œ๋‚˜ ์กด์žฌํ•˜์ง€๋งŒ, ์•„ํ‚คํ…ํŠธ๋Š” ์ƒ์‡„ ์š”์†Œ, ์‹ ๊ทœ ํ”Œ๋žซํผ ์ง€์› ๋น„์šฉ, ๊ธฐ์ˆ  ๋ถ€์ฑ„ ๋ˆ„์  ์œ„ํ—˜์„ ์•Œ๋ ค์•ผ ํ•œ๋‹ค.

์‚ฌ์ด๋ฒ„ ์œ„ํ—˜ ํ‰๊ฐ€ ํ”Œ๋žซํผ ์ฝ”๋ฒ„(Kovrr)์˜ CEO ์•ผํ‚ค๋ฅด ๊ณจ๋ž€์€ โ€œAI์™€ ๋ฐ์ดํ„ฐ ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ ์ž์‚ฐ ๊ฐ€์‹œ์„ฑ๊ณผ ์‹œ์Šคํ…œ์ด ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค๋ฉด์„œ ๋™์‹œ์— ๋…ธ์ถœ ์œ„ํ—˜์„ ํ‚ค์šฐ๋Š” ๋ฐฉ์‹์— ๋Œ€ํ•œ ๊ณต์œ ๋œ ๊ด€์ ์—†์ด ์ถ”์ง„๋  ๋•Œ IT ์กฐ์ง์€ ์ž ์žฌ์  ์˜ํ–ฅ๋ ฅ์„ ์Šค์Šค๋กœ ์ œํ•œํ•œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๊ณจ๋ž€์€ โ€œํšจ๊ณผ์ ์ธ ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ์–ด๋–ค ๋„๊ตฌ๊ฐ€ ์กด์žฌํ•˜๋Š”์ง€, ์–ด๋–ค ๋ฐ์ดํ„ฐ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š”์ง€, ์žฅ์• ๊ฐ€ ๋‚ฌ์„ ๋•Œ ์–ด๋–ค ํ•จ์˜๊ฐ€ ์žˆ๋Š”์ง€๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ๋‹ฌ๋ ค ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ถŒ๊ณ  ์‚ฌํ•ญ. ๋น„์ฆˆ๋‹ˆ์Šค ์กฐ์ง์ด ํ•ด๋ฒ•์„ ์ฒ˜๋ฐฉํ•˜๋ ค๊ณ  ํ•  ๋•Œ๊ฐ€ ๋งŽ์ง€๋งŒ, ๋ชฉํ‘œํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์š”๊ตฌ์‚ฌํ•ญ์„ ์งˆ๋ฌธ์œผ๋กœ ํ™•์ธํ•˜๋Š” ์ฑ…์ž„์€ IT์— ์žˆ๋‹ค. CIO๋Š” IT ๋ฆฌ๋”๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ๊ฐ, ์šฉ๊ธฐ, ์ธ๋‚ด๋ฅผ ๊ธฐ๋ฅด๋„๋ก ๋„์™€ ์ดํ•ด๊ด€๊ณ„์ž์˜ โ€˜ํ•ด๋ฒ• ์š”๊ตฌโ€™๋ฅผ ํ–‰๊ตฐ ๋ช…๋ น์œผ๋กœ ๋ฐ›์•„๋“ค์ด์ง€ ๋ง๊ณ  ๋ชฉํ‘œ ์ค‘์‹ฌ์œผ๋กœ ํ˜‘์—…ํ•˜๋„๋ก ๋งŒ๋“ค์–ด์•ผ ํ•œ๋‹ค.

6. ์ง€์†์ ์ธ ์ง€์› ์—†์ด ์ผํšŒ์„ฑ ํ”„๋กœ์ ํŠธ๋ฅผ ์ˆ˜์šฉํ•œ๋‹ค

์• ์ž์ผ ํŒ€์ด ์•„์ด๋””์–ด์—์„œ PoC, ํ”„๋กœ๋•์…˜ ๋ฐฐํฌ, ์ตœ์ข… ์‚ฌ์šฉ์ž ์ฑ„ํƒ๊นŒ์ง€ AI๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ํ†ต๊ณผ์‹œํ‚ค๋”๋ผ๋„ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜ ์ œ๊ณต์€ ๊ทธ๋•Œ๋ถ€ํ„ฐ ์‹œ์ž‘์ธ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋‹ค์Œ ๋‹จ๊ณ„๋Š” ํ”ผ๋“œ๋ฐฑ ์ˆ˜์ง‘, ๊ฒฐ๊ณผ ์ธก์ •, ์„ฑ๊ณต ๊ธฐ์ค€์„ ์ถฉ์กฑํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ˜๋ณต ๊ฐœ์„ ์ด๋‹ค.

์• ์ž์ผ ํŒ€์€ ๋ฐ˜๋ณต์„ ์›ํ•˜๊ณ , ์ดํ•ด๊ด€๊ณ„์ž๋Š” ๊ธฐ์ˆ ยท๋ฐ์ดํ„ฐยทAI ์—ญ๋Ÿ‰์˜ ๊ฐœ์„ ์„ ์›ํ•œ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด IT ๋ถ€์„œ๋Š” ์™œ ๋ ˆ๊ฑฐ์‹œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ๋„ˆ๋ฌด ๋งŽ๊ณ , ๊ธฐ์ˆ  ๋ถ€์ฑ„๊ฐ€ ์Œ“์ด๋ฉฐ, ์ตœ์ข… ์‚ฌ์šฉ์ž๋Š” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ํ˜„๋Œ€ํ™”๋ฅผ ์š”๊ตฌํ•˜๋ฉฐ ์ขŒ์ ˆํ•˜๋Š” ๊ฒƒ์ผ๊นŒ?

AI ๊ธฐ๋ฐ˜ ์šด์˜ ์ตœ์ ํ™” ํ”Œ๋žซํผ ํšŒ์‚ฌ ์˜ตํ‚ค(Opkey) CEO ํŒ์นด์ง€ ๊ณ ์—˜์€ โ€œ๋งŽ์€ IT ํŒ€์€ ๊ตฌํ˜„ ์ดํ›„๋ฅผ ๊ณ„ํšํ•˜์ง€ ์•Š๊ณ , ์ง€์†์ ์ธ ์ตœ์ ํ™”์— ํ•„์š”ํ•œ ์˜ˆ์‚ฐ์„ ์ฑ…์ •ํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ง€์†์ ์ธ ์ตœ์ ํ™”์—๋Š” ํ…Œ์ŠคํŠธ, ์‚ฌ์šฉ์ž ์ฑ„ํƒ, ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค, ๋ฐ˜๋ณต ๊ฐœ์„ ์ด ํฌํ•จ๋˜๋Š”๋ฐ, ์ด๋Ÿฐ ์š”์†Œ๊ฐ€ ์žˆ์–ด์•ผ ์“ธ๋งŒํ•œ ์‹œ์Šคํ…œ์ด โ€˜์„œ๋ž ์† ์†Œํ”„ํŠธ์›จ์–ดโ€™๊ฐ€ ๋˜๋Š” ๊ฒƒ์„ ๋ง‰์„ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋˜, โ€œ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ํ˜์‹ ์€ IT๊ฐ€ โ€˜๊ธฐ์ˆ  ๋ฐฐํฌโ€™์—์„œ โ€˜๋น„์ฆˆ๋‹ˆ์Šค์™€ ํ•จ๊ป˜ ์ง„ํ™”ํ•˜๋Š” ๋™์  ์ตœ์ ํ™” ์ „ํ™˜ ๊ตฌ์ถ•โ€™์œผ๋กœ ์ „ํ™˜ํ•  ๋•Œ ์„ฑ๊ณตํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

๊ถŒ๊ณ  ์‚ฌํ•ญ. ์• ์ž์ผ PMO์˜ ํ•ต์‹ฌ ์ฑ…์ž„์€ ๋ถ€์„œ ๋ฆฌ๋”์™€ CFO๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์žฌ๋ฌด ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ๊ฐ•์ œํ•˜๋Š” ์ผ์ด๋‹ค. ์„ฑ๊ณต์ ์ธ ๋ฐฐํฌ์™€ ๊ฐ€์น˜ ์ œ๊ณต์œผ๋กœ ์ด์–ด์ง€๋Š” ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ์—๋Š” ์—…๊ทธ๋ ˆ์ด๋“œ์™€ ๊ธฐํƒ€ ๋ผ์ดํ”„์‚ฌ์ดํด ๊ด€๋ฆฌ์— ํ•„์š”ํ•œ ์ง€์†์ ์ธ ์˜ˆ์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค.

