โŒ

Reading view

There are new articles available, click to refresh the page.

AI ROI๊ฐ€ ๋ถ€์ง„ํ•œ ์ง„์งœ ์ด์œ , ๊ธฐ์ˆ ์ด ์•„๋‹ˆ๋ผ ๋ฆฌ๋”์‹ญ์ด๋‹ค

AI์— ๋Œ€ํ•œ ๊ธฐ๋Œ€์™€ ๊ณผ์—ด๋œ ๊ด€์‹ฌ์ด ๊ทธ ์–ด๋–ค ๊ธฐ์ˆ  ๋ณ€ํ™”๋ณด๋‹ค ์ปค์กŒ๋‹ค๊ณ  ํ‰๊ฐ€๋œ๋‹ค. ์ด๋Ÿฐ ํ๋ฆ„์— ๋งž์ถฐ ํˆฌ์ž ๊ทœ๋ชจ๋„ ๋ฉ๋‹ฌ์•„ ์ปค์กŒ๋‹ค. ๊ฐ€ํŠธ๋„ˆ๋Š” 2025๋…„๊นŒ์ง€ ์ „ ์„ธ๊ณ„ AI ํˆฌ์ž ๊ทœ๋ชจ๊ฐ€ ์•ฝ 1์กฐ 5,000์–ต ๋‹ฌ๋Ÿฌ์— ์ด๋ฅผ ๊ฒƒ์œผ๋กœ ์ถ”์‚ฐํ–ˆ๋‹ค. ๊ฑฐ๋Œ€ํ•œ ํˆฌ์ž ๊ทœ๋ชจ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋Œ€๋ถ€๋ถ„ ์กฐ์ง์€ ์•ฝ์†ํ–ˆ๋˜ ๊ฐ€์น˜์™€ ์‹ค์ œ๋กœ ์‹คํ˜„๋œ ๊ฐ€์น˜ ์‚ฌ์ด์˜ ๋งŒ์„ฑ์ ์ธ ๊ฒฉ์ฐจ์— ์—ฌ์ „ํžˆ ์‹œ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.

๊ฐ€์žฅ ๋„๋ฆฌ ์ธ์šฉ๋˜๋Š” ๊ทผ๊ฑฐ๋Š” ์˜ฌํ•ด ์ดˆ MIT ๋ณด๊ณ ์„œ์—์„œ ๋‚˜์™”๋‹ค. ์ด ๋ณด๊ณ ์„œ๋Š” ์ƒ์„ฑํ˜• AI ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ์˜ 95%๊ฐ€ ์‹คํŒจํ•œ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๋งฅํ‚จ์ง€ ์กฐ์‚ฌ์—์„œ๋„ ๊ฑฐ์˜ 80%์— ์ด๋ฅด๋Š” ๊ธฐ์—…์ด ์ƒ์„ฑํ˜• AI๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์ง€๋งŒ, ๊ฑฐ์˜ ๊ฐ™์€ ๋น„์œจ์˜ ๊ธฐ์—…์ด ์ˆ˜์ต์„ฑ์— ์˜๋ฏธ ์žˆ๋Š” ํšจ๊ณผ๋ฅผ ์–ป์ง€ ๋ชปํ–ˆ๋‹ค๊ณ  ์‘๋‹ตํ–ˆ๋‹ค.

AI๊ฐ€ ์–ด๋А ์ •๋„ ํšจ๊ณผ๋ฅผ ๋‚ด๊ณ  ์žˆ๋‹ค๋Š” ๊ทผ๊ฑฐ๋„ ์žˆ๋‹ค. 2025๋…„ ์‹œ์Šค์ฝ”์˜ โ€˜AI ์ค€๋น„๋„ ์ง€ํ‘œ(AI Readiness Index)โ€™์— ๋”ฐ๋ฅด๋ฉด, ์ „์ฒด ๊ธฐ์—…์˜ 13%๋Š” AI์—์„œ ์ง€์†์ ์œผ๋กœ ์ธก์ • ๊ฐ€๋Šฅํ•œ ์ˆ˜์ต์„ ์–ป๊ณ  ์žˆ๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค. ๋น„๋ก ์†Œ์ˆ˜์ด์ง€๋งŒ ์„ ๋„ ๊ธฐ์—…์€ AI์—์„œ ๊ฐ€์น˜๋ฅผ ๋Œ์–ด๋‚ด๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค๋Š” ์˜๋ฏธ๋‹ค. ์ด๋Ÿฐ ๊ฐ€์น˜์˜ ์ถœ์ฒ˜๋Š” ์ ์  ๊ธฐ์ˆ  ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ๋ฆฌ๋”์‹ญ์˜ ๋ช…ํ™•์„ฑ, ์ „๋žต์  ์ •๋ ฌ, ์‹คํ–‰ ์—ญ๋Ÿ‰์—์„œ ๋‚˜์˜ค๊ณ  ์žˆ๋‹ค. ์‹œ์Šค์ฝ”์˜ AI ์ค€๋น„๋„ ์ง€ํ‘œ๋Š” AI์—์„œ ๊ฐ€์น˜๋ฅผ ์‹คํ˜„ํ•œ ๊ธฐ์—…์˜ 99%๊ฐ€ ๋ณ€ํ™” ์ˆ˜์šฉ์„ ์ „์ œ๋กœ ํ•œ ๋ช…ํ™•ํ•œ ์ „๋žต์„ ๊ฐ–๊ณ  ์žˆ๊ณ , ์ž„์ง์›์ด ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์— ์ต์ˆ™ํ•ด์ง€๋„๋ก ์ง€์›ํ•˜๋Š” ๊ณต์‹ ํ”„๋กœ๊ทธ๋žจ์„ ์šด์˜ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ํ™•์ธํ–ˆ๋‹ค.

์˜ค๋Š˜๋‚  CEO์™€ CIO๋Š” ํ•œ ์„ธ๋Œ€๋ฅผ ๊ฐ€๋ฅด๋Š” ์ „ํ™˜์ ์— ์„œ ์žˆ๋‹ค. AI๋ฅผ ๋‹จ์ˆœํ•œ ๋น„์šฉ ์ ˆ๊ฐ ์ˆ˜๋‹จ์ด ์•„๋‹ˆ๋ผ ์—ญ๋Ÿ‰๊ณผ ์—ฌ๋ ฅ์„ ์ฐฝ์ถœํ•˜๊ณ  ํ˜์‹ ์„ ์ด‰์ง„ํ•˜๋ฉฐ ์ธ๊ฐ„ ์ค‘์‹ฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ์ด๋„๋Š” ๋™๋ ฅ์œผ๋กœ ์žฌ์ •์˜ํ•ด์•ผ ํ•˜๋Š” ์‹œ๊ธฐ์ด๋‹ค. ์•ž์œผ๋กœ์˜ ๊ธธ์€ ์—…๋ฌด๋ฅผ ์ž˜๊ฒŒ ์ชผ๊ฐœ๊ณ , ์–ด๋””์— ์ž๋™ํ™”๋ฅผ ์ ์šฉํ•ด์•ผ ํ•˜๋Š”์ง€ ๋‹ค์‹œ ํ‰๊ฐ€ํ•˜๋ฉฐ, ์ธ์žฌ๊ฐ€ ์„ฑ์žฅ๊ณผ ๋ณ€ํ˜์— ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ถŒํ•œ์„ ๋ถ€์—ฌํ•˜๋Š” ๋ฆฌ๋”์‹ญ์— ๋‹ฌ๋ ค ์žˆ๋‹ค.

์„ฑ๊ณต์„ ์œ„ํ•œ ์ค€๋น„ : AI์˜ ์•ฝ์†๊ณผ ํ˜„์‹ค

๋งŽ์€ CIO์—๊ฒŒ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ๋Š” ์ตœ๊ณ  ๊ฒฝ์˜์ง„๊ณผ ์ด์‚ฌํšŒ๊ฐ€ โ€œAI๊ฐ€ ํ•„์š”ํ•˜๋‹คโ€๋Š” ์‚ฌ์‹ค์€ ์•Œ๊ณ  ์žˆ์ง€๋งŒ, ์ •์ž‘ ๋ฌด์—‡์„ ์œ„ํ•ด AI๊ฐ€ ํ•„์š”ํ•œ์ง€ ๋ช…ํ™•ํ•˜๊ฒŒ ์•Œ์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด ๋•Œ๋ฌธ์— AI๊ฐ€ ๋ชจ๋“  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์ƒ์‚ฐ์„ฑ์„ ๊ธ‰๋“ฑ์‹œ์ผœ ์ค„ ๋งŒ๋Šฅ ํ•ด๊ฒฐ์ฑ…์ด๋ผ๋Š” ๋น„ํ˜„์‹ค์ ์ธ ๊ธฐ๋Œ€๊ฐ€ ์ƒ๊ธด๋‹ค. ์ฒ˜์Œ๋ถ€ํ„ฐ ๋ชฉํ‘œ๊ฐ€ ๋น„ํ˜„์‹ค์ ์ด๋ฉด ํ”„๋กœ์ ํŠธ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์™„๋ฃŒํ•˜๊ณ ๋„ ์‹คํŒจ๋กœ ๊ฐ„์ฃผํ•˜๋Š” ์ƒํ™ฉ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์—ฌ๋Ÿฌ ์‚ฌ์—… ๋ถ€๋ฌธ์ด ์‚ฌ์—… ์„ฑ๊ณผ๋ฅผ ์ธก์ •ํ•  KPI๋ฅผ ๊ฐ–์ถ”์ง€ ๋ชปํ•œ ์ ๋„ ์ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ๋ถ€์ถ”๊ธด๋‹ค.

๋Œ€ํ‘œ์ ์ธ ์˜ˆ๊ฐ€ ์ปจํƒ์„ผํ„ฐ๋‹ค. ์ปจํƒ์„ผํ„ฐ์—์„œ๋Š” ์ƒ๋‹ด์‚ฌ ์ฝ”์นญ, ๊ฐ€์ƒ ์ƒ๋‹ด์‚ฌ, ๊ทผ๋ฌด ์Šค์ผ€์ค„๋ง, ํ†ตํ™” ์Šค์ฝ”์–ด๋ง, ์ฝœ ๋…ธํŠธ ์ž‘์„ฑ ๋“ฑ ๋‹ค์–‘ํ•œ ์˜์—ญ์— AI ์—์ด์ „ํŠธ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ํ™œ๋™์˜ ๊ฐ€์น˜๋ฅผ ์ธก์ •ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋งŽ์€ ๊ธฐ์—…์ด ๋‹จ์ˆœํžˆ ์ƒ๋‹ด์‚ฌ ์ˆ˜๋ฅผ ์ค„์—ฌ ๋น„์šฉ ์ ˆ๊ฐ์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๋ฐฉ์‹์œผ๋กœ ๋Œ€์‘ํ•ด ์™”๋‹ค. ์ด๋Ÿฐ ์ ‘๊ทผ์€ ์‹ ์ค‘ํ•˜๊ฒŒ ์‹คํ–‰ํ•˜์ง€ ์•Š์œผ๋ฉด ์‰ฝ๊ฒŒ ์—ญํšจ๊ณผ๋ฅผ ๋‚ธ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ธˆ์œต ์„œ๋น„์Šค ํšŒ์‚ฌ ํด๋ผ๋ฅด๋‚˜(Klarna)๋Š” ์ƒ๋‹ด์‚ฌ ์•ฝ 700๋ช…์„ ๊ฐ์ถ•ํ•œ ๋’ค ๊ณ ๊ฐ ์„œ๋น„์Šค ์ ์ˆ˜๊ฐ€ ๊ธ‰๋ฝํ•˜์ž ์ธ๋ ฅ์„ ๋‹ค์‹œ ์ฑ„์šฉํ•ด์•ผ ํ–ˆ๋‹ค. ์ด ์‚ฌ๋ก€๋Š” ๊ธฐ์ˆ  ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ฒฝ์˜์ง„์ด ์˜ํ–ฅ๋„๋ฅผ ์ œ๋Œ€๋กœ ํŒŒ์•…ํ•˜๊ณ  ๊ณ„ํš์„ ์„ธ์šฐ์ง€ ๋ชปํ•œ ๋ฆฌ๋”์‹ญ ๋ฌธ์ œ์˜€๋‹ค.

๋ฌธ์ œ ์ง„๋‹จ : ๊ธฐ์ˆ ์  ํ•œ๊ณ„์ธ๊ฐ€, ๋ฆฌ๋”์‹ญ์˜ ๊ณต๋ฐฑ์ธ๊ฐ€

AI์™€ ์ž๋™ํ™” ๊ธฐ์ˆ ์—์„œ ROI๋ฅผ ์–ป์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ง„๋‹จํ•˜๋Š” ๊ณผ์ •์—์„œ ์‹ค์ œ ์›์ธ์„ ํ˜ผ๋™ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜๊ณ  ์ž๋™ํ™”๋ฅผ ํ™•์žฅํ•˜๋Š” ๊ธฐ์ˆ ์  ์ค€๋น„๊ฐ€ ๋ถ€์กฑํ•œ ๊ฒƒ์€ ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œ์ด๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ ๊ฐœ์„  ์กฐ์น˜๋ฅผ ์ทจํ•ด์•ผ ํ•  ์ง€์ ์€ ๊ธฐ์ˆ  ๊ทธ ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ๊ธฐ์ˆ  ํˆฌ์ž๋ฅผ ์–ด๋–ป๊ฒŒ ์ง€ํœ˜ํ•˜๊ณ  ์ด๋Œ์–ด ๊ฐ€๋Š”์ง€์— ๋” ๊ฐ€๊นŒ์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์€ AI๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๋„์ž…ํ•˜๋Š” ๋ฐ ๋ฐฉํ•ด๊ฐ€ ๋˜๋Š” ์žฅ์• ๋ฌผ์ด ์ฝ”๋“œ๋‚˜ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ ์„ค์ •์ด ์•„๋‹ˆ๋ผ ์ด์‚ฌํšŒ์™€ ๊ฒฝ์˜์ง„์— ๋” ๊ฐ€๊น๋‹ค๋Š” ์‚ฌ์‹ค์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋งŽ์€ ์‹คํŒจ๊ฐ€ ์‹œ์žฅ์˜ ๊ณผ์—ด๊ณผ ์œ ํ–‰์— ๋ฐ€๋ ค ์‹ ์†ํ•จ์„ ์šฐ์„ ํ•˜๋Š” ๊ฒฝ์˜์ง„์˜ ์„ ํƒ์—์„œ ๋น„๋กฏ๋˜๊ณ , ์ง„์ •ํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ณ€ํ™”๋ฅผ ๊ณ ๋ฏผํ•˜์ง€ ์•Š์€ ์ฑ„ ์ถ”์ง„ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ์ƒํ•œ๋‹ค.

AI ํ”„๋กœ์ ํŠธ๋ฅผ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ๋ฌด์—‡์„ ์ธก์ •ํ•˜๊ณ , ์–ด๋–ค ์ง€ํ‘œ๋กœ ํˆฌ์ž์ˆ˜์ต๋ฅ ์„ ๊ณ„์‚ฐํ• ์ง€์— ๋Œ€ํ•ด ๋น„์ฆˆ๋‹ˆ์Šค์™€ ๋ช…ํ™•ํžˆ ์ •๋ ฌํ•˜๋Š” ๊ณผ์ •๋„ ์ค‘์š”ํ•˜๋‹ค. ์ „๋žต์  ์šฐ์„ ์ˆœ์œ„์™€ ์—ฐ๊ณ„๋œ ๋ช…ํ™•ํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์ผ€์ด์Šค ์—†์ด ๊ณ ๋ฆฝ๋œ ๊ธฐ์ˆ  ์‹คํ—˜ ํ˜•ํƒœ๋กœ ์ถœ๋ฐœํ•œ ํ”„๋กœ์ ํŠธ๋Š” ๊ฐ€์น˜๊ฐ€ ๋ชจํ˜ธํ•ด ํšจ๊ณผ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ์˜ˆ์‚ฐ ์กฐ์ • ์‹œ ์šฐ์„ ์ ์œผ๋กœ ์ž˜๋ ค ๋‚˜๊ฐ€๊ธฐ ์‰ฝ๋‹ค.

