Reading view

There are new articles available, click to refresh the page.

NASA Announces 2025 International Space Apps Challenge Global Winners

NASA Space Apps announced Thursday 10 winners of the 2025 NASA Space Apps Challenge. During this two-day hackathon, participants gathered at 551 local events across 167 countries and territories to showcase their STEM skills and proposed ways to transform NASA’s open data into actionable tools.

crowd of people in a large room
Participants work on their projects at the NASA Space Apps Challenge in Austin, Texas, at one of more than 50 local events held in the United States.
NASA Space Apps

More than 114,000 participants came together to address challenges created by NASA subject matter experts. These challenges ranged in complexity and topic, tasking participants with everything from leveraging artificial intelligence, to improving access to NASA research, and developing tools to evaluate air quality.

“The Space Apps Challenge puts NASA’s free and open data into the hands of explorers around the world,” said Karen St. Germain, director, NASA Earth Science Division at NASA Headquarters in Washington. “With participants as varied as NASA enthusiasts, future scientists, regional decision-makers and members of the public, this challenge demonstrates the excitement of discovery and the real-world applications of agency data. Space apps also fosters a global community of creative and innovative ideas.”

The winners were determined from more than 11,500 project submissions and judged by subject matter experts from NASA and agency partners:

Best Use of Science Award: SpaceGenes+
Team Members: Saloni T.
Challenge: Build a Space Biology Knowledge Engine
Country/Territory: Germany

Team SpaceGenes+ created an interactive dashboard designed to help researchers uncover how radiation and microgravity together impact astronaut health at the molecular level. It gives researchers and mission planners an easy way to identify important molecular changes, supporting more effective protection strategies for long-duration spaceflight.
Learn more about SpaceGenes+’ project

Best Use of Data Award: Resonant Exoplanets
Team Members: Adhvaidh S., Gabriel S., Jack A., Sahil S.
Challenge: A World Away: Hunting for Exoplanets with AI
Country/Territory: United States 
 
Team Resonant Exoplanets developed an AI-powered system that ingests large sets of telescope and satellite data, including spectra from missions like the James Webb Space Telescope. This tool automatically analyzes data for exoplanets and detects possible biosignatures, rather than identifying them manually.
Learn more about Resonant Exoplanets’ project

Best Use of Technology Award: Twisters
Team Members: Fernando A., Marcelo T., Mariana D., Regina R., Regina F.
Challenge: Will It Rain on My Parade?
Country/Territory: Mexico
 
Team Twisters developed SkySense, a web-app platform that uses NASA Earth observation data and AI analysis to provide ultra-local, personalized weather predictions and to analyze weather variables such as rain, wind, temperature, humidity, and visibility, generating real-time risk assessments and suggesting the safest time windows for activities.
Learn more about Twisters’ project

Galactic Impact Award: Astro Sweepers: We Catch What Space Leaves Behind
Team Members: Harshiv T., Pragathy S., Pratik J., Sherlin D., Yousra H., Zienab E.
Challenge: Commercializing Low Earth Orbit (LEO)
Country/Territory: Universal Event
 
Team Astro Sweepers developed an end-to-end orbital debris compliance and risk intelligence platform that automatically ingests public orbital data to generate Debris Assessment Software reports and compute the Astro Sweepers Risk Index  for every resident space object. This project considers the operational, regulatory, and environmental challenges of commercialized space travel.
Learn more about Astro Sweepers’ project

Best Mission Concept Award: PureFlow
Team Members: Esthefany M., João F., Laiza L., Lara D., Pedro H., Thayane D. 
Challenge: Your Home in Space: The Habitat Layout Creator
Country/Territory: Brazil
 
PureFlow developed an interactive systems engineering platform that allows users to design, model in 3D, and validate space habitats, and then test the design against real space-weather threats, such as solar storms. This system considers the critical functions required for living in space, including waste management, power, life support, communications, and more.
Learn more about PureFlows’ project

Most Inspirational Award: Photonics Odyssey
Team Members: Manish D., Deeraj K., Prasanth G., Rajalingam N., Rashi M., Sakthi R.
Challenge: Commercializing Low Earth Orbit (LEO)
Country/Territory: India
 
Photonics Odyssey reimagined satellite internet as a sovereign national infrastructure rather than a private service, proposing a phased-array antenna approach that reduces ground dependency and expands broadband access to remote regions of India. The concept aims to help connect more than 700 million people who lack access to broadband internet.
Learn more about Photonics Odysseys’ project

Best Use of Storytelling Award: HerCode Space
Team Members: Alice R., Joselyn R., Paula C., Pierina J.
Challenge: Stellar Stories: Space Weather Through the Eyes of Earthlings
Country/Territory: Universal Event
 
HerCode Space combined NASA data and heliophysics concepts with powerful storytelling and vibrant illustrations to teach kids how space weather affects daily life and why it matters. HerCode Science hopes their story, “A Solar Tale,” can bridge science and imagination, and bring heliophysics to life in classrooms, libraries, and outreach programs.
Learn more about HerCode Spaces’ project

Global Connection Award: Gaia+LEO
Team Members: Adam H., Katia L., Prajwal S., Upendra K. 
Challenge: Commercializing Low Earth Orbit (LEO)
Country/Territory: United States
 
Team Gaia+LEO developed a mixed-integer optimization framework that co-designs orbital and terrestrial data-center networks to support large-scale AI training and climate modeling in orbit. Their goal is to reduce the power, and water demands of Earth-based systems and help accelerate the shift toward space-based, green computing within the emerging orbital economy.
Learn more about Gaia+LEOs’ project