7. ํ•™์Šต ์‹œ๊ฐ„์„ ์œ„ํ•œ ํˆฌ์ž๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค

๋งŽ์€ CIO๋Š” ๊ต์œก ๊ณผ์ • ๋ฐฐ์ •, ์ปจํผ๋Ÿฐ์Šค ์ฐธ์„, ๋ฆฌ๋” ์ฝ”์นญ์— ๋ฐฐ์ •ํ•˜๋Š” ์˜ˆ์‚ฐ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ํ•™์Šต ํ”„๋กœ๊ทธ๋žจ ๊ตฌ๋…๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋งŽ์€ IT ์ง์›์€ ๊ต์œก์— ์‹œ๊ฐ„์„ ์“ฐ๊ธฐ ์–ด๋ ค์šธ ๋งŒํผ ์••๋ฐ•๊ณผ ์‹œ๊ฐ„ ์ œ์•ฝ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ง์›์€ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์‹คํ—˜ํ•˜๊ณ  ๊ฒฝํ—˜ํ•˜๊ณ  ๊ฐ€๋ฅด์น˜๋ฉด์„œ ํ‰์ƒํ•™์Šต ์Šต๊ด€์„ ๊ธฐ๋ฅผ ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๋‹ค.

๋””์ง€ํ„ธ ์ „ํ™˜ ์„œ๋น„์Šค ํšŒ์‚ฌ ๋ฐ”์Šค(VASS)์˜ ์ˆ˜์„ ๊ธฐ์ˆ  ์ „๋ฌธ๊ฐ€ ๋งˆ์ดํด ํŒŒ์ดํ…”์€ โ€œ์„ฑ๊ณผ๊ฐ€ ๋†’์€ ํŒ€์€ ์žฅ๊ธฐ ๊ณ„ํš์— ํ•™์Šต์„ ํฌํ•จํ•ด ์—ญ๋Ÿ‰ ์„ฑ์žฅ๊ณผ ํ˜์‹ ์ด ํ•จ๊ป˜ ์ผ์–ด๋‚˜๋„๋ก ๋งŒ๋“ ๋‹คโ€๋ผ๋ฉฐ, โ€œ๊ธฐ์ˆ  ํŒ€์— ์ฃผ 1์‹œ๊ฐ„ ํ•™์Šต์„ ์š”๊ตฌํ•˜๊ณ  ์ž๊ฒฉ์ฆ์— ํ•„์š”ํ•œ ์‹œํ—˜ ์‘์‹œ๋ฃŒ๋ฅผ ํ™˜๊ธ‰ํ•˜๊ณ , ํŒ€์›์ด ๋ฐฐ์šด ๋‚ด์šฉ์„ ์ฃผ๋ณ€์— ๊ณต์œ ํ•˜๋Š” ์ ์‹ฌ ํ•™์Šต ์„ธ์…˜์— ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ œ๊ณตํ•˜๋ผโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

๊ถŒ๊ณ  ์‚ฌํ•ญ. CIO๋Š” IT๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ฃฝ์ด๋Š” ๋ฐฉ์‹๋ฟ ์•„๋‹ˆ๋ผ ๋ฆฌ๋”์‹ญ์ด IT ๋ฌธํ™”๋ฅผ ์ฃฝ์ด๋Š” ๋ฐฉ์‹๋„ ๋Œ์•„๋ด์•ผ ํ•œ๋‹ค. ๋ฆฌ๋”๋Š” IT์— 130% ๊ฐ€๋™๋ฅ ์„ ๋ฌด๊ธฐํ•œ ๊ฐ•์š”ํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ํ”„๋กœ์„ธ์Šค ์ง„ํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ํ•™์Šต ๊ธฐํšŒ์™€ ํ•™์Šต ๊ธฐ๊ฐ„์„ ๋งŒ๋“ค์–ด์•ผ ํ•œ๋‹ค.

IT์˜ ๊ฐ€์น˜๋ฅผ ์Šค์Šค๋กœ ์†์ƒํ•˜์ง€ ์•Š์œผ๋ ค๋ฉด, ๊ฒฐ๋ก ์€ CIO๊ฐ€ ๊ฐ•๋ ฅํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ์œ ์—ฐํ•œ ์šด์˜ ๋ชจ๋ธ์„ ๋„์ž…ํ•˜๊ณ  ์ฑ„ํƒํ•˜๋Š” ๋ฌธ์ œ๋กœ ๊ท€๊ฒฐ๋œ๋‹ค. ๋˜ํ•œ CIO๋Š” ์ดํ•ด๊ด€๊ณ„์ž์™€ ํŒŒํŠธ๋„ˆ์‹ญ์„ ๋งบ์–ด ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ฝ”์นญํ•˜๋Š” ๋™์‹œ์— ๊ฑฐ๋ฒ„๋„Œ์Šค, ์šด์˜ ์›์น™, ํ˜‘์—… ์ฑ…์ž„์—์„œ ์–‘๋ณดํ•  ์ˆ˜ ์—†๋Š” ๊ธฐ์ค€์„ ์„ธ์šฐ๊ณ  ์‹คํ–‰ํ•ด์•ผ ํ•œ๋‹ค.
dl-ciokorea@fondryco.com

7 ways to kill ITโ€™s value to the business

Most CIOs have got the message that their job is largely about delivering business value, and less about system uptime and other operational metrics. New transformational opportunities emerge every two years, and the question is whether IT is consistently delivering value.

Agile, DevOps, and ITSM practices aim to improve delivery and service capabilities. Each successful deployment raises the bar for stakeholder expectations. Delivering value consistency can be elusive, and common issues include managing employee turnover, addressing technology partners who miss expectations, balancing security priorities, and addressing technical debt.

CIOs are now under fire to deliver business value from gen AI. The C-suite wants more than experiments, and expects short-term ROI and longer-term strategic value from AI investments.

Iโ€™ve recently written about rethinking the IT organization in the gen AI era and what world-class IT looks like. CIOs must also look out for the practices and behaviors that kill ITโ€™s value to the business. Experts weighed in on six of them.

1. Targeting big-bang deployments

AIโ€™s hype has raised executive expectations around delivering gen AI capabilities. Iโ€™ve heard executives targeting autonomous operations, advanced agentic AI capabilities, and personalized, AI-enabled customer journeys.

Underperforming IT departments can fall prey to demanding stakeholders. Product-based IT departments donโ€™t commit to big-bang deployments and have the discipline to experiment, prioritize minimally viable products (MVPs), and embrace agile delivery of capabilities that improve incrementally.

ย โ€œWhen planning and executing digital transformation initiatives, brands should start small and scale without disruption,โ€ says Raj Balasundaram, global vice president of AI innovations for customers at Verint. โ€œThe primary goal should involve realizing measurable outcomes quickly rather than waiting for a multi-year project.โ€

Recommendation: IT departments will find it easier to partner with their stakeholders on agile delivery by inviting them to sprint reviews and scheduling frequent brainstorming sessions.

2. Championing AI POCs without a deployment plan

Top-tier SaaS and security companies are releasing AI agents to uplift workflows. CIOs need the experiments to understand which capabilities deliver value, where data quality improvements are needed, and how to scale a rollout.

Unfortunately, many IT departments are not working directly with end users on these experiments. Others undercommunicate an agile plan for whatโ€™s required for a full deployment. The result can be missing stakeholder expectations or having many POCs that fail to reach production. ย 

โ€œToo often, teams launch a flashy pilot in a few weeks and accidentally teach the business that AI is simple and instant,โ€ says Stรฉphan Donzรฉ, founder and CEO of AODocs. โ€œThen everything slows down as they confront reality with no governed data pipelines, no plan to keep knowledge current, no controls to prevent leaks of confidential information, and no strategy for managing model costs.โ€

Pilots need clear objectives, and teams should consider when to pivot or end floundering experiments. When reaching a successful milestone, IT should have an approach to scale pilots to more data, users, and use cases.

Kurt Muehmel, head of AI strategy at Dataiku, adds that itโ€™s a mistake for IT teams to treat successful pilots as proof their agents will work in production. โ€œPilots succeed because they operate without real constraints, such as small datasets, forgiving users, and human oversight when things break.โ€

Recommendation: IT should co-author a vision statement to define the success criteria for any POC, then apply agile to manage the POC and multiple pilot phases. These disciplines ensure stakeholders are part of the journey and convey that experimentation is one of the deployment milestones.

3. Focusing on deployment and not adoption

Achieving buy-in for iterative deployments is necessary to deliver consistent business value, but itโ€™s not sufficient. Too many DevOps and data science teams consider it a โ€œjob well doneโ€ when deployments are on schedule and achieve the targeted scope. But this fails to recognize ITโ€™s change management responsibilities, especially when AI capabilities can dramatically reshape how departments operate.