๋ฆฌ๋”์‹ญ์˜ ์ „ํ™˜์  : ๋น„์šฉ ์ ˆ๊ฐ์„ ๋„˜์–ด

๋น„์ฆˆ๋‹ˆ์Šค ์„ธ๊ณ„๋Š” ๋ฆฌ๋”์‹ญ ์ „ํ™˜์ ์— ์„œ ์žˆ๋‹ค. ์ธ๋ ฅ ํ˜์‹ ์ด ์ฒ˜์Œ์œผ๋กœ โ€˜์ธ๊ฐ„๋งŒ์˜ ๋ฌธ์ œโ€™๊ฐ€ ์•„๋‹Œ ์ง€์ ์ด๋‹ค. AI์™€ ์ž์œจ ์—์ด์ „ํŠธ๊ฐ€ ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜๋ฉด์„œ ๊ฒฝ์˜์ง„์€ ์กฐ์ง ์•ˆ์—์„œ ๊ฐ€์น˜๋ฅผ ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค์–ด๋‚ด๊ณ  ์œ ์ง€ํ• ์ง€์— ๋Œ€ํ•ด ํ›จ์”ฌ ๋” ๋ณต์žกํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ ค์•ผ ํ•œ๋‹ค. ์ด ๋ณ€ํ™”๋Š” ๋น„์šฉ์„ ์ค„์ด๋Š” ์ฐจ์›์„ ๋„˜์–ด, ์ธ๊ฐ„์˜ ์—ญ๋Ÿ‰๊ณผ AI ๊ธฐ์ˆ  ์—ญ๋Ÿ‰ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋‹ค์‹œ ์„ค๊ณ„ํ•˜๊ณ , ์กฐ์ง ๋ฌธํ™”์™€ ํ”„๋กœ์„ธ์Šค๊ฐ€ ์ด๋Ÿฐ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ธ๋ ฅ ํ™˜๊ฒฝ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“œ๋Š” ์ž‘์—…์„ ์š”๊ตฌํ•œ๋‹ค.

๊ธฐ์—… ์ธํ…”๋ฆฌ์ „์Šค ์ „๋ฌธ ์—…์ฒด ์•Œํฌํ…์…œ(r.Potential)์˜ CEO ๊ทธ๋ ‰ ์Šˆ๋ฉ”์ด์ปค๋Š” โ€œ๋งŽ์€ ๊ธฐ์—…์ด ๋” ๋งŽ์€ AI ๋ชจ๋ธ๊ณผ ์ปดํ“จํŠธ, ์—์ด์ „ํŠธ๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ๊ฒฝ์Ÿํ•˜๊ณ  ์žˆ์ง€๋งŒ, ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ AI ๋„์ž…์˜ ์‹ค์ œ ๋ณ‘๋ชฉ์€ ๊ณต๊ธ‰ ์ธก์ด ์•„๋‹ˆ๋ผ ๊ธฐ์—…์ด ์–ด๋””์— ์–ด๋–ป๊ฒŒ AI๋ฅผ ํ™œ์šฉํ•ด ์‹ค์ œ ์ผ์„ ์ฒ˜๋ฆฌํ• ์ง€ ๋ชจ๋ฅธ๋‹ค๋Š” ์ ์— ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์Šˆ๋ฉ”์ด์ปค๋Š” โ€œ๋ˆ„๊ฐ€ ์–ด๋–ค ์ผ์„ ํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ค์ œ ์ˆ˜์š”๋ฅผ ํฌ์ฐฉํ•˜๊ณ , ์‚ฌ๋žŒ๊ณผ AI ์—ญ๋Ÿ‰์„ ํ˜„์‹ค์ ์œผ๋กœ ์กฐํ•ฉํ•œ ๊ตฌ์„ฑ์•ˆ์„ ๋งŒ๋“ค๋ฉฐ, ์ด๋ฅผ ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ์™€ ์—ฐ๊ณ„ํ•˜๋Š” ์ธ๊ฐ„-๋””์ง€ํ„ธ ์—…๋ฌด ์กฐ์ • ๊ณ„์ธต์ด ๋น ์ ธ ์žˆ๋‹ค๊ณ  ๋ณธ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ’€์ง€ ๋ชปํ•˜๋ฉด ๋‹ค์Œ ์ž๋™ํ™” ๋ฌผ๊ฒฐ์€ ๊ธฐ์—…์„ ์žฌํŽธํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ์ผ ์ž์ฒด๋ฅผ ๋ถˆ์•ˆ์ •ํ•˜๊ฒŒ ๋งŒ๋“ค ๊ฒƒโ€์ด๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

์Šˆ๋ฉ”์ด์ปค์˜ ์ง€์ ์€ ๋งŽ์€ ๊ฒฝ์˜์ง„์ด ๊ฐ„๊ณผํ•˜๋Š” ์ง€์ ์„ ์ž˜ ๋ณด์—ฌ์ค€๋‹ค. AI์˜ ์ž ์žฌ๋ ฅ์€ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ํ˜น์€ ์šด์˜ ๊ณผ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ ๋ฆฌ๋”์‹ญ์˜ ๋ณธ์งˆ์„ ๋ฌป๋Š” ๋ฌธ์ œ๋ผ๋Š” ์ ์ด๋‹ค. ์ธ๊ฐ„์ด ํ•ด์•ผ ํ•  ์—…๋ฌด์™€ ๊ธฐ๊ณ„๋กœ ์ž๋™ํ™”ํ•  ์—…๋ฌด ์‚ฌ์ด ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๋Š” ์ƒํ™ฉ์—์„œ IT์™€ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฆฌ๋”๋Š” ์‚ฌ๋žŒ, ๊ธฐ์ˆ , ๋ฌธํ™”์˜ ๊นŠ์€ ํ†ตํ•ฉ์„ ํ†ตํ•ด ๊ฐ€์น˜ ์ฐฝ์ถœ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ์ง‘์ค‘ํ•ด์•ผ ํ•œ๋‹ค.

๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๊ณ  ๊ฒฝ์˜์ง„์€ ํˆฌ์ž ํƒ€์ž„๋ผ์ธ์„ ๋‹ค์‹œ ๊ณ ๋ฏผํ•˜๊ณ , ๊ธฐ์ˆ  ๋ฐ ์‹œ์žฅ ๋ณ€ํ™”์— ๋งž์ถฐ ์กฐ์ง์˜ ์—ญ๋Ÿ‰์„ ํ™•์žฅํ•˜๋Š” ๋ฐฉ์‹์„ ์žฌ์„ค๊ณ„ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ์ธ์  ์ž์› ๊ด€๋ฆฌ์˜ ๋ณ€ํ™”๋Š” ๋ฏธ๋ž˜ ์ธ๋ ฅ ๊ตฌ์กฐ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ์‚ฌ๋žŒ๊ณผ ๊ธฐ๊ณ„ ๊ธฐ๋ฐ˜ ์ง€๋Šฅ์„ ์—ฐ๊ณ„ํ•ด ์ธ๋ ฅ์„ ๋ฐฐ์น˜ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ํ˜์‹ ์€ ํ˜„์žฌ ์„ฑ๊ณผ๋ฅผ ์กฐ๊ธˆ ๋ณดํƒœ๋Š” ์ฐจ์›์ด ์•„๋‹ˆ๋ผ, ์กฐ์ง์ด ๊ด€๋ จ ์ธํ”„๋ผ์™€ ์ฒด๊ณ„๋ฅผ ๊ฐ–์ถ”๊ณ  ์Šค์Šค๋กœ๋ฅผ ์žฌ์ฐฝ์กฐํ•  ์ค€๋น„๊ฐ€ ๋˜์–ด ์žˆ๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ์ค‘์‹ฌ์— ๋‘ฌ์•ผ ํ•œ๋‹ค.

์—…๋ฌด์™€ ๊ฐ€์น˜ ์ฐฝ์ถœ์˜ ๋ถ„ํ•ด

AI์—์„œ ์ดํ•ด ๊ฐ€๋Šฅํ•œ ROI๋ฅผ ๋„์ถœํ•˜๋ ค๋ฉด ์—…๋ฌด๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ •ํ™•ํžˆ ์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค. ์–ด๋–ค ์ˆ˜์ต์ด๋“  ๊ธฐ์ˆ  ๋„์ž…๋ฟ ์•„๋‹ˆ๋ผ ํ”„๋กœ์„ธ์Šค ๋ณ€ํ™”๋ฅผ ํ•จ๊ป˜ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ๋ชฉํ‘œ๋Š” ๋ฐ˜๋ณต ์ž‘์—…์—๋งŒ ์“ฐ์ด๋Š” ์˜์—ญ์ด ์•„๋‹ˆ๋ผ ์ธ๊ฐ„์˜ ํŒ๋‹จ, ๊ณต๊ฐ, ์ฐฝ์˜์„ฑ์ด ํ•„์š”ํ•œ ์˜์—ญ์—์„œ ์ธ๊ฐ„์˜ ๋…ธ๋ ฅ์„ ์ฆํญ์‹œํ‚ค๋Š” ๋ฐฉ์‹์œผ๋กœ AI๋ฅผ ํ™œ์šฉํ•˜๊ณ , ์‚ฌ๋žŒ์„ ๋ณด๋‹ค ๋†’์€ ๊ฐ€์น˜์˜ ๊ฐ๋… ๋ฐ ๋Œ€์™ธ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ญํ• ์— ๋ฐฐ์น˜ํ•ด ์ƒ์‚ฐ์„ฑ๊ณผ ๊ธฐ์—ฌ๋„๋ฅผ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ์žˆ๋‹ค.

์„ฑ๊ณต์˜ ํ•ต์‹ฌ์€ AI๋ฅผ ํ†ตํ•ด ์ธ์žฌ๊ฐ€ ๋งค์ถœ ์„ฑ์žฅ๊ณผ ํ˜์‹ ์„ ์ฃผ๋„ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ดˆ์ ์„ ์žฌ์กฐ์ •ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ชฉํ‘œ๋Š” ์–ด๋–ค ์ง๋ฌด์—์„œ๋“  80%์— ๋‹ฌํ•˜๋Š” ์ž๋™ํ™” ๊ฐ€๋Šฅ ์—…๋ฌด๋ฅผ AI์— ๋งก๊ธฐ๊ณ , ๊ณ ์ˆ™๋ จ ์ธ๋ ฅ์ด ๋‚˜๋จธ์ง€ 20%์— ์ง‘์ค‘ํ•˜๋„๋ก ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋‹ค. ์ด ๋งˆ์ง€๋ง‰ 20%๊ฐ€ ์ƒˆ๋กœ์šด ๋งค์ถœ ์„ฑ์žฅ, ๊ณ ๊ฐ ์ถฉ์„ฑ๋„, ํ˜์‹ ์  ๋ŒํŒŒ๊ตฌ๋ฅผ ์ด๋„๋Š” ์˜์—ญ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

AI ์‹œ๋Œ€์—๋Š” ๋ชจ๋“  ์‚ฐ์—…์ด ์žฌํŽธ๋  ๊ฒƒ์ด๋ฉฐ, CIO์™€ CEO๊ฐ€ ํ•จ๊ป˜ ์ง„ํ™”ํ•˜์ง€ ์•Š์œผ๋ฉด AI ํˆฌ์ž๋Š” ํ—ˆ๊ณต์— ์‚ฌ๋ผ์ง€๋Š” ๋น„์šฉ์ด ๋œ๋‹ค. AI์—์„œ ์‹ค์งˆ์  ๊ฐ€์น˜๋ฅผ ์–ป๊ธฐ ์œ„ํ•œ ์—ด์‡ ๋Š” ๋ฆฌ๋”์‹ญ์ด ๋ฏธ๋ž˜ ์ง€ํ–ฅ์  ์‚ฌ๊ณ ๋ฅผ ๊ฐ–์ถ”๊ณ , ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๊ณผ ๋ณ€ํ™”๋ฅผ ๊ธฐ๊บผ์ด ์ˆ˜์šฉํ•˜๋А๋ƒ์— ๋‹ฌ๋ ค ์žˆ๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ์ฝ”๋”๊ฐ€ ๋˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์˜ฌ๋ฐ”๋ฅธ ๋ฆฌ๋”์‹ญ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ์ผ์ด๋‹ค. AI๋ฅผ ์‚ฌ๋žŒ ์ค‘์‹ฌ์˜ ๋ชฉํ‘œ๋ฅผ ํ™•์žฅํ•˜๋Š” ๋„๊ตฌ๋กœ ํ™œ์šฉํ•˜๊ณ , ๋‹จ์ˆœํžˆ ์šด์˜ ์ง€ํ‘œ์™€ ์Šคํ”„๋ ˆ๋“œ์‹œํŠธ๋ฅผ AI ๋ฐ์ดํ„ฐ๋กœ ์ฑ„์šฐ๋Š” ์ˆ˜๋‹จ์œผ๋กœ ์“ฐ์ง€ ์•Š๋Š” ๋ฆฌ๋”์‹ญ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋ชจ๋“  ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์— ์—„๊ฒฉํ•œ ์œค๋ฆฌ์™€ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ์‹ฌ๊ณ , ๊ฐ AI ํ”„๋กœ์ ํŠธ๊ฐ€ ์กฐ์ง์— ์–ด๋–ค ๋ชฉ์ ์„ ์ˆ˜ํ–‰ํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ๋น„์ฆˆ๋‹ˆ์Šค ์ธก๋ฉด์—์„œ ํ™•์‹คํžˆ ํ•ฉ์˜ํ•ด ๋‘์–ด์•ผ ํ•œ๋‹ค.
dl-ciokorea@foundryco.com

AIโ€™s lack of ROI is down to leadership, not tech

The increasing hype around AI has exceeded any other technology shift, perhaps ever. This has been met with a corresponding amount of investment. Gartner estimates worldwide spending on AI through 2025 will be nearly $1.5 trillion. Despite the staggering amount, most organizations continue to grapple with a chronic gap between promise and realized value.

The most widely recognized data point to support this comes from an MIT report from earlier this year that reveals 95% of gen AI pilots fail. A McKinsey study also found that nearly 80% of companies use gen AI, yet almost as many report no significant impact to the bottom line.

But thereโ€™s proof AI is working, if modestly. The 2025 Cisco AI Readiness Index shows 13% of all companies get consistently measurable returns from AI. So while this is a minority, leading organizations are starting to see value. But the origins of that value increasingly stem from leadership clarity, strategic alignment, and execution, not the technology itself. The Cisco AI Readiness Index measured this and found 99% of companies that have realized value from AI have a well-defined strategy that embraces change, and includes formal programs to help employees get comfortable with the new technology.

Todayโ€™s CEOs and CIOs face a generational inflection point. They must redefine success for AI not as a means of cost-cutting, but as a driver for capacity creation, innovation, and human-centric outcomes. The path forward requires breaking down work, reassessing where automation helps, and empowering talent to focus on growth and transformation.

Setting the stage: AI promise vs. reality

Among many CIOs, the biggest challenge is the C-Suite and board know they need AI but arenโ€™t sure what for. This creates unrealistic expectations that AI will be a panacea to all problems and send productivity skyrocketing. When the outcomes are unrealistic, a successful project may be deemed unsuccessful because the initial goals were incorrect. A contributing factor to this problem is that many business units donโ€™t have the KPIs to create the business metrics to measure.

An example of this is with contact centers where AI agents could be used for agent coaching, virtual agents, scheduling, scoring calls, note taking and more. Measuring the value of these can be difficult, so many businesses have defaulted to cutting costs by reducing agents. This can backfire if not done in a measured way. Klarna, for instance, eliminated about 700 agents, saw customer service scores tank, and then hired people back. This wasnโ€™t a technology problem but rather leadership didnโ€™t put the right plan in place to understand the impact.

Diagnosing the problem: Tech limitations or leadership gaps?

Issues with achieving ROI on AI and automation technology efforts are often confused with the diagnosis of the issue at hand. A lack of tech readiness concerning integrating complex data and scaling automation remains a challenge. More often than not, however, the issue that gets acted upon may be less with the technology itself and more with the way technology efforts are governed and led. This would indicate the obstacles that exist to technologyโ€™s successful implementation lie more with the board than the code and cloud setup. Failures happen because business leaders prioritize expediency driven by market hype instead of thinking about genuine business transformation.

Itโ€™s also important that prior to AI projects being kicked off, thereโ€™s clear business alignment and an understanding of the metrics being measured to calculate ROI. Projects launched as isolated technology experiments without a well-defined business case tied to a strategic priority are hard to measure and often vague in value, leading to projects that are easy to cut.