Art & Technology Award: Zumorroda-X
Team Members: Alaa A., Esraa A., Malak S., Mennatulla E.
Challenge: NASA Farm Navigators: Using NASA Data Exploration in Agriculture
Country/Territory: Egypt
 
Team Zumorroda-X created mini games that allow players to step into the shoes of a farmer who sets off on an epic journey around the world. Through this game, players can learn how farmers globally adapt to heat waves, flooding, and other environmental challenges. 
Learn more about Zumorroda-Xs’ project

Local Impact Award: QUEÑARIS
Team Members: Borax Q., Carlos Y., Marcelo S., Máximo S., Oscar M., Pamela P.
Challenge: BloomWatch: An Earth Observation Application for Global Flowering Phenology
Country/Territory: Peru
 
Team QUEÑARIS’ project addresses critical water scarcity in Peru’s second-largest city, Arequipa, caused by the degradation of queñua forests, which are vital for water retention. Their platform combines native microorganisms, NASA satellite data, drones, and artificial intelligence to accelerate tree growth, identify the best areas for reforestation, and monitor ecosystem health.
Learn more about QUEÑARIS’ project

Stay up to date with #SpaceApps by following these accounts:
X: @SpaceApps 
Instagram: @nasa_spaceapps 
Facebook: @spaceappschallenge 
YouTube: @NASASpaceAppsChallenge


NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.

To learn more about what inspired these winning projects, visit:

https://www.spaceappschallenge.org

Share

Details

Last Updated
Dec 19, 2025

NASA’s Fly Foundational Robots Demo to Bolster In-Space Infrastructure

NASA and industry partners will fly and operate a commercial robotic arm in low Earth orbit through the Fly Foundational Robots mission set to launch in late 2027. This mission aims to revolutionize in-space operations, a critical capability for sustainably living and working on other planets. By enabling this technology demonstration, NASA is fostering the in-space robotics industry to unlock valuable tools for future scientific discovery and exploration missions.   

“Today it’s a robotic arm demonstration, but one day these same technologies could be assembling solar arrays, refueling satellites, constructing lunar habitats, or manufacturing products that benefit life on Earth,” said Bo Naasz, senior technical lead for In-space Servicing, Assembly, and Manufacturing (ISAM) in the Space Technology Mission Directorate at NASA Headquarters in Washington. “This is how we build a dominant space economy and sustained human presence on the Moon and Mars.”

a golden satellite with solar arrays extended, with the limb of Earth in the background
Artist concept of the FFR Mission’s robotic system payload atop the Astro Digital spacecraft. The robotic arm, provided by Motiv Space Systems, will perform robotic demonstrations in orbit.
Motiv Space Systems

The Fly Foundational Robots (FFR) mission will leverage a robotic arm from small business Motiv Space Systems capable of dexterous manipulation, autonomous tool use, and walking across spacecraft structures in zero or partial gravity. This mission could enable ways to repair and refuel spacecraft, construct habitats and infrastructure in space, maintain life support systems on lunar and Martian surfaces, and serve as robotic assistants to astronauts during extended missions. Advancing robotic systems in space could also enhance our understanding of similar technologies on Earth across industries including construction, medicine, and transportation.  

To demonstrate FFR’s commercial robotic arm in space, NASA’s Space Technology Mission Directorate is contracting with Astro Digital to provide a hosted orbital test through the agency’s Flight Opportunities program.  

Guest roboticists will have the opportunity to contribute to the FFR mission, and participation will allow them to use Motiv’s robotic platform as a testbed and perform unique tasks. NASA will serve as the inaugural guest operator and is currently seeking other interested U.S. partners to participate.  

The future of in-space robotics relies on testing robotic operations in space prior to launching more complex and extensive servicing and refueling missions. Through FFR, the demonstration of Motiv’s robotic arm operations in space will begin to push open the door to endless possibilities. 

NASA’s Fly Foundational Robots demonstration is funded through the NASA Space Technology Mission Directorate’s ISAM portfolio and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Motiv Space Systems of Pasadena, California, will supply the mission’s robotic arm system through a NASA Small Business Innovation Research Phase III award. Astro Digital of Littleton, Colorado, will flight test Motiv’s robotic payload through NASA’s Flight Opportunities program managed by NASA’s Armstrong Flight Research Center in Edwards, California. 

Learn more about In-space Servicing, Assembly, and Manufacturing at NASA.

By Colleen Wouters
NASA’s Goddard Space Flight Center, Greenbelt, Md.

NASA Awards Custodial, Landscaping Services Contract

NASA has selected Melwood Horticultural Training Center Inc. of Upper Marlboro, Maryland, to provide custodial, janitorial, landscaping, and recycling services for the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

The Facilities Custodial and Landscaping award is a firm-fixed-price hybrid completion and indefinite-delivery/indefinite-quantity contract. The contract includes one 12-month base period and up to four 12-month options with a potential contract value of approximately $36 million if all options are exercised. The basic period of performance begins Wednesday, Oct. 1, 2025, and ends Sept. 30, 2026. The four option periods, if exercised, would extend the contract through Sept. 30, 2030.

For information about NASA and agency programs, visit:

https://www.nasa.gov/

-end-

Robert Garner
Goddard Space Flight Center, Greenbelt, Md.
301-286-5687
rob.garner@nasa.gov

❌