โ€œIT teams are highly skilled, but theyโ€™re often not the end users of the products they build, and they rarely get enough feedback from those who are,โ€ says Nik Froehlich, founder and CEO of Saritasa. โ€œThe result can be perfectly functional solutions that no one actually uses. The fix is simple: Involve end users early and often, listen to their feedback at every stage, and build solutions that truly work for the people using them.

Recommendation: One reason CIOs should review their agile practices in the AI era is to redefine the definition of โ€˜doneโ€™ so that agile teams include adoption and change management as feature-level acceptance criteria.

4. Prescribing the future of work

Boards expect CIOs to communicate an AI strategic governance model, including a charter outlining how employees should experiment with AI capabilities. Governance should define which AI tools employees can use, which data they can access, and where they should report on the successes, learnings, and failures of their experiments.

CIOs should assign architects, business relationship managers, and analysts to collaborate on these experiments. But stepping over the grey line and prescribing departmental workflows can be a value killer, as IT is rarely versed in the operational goals and workflow exceptions.

โ€œReal change is now bottom-up, driven by how people actually work, not by how the organization prescribes they should work,โ€ says Brian Madden, VP, technology officer, and futurist at Citrix. โ€œThe top-down, multi-year roadmap model broke the moment workers began adopting AI tools on their own, yet most companies today still donโ€™t provide a safe, governed way for workers to use third-party AI. When thereโ€™s no sanctioned path, people use these tools anyway, and unmanaged AI adoption increases risk without delivering strategic value.โ€

Recommendation: CIOs must communicate a top-down strategy, but the No. 1 reason digital transformations fail is when IT doesnโ€™t recognize that evolving operations require bottom-up participation. IT departments should assign Six-Sigma-trained process experts to partner on experiments and serve as guides in transforming workflows with AI agents and people collaborating.

5. Accelerating technical debt when deploying AI

SaaS sprawl is an issue facing many IT departments, especially when driven by department leaders who select their own tools and foster shadow IT practices. While organizations should be experimenting with AI, deploying rogue AI agents is a security and compliance risk.

Weldon Dodd, distinguished engineer at Iru, says, โ€œCompanies today are buying various AI tools to solve specific problems, and over the next few years, this proliferation will result in IT teams having way too many vendors to manage.โ€

IT architects should communicate standards and promote the use of extendable platforms as key strategies. While there will always be pressure from stakeholders who want to prescribe technologies and tools, architects must communicate tradeoffs, the costs of supporting new platforms, and the risks of accumulating technical debt.

โ€œThe IT team curtails its potential impact when its AI and data initiatives are built in a vacuum without asset visibility and a shared view of how systems, such as gen AI, both create value and introduce exposure,โ€ says Yakir Golan, CEO of Kovrr. โ€œEffective governance thus hinges on understanding what tools exist, what data they interact with, and the implications of their failure.โ€

Recommendation: While business teams often try to prescribe solutions, itโ€™s ITโ€™s responsibility to ask questions and discover the targeted business needs and requirements. CIOs should help IT leaders develop the business acumen, the courage, and the patience to collaborate with stakeholders on goals, rather than accepting solution demands as marching orders.

6. Accepting one-time projects without ongoing support

When agile teams successfully navigate AI from ideas through POCs, production deployments, and end-user adoptions, then they are really just at the start of delivering business value. The next stages require capturing feedback, measuring results, and iteratively making improvements to deliver against the stated success criteria.

Agile teams want to iterate, and stakeholders generally want to see improvements in technology, data, and AI capabilities. So why do IT departments have so many legacy applications, accumulate technical debt, and have frustrated end users seeking application modernization?

โ€œMany IT teams donโ€™t plan beyond implementation and fund continuous optimization, including ongoing testing, user adoption, data governance, and iterative improvement that can turn even capable systems into shelfware,โ€ says Pankaj Goel, CEO and co-founder of Opkey. โ€œThe strongest transformations succeed when IT shifts from โ€˜deploying technologyโ€™ to building a dynamic, optimized transformation that evolves with the business.โ€

Recommendation: A key responsibility of the agile PMO is to enforce financial governance with departmental leaders and the CFO. Initiatives that lead to successful deployments and delivering business require ongoing funding for upgrades and other lifecycle management needs.

7. Underinvesting in time for learning

Many CIOs have a budget for assigning courses, attending conferences, and coaching leaders. But subscribing to learning programs isnโ€™t sufficient, as many IT employees are under pressure and time constraints to commit to training. Additionally, employees need time to develop lifelong learning practices by experimenting, experiencing, and teaching new skills.

โ€œHigh-performing teams include learning in their long-term plans so skill growth and innovation happen together,โ€ says Michael Pytel, senior technologist at VASS. โ€œChallenge your technical team to spend one hour a week learning, offer reimbursements for the testing fee typically required for certifications, and incentivize lunch and learn sessions where team members share what they learned with those around them.โ€

Recommendation: CIOs should reflect on ways IT can kill business value, as well as ways leadership can kill IT culture. Leaders canโ€™t push IT to run at 130% capacity indefinitely; they must create learning opportunities and periods to enable process evolution.

CIOs reading this article should recognize that many of the issues I identified boil down to instituting and adopting strong governance and a flexible operating model. Additionally, CIOs must coach their leaders on partnering with stakeholders to deliver business value while enforcing non-negotiables across governance, operating principles, and collaboration responsibilities. ย 

How to end the IT blame game

More than 22 years after journalist Nicholas Carr declared in a controversial Harvard Business Review articlethat IT is a commodity that provides little or no competitive or strategic advantage, the debate over the value of technology is back in the spotlight.

For anyone who has worked in or around IT, itโ€™s a familiar cycle. Only this time itโ€™s fueled not by broadband and ERP systems but by AI, automation, and business leaders who fear being left behind. Opinions today are also muddied by the popular yet mistaken belief that technology, IT, and the IT department are interchangeable and not separate entities.

While Carrโ€™s premise is basically accurate: Companies donโ€™t thrive because of their internet connection, laptop horsepower, or networks, because these are commodities. However, his argument doesnโ€™t consider that companies can also lose their competitive edge without those necessary commodities. Every competitive advantage of the past two decades, from Amazonโ€™s supply chain to Airbnbโ€™s marketplace, was built on top of IT infrastructure that Carr dismissed as strategically irrelevant.

Still, this has not stopped respected thinkers from poking at what many IT professionals consider sacred ground.

In a recent California Management Review article, for example, academics Joe Peppard and Martin Mocker contend that organizations are โ€œsafe bettingโ€ most AI investments wonโ€™t deliver the promised ROI. They point to an IBM study claiming that over the past three years, only 25% of AI initiatives met expectations. Their framing echoes Carrโ€™s opinion that technology, no matter how transformative, wonโ€™t guarantee competitive advantage. Whatโ€™s different today is who is held accountable. In their view, the real shortfall is not with IT but with business leaders who continue to abdicate critical technology decisions to IT, then resent IT for the consequences.

Going a bit deeper, Peppard argues that organizations confuse the IT operating model (how digital assets and workflows run the business) with the IT organizing model (how people with tech knowledge are structured). Many people, both inside and outside tech, believe strategy comes from the business and execution comes from IT, even when 90% of competitive differentiation now is expressed through software, data, and digital workflows. While Carr warned in 2003 that IT was becoming a utility. Peppard points out that treating IT only as a utility ensures it delivers no value beyond utilities.

Distinct IT approaches, similar results

To fully understand this tech conundrum, it is important to realize that IT and tech organizations today essentially exist in two separate but parallel universes. One is populated by large enterprises that struggle with ambiguous technology ownership. Marketing wants agility, finance wants predictability, and operations wants stability. IT is caught in the indistinct crossfire, expected to be innovative yet risk-averse, strategic yet cost-efficient, and fast yet safe. Governance models, vendor complexity, and siloed incentives turn even reasonable initiatives into political marathons.

The result is an enterprise universe whose hallmark is unaccountable business leadership. This is the world Joe Peppard rightly criticizes because no IT department can compensate for leaders who cannot or will not own technology decisions.

In the second IT universe, an SMB world, there are no CIOs defending empires, CFOs blocking innovation, or architecture review committees slowing everything down. Founders and owners make their own technology decisions and are painfully aware of cash flow, customer retention, and growth ambitions. They outsource everything they can, aggressively adopt SaaS options, and do not suffer the slings and arrows of unnecessary IT bureaucracy. And yet, ERP projects still fail, CRM deployments still underdeliver, and integrations still collapse under real-world complexities. The same problems appear, only with different protagonists.

If two universes with opposite governance models experience the same outcomes, the problem canโ€™t be IT. Nor can it be the lack of IT. The heart of the matter is not whether IT exists; itโ€™s whether organizations can access the right capabilities for the job at hand. As Peppard maintains and most SMBs already realize, โ€œkeep the lights onโ€ (KLO) commodities like networks, endpoints, identity protocols, backups, and cybersecurity safeguards can be outsourced, automated, standardized, or consumed-as-a-service.