The leadership inflection point: Beyond cost cutting

The business world sits at a leadership inflection point where for the first time, workforce transformation will be more than just human. With the rapid adoption of AI and autonomous agents, leaders now face complex decisions about how value is derived and maintained within their organizations. This shift requires cutting costs but also reimagining the relationship between human skills and the technical capabilities of AI, which ensures organizational cultures and processes can adapt to this new era of hybrid workforces.

โ€œEveryoneโ€™s been racing to build more AI models, compute, and agents, but the real bottleneck to enterprise AI adoption isnโ€™t supply, itโ€™s that enterprises donโ€™t know where or how to use AI to do real work,โ€ says Greg Shewmaker, CEO of enterprise intelligence company r.Potential. โ€œWe believe the missing piece is the coordination layer between human and digital work, where you can capture actual workforce demand, generate realistic and deployable configurations of human and AI capabilities, and tie them to real business outcomes. If we donโ€™t get this right, the next wave of automation wonโ€™t just reshape companies, itโ€™ll destabilize work itself.โ€ย 

His point underscores what many executives miss: AIโ€™s promise isnโ€™t just a technological or operational challenge, itโ€™s an existential leadership one. As the boundaries blur between tasks suited for humans and those automated by machines, IT and business leaders will need to focus on maximizing value creation through deep integration of people, technology, and culture.โ€‹

So it becomes critical for the C-suite to reconsider timelines related to investments and expand capacity in accordance with tech and market needs. This shift in human capital management involves being able to forecast the future workforce and deploy human resources in sync with machine-based intelligence. Innovation should take precedence thatโ€™s less about adding to current performance and more about ensuring organizations can remain agile and ready to facilitate innovation in terms of related infrastructure and preparedness to reinvent themselves.

Breaking down work and value creation

Understanding the key components of work is essential to developing understandable ROI from AI. Any returns must consider the adoption of technology and the transformation of processes. The goal should be to leverage AI to amplify human effort in areas that require human judgment, empathy, and creativity rather than in areas where thereโ€™s only repetition of tasks, thereby assigning human resources to higher-value supervisory and human roles where they can be most productive and valuable.

The key to success is to refocus on enabling talent to drive revenue growth and innovation through AI. So the goal is to apply AI strategically to liberate highly-skilled people from working on the 80% of any job that can, should, and must be automated so they can focus on the last 20%, which drives new revenue growth, customer loyalty, and innovation breakthroughs.

The AI era will reshape every industry, and if CIOs and CEOs arenโ€™t evolving, the AI investment will be wasted. The key to realizing real value in AI is to ensure leadership is future-ready and embraces new skills and change. Itโ€™s not about being the best coder in the room but instilling the right leadership structure. This involves a leadership mentality that uses AI to further human-centric goals and not simply fill an operational spreadsheet with AI data. This requires strict ethics and governance modeled in every aspect of decision-making, and firm alignment on the business side where every AI project has a defined purpose for the organization.

The CIOโ€™s scoreboard: Measuring what really matters

In โ€œArchitecting a high-performance delivery engine,โ€ I laid out the blueprint for a high-performance delivery engine. Youโ€™ve re-architected the organization, dismantled the cultural silos, and built a machine capable of turning boardroom promises into reality.

But a powerful engine is useless without a dashboard. Without the right telemetry, youโ€™re driving blind. In the boardroom, driving blind isnโ€™t just dangerous; itโ€™s career-ending.

Too many CIOs still walk into the boardroom armed with data no one asked for. They fill their presentations with engine-room metrics, believing theyโ€™re demonstrating control and efficiency. The result isnโ€™t reassurance; itโ€™s frustration. Theyโ€™re met with well-intentioned questions as board members try to connect the metrics to real outcomes, but ultimately leave dissatisfied. This palpable sense of disconnection isnโ€™t just a feeling; it has material consequences. Gartner finds that CIOs who successfully communicate ITโ€™s business value maintain funding levels 60% higher than their peers who donโ€™t. Once you lose that credibility as a strategic partner, itโ€™s almost impossible to get it back.

In Formula 1, the team principal on the pit wall isnโ€™t staring at engine RPMs or oil pressure. They are watching lap times, tire degradation, and the gap to the car behind: the metrics that determine the outcome of the race. They measure impact, not just activity. The modern CIO must evolve from being the chief mechanic to the Team Principal, translating telemetry into a scoreboard that proves the organization is winning.

The vanity metric trap: Speaking the wrong language

The single greatest communication failure for technology leaders is the vanity metric: a number that is easy to measure and looks good on a chart, but it tells you nothing about business value. Itโ€™s the illusion of control: numbers that look impressive but donโ€™t change the scoreboard. The real trap isnโ€™t just using these metrics internally; itโ€™s presenting them to an audience that speaks an entirely different language. Your board and your C-suite peers donโ€™t care about IT activity; they care about business outcomes.

This disconnect sounds something like this:

You say: โ€œWe maintained 99.999% uptime across our core systems this quarter.โ€
The board thinks: โ€œSo what? The system is stable, but is it helping us win customers? Or are we just keeping the lights on for a system thatโ€™s losing us money?โ€

You say: โ€œOur service desk closed over 5,000 tickets this quarter, beating our SLA.โ€
The board thinks: โ€œAre my people any more productive, or are they just complaining more? High ticket volume might mean the technology is failing them, not that your team is succeeding.โ€

You say: โ€œWe successfully deployed 200 software updates across the enterprise.โ€
The board thinks: โ€œI see a lot of activity, but did any of it move the needle on revenue? Did we reduce costs? Did we gain market share?โ€

Presenting these metrics is like a race car driver bragging about how many times they shifted gears: true, but meaningless if they finish last. You lose your audience and frame your organization as a cost center.

Now, imagine walking into that same room and saying: โ€œOur new digital platform cut time-to-market for product launches by 30%, contributing an estimated $50M in new revenue this quarter.โ€

That is a podium finish moment. Itโ€™s a statement of value, not activity.

The 3D scoreboard: The CIOโ€™s pit wall dashboard

This is a fixable problem. The board wants this information; they just need it in a consistent, strategic format. As the Harvard Law School Forum on Corporate Governance recently pointed out, boards are frustrated when tech presentations โ€œfeel complex with a hard-to-follow trajectory and no through line.โ€ Their recommendation is for leaders to โ€œalign on key business, performance, and operational metrics and put them on a one-pager so progress can be consistently tracked over time.โ€

The 3D scoreboard is the framework to do exactly that. Itโ€™s the one-pager that translates complex telemetry into a clear, compelling story of value. The top level shows if youโ€™re winning the race; the middle level explains why; the bottom level tells your teams how to fine-tune the engine.

Level 1: Dashboard (the boardroom score)

This is the top line of your scoreboard, answering the only question the board truly cares about: โ€œAre we winning?โ€ These are direct business outcomes, expressed in financial or strategic terms. This is the language of the annual report and the investor call.

Examples include:

  • Strategic portfolio success: The percentage of board-approved strategic projects delivered on time and on value.
  • โ€˜Grow vs. runโ€™ spend ratio: The share of the tech budget dedicated to innovation (Grow) vs. just maintaining legacy systems (Run).
  • Time-to-market (critical features): The speed from concept to customer for new features that drive revenue or competitive advantage.
  • Business process automation (ROI): The quantified reduction in manual labor-hours and associated costs from new automation, directly impacting operating margin.
  • Quantified technical debt: The financial risk (e.g., potential downtime cost, security breach impact) of not modernizing critical legacy systems.

Level 2: Diagnostics (the โ€˜whyโ€™)

While the board focuses on the final score, theyโ€™ll always want to understand the why. Your C-suite peers and business partners live in this layer. Diagnostic metrics are the shared metrics that measure the performance of a specific business capability, owned in partnership between technology and the business unit. They answer the question: โ€œHow are we winning?โ€

Examples include:

  • Feature adoption rate: The uptake of new capabilities by business units, proving that technology investment is translating into active use.
  • Digital revenue (% of total): A measure of the businessโ€™s digital maturity and the success of tech-dependent sales channels.
  • Sales process automation: The percentage of the sales funnel that is automated, directly showing technologyโ€™s impact on sales velocity and margin.
  • System-driven retention: The share of customer retention attributable to digital self-service, personalization, and automated support channels.
  • Employee digital experience (DEX) score: A composite score measuring employee satisfaction with their tech tools, a key driver of productivity and talent retention.

Level 3: Drivers (the โ€˜howโ€™)

This is the engine room telemetry. Driver metrics are the operational and engineering inputs your teams can directly control, but they are not for the boardroom. Their purpose is to give your product, platform, and security teams the real-time data they need to optimize the machine. They answer the question: โ€œIs the machine running effectively?โ€

Examples include:

  • Cycle time: The time from when work officially begins on a feature to when it is delivered to a customer.
  • Service level objective (SLO) attainment: The percentage of time that a core business service (like user login) meets its agreed-upon performance and uptime targets.
  • DORA: Mean time to recover (MTTR): The average time it takes to restore service after a production-impacting incident.
  • Time to remediate critical vulnerabilities: The speed at which the most severe security flaws are identified and patched in production.
  • DORA: Change fail rate: The percentage of deployments to production that result in a failure (like an outage or a hotfix).

The telemetry chain

The power of the 3D Scoreboard isnโ€™t in any single metric; itโ€™s in the story they tell together. This linkage is not theoretical; it is a proven driver of financial success.ย  The framework becomes a powerful storytelling engine when you can draw that clear line:

โ€œThis quarter, our engineering teams focused on reducing Cycle Time (Driver) for internal tools. This allowed us to deliver a new workflow tool to the sales team ahead of schedule, which increased our Sales Process Automation (Diagnostic) by 30%. Because that new automated system retired three legacy applications, we were able to reallocate a $1.5M maintenance budget directly to innovation, significantly improving our โ€˜Grow vs. Runโ€™ Spend Ratio (Dashboard) for the quarter.โ€

Thatโ€™s how you turn telemetry into testimony: proof that technology is driving business value.

Final thoughts: From mechanic to strategist

Data without a story is noise, and metrics without connection are vanity. The 3D Scoreboard gives you the language to prove value, reclaim credibility, and earn a permanent seat at the strategy table. It shifts your role from the manager defending an IT budget to the strategist proving how technology drives the business.

At the end of the day, your value is measured not by the health of the engine but by the number of races you win.

With the engine tuned and the scoreboard in place, the next challenge is deciding which races are worth entering. In my next article, Iโ€™ll explore portfolio management: the art of making disciplined investment choices to keep you on the podium.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

์นผ๋Ÿผ | ์„ฃ๋ถ€๋ฅธ ๊ทœ๋ชจ ํ™•์žฅ์ด ์ดˆ๋ž˜ํ•˜๋Š” โ€˜์ˆจ์€ ๋น„์šฉโ€™ยทยทยท์ด๋ฅผ ํ”ผํ•  ๋ฐฉ๋ฒ•์€?

โ€˜ํ™•์žฅโ€™์€ ์ข…์ข… ์„ฑ๊ณต์œผ๋กœ ์˜คํ•ด๋œ๋‹ค. ์ด๋Š” ๋ฌด์–ธ๊ฐ€ ์ œ๋Œ€๋กœ ์ž‘๋™ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์‹ ํ˜ธ์ฒ˜๋Ÿผ ์—ฌ๊ฒจ์ง€๊ธฐ ์‰ฝ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ์„ฑ์žฅ ์••๋ฐ•์ด ๋กœ๋“œ๋งต๋ฟ ์•„๋‹ˆ๋ผ ์•„ํ‚คํ…์ฒ˜, ๋ฐ์ดํ„ฐ ๋ ˆ์ด์–ด, ์‚ฌ๊ณ  ๋Œ€์‘ ์ฒด๊ณ„, ๊ณ ๋ถ€ํ•˜ ํ™˜๊ฒฝ์—์„œ ์›€์ง์—ฌ์•ผ ํ•˜๋Š” ํŒ€์˜ ์šด์˜ ์—ญ๋Ÿ‰๊นŒ์ง€ ์ „๋ฐ˜์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ ์ถฉ๋ถ„ํžˆ ๊ดœ์ฐฎ๋‹ค๊ณ  ์—ฌ๊ฒผ๋˜ ์„œ๋น„์Šค ์ˆ˜์ค€ ๊ณ„์•ฝ(SLA), ์„œ๋น„์Šค ์ˆ˜์ค€ ๋ชฉํ‘œ(SLO), ์ง€์—ฐ ์‹œ๊ฐ„ ์˜ˆ์‚ฐ์€ ์ƒˆ๋กœ์šด ๋™์‹œ ์ ‘์† ๋ฐ ํŠธ๋ž˜ํ”ฝ ํŒจํ„ด์ด ๋‚˜ํƒ€๋‚˜๋ฉด ์‰ฝ๊ฒŒ ๋ฌด๋„ˆ์งˆ ์ˆ˜ ์žˆ๋‹ค. ๊ฒ‰์œผ๋กœ๋Š” ๊ฑด์ „ํ•ด ๋ณด์ด๋Š” ์ง€ํ‘œ๊ฐ€ ์‹ค์ œ๋กœ๋Š” ์ทจ์•ฝํ•œ ์‹œ์Šคํ…œ์„ ๊ฐ€๋ฆฌ๊ณ  ์žˆ๋‹ค๊ฐ€, ํŠน์ • ๊ธฐ๋Šฅ ํ•˜๋‚˜๋ฅผ ์ถœ์‹œํ•˜๋Š” ์ˆœ๊ฐ„ ์ „์ฒด๊ฐ€ ํ•œ๊บผ๋ฒˆ์— ๋ถ•๊ดดํ•˜๋Š” ์ƒํ™ฉ๋„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ๋ชฉ๊ฒฉํ–ˆ๋‹ค.

  • ์ง€ํ‘œ๊ฐ€ ์ •๋ ฌ๋˜์ง€ ์•Š๊ณ  ์šด์˜ ์ฒด๊ณ„๊ฐ€ ์ทจ์•ฝํ•œ ์ƒํƒœ์—์„œ ๋„ˆ๋ฌด ์ด๋ฅธ ์‹œ์ ์— ๊ทœ๋ชจ ํ™•์žฅ์— ๋‚˜์„œ๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ์ œํ’ˆ ์‹คํŒจ์˜ ์ฃผ์š” ์›์ธ์œผ๋กœ ๊ผฝํžŒ๋‹ค.
  • ์ง€ํ‘œ๋Š” ์™ธ๋ถ€์—์„œ ๊ฐ€์ ธ์˜จ ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์•„๋‹ˆ๋ผ, ๊ฐ ์กฐ์ง์˜ ๊ตฌ์ฒด์  ๋งฅ๋ฝ ์•ˆ์—์„œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค.
  • DORA, ์˜ค๋ฅ˜ ์˜ˆ์‚ฐ, SLO ๋“ฑ ์—”์ง€๋‹ˆ์–ด๋ง ์ค€๋น„ ์ง€ํ‘œ ์—ญ์‹œ ์ œํ’ˆ ์„ฑ์žฅ์— ๋งž์ถฐ ์ง„ํ™”ํ•ด์•ผ ํ•œ๋‹ค. ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด ๊ณ ๋ถ€ํ•˜ ํ™˜๊ฒฝ์—์„œ ์‹คํŒจ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค.

์ง€๋‚œ 10์—ฌ ๋…„ ๋™์•ˆ ์ž ์žฌ๋ ฅ์ด ํฐ ํŒ€์ด ์ž˜๋ชป๋œ ์ง€ํ‘œ์— ๋งค๋‹ฌ๋ฆฌ๋‹ค ์†Œ์ง„๋˜๊ฑฐ๋‚˜, ์ œํ’ˆ์ด ์ค€๋น„๋˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ ๋ฌด๋ฆฌํ•˜๊ฒŒ ํ™•์žฅ์„ ์‹œ๋„ํ•˜๋‹ค๊ฐ€ ์‹คํŒจํ•˜๋Š” ์‚ฌ๋ก€๋ฅผ ์ง€์ผœ๋ด ์™”๋‹ค. ์‹ค์ œ๋กœ ์Šคํƒ€ํŠธ์—…์˜ 70%๋Š” ์ œํ’ˆ๊ณผ ํ”Œ๋žซํผ์ด ์ถฉ๋ถ„ํžˆ ์„ฑ์ˆ™ํ•˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ ์„ฑ์žฅ์„ ์‹œ๋„ํ•ด ๊ฒฐ๊ตญ ์‹คํŒจํ•œ๋‹ค๋Š” ์กฐ์‚ฌ ๊ฒฐ๊ณผ๊ฐ€ ์žˆ๋‹ค. ํ•ต์‹ฌ ๊ณผ์ œ๋Š” ๋” ๋นจ๋ฆฌ ์„ฑ์žฅํ•˜๋Š” ๋ฒ•์ด ์•„๋‹ˆ๋ผ ์‹œ์Šคํ…œ์„ ๋ถ•๊ดด์‹œํ‚ค์ง€ ์•Š๊ณ  ์„ฑ์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ฐพ๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ง€ํ‘œ, ์ œํ’ˆ์˜ ์„ฑ์ˆ™๋„, ์—”์ง€๋‹ˆ์–ด๋ง ํƒ„๋ ฅ์„ฑ ์ „๋ฐ˜์—์„œ ๊ธด๋ฐ€ํ•œ ์กฐ์œจ์ด ํ•„์š”ํ•˜๋‹ค.