But the capabilities that create business advantage โ€” data strategy, AI readiness, digital product management, operating model redesign, and customer experience transformation โ€” donโ€™t sit naturally inside traditional IT. They require business strategists who understand technology and technologists who understand business.

This is why Peppard calls for embedding tech knowledge throughout the organization, not corralling it into a siloed department. And itโ€™s why traditional IT professionals, who are brilliant at stability, security, and continuity, often struggle when asked to run innovation labs, lead data science teams, or design customer-centric digital experiences. They are different jobs that require different skills, incentives, and operating models.

AI raises the stakes and exposes the gaps

Induced by the enthusiasm of CEOs, many organizations today are rushing into AI in the belief that AI will transform their business. Yet, 60% remain stuck in pilots, according to an IBM Institute for Business Value 2025 CEO study. CDOs cite data quality, governance, and unclear use cases as the primary blockers. None of these are โ€œIT problems.โ€ They are leadership, strategy, and organizational capability problems. When business leaders lack the skills to define AI use cases or evaluate technology investments; the default reaction is predictable: They delegate the decision to IT and complain when IT behaves like IT.

Three shifts are needed to eliminate the disparity, none of which involve getting rid of the IT department, but all involve redefining its purpose:

1. Treat KLO IT as a utility: Operated and considered much like electricity: reliable, efficient, and predictable. Commodity services should be managed, not debated. They provide no advantage, but without them, the business collapses.

2. Build digital and AI capabilities outside traditional IT: Agile product teams, data governance, analytics, and innovation belong where the business model is shaped โ€” much closer to revenue, customer experience, and operations.

3. Make business leaders accountable for technology outcomes: Technology investments are business investments. They should be owned by the business, not assigned to IT as a project delivery exercise. This mirrors Peppardโ€™s call to end the flawed partnership model that positions IT as a supplier instead of a co-architect of value. In SMBs, this accountability already exists. In enterprises, it must be created.

Of course, adopting these changes in attitude donโ€™t guarantee that IT will stop being the department that many people love to hate. IT will still be blamed for failures related to poor process design, weak data governance, unrealistic expectations, and vendor management. It is an easy scapegoat because it is the one place where all these disappointments intersect and where the symptoms become visible, even if the root causes lie elsewhere.

IT hardware and infrastructure are commodities, as Carr maintained in the HBR article more than two decades ago, and Peppard and Mocker are correct in noting that organizing for digital value requires rethinking the role of IT. The underlying truth, however, is that technology doesnโ€™t fail. Rather, organizations fail to build the environment needed to make technology succeed.

โ€œIT์˜ ์กด์žฌ๊ฐ์„ ํ‚ค์›Œ๋ผโ€ 2026๋…„ CIO๋“ค์ด ๊ผฝ์€ 9๊ฐ€์ง€ ์‹ค์ฒœ ๋ชฉํ‘œ

๋งŽ์€ CIO๊ฐ€ ์ƒˆํ•ด๋ฅผ ๋งž์•„ ๊ณผ๊ฐํ•œ ๊ฒฐ์‹ฌ์„ ์„ธ์šฐ๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฐ ํฌ๋ถ€์™€ ์˜์ง€๋Š” ์กฐ์ง์„ ๋ณ€ํ™”์‹œํ‚ค๊ณ  ๊ธฐ์—…์—์„œ IT๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ฐ€์น˜๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. CIO๊ฐ€ ์ œ์‹œํ•œ ๋ชฉํ‘œ ์ƒ๋‹น์ˆ˜๊ฐ€ AI์™€ ๊ด€๋ จ๋œ ๊ฒƒ์€ ๋†€๋ž„ ์ผ์ด ์•„๋‹ˆ๋‹ค. ๋‹ค๋งŒ CIO๊ฐ€ 2026๋…„ ๋ชฉํ‘œ๋ฅผ ์„ธ์šฐ๋ฉฐ ์—ผ๋‘์— ๋‘” ์ฃผ์ œ๋Š” AI๋งŒ์ด ์•„๋‹ˆ๋‹ค.

IT ๋ฆฌ๋”๊ฐ€ ๋‹ฌ์„ฑํ•˜๋ ค๋Š” ๊ณผ์ œ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ CIO์—๊ฒŒ ํฌ๋ถ€๋ฅผ ๊ณต์œ ํ•ด๋‹ฌ๋ผ๊ณ  ์š”์ฒญํ–ˆ๋‹ค.

1. AI ๊ฒฐ๊ณผ๋ฌผ์˜ ํ’ˆ์งˆ ๊ฐœ์„ 

์ฝ”๊ทธ๋‹ˆ์ „ํŠธ(Cognizant) CIO ๋‹ ๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” ์ตœ์šฐ์„  ๋ชฉํ‘œ๋กœ AI ๊ฒฐ๊ณผ๋ฌผ์˜ ํ’ˆ์งˆ์„ ๊ฐœ์„ ํ•˜๋Š” ์ผ์„ ๊ผฝ์•˜๋‹ค. ๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” ์ฝ”๊ทธ๋‹ˆ์ „ํŠธ ๊ณ ์œ ์˜ ๋งฅ๋ฝ์„ ์ดํ•ดํ•˜๋Š” ๋ชฉ์ ํ˜• SLM์„ ๋ฐฐ์น˜ํ•ด ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•  ๊ณ„ํš์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” โ€œ180๊ฐœ๊ฐ€ ๋„˜๋Š” AI ์†”๋ฃจ์…˜์„ ๊ตฌํ˜„ํ–ˆ๊ณ , ํŒจํ„ด์ด ๋ถ„๋ช…ํ•ด์กŒ๋‹คโ€๋ผ๋ฉฐ โ€œLLM์€ ๊ฐ•๋ ฅํ•œ ๋ฒ”์šฉ ์ง€๋Šฅ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ๋งค์šฐ ํ‘œ์ ํ™”๋˜๊ณ  ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ๊ฒฐ๊ณผ๋ฌผ์„ ๋‚ด๋ ค๋ฉด ์šฐ๋ฆฌ ๋„๋ฉ”์ธ์— ๋งž์ถ˜ ํŠนํ™” ์†”๋ฃจ์…˜์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋˜ํ•œ, โ€œ์ด๋Ÿฐ ๋ชฉ์ ํ˜• ๋ชจ๋ธ์ด IT ์„œ๋น„์Šค ๋ฐ์Šคํฌ, ์žฌ๋ฌด, HR, ์šด์˜, ๊ณ„์•ฝ, ๋ฒ•๋ฌด ์ „๋ฐ˜์˜ ๊ฐœ์„ ์„ ๋’ท๋ฐ›์นจํ•ด ๋‹จ์ˆœ ์ œ์•ˆ ์‚ฌํ•ญ์„ ๋„˜์–ด ํŒ€์ด ์ฆ‰์‹œ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ถŒ๊ณ ์•ˆ์„ ์ œ์‹œํ•˜๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

์ฝ”๊ทธ๋‹ˆ์ „ํŠธ๋Š” ์ด๋Ÿฐ ๊ณ„ํš์„ ์‹คํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์ž์ฒด GPU ์ธํ”„๋ผ์— ํˆฌ์žํ•˜๊ณ  ์žˆ๋‹ค. ๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” ์ž์ฒด GPU ์ธํ”„๋ผ ํˆฌ์ž๋ฅผ โ€œ์ „๋žต์  ์„ ํƒโ€์ด๋ผ๊ณ  ํ‘œํ˜„ํ•˜๋ฉฐ โ€œ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ํ™•๋ณดํ•ด ๋น„์šฉ์„ ํ†ต์ œํ•˜๋ฉด์„œ ๋‚ด๋ถ€์—์„œ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ณ , ์™ธ๋ถ€ ํด๋ผ์šฐ๋“œ ์„œ๋น„์Šค ์˜์กด๋„๋„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” โ€œ2026๋…„์˜ ์„ฑ๊ณต์€ ํ•ต์‹ฌ ๊ธฐ๋Šฅ ์ „๋ฐ˜์—์„œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ์‚ฐ์ถœ๋ฌผ์„ ์ œ๊ณตํ•˜๋Š” ํŠนํ™” ๋ชจ๋ธ ๋ช‡ ๊ฐ€์ง€๋ฅผ ์ถœ์‹œํ•˜๋Š” ๋ฐ ๋‹ฌ๋ ค ์žˆ๋‹คโ€๋ผ๋ฉฐ, โ€œ์ด๋ฒˆ ๊ฒฐ์‹ฌ์€ ๋‚ด๋ถ€ ํ˜์‹ ์— ๊ทธ์น˜์ง€ ์•Š๊ณ , AI๋ฅผ ์˜ํ–ฅ ์ค‘์‹ฌ์œผ๋กœ ๋ชฉ์ ํ˜•์œผ๋กœ ์„ค๊ณ„ํ–ˆ์„ ๋•Œ ๋ฌด์—‡์ด ๊ฐ€๋Šฅํ•œ์ง€ ๋ณด์—ฌ์ฃผ๋ ค๋Š” ์‹œ๋„โ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