๊ฐ€์žฅ ๋จผ์ € ๋ฐฐ์šด ๊ตํ›ˆ ์ค‘ ํ•˜๋‚˜๋Š” ์ง€ํ‘œ๊ฐ€ โ€˜ํŠธ๋กœํ”ผโ€™๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜๊ฑฐ์šธโ€™์ด๋ผ๋Š” ์ ์ด๋‹ค. ํ•œ๋•Œ โ€˜์›”๊ฐ„ ํ™œ์„ฑ ์ด์šฉ์žโ€™ ๊ฐ™์€ ๋‹จ์ผ ์ง€ํ‘œ์— ์ง‘์ฐฉํ•˜๋ฉด์„œ ๋ณด๊ธฐ ์ข‹์€ ๊ทธ๋ž˜ํ”„๋Š” ๋งŒ๋“ค์—ˆ์ง€๋งŒ, ์‚ฌ์—… ์ž์ฒด๋Š” ์ทจ์•ฝํ•ด์กŒ๋‹ค. ๋‹น์‹œ ํ™•๋Œ€ํ•˜๊ณ  ์žˆ์—ˆ๋˜ ๊ฒƒ์€ ๊ฐ€์น˜๊ฐ€ ์•„๋‹ˆ๋ผ ๊ฒ‰๋ชจ์Šต์ด์—ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ง€๊ธˆ์€ ๋ฒ”์šฉ KPI ๋Œ€์‹  ์‹ค์ œ ๊ฐ€์น˜ ํ๋ฆ„์„ ๋ณด์—ฌ์ฃผ๋Š” 4~6๊ฐœ์˜ ์ œํ’ˆ ํŠนํ™” ์ง€ํ‘œ์— ์ง‘์ค‘ํ•œ๋‹ค. ๊ฐ€์ž… ์ „ํ™˜์œจ, ๊ณ ๊ฐ ํš๋“ ๋น„์šฉ(CAC), ์ผ์ผ ํ™œ์„ฑ ์‚ฌ์šฉ์ž ๋Œ€๋น„ ์›”๊ฐ„ ์‚ฌ์šฉ์ž(DAU-MAU) ๋น„์œจ, ์ฒซ ํ•ต์‹ฌ ํ–‰๋™ ์ˆ˜ํ–‰๋ฅ , ํŠน์ • ํ–‰๋™ ์œ ์ง€์œจ ๋“ฑ์ด๋‹ค. ์ง€ํ‘œ๋Š” ์„ฑ๊ณต์„ ํ™•์ธํ•˜๋Š” ์šฉ๋„๊ฐ€ ์•„๋‹ˆ๋ผ ์ƒํ™ฉ์„ ์ดํ•ดํ•˜๊ฒŒ ํ•ด์ฃผ๋Š” ๋„๊ตฌ์—ฌ์•ผ ํ•œ๋‹ค. ์ฐฐ์Šค ๊ตฟํ•˜ํŠธ ๊ต์ˆ˜๋Š” โ€œ์ธก์ • ๊ธฐ์ค€์ด ๋ชฉํ‘œ๊ฐ€ ๋˜๋ฉด ๋” ์ด์ƒ ์ข‹์€ ์ธก์ • ๊ธฐ์ค€์ด ์•„๋‹ˆ๋‹คโ€๋ผ๋Š” ๋ฒ•์น™์„ ์ œ์‹œํ•œ ๋ฐ” ์žˆ๋‹ค.

์ง€ํ‘œ๊ฐ€ ๋ชฉํ‘œ๊ฐ€ ๋˜๊ธฐ ์‹œ์ž‘ํ•˜๋ฉด ์‚ฌ๋žŒ๋“ค์€ ์‹ค์งˆ์  ์„ฑ๊ณผ๊ฐ€ ์•„๋‹Œ ์ˆซ์ž๋ฅผ ์˜ฌ๋ฆฌ๋Š” ๋ฐ ์ง‘์ค‘ํ•˜๊ฑฐ๋‚˜ ์™œ๊ณก๋œ ๋ฐฉ์‹์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค ํ•œ๋‹ค. ๋Œ€ํ‘œ์  ์‚ฌ๋ก€๊ฐ€ ์›ฐ์ŠคํŒŒ๊ณ (Wells Fargo) ๊ต์ฐจํŒ๋งค ์Šค์บ”๋“ค์ด๋‹ค. 2010๋…„๋Œ€ ์›ฐ์ŠคํŒŒ๊ณ  ๊ฒฝ์˜์ง„์€ โ€˜๊ณ ๊ฐ 1์ธ๋‹น ๊ณ„์ขŒ ์ˆ˜โ€™๋ผ๋Š” ์ง€ํ‘œ์— ์ง€๋‚˜์น˜๊ฒŒ ์ง‘์ฐฉํ•˜๋ฉด์„œ ๊ณผ๋„ํ•œ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ–ˆ๊ณ , ๊ฒฐ๊ตญ ์ง์›๋“ค์€ ๋ชฉํ‘œ ๋‹ฌ์„ฑ์„ ์œ„ํ•ด ์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์˜ ์œ ๋ น ๊ณ„์ขŒ๋ฅผ ๊ฐœ์„คํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ์ง€ํ‘œ๋Š” ๊ฒ‰๋ณด๊ธฐ์—” ์ข‹์•„ ๋ณด์˜€์ง€๋งŒ, ๊ณ ๊ฐ ์‹ ๋ขฐ๋Š” ๋ถ•๊ดด๋๊ณ  ํšŒ์‚ฌ๋Š” ๋ง‰๋Œ€ํ•œ ๋ฒŒ๊ธˆ์„ ๊ฐ๋‹นํ•ด์•ผ ํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์–ป๋Š” ๊ตํ›ˆ์€ ๋‹จ์ผ ์ง€ํ‘œ๋ฅผ ์ ˆ๋Œ€์  ๊ธฐ์ค€์œผ๋กœ ์‚ผ์•„์„œ๋Š” ์•ˆ ๋œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ œํ’ˆ๊ณผ ์‚ฌ์šฉ์ž๊ฐ€ ์‹ค์ œ๋กœ ์–ป๋Š” ๊ฐ€์น˜๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ ๋ฐ˜์˜ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์„ฑ๊ณต์„ ์ •์˜ํ•ด์•ผ ํ•œ๋‹ค.

๊ฐ€๋“œ๋ ˆ์ผ๋กœ์„œ์˜ ๋ฒค์น˜๋งˆํฌ

๋ฒค์น˜๋งˆํฌ๋Š” ๋ถ„๋ช… ์œ ์šฉํ•˜์ง€๋งŒ, ๊ธฐ์ค€์ ์ผ ๋ฟ ์ ˆ๋Œ€์  ๊ทœ์น™์œผ๋กœ ๋ฐ›์•„๋“ค์—ฌ์„œ๋Š” ์•ˆ ๋œ๋‹ค. ๋น„์ •์ƒ์ ์œผ๋กœ ๋‚ฎ์€ ์ „ํ™˜์œจ ๊ฐ™์€ ์ด์ƒ ์ง•ํ›„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜์ง€๋งŒ, ํŠน์ • ์ œํ’ˆ์˜ ์„ฑ๊ณต์„ ์–ด๋–ป๊ฒŒ ์ •์˜ํ•ด์•ผ ํ•˜๋Š”์ง€๊นŒ์ง€ ๊ทœ์ •ํ•˜๋Š” ๋„๊ตฌ๋Š” ์•„๋‹ˆ๋‹ค. ๊ณผ๊ฑฐ ํ•„์ž๋Š” ํŒ€์˜ โ€˜์ฑ•ํ„ฐ 2โ€™๋ฅผ ๋‹ค๋ฅธ ๊ธฐ์—…์˜ โ€˜์ฑ•ํ„ฐ 10โ€™๊ณผ ๋น„๊ตํ•˜๋Š” ์‹ค์ˆ˜๋ฅผ ์ €์งˆ๋ €๋‹ค. ์–ด๋–ค SaaS ์„œ๋น„์Šค๊ฐ€ ์ฒซ๋‚  ์œ ์ง€์œจ 50%๋ฅผ ๊ธฐ๋กํ–ˆ๋‹ค๋Š” ์ด์•ผ๊ธฐ๋ฅผ ๋ณด๊ณ , ์šฐ๋ฆฌ๋Š” 30%์— ๋ถˆ๊ณผํ•˜๋‹ค๋Š” ์ด์œ ๋กœ ์Šค์Šค๋กœ๋ฅผ ๊ณผ์†Œํ‰๊ฐ€ํ–ˆ์ง€๋งŒ, ํ•ด๊ฒฐํ•˜๋ ค๋Š” ๋ฌธ์ œ๋„, ์‹œ์žฅ ๋‹จ๊ณ„๋„, ์‚ฌ์šฉ์ž ๊ตฌ์„ฑ๋„ ์™„์ „ํžˆ ๋‹ค๋ฅด๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋†“์ณค๋‹ค.

์ด๋Ÿฐ ๋น„๊ต ๋ฐฉ์‹์€ ํŒ€์ด ๋งž์ง€ ์•Š๋Š” ๊ฒฝ๊ธฐ์žฅ์—์„œ ๋›ฐ๋Š” ๊ฒฐ๊ณผ๋กœ ์ด์–ด์ง„๋‹ค. ๋ชจ๋“  ์ œํ’ˆ์€ ์ถœ์‹œ ์‹œ์ , ์˜ˆ์‚ฐ, ํŒ€์˜ ์„ฑ์ˆ™๋„, ์‹œ์žฅ์˜ ๋ณต์žก์„ฑ ๋“ฑ ์„œ๋กœ ๋‹ค๋ฅธ ๋งฅ๋ฝ ์†์— ์กด์žฌํ•œ๋‹ค. ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฐธ๊ณ  ์ž๋ฃŒ์ผ ์ˆ˜๋Š” ์žˆ์ง€๋งŒ ์˜์‚ฌ๊ฒฐ์ •์„ ์ง€๋ฐฐํ•ด์„œ๋Š” ์•ˆ ๋œ๋‹ค. ์ด๋ฅผ ์ ˆ๋Œ€์  ๊ธฐ์ค€์ฒ˜๋Ÿผ ๋‹ค๋ฃจ๊ธฐ ์‹œ์ž‘ํ•˜๋ฉด ๊ฐ๊ด€์„ฑ์ด ์žˆ๋‹ค๋Š” ์ฐฉ๊ฐ์— ๋น ์ ธ ์‹ค์ œ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ฌด์‹œํ•˜๊ฑฐ๋‚˜ ์• ์ดˆ์— ํŒ€๊ณผ ๋ฌด๊ด€ํ•œ ์ง€ํ‘œ๋ฅผ ์ซ“๊ฒŒ ๋œ๋‹ค.

ํ˜„์‹ค์ ์œผ๋กœ๋Š” ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ผ์ข…์˜ ์ผ๊ธฐ์˜ˆ๋ณด์ฒ˜๋Ÿผ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์œ ์šฉํ•˜๋‹ค. ๋‹ค์‹œ ๋งํ•ด ์–ด๋–ค ํ™˜๊ฒฝ์—์„œ ์›€์ง์ด๊ฒŒ ๋ ์ง€ ์˜ˆ์ƒํ•˜๊ฒŒ ํ•ด์ฃผ์ง€๋งŒ, ๊ฒฝ๋กœ ์ž์ฒด๋ฅผ ๊ฒฐ์ •ํ•ด์ฃผ์ง€๋Š” ์•Š๋Š”๋‹ค. ์‹ค์ œ๋กœ ์ค‘์š”ํ•œ ์ผ์€ ์ œํ’ˆ์˜ ๊ฐ€์น˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜๋Š” ์ง€ํ‘œ๊ฐ€ ๋ฌด์—‡์ธ์ง€ ํŒŒ์•…ํ•˜๊ณ , ๊ทธ ์ง€ํ‘œ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์‹œ์Šคํ…œ ์ „์ฒด๋ฅผ ์กฐ์œจํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

์šด์˜ ์ค€๋น„

์ง€ํ‘œ๊ฐ€ ์•„๋ฌด๋ฆฌ ์œ ๋งํ•ด ๋ณด์—ฌ๋„ ์—”์ง€๋‹ˆ์–ด๋ง ์ค€๋น„ ์—†์ด ์ œํ’ˆ์„ ํ™•์žฅํ•˜๋Š” ์ผ์€ ๋ถ€์‹คํ•œ ์ง€๋ฐ˜ ์œ„์— ๊ฑด๋ฌผ์„ ์˜ฌ๋ฆฌ๋Š” ๊ฒƒ๊ณผ ๋‹ค๋ฅด์ง€ ์•Š๋‹ค. ์„ฑ์žฅ์€ ์šด์˜ ์‹œ์Šคํ…œ ์ „๋ฐ˜์— ๋ถ€๋‹ด์„ ์ค€๋‹ค. ๋ฐฐํฌ ํŒŒ์ดํ”„๋ผ์ธ, ๊ด€์ธก ๋„๊ตฌ, ์ง€์—ฐ ์‹œ๊ฐ„ ์˜ˆ์‚ฐ, ๋ฆด๋ฆฌ์Šค ์ฃผ๊ธฐ ๋“ฑ์ด ๋ชจ๋‘ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ŠคํŠธ๋ ˆ์Šค ํ…Œ์ŠคํŠธ๋ฅผ ๋ฐ›๋Š”๋‹ค. ๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ๋ฐฐํฌ ๋นˆ๋„, ๋ณ€๊ฒฝ ์‹คํŒจ์œจ ๊ฐ™์€ DORA ์ง€ํ‘œ๋ฅผ ๋‹จ์ˆœํ•œ ์—”์ง€๋‹ˆ์–ด๋ง KPI๊ฐ€ ์•„๋‹ˆ๋ผ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ€๋Š ํ•˜๋Š” ์ดˆ๊ธฐ ์ง€ํ‘œ๋กœ ํ™œ์šฉํ•œ๋‹ค.

๋˜ํ•œ ์„ฑ์žฅ ๋ฃจํ”„์˜ ๊ฐ€์†์„ ๊ณ ๋ฏผํ•˜๊ธฐ ์ „์— ์—ฌ๋Ÿฌ ์งˆ๋ฌธ์„ ๋˜์ง„๋‹ค. ์‚ฌ๊ณ  ๋Œ€์‘ ํ”„๋กœ์„ธ์Šค๋Š” ์ถฉ๋ถ„ํžˆ ๊ฒฌ๊ณ ํ•œ๊ฐ€? ์˜ค๋ฅ˜ ์˜ˆ์‚ฐ์„ ๋งˆ๋ จํ•ด ๋‘๊ณ  ์‹ค์ œ๋กœ ์ค€์ˆ˜ํ•˜๊ณ  ์žˆ๋Š”๊ฐ€? ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๊ณ ๊ฐ ๋ถˆํŽธ์œผ๋กœ ์ด์–ด์ง€๊ธฐ ์ „์— ์ถฉ๋ถ„ํžˆ ๋น ๋ฅด๊ฒŒ ๊ฐ์ง€๋˜๊ณ  ์žˆ๋Š”๊ฐ€?

ํ™•์žฅ์€ ๋‹จ์ˆœํžˆ ์‚ฌ์šฉ์ž๋ฅผ ๋” ๋งŽ์ด ํ™•๋ณดํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋‹ค. ์‹ ๋ขฐ์™€ ์•ˆ์ •์„ฑ์„ ํ•ด์น˜์ง€ ์•Š๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ์ด๋‹ค. ๊ธฐ์ˆ  ๋ถ€์ฑ„๊ฐ€ ๋‹น์žฅ ๋‹ค์Œ ๋ฆด๋ฆฌ์Šค๋ฅผ ๋ง‰์ง€๋Š” ์•Š์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด๋Š” ์„ฑ์žฅ ์••๋ ฅ์ด ์ปค์ง€๋Š” ์ˆœ๊ฐ„ ๋น ๋ฅด๊ฒŒ ๋ˆ„์ ๋œ๋‹ค. ๊ทธ๋Ÿฐ ์ ์—์„œ ์ธํ”„๋ผ์™€ ํ”Œ๋žซํผ์˜ ๊ฑด๊ฐ• ์ƒํƒœ๊ฐ€ ๊ฒฐ๊ตญ ์ œํ’ˆ ์ „๋žต์˜ ์ผ๋ถ€๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ฑ์žฅ์˜ ์ˆœ๊ฐ„์ด ์™”์„ ๋•Œ ์–ผ๋งˆ๋‚˜ ๋น ๋ฅด๊ณ  ์•ˆ์ „ํ•˜๊ฒŒ ์›€์ง์ผ ์ˆ˜ ์žˆ๋Š”์ง€ ๊ฒฐ์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์ง€ํ‘œ๊ฐ€ ํ™•์žฅ ๊ณผ์ •์—์„œ ์˜๋ฏธ๋ฅผ ์žƒ๋Š” ์ด์œ ๋Š” ์ธํ”„๋ผ ๋ฌธ์ œ ๋•Œ๋ฌธ๋งŒ์ด ์•„๋‹ˆ๋‹ค. ๋” ํฐ ์›์ธ์€ ์ง€ํ‘œ๋ฅผ ์–ด๋–ป๊ฒŒ ํ•ด์„ํ•˜๋А๋ƒ์— ์žˆ๋‹ค.

์˜ฌ๋ฐ”๋ฅธ ์ง€ํ‘œ ๊ด€๋ฆฌ

๋Œ€๊ทœ๋ชจ ์„ฑ๊ณผ ๊ฒ€ํ† ๋‚˜ ์„ฑ์žฅ ํ˜„ํ™ฉ์„ ๊ณต์œ ํ•˜๋Š” ํšŒ์˜๋ฅผ ์•ž๋‘๊ณ  ์žˆ์„ ๋•Œ, ํ•„์ž๊ฐ€ ์ด๋„๋Š” ํŒ€์€ โ€˜๋ฐ์ดํ„ฐ ์œ„์ƒ ์ ๊ฒ€โ€™์„ ์ค€๋น„ํ•œ๋‹ค. ์ด๋Š” ๊ฒ‰์œผ๋กœ ๋“œ๋Ÿฌ๋‚˜๋Š” ์ž‘์—…์ด ์•„๋‹ˆ์ง€๋งŒ ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•œ ๊ณผ์ •์ด๋‹ค. ํ•ต์‹ฌ ์ด๋ฒคํŠธ๊ฐ€ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ˆ˜์ง‘๋˜๊ณ  ์žˆ๋Š”์ง€, ๋ช…๋ช… ๊ทœ์น™์ด ์ผ๊ด€๋˜๋Š”์ง€, ํผ๋„์ด ์‹ค์ œ ์‚ฌ์šฉ์ž ํ๋ฆ„์„ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•˜๋Š”์ง€ ๊ผผ๊ผผํžˆ ํ™•์ธํ•œ๋‹ค. ์ด๋Ÿฐ ์Šต๊ด€์€ ํ•œ๋•Œ ์˜จ๋ณด๋”ฉ ์ง€ํ‘œ๊ฐ€ ๊ธ‰์ฆํ–ˆ๋‹ค๋ฉฐ ๊ธฐ๋ปํ–ˆ๋‹ค๊ฐ€, ์•Œ๊ณ  ๋ณด๋‹ˆ ํŠน์ • ์ด๋ฒคํŠธ๊ฐ€ ๋„ˆ๋ฌด ์ผ์ฐ ๋ฐœ์ƒํ•˜๋Š” ๋ฒ„๊ทธ ๋•Œ๋ฌธ์ด์—ˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋’ค๋Šฆ๊ฒŒ ํ™•์ธํ•œ ๊ฒฝํ—˜์—์„œ ๋น„๋กฏ๋๋‹ค. ์ด ์‚ฌ๊ฑด์€ ์ž˜๋ชป๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ์–ผ๋งˆ๋‚˜ ํฐ ๋น„์šฉ์„ ์ดˆ๋ž˜ํ•˜๋Š”์ง€ ๋ถ„๋ช…ํ•˜๊ฒŒ ๋ณด์—ฌ์คฌ๋‹ค. ๋ถ€์ •ํ™•ํ•œ ๋ฐ์ดํ„ฐ๋Š” ์ž˜๋ชป๋œ ํ™•์‹ ์œผ๋กœ ์ด์–ด์ง€๋ฉฐ, ์ด๋Ÿฐ ํ™•์‹ ์€ ๊ฐ€์žฅ ๊ฐ’๋น„์‹ผ ์˜ค๋ฅ˜๋‹ค.

๋”ฐ๋ผ์„œ ์ง€๊ธˆ์€ ์ง€ํ‘œ๋ฅผ ์น˜๋ช…์  ์†Œํ”„ํŠธ์›จ์–ด ๋ฒ„๊ทธ๋ฅผ ์ˆ˜์ •ํ•˜๋Š” ๊ฒƒ๋งŒํผ ์ค‘์š”ํ•˜๊ฒŒ ๋‹ค๋ฃฌ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํ•œ ๊ฐœ์ธ์  ์„ฑํ–ฅ์ด ์•„๋‹ˆ๋ผ, ์—ฌ๋Ÿฌ ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋กœ๋„ ํ™•์ธ๋˜๋Š” ์‚ฌ์‹ค์ด๋‹ค. ๊ฐ์ข… ์„ค๋ฌธ์— ๋”ฐ๋ฅด๋ฉด ๊ฒฝ์˜์ง„์˜ ์•ฝ 58%๋Š” ํ•ต์‹ฌ ์˜์‚ฌ๊ฒฐ์ •์ด ๋ถ€์ •ํ™•ํ•˜๊ฑฐ๋‚˜ ์ผ๊ด€๋˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•ด ์ด๋ค„์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค. ๋‹ค์‹œ ๋งํ•ด ์ ˆ๋ฐ˜์ด ๋„˜๋Š” ๊ธฐ์—…์ด ๋ถˆ์•ˆ์ •ํ•œ ์ˆซ์ž๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๊ณ  ์žˆ๋‹ค. ์žฅ๊ธฐ์ ์œผ๋กœ ๋ณด๋ฉด ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์ด ๋–จ์–ด์ง€๋Š” ๋ฐ ๋”ฐ๋ฅธ ๋น„์šฉ๋„ ์ ์ง€ ์•Š๋‹ค. ๊ฐ€ํŠธ๋„ˆ ๋ณด๊ณ ์„œ๋Š” ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ ์ €ํ•˜๊ฐ€ ๊ธฐ์—…์— ์—ฐ๊ฐ„ ํ‰๊ท  1,500๋งŒ ๋‹ฌ๋Ÿฌ์˜ ์†์‹ค์„ ์ดˆ๋ž˜ํ•œ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ์ •ํ™•ํ•œ ์ง€ํ‘œ๋Š” ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ ์  ์œ„์ƒ ๋ฌธ์ œ๋ฅผ ๋„˜์–ด, ์œ„ํ—˜์„ ๊ด€๋ฆฌํ•˜๋Š” ์ˆ˜๋‹จ์ด๋‹ค. ์„ฑ๊ณผ๋ฅผ ์ž์ถ•ํ•˜๊ธฐ ์ „์—, ์ธก์ • ์ฒด๊ณ„๊ฐ€ ์ž˜๋ชป๋œ ์‹ ํ˜ธ๋ฅผ ๋ณด๋‚ด๊ณ  ์žˆ์ง€ ์•Š์€์ง€ ๋ฐ˜๋“œ์‹œ ํ™•์ธํ•ด์•ผ ํ•œ๋‹ค.

์„ฑ์žฅ์˜ ์‚ฌ๊ฐ์ง€๋Œ€์ธ โ€˜๋Œ€๋ฆฌ ์ง€ํ‘œโ€™์— ์ฃผ์˜ํ•  ์ด์œ 

์ˆซ์ž๊ฐ€ ์˜ค๋ฅธ๋‹ค๊ณ  ํ•ด์„œ ํ•ญ์ƒ ์„ฑ๊ณต์„ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋‹ค. ์‹ค์ œ ๊ฐ€์น˜๊ฐ€ ์ •์ฒด๋˜๊ฑฐ๋‚˜ ์˜คํžˆ๋ ค ๋–จ์–ด์ง€๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ฒ‰์œผ๋กœ๋งŒ ์„ฑ์žฅํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๊ฒŒ ๋งŒ๋“œ๋Š” ์ง€ํ‘œ๋“ค์ด ์žˆ๋‹ค. ์ด๋ฅผ โ€˜๋Œ€๋ฆฌ ์ง€ํ‘œโ€™ ๋˜๋Š” โ€˜๋งน๋ชฉ์  ์ง€ํ‘œโ€™๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ์ด๋Ÿฐ ์ง€ํ‘œ๋“ค์€ ์„ฑ๊ณต์˜ ์ฐฉ์‹œ๋ฅผ ๋งŒ๋“ค์ง€๋งŒ, ์ •์ž‘ ํ•ต์‹ฌ ๊ฐ€์น˜ ์ œ์•ˆ์€ ์ œ์ž๋ฆฌ์ธ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์˜ˆ๊ฐ€ ์•ฑ ๋‹ค์šด๋กœ๋“œ ์ˆ˜๋‹ค. ๋‹ค์šด๋กœ๋“œ๋Š” ํญ์ฆํ•˜๋Š”๋ฐ ์‹ค์ œ ํ™œ์„ฑ ์ด์šฉ์ž๋Š” ์ •์ฒด ์ƒํƒœ์ผ ์ˆ˜ ์žˆ๋‹ค. ์›น์‚ฌ์ดํŠธ ํŽ˜์ด์ง€๋ทฐ๊ฐ€ ๋†’์•„๋„, ํด๋ฆญ์„ ์œ ๋„ํ•˜๋Š” ๋งˆ์ผ€ํŒ… ๋•Œ๋ฌธ์ผ ๋ฟ ์‹ค์ œ ์œ ๋ฃŒ ์ „ํ™˜์œจ์€ ๋‚ฎ์„ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ์ˆซ์ž๊ฐ€ ์˜ฌ๋ผ๊ฐ€๋Š” ๊ทธ๋ž˜ํ”„๋งŒ ๋ณด๊ณ , ๊ทธ ์˜๋ฏธ๋ฅผ ์˜์‹ฌํ•˜์ง€ ์•Š๋Š” ์ƒํƒœ์— ๋น ์ง€๊ธฐ ์‰ฝ๋‹ค.

์ฐฉ์‹œ๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ํ•„์ž๋Š” ์ง€ํ‘œ๋ฅผ ๊ฐ„๋‹จํ•œ ๊ณ„์ธต ๊ตฌ์กฐ๋กœ ์ •๋ฆฌํ•ด ๊ด€๋ฆฌํ•œ๋‹ค. ์ผ์ข…์˜ โ€˜์ง€ํ‘œ ํ”ผ๋ผ๋ฏธ๋“œโ€™๋‹ค. ๊ฐ€์žฅ ์•„๋ž˜์ธต์—๋Š” ์šด์˜ ์ง€ํ‘œ๊ฐ€ ์žˆ๋‹ค. ์ด๋Š” ์ง์ ‘ ํ†ต์ œํ•˜๊ฑฐ๋‚˜ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ์ˆซ์ž๋“ค์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์˜์—… ์ฝœ ํšŸ์ˆ˜, ํ•ด๊ฒฐ๋œ ๋ฒ„๊ทธ ์ˆ˜, ๋งˆ์ผ€ํŒ… ์ง‘ํ–‰ ๋น„์šฉ ๋“ฑ์ด ์—ฌ๊ธฐ์— ํ•ด๋‹นํ•œ๋‹ค. ์ค‘๊ฐ„์—๋Š” ํ–‰๋™ ๋˜๋Š” ์ œํ’ˆ ์ง€ํ‘œ๊ฐ€ ์œ„์น˜ํ•œ๋‹ค. ์‚ฌ์šฉ์ž ํ–‰๋™๊ณผ ์ฐธ์—ฌ๋„๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์ง€ํ‘œ๋กœ, ์ผ๊ฐ„ ํ™œ์„ฑ ์ด์šฉ์ž, ์ฒด๋ฅ˜ ์‹œ๊ฐ„, ๊ธฐ๋Šฅ ์‚ฌ์šฉ๋ฅ  ๋“ฑ์ด ํฌํ•จ๋œ๋‹ค. ์ด๋Š” ์šด์˜ ํ™œ๋™์˜ ๊ฒฐ๊ณผ๋ฌผ์ด์ง€๋งŒ, ์™„์ „ํžˆ ํ†ต์ œํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์น˜๋Š” ์•„๋‹ˆ๋‹ค.

ํ”ผ๋ผ๋ฏธ๋“œ์˜ ์ตœ์ƒ๋‹จ์—๋Š” ๊ฒฐ๊ณผ ์ง€ํ‘œ๊ฐ€ ์žˆ๋‹ค. ์ด๋Š” ๊ถ๊ทน์  ๋ชฉํ‘œ, ๋‹ค์‹œ ๋งํ•ด โ€˜์™œ ์ด ์ผ์„ ํ•˜๋Š”๊ฐ€โ€™๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์ˆ˜์น˜๋‹ค. ๋งค์ถœ, ๊ณ ๊ฐ ์œ ์ง€์œจ, ๊ณ ๊ฐ ๋งŒ์กฑ๋„์ฒ˜๋Ÿผ ์‹ค์ œ๋กœ ์ „๋‹ฌ๋œ ๊ฐ€์น˜๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ์ง€ํ‘œ๋“ค์ด ์—ฌ๊ธฐ์— ํ•ด๋‹นํ•œ๋‹ค. ์ด ํ”ผ๋ผ๋ฏธ๋“œ๋Š” ์ „์ˆ ์  ์ง€ํ‘œ์™€ ์ „๋žต์  ๋ชฉํ‘œ๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์—ฐ๊ฒฐํ•ด ์ค€๋‹ค. ์—ฌ๋Ÿฌ ํŒ€์ด ํ™œ์šฉํ•˜๋Š” โ€˜๋ถ๊ทน์„ฑ ์ง€ํ‘œโ€™์™€๋„ ์œ ์‚ฌํ•˜๋‹ค. ์ตœ์ƒ์œ„์— ํ•ต์‹ฌ ์ง€ํ‘œ๊ฐ€ ํ•˜๋‚˜ ์žˆ๊ณ , ๊ทธ ์•„๋ž˜ ์ด๋ฅผ ๊ฒฌ์ธํ•˜๋Š” ์ฃผ์š” ์ง€ํ‘œ๋“ค์ด ์žˆ์œผ๋ฉฐ, ๊ฐ€์žฅ ์•„๋ž˜์—๋Š” ์˜์‚ฌ๊ฒฐ์ •๊ณผ ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ๋•๋Š” ๋ณด๋‹ค ์„ธ๋ฐ€ํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์œ„์น˜ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์‹ค์ œ๋กœ ๋งŽ์€ ์ œํ’ˆ ๊ด€๋ฆฌ ๊ฐ€์ด๋“œ ์—ญ์‹œ ๋ช…ํ™•์„ฑ์„ ์œ„ํ•ด ์ด๋Ÿฐ ์ง€ํ‘œ ํ”ผ๋ผ๋ฏธ๋“œ ์ ‘๊ทผ์„ ๊ถŒ์žฅํ•œ๋‹ค.