2. ์—์ด์ „ํ‹ฑ AI ํ™•์žฅ

ํƒ€ํƒ€ ์ปจ์„คํ„ด์‹œ ์„œ๋น„์Šค(Tata Consultancy Services) CIO ์ž๋‚˜๋ฅด๋‹จ ์‚ฐํƒ€๋‚จ์€ 2026๋…„์˜ ๊ฐ€์žฅ ํฐ ๋ชฉํ‘œ๋กœ ์ „์‚ฌ ์ฐจ์›์˜ ์—์ด์ „ํ‹ฑ AI ํ™•์žฅ์„ ์ œ์‹œํ•˜๋ฉฐ, ์—์ด์ „ํŠธ์™€ ์•ฑ, ์—์ด์ „ํŠธ์™€ ์‚ฌ๋žŒ์˜ ์ตœ์  ์šด์˜ ๋ชจ๋ธ ํ‘œ์ค€์„ ์„ธ์šฐ๊ฒ ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

์‚ฐํƒ€๋‚จ์€ ๋ชฉํ‘œ ๋‹ฌ์„ฑ์ด โ€œ์—…๋ฌด์™€ ๊ธฐ์—… ๋‚ด ๋Œ€๋ถ€๋ถ„ ์—ญํ• ์„ ์žฌ์ •์˜ํ•˜๋Š” ์ผโ€์„ ์ˆ˜๋ฐ˜ํ•œ๋‹ค๊ณ  ์งš์—ˆ๋‹ค. ๋˜, ์—ฐํ•ฉํ˜• ์—์ด์ „ํ‹ฑ ํ”Œ๋žซํผ ์ƒํƒœ๊ณ„ ์ „๋ฐ˜์—์„œ ์ž์œจ์„ฑ, ์ปดํ”Œ๋ผ์ด์–ธ์Šค, ์ฑ…์ž„์„ฑ์„ ์œ„ํ•œ ์ •์ฑ…์œผ๋กœ โ€œ์—์ด์ „ํŠธ ๊ฑฐ๋ฒ„๋„Œ์Šคโ€๋ฅผ ํ™•์žฅํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

3. ์—์ด์ „ํ‹ฑ ์ธ๋ ฅ ๊ด€๋ฆฌ ์—ญ๋Ÿ‰ ํ™•๋ณด

IBM ๊ธฐ์ˆ  ํ”Œ๋žซํผ CIO ๋งท ๋ผ์ดํŠธ์Šจ์€ 2026๋…„์˜ ํ•ต์‹ฌ ๋ชฉํ‘œ ๊ฐ€์šด๋ฐ ํ•˜๋‚˜๋กœ ์ƒˆ๋กญ๊ฒŒ ๋– ์˜ค๋ฅด๋Š” ์—์ด์ „ํ‹ฑ ์ธ๋ ฅ ๊ด€๋ฆฌ ์—ญ๋Ÿ‰์„ ์™„์„ฑํ•˜๋Š” ์ผ์„ ๊ผฝ์•˜๋‹ค. ๋ผ์ดํŠธ์Šจ์€ ์ด ๋ชฉํ‘œ๊ฐ€ โ€œ๋น„์ฆˆ๋‹ˆ์Šค ๊ด€์ ์—์„œ ์„ฑ๊ณผ ์ง€ํ–ฅ์„ ๋” ๊ฐ•ํ™”ํ•˜๋Š” ์ผโ€ ๋ฐ”๋กœ ๋‹ค์Œ ์ˆœ์œ„๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ผ์ดํŠธ์Šจ์€ ๋ชฉํ‘œ ๋‹ฌ์„ฑ์„ ์œ„ํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์–ด๋””์— ๋ฐฐ์น˜๋๋Š”์ง€, ๋ฌด์—‡์„ ํ•˜๊ณ  ์žˆ๋Š”์ง€, ๋ฌด์—‡์— ์ ‘๊ทผํ•˜๋Š”์ง€ ํŒŒ์•…ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๋˜ ์—์ด์ „ํŠธ๊ฐ€ ๊ธฐ์—…์ด ์ •ํ•œ ๋ณด์•ˆยท๊ฑฐ๋ฒ„๋„Œ์Šค ๊ฒฝ๊ณ„ ์•ˆ์—์„œ ์ž‘๋™ํ•˜๋„๋ก ๋ณด์žฅํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” ๊ธฐ์—…์ด ์‹ค์ œ ์ง์›์„ ๊ด€๋ฆฌํ•˜๋Š” ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•˜๋ฉฐ, ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ID ๊ด€๋ฆฌ๊ฐ€ ํ•ต์‹ฌ์ด๋‹ค.

ํ•˜์ง€๋งŒ, ์—์ด์ „ํ‹ฑ ์ธ๋ ฅ์˜ ๊ธฐ์ˆ ์  ๊ด€๋ฆฌ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค. ๋ผ์ดํŠธ์Šจ์€ ์‚ฌ๋žŒ ๊ตฌ์„ฑ์›์ด ์—์ด์ „ํŠธ์™€ ํ•จ๊ป˜ ์ผํ•˜๋Š” ๋ฐฉ์‹๋„ ์„ฑ๊ณตํ•˜๋„๋ก ๋•๊ฒ ๋‹ค๋ฉฐ, โ€œ์ด ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๋ ค๋ฉด ์กฐ์ง ๋ณ€ํ™”๊ฐ€ ํ•„์š”ํ•˜๊ณ , ๊ตฌ์„ฑ์›์ด ์ด๋Ÿฐ ๋„๊ตฌ๋ฅผ ์“ฐ๋„๋ก ์žฅ๋ คํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋ผ์ดํŠธ์Šจ์€ ์—์ด์ „ํŠธ๋ฅผ ๋„๊ตฌ์ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ โ€œํŒ€ ๋™๋ฃŒโ€๋กœ ๋ณธ๋‹ค. ๋ฌผ๋ก , ๋ชจ๋“  ์‚ฌ๋žŒ์ด ๊ฐ™์€ ์‹œ๊ฐ์„ ๊ณต์œ ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋ผ์ดํŠธ์Šจ์€ ํšŒ์˜์ ์ธ ์ง์›์„ ์—์ด์ „ํŠธ์™€ ๋‚˜๋ž€ํžˆ ์ผํ•˜๋„๋ก ์ด๋Œ๊ธฐ ์œ„ํ•ด ์—์ด์ „ํ‹ฑ AI์˜ ์ด์ ์„ ๋ณด์—ฌ์ฃผ๊ฒ ๋‹ค๋Š” ๊ณ„ํš์„ ๋ฐํ˜”๋‹ค.

ํŠนํžˆ, ๋ผ์ดํŠธ์Šจ์€ โ€œ๋„๊ตฌ ์‚ฌ์šฉ์„ ๋‹จ์ˆœํžˆ ์˜๋ฌดํ™”ํ•˜๋Š” ๋ฐฉ์‹์€ ํ†ตํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์‚ฌ์‹ค์„ ํ™•์ธํ–ˆ๋‹คโ€๋ผ๋ฉฐ, โ€œ๊ตฌ์„ฑ์›์ด ์—์ด์ „ํŠธ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํŒ€ ๋™๋ฃŒ๋กœ ๋ฐ›์•„๋“ค์ด๋„๋ก ์œ ๋„ํ•˜๋ ค๋ฉด, ๊ธ์ •์  ํšจ๊ณผ๋ฅผ ์ง์ ‘ ๋ณด๊ฒŒ ํ•˜๋Š” ๋ฐฉ์‹์ด ๋ฐ”๋žŒ์งํ•˜๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

4. โ€œAI๊ฐ€ ์‹ค์ œ๋กœ ๋„์›€์ด ๋˜๋Š”์ง€ ํ™•์ธํ•œ๋‹คโ€

์„ธ์ผ์ฆˆํฌ์Šค CIO ๋Œ„ ์Šˆ๋ฏธํŠธ๋„ 2026๋…„์— AI์˜ ๊ธ์ •์  ํšจ๊ณผ๋ฅผ ๊ฐ•์กฐํ•˜๊ณ  ์‹ถ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ์Šˆ๋ฏธํŠธ๋Š” โ€œ2026๋…„์„ ๋‚ด๋‹ค๋ณด๋ฉด ์ดˆ์ ์€ ๋‹จ์ˆœํ•˜๋‹ค. AI๊ฐ€ ์‹ค์ œ๋กœ ์‚ฌ๋žŒ์ด ์ผ์„ ๋” ์ž˜ํ•˜๊ฒŒ ๋•๊ณ , ๋ถˆํ•„์š”ํ•œ ๋‹จ๊ณ„๋‚˜ ํ˜ผ๋ž€์„ ๋งŒ๋“ค์ง€ ์•Š๋„๋ก ํ•˜๊ฒ ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋˜, โ€œ๊ถ๊ทน์ ์œผ๋กœ ์ผ์˜ ๋ถ€๋‹ด์ด ๊ฐ€๋ฒผ์›Œ์ง€๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ด๋‹ค. ๊ธฐ์ˆ ์€ ์‚ฌ๋žŒ์„ ๋’ท๋ฐ›์นจํ•ด์•ผ์ง€, ๊ทธ ๋ฐ˜๋Œ€๊ฐ€ ๋ผ์„œ๋Š” ์•ˆ ๋œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์‰ฝ์ง€ ์•Š์€ ์ผ์ด์ง€๋งŒ, ์‹คํ–‰ ์ „๋žต์ด ์žˆ๋‹ค. ์Šˆ๋ฏธํŠธ๋Š” ์šฐ์„  ํšŒ์‚ฌ์˜ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์„ ๊ฐ•ํ™”ํ•˜๊ฒ ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ์„ธ์ผ์ฆˆํฌ์Šค ๋„์›€๋ง ์‚ฌ์ดํŠธ์—์„œ AI ์—์ด์ „ํŠธ๊ฐ€ ์„œ๋กœ ์ถฉ๋Œํ•˜๋Š” ๋‹ต๋ณ€ 2๊ฐ€์ง€๋ฅผ ๋‚ด๋†“์€ ์‚ฌ๊ฑด์„ ์–ธ๊ธ‰ํ•˜๋ฉฐ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ–ˆ๋‹ค.

์Šˆ๋ฏธํŠธ๋Š” โ€œ์ฒซ ๋Œ€์‘์€ ๋ชจ๋ธ์ด ํ‹€๋ ธ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ์ด์—ˆ๋‹ค. ์‹ค์ œ ์›์ธ์€ ๋ฐ์ดํ„ฐ์™€ ์ฝ˜ํ…์ธ ์˜ ์ผ๊ด€์„ฑ์ด ๋” ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์ด์—ˆ๋‹คโ€๋ผ๋ฉฐ, โ€œ๊ฒฝํ—˜์„ ํ†ตํ•ด ์–ด๋–ค AI ์‹œ์Šคํ…œ์ด๋“  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ์ž‘๋™ํ•˜๋ ค๋ฉด ๊นจ๋—ํ•˜๊ณ  ์‹ ๋ขฐ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์–ผ๋งˆ๋‚˜ ํ•„์ˆ˜์ธ์ง€ ๋‹ค์‹œ ํ™•์ธํ–ˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

AI๋ฅผ ์—…๋ฌด ํ๋ฆ„์— ์ง์ ‘ ๋…น์—ฌ ๋„ฃ๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•˜๋‹ค. ์Šˆ๋ฏธํŠธ๋Š” โ€œ์‚ฌ๋žŒ์ด AI๋ฅผ ์“ฐ๊ธฐ ์œ„ํ•ด ํ•˜๋˜ ์ผ์„ ๋ฉˆ์ถฐ์•ผ ํ•œ๋‹ค๋ฉด ๋„์ž…์€ ๋ฉˆ์ถœ ๊ฒƒโ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋˜, โ€œ2026๋…„์—๋Š” AI ๊ธฐ๋ฐ˜ ๊ฒฝ๋กœ๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ์ง๊ด€์ ์ด๋ฉฐ, ๊ธฐ์กด ๋ฐฉ์‹๋ณด๋‹ค ๋” ์‰ฝ๊ฒŒ ์ผ์„ ๋๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ๋А๊ปด์ง€๋„๋ก ๋งŒ๋“ค๊ณ  ์‹ถ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

์„ธ ๋ฒˆ์งธ๋Š” ์ง์›์ด AI๋ฅผ ์ž์‹  ์žˆ๊ฒŒ ์“ฐ๋„๋ก ์ง€์›ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์Šˆ๋ฏธํŠธ๋Š” โ€œ๋ง์„ค์ž„์˜ ์ƒ๋‹น ๋ถ€๋ถ„์€ ์–ธ์ œ ์—์ด์ „ํŠธ์— ๋งก๊ธฐ๊ณ  ์–ธ์ œ ์‚ฌ๋žŒ์ด ๊ฐœ์ž…ํ•ด์•ผ ํ•˜๋Š”์ง€ ๋ชจ๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์ƒ๊ธด๋‹คโ€๋ผ๋ฉฐ, โ€œ์ด์ œ CIO ์—ญํ• ์—๋Š” ๋ช…ํ™•ํ•œ ๊ธฐ์ค€ ์ œ์‹œ, ์ ์ ˆํ•œ ๊ต์œก, ๊ทธ๋ฆฌ๊ณ  ๊ฐ„๋‹จํ•œ ํ”ผ๋“œ๋ฐฑ ์ฑ„๋„ ์ œ๊ณต์ด ํฌํ•จ๋˜๋ฉฐ, ๊ตฌ์„ฑ์›์ด ์‚ฌ์šฉํ•˜๋ฉด์„œ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

5. โ€œํ˜์‹ ๊ณผ ์ธ๊ฐ„๋ฏธโ€์˜ ๊ท ํ˜•

๊ธˆ์œต ์„œ๋น„์Šค ํšŒ์‚ฌ ํŠธ๋ฃจ์Šคํ…Œ์ด์ง€(TruStage) CIO ํŒป ๋ผ์œ„ํ‚ค๋„ ๋‹ค๊ฐ€์˜ฌ ํ•œ ํ•ด์— ๋น„์Šทํ•œ ํฌ๋ถ€๋ฅผ ์ œ์‹œํ–ˆ์œผ๋ฉฐ, ๊ธฐ์ˆ ๊ณผ ํ˜์‹ ์„ ๊ธฐ์ˆ  ์‚ฌ์šฉ์ž์— ๋Œ€ํ•œ ๋ฐฐ๋ ค์™€ ๊ท ํ˜• ์žˆ๊ฒŒ ๋งž์ถ”๊ฒ ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๋ผ์œ„ํ‚ค๋Š” โ€œ์•ž์œผ๋กœ ํ•œ ํ•ด์˜ ์šฐ์„ ์ˆœ์œ„๋Š” ํŒ€์ด ์ด๋Ÿฐ ๊ธฐ์ˆ ์„ ์ฑ…์ž„๊ฐ ์žˆ๊ณ  ์ž์‹  ์žˆ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•„์š”ํ•œ ์—ญ๋Ÿ‰, ๋งฅ๋ฝ, ๊ฐ€๋“œ๋ ˆ์ผ์„ ๊ฐ–์ถ”๋Š” ์ผโ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

๋ผ์œ„ํ‚ค๋Š” โ€œ๊ฐ€์น˜๊ฐ€ ์‹ค์ œ๋กœ ๋”ํ•ด์ง€๋Š” ์ง€์ ์—์„œ๋Š” ๋””์ง€ํ„ธ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•˜๋˜, ์‹ ๋ขฐ์™€ ๊ณต๊ฐ์„ ๊ทœ์ •ํ•˜๋Š” ์ธ๊ฐ„์  ์—ฐ๊ฒฐ์„ ์ง€ํ‚ค๋Š” โ€˜ํ˜์‹ ๊ณผ ์ธ๊ฐ„๋ฏธโ€™์˜ ๊ท ํ˜•์„ ์ถ”๊ตฌํ•˜๊ฒ ๋‹คโ€๋ผ๋ฉฐ, โ€œ๊ธฐ์ˆ ์€ ํ”„๋กœ์„ธ์Šค๋ฅผ ๊ฐ„์†Œํ™”ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ธ๊ฐ„์˜ ์ง๊ด€๊ณผ ํŒ๋‹จ๋„ ํ•„์š”ํ•˜๋‹ค. ๋ชจ๋“  ์˜์‚ฌ๊ฒฐ์ •์—์„œ ์ด ์›์น™์„ ์ด์–ด๊ฐ€๊ฒ ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์ด๋Š” ๋‹จ๊ธฐ์ ์ธ ๋ชฉํ‘œ๊ฐ€ ์•„๋‹ˆ๋‹ค. ๋ผ์œ„ํ‚ค๋Š” โ€œ์กฐ์ง์€ ๋‹จ์ˆœํžˆ ์ƒˆ ๊ธฐ์ˆ ์„ ๋„์ž…ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์ผ์ด ์ด๋ค„์ง€๋Š” ๋ฐฉ์‹๊ณผ ๊ณ ๊ฐ์ด ์„œ๋น„์Šค๋ฅผ ๊ธฐ๋Œ€ํ•˜๋Š” ๋ฐฉ์‹์ด ๋น ๋ฅด๊ฒŒ ๋ฐ”๋€Œ๋Š” ์ „ํ™˜์„ ํ—ค์ณ ๋‚˜๊ฐ€๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ, โ€œ์ด๋Ÿฐ ์ „ํ™˜ ์—ฌ์ •์€ ๊ณ„์†๋˜๋ฉฐ, CIO ์—ญํ• ์€ ๋ช…ํ™•ํ•จ, ์ž์‹ ๊ฐ, ๊ณต๊ฐ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ธฐ์—…์ด ์ „ํ™˜์„ ํ†ต๊ณผํ•˜๋„๋ก ์•ˆ๋‚ดํ•˜๋Š” ์ผโ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