์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, โ€˜์›”๊ฐ„ ์„ธ์…˜ ์ˆ˜โ€™ ๊ฐ™์€ ์ง€ํ‘œ๊ฐ€ ์ƒ์Šนํ•˜๋ฉด โ€œ์ด๊ฒƒ์€ ์„ฑ๊ณผ์ธ๊ฐ€, ๋‹จ์ˆœํ•œ ์ถœ๋ ฅ์ธ๊ฐ€?โ€๋ผ๋Š” ์งˆ๋ฌธ์„ ์Šค์Šค๋กœ ๋˜์ง„๋‹ค. ์„ธ์…˜์ด ๋Š˜์–ด๋‚˜๋Š” ๊ฒƒ์ด ๋งค์ถœ ์ฆ๊ฐ€๋‚˜ ์œ ์ง€์œจ ํ–ฅ์ƒ์ฒ˜๋Ÿผ ๊ฒฐ๊ณผ ์ง€ํ‘œ์™€ ์—ฐ๊ด€๋œ๋‹ค๋ฉด ์ ๊ทน์  ์‹ ํ˜ธ์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ UI ๋ณ€๊ฒฝ์ฒ˜๋Ÿผ ๋‹จ์ˆœํžˆ ์•ฑ์„ ๋” ์ž์ฃผ ์—ด๊ฒŒ ๋งŒ๋“  ์š”์ธ ๋•Œ๋ฌธ์ด๋ผ๋ฉด ์ด๋Š” ๋Œ€๋ฆฌ ์ง€ํ‘œ์— ๋ถˆ๊ณผํ•˜๋‹ค. ํ”ผ๋ผ๋ฏธ๋“œ ๊ตฌ์กฐ๋กœ ์‚ฌ๊ณ ํ•˜๋ฉด ํ•˜์œ„ ์ง€ํ‘œ์˜ ์ƒ์Šน์ด ์ƒ์œ„ ๋ชฉํ‘œ ๋‹ฌ์„ฑ์œผ๋กœ ์ด์–ด์ง€๋Š”์ง€, ํ˜น์€ ๋‹จ์ˆœํ•œ ๋…ธ์ด์ฆˆ์ธ์ง€ ๋ช…ํ™•ํ•˜๊ฒŒ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜๋‹จ ์ง€ํ‘œ๊ฐ€ ์˜ฌ๋ž๋‹ค๊ณ  ํ•ด์„œ ์ƒ๋‹จ ์ง€ํ‘œ๊ฐ€ ์›€์ง์ธ๋‹ค๋Š” ๋ณด์žฅ์€ ์—†๋‹ค๋Š” ์ ์„ ํ•ญ์ƒ ์ƒ๊ธฐํ•˜๊ฒŒ ๋œ๋‹ค.

โ€˜์ œํ’ˆโ€“์‹œ์žฅ ์ ํ•ฉ์„ฑโ€™์˜ ์‹ ํ™”

์Šคํƒ€ํŠธ์—… ์„ธ๊ณ„์—์„œ ์ œํ’ˆโ€“์‹œ์žฅ ์ ํ•ฉ์„ฑ(Product Market Fit, PMF)๋งŒํผ ์ฐฌ์‚ฌ๋ฅผ ๋ฐ›๋Š” ๊ฐœ๋…๋„ ๋“œ๋ฌผ๋‹ค. ์ด๋Š” ๋ชจ๋“  ์š”์†Œ๊ฐ€ ๋งž์•„๋–จ์–ด์ง€๋Š” ๋งˆ๋ฒ• ๊ฐ™์€ ์ˆœ๊ฐ„, ์ฆ‰ ์‚ฌ์šฉ์ž๊ฐ€ ์—ด๊ด‘ํ•˜๊ณ  ์„ฑ์žฅ์„ธ๊ฐ€ ํญ๋ฐœํ•˜๋ฉฐ ๋งˆ์นจ๋‚ด ์„ฑ๊ณตํ–ˆ๋‹ค๊ณ  ๋А๋ผ๋Š” ์‹œ์ ์„ ๋งํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํ•„์ž๋Š” PMF๋ฅผ ๋‹จ ํ•œ ๋ฒˆ์˜ ๊นจ๋‹ฌ์Œ์ฒ˜๋Ÿผ ๋‹ค๋ฃจ๋Š” ์ž…์žฅ์— ์ ์  ํšŒ์˜์ ์ด ๋๋‹ค. ์‹ค์ œ๋กœ ์ ํ•ฉ์„ฑ์€ ๊ณ ์ •๋œ ๋ชฉํ‘œ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ณ„์† ์›€์ง์ธ๋‹ค. ์ดˆ๊ธฐ ์„ฑ๊ณผ๊ฐ€ ์žฅ๊ธฐ์  ์ ํ•ฉ์„ฑ์„ ๋ณด์žฅํ•˜์ง€๋„ ์•Š๋Š”๋‹ค. ๊ณ ๊ฐ์˜ ์š”๊ตฌ๋Š” ๋ณ€ํ•˜๊ณ , ๊ฒฝ์Ÿ์ž๋Š” ๋Œ€์‘ํ•˜๋ฉฐ, ์–ด์ œ ๋งž์•˜๋˜ ๊ฒƒ์ด ๋‚ด์ผ๋„ ๋งž๋Š”๋‹ค๋Š” ๋ณด์žฅ์€ ์—†๋‹ค. ๊ทธ๋ž˜์„œ PMF๋ฅผ ๋„๋‹ฌ์ ์ด ์•„๋‹ˆ๋ผ ์ง€์†์ ์ธ ์กฐ์ • ๊ณผ์ •์œผ๋กœ ๋ฐ”๋ผ๋ณธ๋‹ค.

๋”ฐ๋ผ์„œ ์‹ ํ™”์  ์ˆœ๊ฐ„์„ ์ซ“๊ธฐ๋ณด๋‹ค ์ถ”์„ธ์™€ ํ๋ฆ„์„ ์‚ดํ•„ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. โ€œPMF๋ฅผ ๋‹ฌ์„ฑํ–ˆ๋‹คโ€๋ผ๊ณ  ์„ ์–ธํ•˜๋Š” ๋Œ€์‹ , ์ง€๊ธˆ๋„ ์—ฌ์ „ํžˆ ์‹ค์ œ ์‚ฌ๋žŒ๋“ค์˜ ์‹ค์ œ ๋ฌธ์ œ๋ฅผ ์ œ๋Œ€๋กœ ํ•ด๊ฒฐํ•˜๊ณ  ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ๋Œ€์•ˆ๋ณด๋‹ค ๋” ๋‚˜์€ ํ•ด๊ฒฐ์ฑ…์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋Š”์ง€๋ฅผ ๋ฌผ์–ด์•ผ ํ•œ๋‹ค. ์˜ค๋ž˜ ์‚ด์•„๋‚จ๋Š” ํŒ€์€ ์ ํ•ฉ์„ฑ์„ ํ•œ ๋ฒˆ ์ฐพ๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ  ์ง€์†์ ์œผ๋กœ ๋‹ค๋“ฌ์–ด ๋‚˜๊ฐ€๋Š” ํŒ€์ด๋‹ค.

๋น ๋ฅด๊ฒŒ ๋Œ์•„๊ฐ€๋Š” ์ œํ’ˆ ๊ฐœ๋ฐœ ์‚ฌ์ดํด์—์„œ๋Š” ๋‹ค์Œ ํ”„๋กœ์ ํŠธ๋กœ ๊ณง๋ฐ”๋กœ ๋„˜์–ด๊ฐ€๋ฉฐ ๋Œ์•„๋ณผ ์‹œ๊ฐ„์„ ๋†“์น˜๊ธฐ ์‰ฝ๋‹ค. ๊ทธ๋ž˜์„œ ์ฃผ์š” ๋ฆด๋ฆฌ์Šค๋‚˜ ์„ฑ์žฅ ์‹คํ—˜์„ ๋งˆ์น  ๋•Œ๋งˆ๋‹ค โ€˜๋ฐ˜์„ฑ ํšŒ์˜โ€™๋ฅผ ์—ฌ๋Š” ๊ฒƒ์„ ์˜๋ก€๋กœ ์‚ผ๊ณ  ์žˆ๋‹ค. ์ด ์ž๋ฆฌ์—์„œ๋Š” ํฌ๊ฒŒ 3๊ฐ€์ง€ ์งˆ๋ฌธ์„ ๋˜์ง„๋‹ค.

  1. ์˜ฌ๋ฐ”๋ฅธ ์ง€ํ‘œ๋ฅผ ์ธก์ •ํ–ˆ๋Š”๊ฐ€?
  2. ์–ด๋–ค ์ง€ํ‘œ๊ฐ€ ์‹ค์ œ๋กœ ํ†ต์ฐฐ์„ ์คฌ๊ณ , ์–ด๋–ค ์ง€ํ‘œ๊ฐ€ ์˜คํžˆ๋ ค ํŒ๋‹จ์„ ํ๋ฆฌ๊ฒŒ ํ–ˆ๋Š”๊ฐ€?
  3. ์„ฑ์žฅ ๊ฐ€์„ค ์ค‘ ๋ฌด์—‡์ด ์‹ค์ œ๋กœ ํ‹€๋ ธ๋Š”๊ฐ€?

์ด ๊ณผ์ •์„ ๊พธ์ค€ํžˆ ์‹ค์ฒœํ•œ ํŒ€์€ ์‹œ๊ฐ„์ด ๊ฐˆ์ˆ˜๋ก ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋Š” ๋ฐ ํ›จ์”ฌ ๋Šฅ์ˆ™ํ•ด์กŒ๋‹ค. ์ด๋•Œ ์ง€ํ‘œ๋Š” ์ ์ˆ˜ํŒ์ด๋‚˜ ์••๋ฐ• ๋„๊ตฌ๊ฐ€ ์•„๋‹ˆ๋ผ, ์•ž์œผ๋กœ ๊ฐ€์•ผ ํ•  ๋ฐฉํ–ฅ์„ ๋น„์ถฐ์ฃผ๋Š” ์†์ „๋“ฑ์ด ๋œ๋‹ค.

์˜์‹์˜ ์ค‘์š”์„ฑ

์ง€๊ธˆ๊นŒ์ง€์˜ ๋ชจ๋“  ๋…ผ์ ์„ ํ•˜๋‚˜๋กœ ๋ฌถ๋Š” ์ฃผ์ œ๋Š” ์„ฑ์žฅ์—์„œ ์˜์‹์˜ ์ค‘์š”์„ฑ์ด๋‹ค. ๋ถ๊ทน์„ฑ ์ง€ํ‘œ, ์„ฑ์žฅ ๋ฃจํ”„, ๋ฐ”์ด๋Ÿด ๊ณ„์ˆ˜, OKR ๊ฐ™์€ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์œ ์šฉํ•œ ๋„๊ตฌ์ง€๋งŒ, ๋งฅ๋ฝ๊ณผ ์ž๊ธฐ ์ธ์‹์„ ๊ฐ–๊ณ  ์‚ฌ์šฉํ•  ๋•Œ๋งŒ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ํŒ€์—๋Š” โ€œ์ˆซ์ž์™€ ๋งฅ๋ฝ(์ง๊ด€, ์‚ฌ์šฉ์ž ์กฐ์‚ฌ, ์‹œ์žฅ ์‹ ํ˜ธ)์ด ์„œ๋กœ ๋‹ค๋ฅธ ๋ฉ”์‹œ์ง€๋ฅผ ์ œ์‹œํ•œ๋‹ค๋ฉด ๋งฅ๋ฝ์„ ์šฐ์„ ํ•˜๋ผโ€๋ผ๊ณ  ์ง€์‹œํ•œ๋‹ค.

์„ฑ์žฅ์€ ์ „๋žต์ด ์•„๋‹ˆ๋ผ ๊ฒฐ๊ณผ๋‹ค. ๊ณผ๊ฑฐ์˜ ์Šค์Šค๋กœ์—๊ฒŒ ์กฐ์–ธํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, โ€œํŠธ๋ Œ๋“œ๋ผ์ธ์„ ์ซ“์ง€ ๋ง๊ณ , ์ดํ•ด๋ฅผ ์ซ“์•„๋ผโ€๋ผ๊ณ  ๋งํ•˜๊ณ  ์‹ถ๋‹ค. ์—ญ์„ค์ ์ด๊ฒŒ๋„ ์‚ฌ์šฉ์ž์™€ ๊ฐ€์น˜์— ๋Œ€ํ•œ ์ดํ•ด๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก, ์„ฑ์žฅ์€ ๋” ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋’ค๋”ฐ๋ฅด๊ณ  ๋” ๊ฑด๊ฐ•ํ•˜๋ฉฐ ์ง€์† ๊ฐ€๋Šฅํ•ด์ง„๋‹ค.
dl-ciokorea@foundryco.com

AI์˜ ROI๋ฅผ ๋†’์ด๋Š” CIO์˜ 5๋‹จ๊ณ„ ์ฒดํฌ๋ฆฌ์ŠคํŠธ

์˜ฌํ•ด ์ดˆ MIT๋Š” โ€œ์กฐ์ง์˜ 95%๊ฐ€ AI ํˆฌ์ž์—์„œ ์•„๋ฌด๋Ÿฐ ์ˆ˜์ต์„ ์–ป์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹คโ€๋Š” ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐœํ‘œํ–ˆ๋‹ค. ๋ฏธ๊ตญ ๋‚ด ์ƒ์„ฑํ˜• AI ๊ด€๋ จ ๋‚ด๋ถ€ ํ”„๋กœ์ ํŠธ์—๋งŒ 300์–ต ๋‹ฌ๋Ÿฌ ์ด์ƒ์ด ํˆฌ์ž…๋œ ์ƒํ™ฉ์ด์—ˆ๋‹ค. ์™œ ์ด๋ ‡๊ฒŒ ๋งŽ์€ AI ํ”„๋กœ์ ํŠธ๊ฐ€ ๊ธฐ๋Œ€๋งŒํผ์˜ ROI๋ฅผ ๋‚ด์ง€ ๋ชปํ• ๊นŒ? IT ์ปจ์„คํŒ… ํšŒ์‚ฌ ์ฝ”๊ทธ๋‹ˆ์ „ํŠธ(Cognizant)์˜ ๊ธ€๋กœ๋ฒŒ CIO ๋‹ ๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” โ€œAI๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜์™€ ๋ช…ํ™•ํžˆ ์—ฐ๊ฒฐ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธโ€์ด๋ผ๋ฉฐ, โ€œ๊ธฐ์ˆ ์ ์œผ๋กœ ์ธ์ƒ์ ์ด์ง€๋งŒ ์‹ค์ œ ๋ฌธ์ œ ํ•ด๊ฒฐ์ด๋‚˜ ์‹ค์งˆ์  ์„ฑ๊ณผ๋กœ ์ด์–ด์ง€์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

IT ์ฑ…์ž„์ž๋Š” ์ข…์ข… ์œ ํ–‰์— ํœฉ์“ธ๋ ค ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ฑ„ AI ์‹คํ—˜์— ๋›ฐ์–ด๋“ ๋‹ค. ์•„์‚ฌ๋‚˜(Asana)์˜ CIO ์‚ฌ์ผ“ ์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” โ€œ๋งŽ์€ ๊ธฐ์—…์ด ๋น„์ฆˆ๋‹ˆ์Šค ๊ฒฐ๊ณผ๋ณด๋‹ค ๋ชจ๋ธ์ด๋‚˜ ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•œ๋‹ค. ํŒ€์ด ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๋‹ค์‹œ ์„ค๊ณ„ํ•˜๊ฑฐ๋‚˜ ์†์ต ์ฑ…์ž„์ž๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์€ ์ฑ„ ๊ณ ๋ฆฝ๋œ ์‹œ์—ฐ๋งŒ ์ง„ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ œํ’ˆ ์ค‘์‹ฌ ์‚ฌ๊ณ ์˜ ๋ถ€์žฌ, ๋ถ€์‹คํ•œ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ, ๋ถ€์žฌํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค, ๊ทธ๋ฆฌ๊ณ  AI ํ™œ์šฉ์„ ์žฅ๋ คํ•˜์ง€ ์•Š๋Š” ์กฐ์ง ๋ฌธํ™”๊ฐ€ ๊ฒน์น˜๋ฉด ๋ถ€์ •์ ์ธ ๊ฒฐ๊ณผ๋กœ ์ด์–ด์ง„๋‹ค. ์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” โ€œํ”„๋กœ์„ธ์Šค๋ฅผ ๋ฐ”๊พธ์ง€ ์•Š์œผ๋ฉด AI๋Š” ํ˜„์žฌ์˜ ๋น„ํšจ์œจ์„ ๋” ๋น ๋ฅด๊ฒŒ ๋ฐ˜๋ณตํ•  ๋ฟโ€์ด๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

์กฐ์ง์ด ๋ถ€์ •์ ์ธ AI ROI๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํšจ๊ณผ์ ์ธ ๋ณ€ํ™” ๊ด€๋ฆฌ๊ฐ€ ํ•ต์‹ฌ์ด๋‹ค. ๋‹ค์Œ์€ CIO๊ฐ€ ๋ฐ”๋กœ ์‹ค์ฒœํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์„ฏ ๊ฐ€์ง€ ๋ณ€ํ™” ๊ด€๋ฆฌ ์ง€์นจ์ด๋‹ค. ์ด ์ง€์นจ์„ ์ง€ํ‚จ๋‹ค๋ฉด, ๋”ฐ๋ฅด๋ฉด ์กฐ์ง์€ ์•ˆํ‹ฐ ํŒจํ„ด์—์„œ ๊ตํ›ˆ์„ ์–ป๊ณ , ์„ฑ๊ณต์ ์ธ AI ํ”„๋กœ์ ํŠธ๋ฅผ ์ž…์ฆํ•  ์ˆ˜ ์žˆ๋Š” ์ธก์ • ์ง€ํ‘œ๋ฅผ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

1. ๋น„์ฆˆ๋‹ˆ์Šค ๋ชฉํ‘œ๋ฅผ ๋ช…ํ™•ํžˆ ํ•˜๊ณ  ๋ฆฌ๋”์‹ญ ์ •๋ ฌ์„ ํ†ตํ•ด AI ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋ˆ๋‹ค

AI ํ”„๋กœ์ ํŠธ๋Š” ์ตœ๊ณ ๊ฒฝ์˜์ง„์˜ ํ›„์›๊ณผ ๋ช…ํ™•ํ•œ ๋น„์ „ ์—†์ด๋Š” ์„ฑ๊ณตํ•˜๊ธฐ ์–ด๋ ต๋‹ค. CMIT ์†”๋ฃจ์…˜์˜ ์‚ฌ์žฅ ๊ฒธ ์ˆ˜์„ vCIO ์• ๋ค ๋กœํŽ˜์ฆˆ๋Š” โ€œ๊ฐ•๋ ฅํ•œ ๋ฆฌ๋”์‹ญ์€ AI ํˆฌ์ž๋ฅผ ์‹ค์งˆ์  ๊ฒฐ๊ณผ๋กœ ์ „ํ™˜ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ด๋‹ค. CEO๋‚˜ ์ด์‚ฌํšŒ ์ฐจ์›์˜ ํ›„์›๊ณผ ๊ฐ๋…์ด ์žˆ์„์ˆ˜๋ก ROI๊ฐ€ ๋†’๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด IT ์ปจ์„คํŒ… ๊ธฐ์—… ์ œ๋น„์•„(Xebia)๋Š” ๊ธ€๋กœ๋ฒŒ CIO ์Šค๋ฏธํŠธ ์ƒน์ปค๊ฐ€ ์ฃผ์žฌํ•˜๋Š” โ€˜AI ์ถ”์ง„์œ„์›ํšŒโ€™๋ฅผ ์šด์˜ํ•˜๊ณ  ์žˆ๋‹ค. ์œ„์›ํšŒ์—๋Š” ๊ธ€๋กœ๋ฒŒ CFO, AI ๋ฐ ์ž๋™ํ™” ์ฑ…์ž„์ž, IT ์ธํ”„๋ผยท๋ณด์•ˆ ์ฑ…์ž„์ž, ๋น„์ฆˆ๋‹ˆ์Šค ์šด์˜ ์ฑ…์ž„์ž๊ฐ€ ํฌํ•จ๋ผ ์žˆ๋‹ค. ์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” โ€œAI ํ”„๋กœ์ ํŠธ๋งˆ๋‹ค ๋ชฉํ‘œ์— ๊ธฐ๋ฐ˜ํ•œ ์ฑ…์ž„ ๋ฆฌ๋”๋ฅผ ์ง€์ •ํ•ด์•ผ ํ•œ๋‹ค. ์กฐ์ง ์ „๋ฐ˜์˜ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ์‹ค์„ ์„ธ์›Œ ์ฃผ์š” ์‚ฌ์šฉ๋ก€๋ฅผ ์ •์˜ํ•˜๊ณ  ์„ฑ๊ณต ์ง€ํ‘œ์™€ ๊ฐ€๋“œ๋ ˆ์ผ์„ ์„ค์ •ํ•˜๋ฉฐ ์ง„ํ–‰ ์ƒํ™ฉ์„ ์ •๊ธฐ์ ์œผ๋กœ ๊ณต์œ ํ•˜๋ผโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

ํ•˜์ง€๋งŒ ๋ฆฌ๋”์‹ญ์ด ํ™•๋ฆฝ๋ผ๋„ ์ง์› ๋Œ€๋ถ€๋ถ„์€ ์ผ์ƒ ์—…๋ฌด์—์„œ AI๋ฅผ ์–ด๋–ป๊ฒŒ ํ™œ์šฉํ•ด์•ผ ํ• ์ง€ ๋ชจ๋ฅธ๋‹ค. ์Šคํ‚ฌ์†Œํ”„ํŠธ์˜ CIO ์˜ฌ๋ผ ๋ฐ์ผ๋ฆฌ๋Š” โ€œ๋„๊ตฌ๋ฅผ ์ œ๊ณต๋ฐ›๋”๋ผ๋„ ๋Œ€๋ถ€๋ถ„ ์ง์›์€ ์–ด๋””์„œ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์•ผ ํ• ์ง€ ๋ชจ๋ฅธ๋‹ค. ์กฐ์ง ๋‚ด AI ํ™œ์šฉ์„ ์„ ๋„ํ•  โ€˜์ฑ”ํ”ผ์–ธโ€™์„ ์ง€์ •ํ•ด ์‹ค์งˆ์  ์‚ฌ์šฉ๋ก€์™€ ํŒ์„ ๊ณต์œ ํ•ด์•ผ ํ•œ๋‹ค. ํŠนํžˆ ์ฝ”ํŒŒ์ผ๋Ÿฟ ๊ฐ™์€ ๋„๊ตฌ์˜ ํšจ์œจ์ ์ธ ์‚ฌ์šฉ๋ฒ•์„ ์ „ํŒŒํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” โ€œ๋ฆฌ๋”๋Š” ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ ๋ฌธํ™”๋ฅผ ์กฐ์„ฑํ•˜๊ณ  AI๊ฐ€ ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋น„์ „์„ ์ œ์‹œํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋˜, ์ด๋ฅผ ์œ„ํ•ด ๊ฒฝ์˜์ง„, ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž, IT ๋ถ€์„œ ๊ฐ„ ๊ธด๋ฐ€ํ•œ ํ˜‘๋ ฅ์ด ํ•„์š”ํ•˜๋ฉฐ, ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ์˜ ์‹คํ–‰๊ณผ ์„ฑ๊ณผ ์ธก์ •์„ ๊ฑฐ์ณ์•ผ ํ•œ๋‹ค๊ณ  ๋ง๋ถ™์˜€๋‹ค.

2. ์ธ์žฌ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์žฌํŽธํ•˜๊ณ  ์—…์Šคํ‚ฌ๋ง(์—ญ๋Ÿ‰ ๊ฐ•ํ™”)์— ํˆฌ์žํ•œ๋‹ค

AI ROI๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด CIO๋Š” ์ธ์žฌ ์ „๋žต์„ ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„ํ•ด์•ผ ํ•œ๋‹ค. ๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” โ€œCIO๋Š” ์ธ์žฌ ๋ฐ ๊ด€๋ฆฌ ์ „๋žต์„ ์กฐ์ •ํ•ด AI ์ฑ„ํƒ๊ณผ ROI๋ฅผ ๊ทน๋Œ€ํ™”ํ•ด์•ผ ํ•œ๋‹คโ€๋ฉฐ โ€œ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž, ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด ๊ฐ™์€ ์ƒˆ๋กœ์šด ์—ญํ• ์„ ๋งŒ๋“ค๊ณ  ๊ธฐ์กด ์ง์›์„ ์žฌ๊ต์œกํ•˜๋Š” ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋กœํŽ˜์ฆˆ๋Š” โ€œ์ธ์žฌ๋Š” ๋ชจ๋“  AI ์ „๋žต์˜ ํ•ต์‹ฌ์ด๋‹ค. ๊ต์œก, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜, ์ „๋ฌธ ์ธ๋ ฅ ํ™•๋ณด์— ํˆฌ์žํ•ด์•ผ ์ง์›์ด AI๋ฅผ ๋ฐ›์•„๋“ค์ด๊ณ  ์„ฑ๊ณผ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ—ธ๋‹ค. ๋˜, ํ•ด์ปคํ†ค์ด๋‚˜ ์‚ฌ๋‚ด ๊ต์œก์ด ์ง์›์˜ ๊ธฐ์ˆ ๊ณผ ์ž์‹ ๊ฐ์„ ๋†’์ด๋Š” ํšจ๊ณผ๊ฐ€ ํฌ๋‹ค๊ณ  ๋ง๋ถ™์˜€๋‹ค.

์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” โ€œ๋ชจ๋“  ์ง์›์—๊ฒŒ๋Š” ๊ธฐ๋ณธ์ ์ธ ํ”„๋กฌํ”„ํŠธ ์ดํ•ด๋ ฅ๊ณผ ์•ˆ์ „ ๊ต์œก์ด ํ•„์š”ํ•˜๊ณ , ํŒŒ์›Œ ์œ ์ €์—๊ฒŒ๋Š” ์›Œํฌํ”Œ๋กœ์šฐ ์„ค๊ณ„์™€ AI ์—์ด์ „ํŠธ ๊ตฌ์ถ• ๋Šฅ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” ์ „์‚ฌ ์„ค๋ฌธ์„ ํ†ตํ•ด ์—ญ๋Ÿ‰ ์ˆ˜์ค€์„ ํŒŒ์•…ํ•˜๊ณ  ๊ต์œก ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•ด ์„ฑ์ˆ™๋„๊ฐ€ ์ œ๋Œ€๋กœ ํ–ฅ์ƒ๋๋Š”์ง€ ์žฌ์ธก์ •ํ–ˆ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

์•„์ŠคํŽ˜๋ฆฌํƒ€์Šค ์ปจ์„คํŒ…(Asperitas Consulting)์˜ ํด๋ผ์šฐ๋“œ ์‚ฌ์—… ์ฑ…์ž„์ž ์Šค์ฝง ํœ ๋Ÿฌ๋Š” โ€œAI ๋„์ž…์€ ์ธ์  ์—ญ๋Ÿ‰๋ฟ ์•„๋‹ˆ๋ผ ์—…๋ฌด ํ”„๋กœ์„ธ์Šค ์ž์ฒด๋ฅผ ๋‹ค์‹œ ์ ๊ฒ€ํ•ด์•ผ ํ•œ๋‹คโ€๊ณ  ๋งํ–ˆ๋‹ค. ์ฆ‰, ์–ด๋–ค ์—…๋ฌด๋ฅผ ๋ˆ„๊ฐ€ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ์žฌ์ •์˜ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋œป์ด๋‹ค.

์Šคํ‚ฌ์†Œํ”„ํŠธ์˜ ๋ฐ์ผ๋ฆฌ๋Š” โ€œํ˜„๋Œ€์˜ ์ธ์žฌ ์ „๋žต์€ 4B(Build, Buy, Borrow, Bot) ์ „๋žต์œผ๋กœ ๊ท ํ˜•์„ ๋งž์ถฐ์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ, โ€œ์กฐ์ง์„ ๊ณ ์ •๋œ ์ง๋ฌด๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜์—ญ๋Ÿ‰์˜ ์ง‘ํ•ฉ์ฒดโ€™๋กœ ๋ณด๊ณ , ๋‚ด๋ถ€ ์ธ๋ ฅยท์†Œํ”„ํŠธ์›จ์–ดยทํŒŒํŠธ๋„ˆยท์ž๋™ํ™” ๊ธฐ์ˆ ์„ ์ƒํ™ฉ์— ๋งž๊ฒŒ ์กฐํ•ฉํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์Šคํ‚ฌ์†Œํ”„ํŠธ์˜ ํŒ€์€ ๊นƒํ—ˆ๋ธŒ ์ฝ”ํŒŒ์ผ๋Ÿฟ์„ ํ™œ์šฉํ•ด ๊ณ ๊ฐ์šฉ ํ•™์Šต ํฌํ„ธ์„ ๋น ๋ฅด๊ฒŒ ๊ตฌ์ถ•ํ–ˆ๋‹ค. ์ด ๊ฒฝํ—˜์„ ํ†ตํ•ด AI ๋„์šฐ๋ฏธ์™€ ์ธ๊ฐ„ ๊ฐœ๋ฐœ์ž๊ฐ€ ํ˜‘์—…ํ•  ๋•Œ ์ƒ์‚ฐ์„ฑ์ด ๋น„์•ฝ์ ์œผ๋กœ ๋†’์•„์ง„๋‹ค๋Š” ์ ์„ ํ™•์ธํ–ˆ๋‹ค.

๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” โ€œ์ง์›์ด AI ๋•Œ๋ฌธ์— ์ผ์ž๋ฆฌ๋ฅผ ์žƒ์„ ๊ฒƒ์ด๋ผ๋Š” ๋ถˆ์•ˆ์„ ํ•ด์†Œํ•˜๋ ค๋ฉด, ์™œ AI๋ฅผ ๋„์ž…ํ•˜๋Š”์ง€ ๋ช…ํ™•ํžˆ ์„ค๋ช…ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ” ์—ญ์‹œ โ€œํ•ต์‹ฌ์€ ์‹ ๋ขฐ๋‹ค. AI๊ฐ€ ๋ฐ˜๋ณต ์—…๋ฌด๋ฅผ ์ค„์ด๊ณ  ์ž„ํŒฉํŠธ๋ฅผ ๋†’์ธ๋‹ค๋Š” ์ ์„ ๋ณด์—ฌ์ฃผ๋ฉด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ฑ„ํƒ์ด ๋’ค๋”ฐ๋ฅธ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

3. AI์˜ ๊ฐ€์น˜๋ฅผ ์˜จ์ „ํžˆ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์กฐ์ง ํ”„๋กœ์„ธ์Šค๋ฅผ ์žฌ์„ค๊ณ„ํ•œ๋‹ค

์ธ์žฌ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋ฐ”๊พธ๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค. ๋กœํŽ˜์ฆˆ๋Š” โ€œAI์˜ ์ž ์žฌ๋ ฅ์„ ์™„์ „ํžˆ ๋ฐœํœ˜ํ•˜๋ ค๋ฉด ์กฐ์ง์˜ ์šด์˜ ๋ฐฉ์‹ ์ž์ฒด๋ฅผ ์žฌ๊ตฌ์„ฑํ•ด์•ผ ํ•œ๋‹คโ€๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. AI๋ฅผ ๋‹จ์ˆœํ•œ โ€˜๋ถ€๊ฐ€ ๊ธฐ๋Šฅโ€™์ด ์•„๋‹ˆ๋ผ ํ•ต์‹ฌ ์šด์˜ ํ”„๋กœ์„ธ์Šค์— ํ†ตํ•ฉํ•ด์•ผ ํ•œ๋‹ค๋Š” ์˜๋ฏธ๋‹ค.