๋ผ์œ„ํ‚ค๋Š” โ€œAI ๋ฌธํ•ด๋ ฅ์€ ํ•ต์‹ฌ์ด๋ฉฐ, AI๊ฐ€ ํšŒ์‚ฌ์˜ ๋ชจ๋“  ์—ญํ• ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์ด๋‹ค. ๋ฐฐํฌ ๊ณผ์ •์— ๊ต์œก์„ ๋‚ด์žฌํ™”ํ•˜๊ณ  ๊ฐ•ํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ๊ฒฐํ•ฉํ•ด ๊ตฌ์„ฑ์›์ด โ€˜์–ด๋–ป๊ฒŒโ€™๋ฟ๋งŒ ์•„๋‹ˆ๋ผ โ€˜์™œโ€™๊นŒ์ง€ ์ดํ•ดํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋˜ํ•œ, โ€œ์„ฑ๊ณต์€ ์ง์›์ด AI๋ฅผ ํ™œ์šฉํ•ด ์ˆ˜์ž‘์—…์„ ์ค„์ด๊ณ  ๋” ๋‚˜์€ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋„๋ก ๊ถŒํ•œ์„ ๋ถ€์—ฌ๋ฐ›๋Š” ๋™์‹œ์—, ๋ชจ๋“  ๊ณ ๊ฐ ์ ‘์ ์ด ์„ธ์‹ฌํ•˜๊ฒŒ ์ฒ˜๋ฆฌ๋˜๋„๋ก ๋ณด์žฅํ•˜๋Š” ๋ฐ ๋‹ฌ๋ ค ์žˆ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

6. IT์˜ ๊ฐ€์น˜ ์ „๋‹ฌ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”

FGS ๊ธ€๋กœ๋ฒŒ(FGS Global)์˜ ๊ธ€๋กœ๋ฒŒ CIO ๋ ˆ๋ฒ ์นด ๊ฐœ์„œ๋Š” IT ํŒ€์˜ ๊ฐ€์น˜๋ฅผ ์ „๋‹ฌํ•˜๋Š” ์—ญ๋Ÿ‰์„ ๋” ๋Œ์–ด์˜ฌ๋ฆฌ๋Š” ์ผ์„ 2026๋…„ ๋ชฉํ‘œ ๊ฐ€์šด๋ฐ ํ•˜๋‚˜๋กœ ๊ผฝ์•˜๋‹ค. IT ์„ฑ๊ณผ๊ฐ€ ์ œ๋Œ€๋กœ ์ธ์ •๋ฐ›์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ํ™๋ณด ์—ญ๋Ÿ‰์„ ๋‹ค๋“ฌ์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ. ๊ฐœ์„œ๋Š” โ€œIT๋Š” ์ž๊ธฐ ๋งˆ์ผ€ํŒ…์„ ์ž˜ ๋ชปํ•œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๊ฐœ์„œ๋Š” IT ์—…๋ฌด ์—…๋ฐ์ดํŠธ๋ฅผ ๋ฐœ์†กํ•ด๋„ ์ฝํžˆ์ง€ ์•Š์•˜๋˜ ๊ฒฝํ—˜์ด ์žˆ๋‹ค๋ฉฐ, ์ƒˆํ•ด์—๋Š” ์ƒํ™ฉ์„ ๋ฐ”๊พธ๊ฒ ๋‹ค๋Š” ๊ณ„ํš์„ ๋‚ด๋†จ๋‹ค. ์šฐ์„ , ๋งค์›” ์—…๋ฐ์ดํŠธ๋‚˜ ์ƒ์„ธ ๋‰ด์Šค๋ ˆํ„ฐ ๋Œ€์‹  ๋” ์งง์€ ๋ถ„๋Ÿ‰์œผ๋กœ ์„ฑ๊ณผ๋ฅผ ๊ฐ•์กฐํ•  ๊ณ„ํš์ด๋‹ค. ๊ฐœ์„œ๋Š” โ€œIT ์•ˆ์—์„œ๋งŒ ์ž์ถ•ํ–ˆ์„ ์„ฑ๊ณผ๋ฅผ ์กฐ์ง ์ „์ฒด์— ๋” ๋งŽ์ด ๊ณต์œ ํ•ด ์†Œํ†ต์„ ์—ด๊ฒ ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋˜ํ•œ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฐฉ์‹๋„ ์‚ฌ๋ ค ๊นŠ๊ฒŒ ๋ฐ”๊ฟ€ ๊ณ„ํš์ด๋‹ค. ๊ฐœ์„œ๋Š” โ€œ๊ธฐ์ˆ  ์ค‘์‹ฌ์ด ์•„๋‹ˆ๋ผ ๋น„์ฆˆ๋‹ˆ์Šค ์ค‘์‹ฌ์œผ๋กœ, ๋ชจ๋‘๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ์ ์ ˆํ•œ ์ˆ˜์ค€์˜ ์ฝ˜ํ…์ธ ์™€ ์‹œ๊ฐ ์ž๋ฃŒ๋ฅผ ํ†ตํ•ด ์ „๋‹ฌํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ฐœ์„œ๋Š” AI ์‹œ๋Œ€์˜ ๋ณ€ํ™” ๊ทœ๋ชจ์™€ ์†๋„๋ฅผ ๊ณ ๋ คํ•  ๋•Œ IT ๊ธฐ์—ฌ๊ฐ€ ์ƒˆ๋กœ์šด ์—…๋ฌด ๋ฐฉ์‹์— ๊ฒฐ์ •์ ์ด๋ฏ€๋กœ, IT ์„ฑ๊ณผ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ์ผ์ด ๋” ์ค‘์š”ํ•ด์งˆ ๊ฒƒ์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

7. ์ „์‚ฌ ๋””์ง€ํ„ธยทAI ๋ฌธํ•ด๋ ฅ ํ–ฅ์ƒ

FGS ๊ธ€๋กœ๋ฒŒ์˜ ๊ฐœ์„œ๋Š” ์กฐ์ง ์ „๋ฐ˜์˜ ๊ธฐ์ˆ ยทAI ๋ฌธํ•ด๋ ฅ์„ ๋†’์ด๋Š” ๋ชฉํ‘œ๋„ ์ œ์‹œํ–ˆ๋‹ค. ๋””์ง€ํ„ธ ์—ญ๋Ÿ‰์„ ๋†’์ด๋ฉด ๊ธฐ์ˆ ์ด ๋น ๋ฅด๊ฒŒ ์ง„ํ™”ํ•˜๋ฉด์„œ ์˜ˆ์ƒ๋˜๋Š” ์ง€์†์  ๋ณ€ํ™” ์†์—์„œ ๊ตฌ์„ฑ์›์ด ๋” ๋ฏผ์ฒฉํ•˜๊ณ  ์ ์‘๋ ฅ ์žˆ๊ฒŒ ์›€์ง์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ.

๊ฐœ์„œ๋Š” โ€œ2026๋…„์€ ํฐ ์ „ํ™˜์˜ ํ•ด๊ฐ€ ๋  ๊ฒƒ์ด๋ฉฐ, ๋ณ€ํ™”์— ๋Œ€๋น„ํ•˜๋„๋ก ์‚ฌ๋žŒ์„ ์ค€๋น„ํ•˜๋Š” ๋ฐ ์ง‘์ค‘ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด HR๊ณผ ํ˜‘๋ ฅํ•ด ์ง์›์—๊ฒŒ ๋งž๋Š” ํ•™์Šต ๊ธฐํšŒ๋ฅผ ์ฐพ๋Š” ๋“ฑ ์ „ํ†ต์  ์ „๋žต์œผ๋กœ ๋ชฉํ‘œ๋ฅผ ์ถ”์ง„ํ•˜๊ฒ ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๋˜ํ•œ, IT๊ฐ€ ์กฐ์ง ์ „๋ฐ˜์˜ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋ฅผ ๋•๊ณ  ์ „ํ™˜ ์—ฌ์ •์˜ ํŒŒํŠธ๋„ˆ๋กœ ์ž๋ฆฌ๋งค๊น€ํ•˜๊ธฐ ์œ„ํ•ด ์—…๋ฌด ์‹œ๊ฐ„์„ ์กฐ์ •ํ•ด 1๋Œ€1 ์ฝ”์นญ ์„ธ์…˜์„ ํŽธ์„ฑํ•˜๋Š” ๋“ฑ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋„ ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

8. ๋‹ค๋ฅธ CIO์—๊ฒŒ์„œ ๋” ๋งŽ์ด ๋ฐฐ์šฐ๊ธฐ

์›Œ๋Ÿฐ ๋ ˆ๋„ˆ๋“œ๋Š” ๋ฏผ๊ฐ„ ๋ถ€๋ฌธ์—์„œ ๊ฒฝ๋ ฅ์„ ์Œ“์€ ๋’ค 2025๋…„ ์ดˆ ์ƒˆ ์ง์žฅ์œผ๋กœ ์˜ฎ๊ฒจ ์ธ๋””์• ๋‚˜์ฃผ ์ •๋ณด๊ธฐ์ˆ ๊ตญ(Indiana Office of Technology)์˜ ์ฃผ CIO ๊ฒธ ๊ธฐ๊ด€์žฅ์ด ๋๋‹ค. ๋ ˆ๋„ˆ๋“œ๋Š” IT ์„œ๋น„์Šค๋ฅผ ํ†ตํ•ฉยท๊ฐ„์†Œํ™”ํ•˜๊ณ , ์ง€์ถœ๊ณผ ์†”๋ฃจ์…˜ ์—…์ฒด ๊ณ„์•ฝ์„ ์ตœ์ ํ™”ํ•˜๋ฉฐ, ํ”Œ๋žซํผ ํ‘œ์ค€ํ™”๋ฅผ ํ†ตํ•ด ์ฃผ์ •๋ถ€ IT ๊ธฐ๋Šฅ์ด ์ž์›์„ ์ตœ์ ์œผ๋กœ ํ™œ์šฉํ•˜๋„๋ก ๋•๊ธฐ ์œ„ํ•ด ์˜์ž…๋๋‹ค.

CIO์—๊ฒŒ ์ด๋Ÿฐ ์›€์ง์ž„์ด ํ”ํ•œ ์ผ์ƒ์ด๊ธด ํ•˜์ง€๋งŒ, ๋ ˆ๋„ˆ๋“œ๋Š” ๊ณต๊ณต ๋ถ€๋ฌธ์—๋Š” โ€œ๋‹ค๋ฅธ ์ „์ œ์™€ ๊ด€์ โ€์ด ์žˆ๋‹ค๊ณ  ์ธ์ •ํ–ˆ๋‹ค. ์ด ๋•Œ๋ฌธ์— ๋‹ค๋ฅธ ์ฃผ CIO์—๊ฒŒ์„œ ๊ตํ›ˆ์„ ์–ป์–ด ์ „์ œ ์กฐ๊ฑด๊ณผ ๊ด€๋ จ ํ†ต์ฐฐ์„ ๋” ๊นŠ๊ฒŒ ์ดํ•ดํ•˜๊ฒ ๋‹ค๋Š” ๊ณ„ํš์„ ๋ฐํ˜”๋‹ค.

๋ ˆ๋„ˆ๋“œ๋Š” โ€œ๋ช‡๋ช‡ ์ฃผ CIO๋ฅผ ๋งŒ๋‚˜๊ธด ํ–ˆ์ง€๋งŒ, ๋” ์—ฌ๋Ÿฌ ์ง€์—ญ์„ ๋Œ๋ฉฐ ๋ฐฐ์šฐ๊ณ  ์‹ถ๋‹คโ€๋ผ๋ฉฐ, โ€œ์šฐ๋ฆฌ ๋ชฉํ‘œ์™€ ๋น„์Šทํ•œ ์ผ์„ ์ด๋ฏธ ํ•ด๋‚ธ ์ฃผ๊ฐ€ ์žˆ๊ณ , ๊ทธ๋Ÿฐ ์ฃผ์™€ ๋ณด์กฐ๋ฅผ ๋งž์ถ”๊ณ  ์‹ถ๋‹ค. ๊ทธ๋Ÿฐ ํ•™์Šต์ด ํฐ ๋„์›€์ด ๋˜๊ณ , ์‹คํŒจ์˜ ๊ธธ๋กœ ๋“ค์–ด์„œ์ง€ ์•Š๊ฒŒ ํ•ด์ค„ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์ด๋ฏธ ๋ฏธ๊ตญ ์ฃผ CIO ํ˜‘ํšŒ์ธ NASCIO์™€ CIO ํ–‰์‚ฌ์—์„œ ์ธ๋งฅ์„ ๋งŒ๋“ค๋ฉฐ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ  ์žˆ๋‹ค. CIO๊ฐ€ ์„œ๋กœ์—๊ฒŒ ์ •๋ณด์™€ ์กฐ์–ธ์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ๋ชจ๋‘ ์•Œ๊ณ  ์žˆ์ง€๋งŒ, ๊ทธ๋ ‡๊ฒŒ ํ•˜๋ ค๋ฉด ์˜๋„์ ์œผ๋กœ ์‹œ๊ฐ„์„ ๋‚ด์•ผ ํ•œ๋‹ค. ๋ ˆ๋„ˆ๋“œ๋Š” ์ƒˆ ์ง์ฑ… ์ดˆ๋ฐ˜ ๋ช‡ ๋‹ฌ ๋™์•ˆ ์—…๋ฌด๊ฐ€ ๋ชฐ๋ ค โ€œ์›ํ–ˆ๋˜ ๋งŒํผ ๋‹ค๋ฅธ CIO๋ฅผ ๋งŒ๋‚  ์‹œ๊ฐ„์„ ๋‚ด์ง€ ๋ชปํ–ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋‹ค๋ฅธ CIO์—๊ฒŒ์„œ ๋” ๋ฐฐ์šฐ๋Š” ์ผ์ด 2026๋…„ ํ•  ์ผ ๋ชฉ๋ก์— ์˜ฌ๋ผ ์žˆ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

9. ๋‹ค์Œ ๋ณ€ํ™”์˜ ์ผ๋ถ€๊ฐ€ ๋˜๊ธฐ

ํŽœ์Šคํ‚ค ๋ฏธ๋””์–ด(Penske Media) IT ๋ถ€๋ฌธ ๋ถ€์‚ฌ์žฅ ์นด๋ Œ ์Šค์œ„ํ”„ํŠธ๋Š” 2026๋…„๊ณผ ๊ทธ ์ดํ›„๋ฅผ ๋ฐ”๋ผ๋ณด๋ฉฐ ์ •ํ™•ํžˆ ๋ฌด์—‡์ด ๋‹ค๊ฐ€์˜ฌ์ง€๋Š” ๋งํ•  ์ˆ˜ ์—†์ง€๋งŒ, ๊ธฐ์ˆ  ์ฃผ๋„ ์ „ํ™˜์ด ๋” ์ด์–ด์งˆ ๊ฒƒ๋งŒ์€ ํ™•์‹คํ•˜๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‹ค๊ฐ€์˜ฌ ๋ณ€ํ™”์˜ ์ผ๋ถ€๊ฐ€ ๋˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ์‚ผ์•˜๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

์Šค์œ„ํ”„ํŠธ๋Š” โ€œ๋‹ค์Œ ๋‹จ๊ณ„๋กœ ๋‚˜์•„๊ฐ€๊ณ  ์‹ถ๊ณ , ๋งŽ์€ ์žฌ๋ฏธ๊ฐ€ ์žˆ์„ ๊ฒƒโ€์ด๋ผ๋ฉฐ, ์ง€๊ธˆ์„ โ€œ๊ธฐ์ˆ  ๋ฅด๋„ค์ƒ์Šคโ€์˜ ์‹œ๊ธฐ๋กœ ๋ณด๊ณ  ์žˆ๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋˜ํ•œ, โ€œ์†๋„๋ฅผ ์ค„์ด๊ณ  ์‹ถ์ง€ ์•Š์€ ๊ฑด ์กฐ๊ธˆ ๋ฏธ์นœ ์ผ์ผ์ง€๋„ ๋ชจ๋ฅด์ง€๋งŒ, ๋‹ค์Œ์— ๋ฌด์—‡์ด ์˜ฌ์ง€, ๊ทธ๋ฆฌ๊ณ  ๋ณ€ํ™”์— ์–ด๋–ป๊ฒŒ ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ์„์ง€ ์ •๋ง ๊ธฐ๋Œ€๋œ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.
dl-ciokorea@foundryco.com

โŒ