์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” โ€œAI ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์ œํ’ˆ์ฒ˜๋Ÿผ ๊ด€๋ฆฌํ•ด์•ผ ํ•œ๋‹ค. ์š”์ฒญ, ์šฐ์„ ์ˆœ์œ„, ๋กœ๋“œ๋งต์„ ์ฒด๊ณ„์ ์œผ๋กœ ์šด์˜ํ•˜๊ณ , ๋ฌธ์ œ ์ •์˜์™€ ๊ฐ€์น˜ ๊ฐ€์„ค์„ ๋ช…ํ™•ํžˆ ์„ค์ •ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์ œ๋น„์•„๋Š” AI ํ”„๋กœ์ ํŠธ๋งˆ๋‹ค ์„ธ ๋‹จ๊ณ„ ๊ฒ€์ฆ ์ ˆ์ฐจ๋ฅผ ๊ฑฐ์นœ๋‹ค. โ€˜๊ฐ€์น˜ ํ‰๊ฐ€โ†’๋น„์ฆˆ๋‹ˆ์Šค ์Šน์ธโ†’IT ์ด๊ด€ ๋ฐ ๋ชจ๋‹ˆํ„ฐ๋งโ€™์˜ ๊ตฌ์กฐ๋‹ค. ์ƒน์ปค๋Š” โ€œ์ด ๊ณผ์ •์„ ํ†ตํ•ด ๋ถ€์„œ ๊ฐ„ ํ”„๋กœ์„ธ์Šค๊ฐ€ ๋‹จ์ˆœํ™”๋˜๊ณ  ์‚ฌ์ผ๋กœ๊ฐ€ ์ค„์–ด๋“ ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ผ๋งˆ์‚ฌ๋ฏธ๋Š” โ€œ๋Œ€๋ถ€๋ถ„ ๊ธฐ์—…์ด ํ•„์š”ํ•œ ๋ณ€ํ™” ๊ด€๋ฆฌ์˜ ๋ฒ”์œ„๋ฅผ ๊ณผ์†Œํ‰๊ฐ€ํ•œ๋‹ค. ์‚ฌ์ผ๋กœํ˜• ์˜์‚ฌ๊ฒฐ์ •์—์„œ ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ ๋ฐฉ์‹์œผ๋กœ ์ „ํ™˜ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ, โ€œAI๊ฐ€ ์ƒ์„ฑํ•œ ๊ฒฐ๊ณผ๋ฅผ ์—…๋ฌด ํ”„๋กœ์„ธ์Šค์— ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ†ตํ•ฉํ•˜๊ณ , ์ง์›์ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ†ต์ฐฐ๋กœ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๋ฐ์ผ๋ฆฌ๋Š” โ€œAI๊ฐ€ ํšจ์œจํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์—…๋ฌด๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ˜„์žฌ์˜ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•ด์•ผ ํ•œ๋‹ค. ์—…๋ฌด ์ „๋ฌธ๊ฐ€๊ฐ€ ํ”„๋กœ์„ธ์Šค๋ฅผ ๊ฒ€ํ† ํ•ด ์ตœ์ ํ™”ํ•  ์˜์—ญ์„ ์ฐพ์•„์•ผ ํ•˜๋ฉฐ, ๊ฐ ๋ถ€์„œ์— AI๋ฅผ ์–ด๋–ป๊ฒŒ ๋…น์—ฌ๋‚ผ์ง€ ์งˆ๋ฌธ์„ ๋˜์ง€๋Š” ์ธ๋ฌผ์„ ์ง€์ •ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์Šคํ‚ฌ์†Œํ”„ํŠธ๋Š” AI ์‚ฌ์šฉ๋ก€๋ฅผ ์ฒด๊ณ„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด โ€˜์—์ด์ „ํŠธ ๋ ˆ์ง€์ŠคํŠธ๋ฆฌโ€™๋ฅผ ๊ตฌ์ถ•ํ–ˆ๋‹ค. AI ์—์ด์ „ํŠธ์˜ ๊ธฐ๋Šฅ, ๊ฐ€๋“œ๋ ˆ์ผ, ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ ๋ฐฉ์‹์„ ๋ฌธ์„œํ™”ํ•ด ํ‘œ์ค€ํ™”ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์œค๋ฆฌ์™€ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ํฌํ•จํ•œ ๊ธฐ์—… AI ๊ด€๋ฆฌ ์ฒด๊ณ„๋ฅผ ์ •๋ฆฝ ์ค‘์ด๋‹ค.

์•„์ŠคํŽ˜๋ฆฌํƒ€์Šค์˜ ํœ ๋Ÿฌ๋Š” โ€œAI ์ฑ„ํƒ์„ ๊ฐ€์†ํ™”ํ•˜๋ ค๋ฉด โ€˜AI ์Šค์™“ํŒ€(SWAT team)โ€™์„ ์šด์˜ํ•ด ์ดˆ๊ธฐ ์žฅ์• ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์‚ฌ์šฉ์ž ์ง€์›์„ ๊ฐ•ํ™”ํ•˜๋Š” ๊ฒƒ์ด ํšจ๊ณผ์ โ€์ด๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

4. ์„ฑ๊ณผ๋ฅผ ์ธก์ •ํ•ด AI ํˆฌ์ž ์ˆ˜์ต์„ ๊ฒ€์ฆํ•œ๋‹ค

ROI๋ฅผ ํ‰๊ฐ€ํ•˜๋ ค๋ฉด CIO๋Š” AI ๋„์ž… ์ด์ „์˜ ๊ธฐ์ค€์„ ์„ ์„ค์ •ํ•˜๊ณ , ์ดˆ๊ธฐ์— ๋ช…ํ™•ํ•œ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์„ธ์›Œ์•ผ ํ•œ๋‹ค. ๋งŽ์€ IT ๋ฆฌ๋”๊ฐ€ ๊ฐ€์น˜ ์‹คํ˜„๊นŒ์ง€ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„, ๋น„์šฉ ์ ˆ๊ฐ, ์‹œ๊ฐ„ ์ ˆ๊ฐ, ์‚ฌ๋žŒ ์ง์›์ด ์ฒ˜๋ฆฌํ•˜๋Š” ์—…๋ฌด๋Ÿ‰, AI๋กœ ์ƒˆ๋กœ ์ฐฝ์ถœ๋œ ๋งค์ถœ ๊ธฐํšŒ ๊ฐ™์€ ์ง€ํ‘œ์— ์ฑ…์ž„์ž๋ฅผ ์ง€์ •ํ•  ๊ฒƒ์„ ๊ถŒ๊ณ ํ•œ๋‹ค.

์•„์ŠคํŽ˜๋ฆฌํƒ€์Šค์˜ ํœ ๋Ÿฌ๋Š” โ€œAI ํ”„๋กœ์ ํŠธ๋ฅผ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ๊ธฐ์ค€ ์ธก์ •๊ฐ’์„ ๋ฐ˜๋“œ์‹œ ์„ค์ •ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ, ๊ฐ ์‚ฌ์—… ๋ถ€๋ฌธ์˜ ์˜ˆ์ธก ์ง€ํ‘œ๋ฅผ ๊ฒฝ์˜์ง„์˜ ์ •๊ธฐ ์„ฑ๊ณผ ๋ฆฌ๋ทฐ์— ํฌํ•จ์‹œํ‚ค๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ํœ ๋Ÿฌ๋Š” ๋งŽ์€ ์กฐ์ง์ด ๋ชจ๋ธ ์ •ํ™•๋„, ์ง€์—ฐ ์‹œ๊ฐ„, ์ •๋ฐ€๋„ ๊ฐ™์€ ๊ธฐ์ˆ  ์ง€ํ‘œ๋งŒ ์ธก์ •ํ•˜๊ณ , ์ด ์ˆ˜์น˜๋ฅผ ๋น„์šฉ ์ ˆ๊ฐ, ๋งค์ถœ ์ฆ๊ฐ€, ๋ฆฌ์Šคํฌ ๊ฐ์†Œ ๊ฐ™์€ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ์™€ ์—ฐ๊ฒฐํ•˜์ง€ ๋ชปํ•˜๋Š” ์‹ค์ˆ˜๋ฅผ ์ €์ง€๋ฅธ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๊ทธ๋ž˜์„œ ๋‹ค์Œ ๋‹จ๊ณ„๋Š” ์‹ค์งˆ์  ๊ฐ€์น˜๋ฅผ ์ž…์ฆํ•  ์ˆ˜ ์žˆ๋Š” ๋ช…ํ™•ํ•˜๊ณ  ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ชฉํ‘œ๋ฅผ ์„ธ์šฐ๋Š” ๊ฒƒ์ด๋‹ค. CMIT ์†”๋ฃจ์…˜์˜ ๋กœํŽ˜์ฆˆ๋Š” โ€œํ”„๋กœ์ ํŠธ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ์ธก์ • ํ•ญ๋ชฉ์„ ์„ค๊ณ„ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋กœํŽ˜์ฆˆ๋Š” CIO๊ฐ€ ๊ฐ AI ํ”„๋กœ์ ํŠธ๋งˆ๋‹ค โ€˜์ฒ˜๋ฆฌ ์†๋„ 20% ๊ฐœ์„ โ€™, โ€˜๊ณ ๊ฐ ๋งŒ์กฑ๋„ 15% ์ƒ์Šนโ€™์ฒ˜๋Ÿผ ๊ตฌ์ฒด์ ์ธ KPI๋ฅผ ์ •์˜ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ๋˜, ๋น ๋ฅด๊ณ  ์ •๋Ÿ‰ํ™” ๊ฐ€๋Šฅํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋Š” ์†Œ๊ทœ๋ชจ ํŒŒ์ผ๋Ÿฟ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

ํ•œ ๊ฐ€์ง€ ๋ช…ํ™•ํ•œ ์ธก์ • ์ง€ํ‘œ๋Š” ์‹œ๊ฐ„ ์ ˆ๊ฐ์ด๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค ํšŒ์‚ฌ ๋ ˆ๋ชฌ๊ทธ๋ž˜์Šค(Lemongrass)์˜ CTO ์—์ด๋จผ ์˜ค๋‹์€ ๊ณ ๊ฐ์‚ฌ๊ฐ€ SAP ๊ฐœ๋ฐœ ๋ฌธ์„œ๋ฅผ ์ˆ˜์ž‘์—…์œผ๋กœ ์ž‘์„ฑํ•˜๋Š” ์žฅ๋ฉด์„ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ดค๋Š”๋ฐ, ์ด ์ž‘์—…์€ ์—„์ฒญ๋‚œ ์‹œ๊ฐ„์ด ์†Œ์š”๋˜๋Š” ๊ณผ์ •์ด๋‹ค. ์˜ค๋‹์€ โ€œ๋ฌธ์„œ ์ž‘์„ฑ์„ ์ƒ์„ฑํ˜• AI๋กœ ์ฒ˜๋ฆฌํ•˜๋ฉด ์‚ฌ๋žŒ์˜ ํˆฌ์ž… ์‹œ๊ฐ„์„ ๋ถ„๋ช…ํ•˜๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ , ์ด ์ ˆ๊ฐ ํšจ๊ณผ๋ฅผ ๋งค์šฐ ๊ฐ„๋‹จํ•˜๊ฒŒ ๋‹ฌ๋Ÿฌ ๊ธฐ์ค€ ROI๋กœ ํ™˜์‚ฐํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์—…๋ฌด๋‹น ํˆฌ์ž…๋˜๋Š” ๋…ธ๋™๋ ฅ์˜ ๊ฐ์†Œ๋„ ์ค‘์š”ํ•œ ์‹ ํ˜ธ๋‹ค. ํ’€์Šคํƒ ๊ธฐ์ˆ  ์„œ๋น„์Šค ํšŒ์‚ฌ TEK์‹œ์Šคํ…œ์ฆˆ(TEKsystems)์˜ CTO ๋žจ ํŒ”๋ผ๋‹ˆ์•„ํŒ์€ โ€œ๋ชฉํ‘œ๊ฐ€ ์ƒ๋‹ด์›์ด ์ฒ˜๋ฆฌํ•˜๋Š” ์ฝœ์„ผํ„ฐ ๋ฌธ์˜ ๊ฑด์ˆ˜๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์ด๋ผ๋ฉด, ์ด ์ˆ˜์น˜๋ฅผ ๋ช…ํ™•ํ•œ ์ง€ํ‘œ๋กœ ์ •ํ•˜๊ณ  ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ถ”์ ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ, AI ๋„์ž… ๊ณผ์ •์—์„œ ์ƒˆ๋กœ์šด ๋งค์ถœ ๊ธฐํšŒ๊ฐ€ ์ƒ๊ธธ ๊ฐ€๋Šฅ์„ฑ๋„ ํฌ๋‹ค๊ณ  ๋ง๋ถ™์˜€๋‹ค.

์ผ๋ถ€ CIO๋Š” ๊ฐœ๋ณ„ ์‚ฌ์šฉ๋ก€ ๋ณ„๋กœ ์„ธ๋ถ„ํ™”๋œ KPI๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋ฉฐ, ๊ฒฐ๊ณผ์— ๋”ฐ๋ผ ์ „๋žต์„ ์กฐ์ •ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์•„์‚ฌ๋‚˜์˜ ์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” ๊ฐœ๋ฐœ ํšจ์œจ์„ฑ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ๋•Œ ์‚ฌ์ดํด ํƒ€์ž„, ์ฒ˜๋ฆฌ๋Ÿ‰, ํ’ˆ์งˆ, ํŠธ๋žœ์žญ์…˜๋‹น ๋น„์šฉ, ๋ฆฌ์Šคํฌ ์ด๋ฒคํŠธ ๋ฐœ์ƒ ๊ฑด์ˆ˜๋ฅผ ์ถ”์ ํ•œ๋‹ค. ๋˜ ์—์ด์ „ํŠธ ์ง€์› ์‹คํ–‰ ๋น„์œจ, ํ™œ์„ฑ ์‚ฌ์šฉ์ž, ํœด๋จผ ์ธ ๋” ๋ฃจํ”„ ์Šน์ธ ๋น„์œจ, ์˜ˆ์™ธ ์ƒํ™ฉ ์—์Šค์ปฌ๋ ˆ์ด์…˜ ๋น„์œจ๋„ ํ•จ๊ป˜ ๋ณธ๋‹ค. ์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” ์ด๋Ÿฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฒ€ํ† ํ•˜๋ฉด ํ”„๋กฌํ”„ํŠธ์™€ ๊ฐ€๋“œ๋ ˆ์ผ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์กฐ์ •ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

ํ•ต์‹ฌ์€ ์ดˆ๊ธฐ๋ถ€ํ„ฐ ์ธก์ • ์ง€ํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ณ , ์‹ ํ˜ธ๋‚˜ ์„ฑ๊ณผ๋ฅผ ์ถ”์ ํ•˜์ง€ ์•Š๋Š” ์•ˆํ‹ฐ ํŒจํ„ด์— ๋น ์ง€์ง€ ์•Š๋Š” ๊ฒƒ์ด๋‹ค. ์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” โ€œ์ธก์ •์€ ์ข…์ข… ํ”„๋กœ์ ํŠธ ํ›„๋ฐ˜์— ๋’ค๋Šฆ๊ฒŒ ๋ถ™๋Š” ๋ฐ”๋žŒ์— ๋ฆฌ๋”๊ฐ€ ๊ฐ€์น˜๋ฅผ ์ž…์ฆํ•˜์ง€ ๋ชปํ•˜๊ณ , ์–ด๋–ค ๊ฒƒ์„ ํ™•์žฅํ•ด์•ผ ํ•˜๋Š”์ง€๋„ ๊ฒฐ์ •ํ•˜์ง€ ๋ชปํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋˜, โ€œ์ฒ˜์Œ๋ถ€ํ„ฐ ๋ช…ํ™•ํ•œ ํ•ต์‹ฌ ๋ฏธ์…˜ ์ง€ํ‘œ๋ฅผ ์ •ํ•˜๊ณ  ๊ธฐ์ค€์„ ์„ ์„ธ์šด ๋‹ค์Œ, AI๋ฅผ ์—…๋ฌด ํ๋ฆ„ ์†์— ์ง์ ‘ ๋…น์—ฌ ๋„ฃ์–ด์•ผ ์ง์›์ด ๋” ์ค‘์š”ํ•œ ํŒ๋‹จ์ด ํ•„์š”ํ•œ ์ผ์— ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

5. AI ๋ฌธํ™”๋ฅผ ๊ฑฐ๋ฒ„๋„Œ์Šค๋กœ ๊ด€๋ฆฌํ•ด ๋ณด์•ˆ ์‚ฌ๊ณ ์™€ ๋ถˆ์•ˆ์ •์„ ๋ง‰๋Š”๋‹ค

์ƒ์„ฑํ˜• AI ๋„๊ตฌ๋Š” ์ด์ œ ์—…๋ฌด ํ˜„์žฅ์—์„œ ํ”ํ•˜๊ฒŒ ์“ฐ์ด์ง€๋งŒ, ์—ฌ์ „ํžˆ ์ƒ๋‹น์ˆ˜ ์ง์›์€ ์ด๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ชจ๋ฅธ๋‹ค. ์Šค๋ชฐPDF(SmallPDF)์˜ 2025๋…„ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, ๋ฏธ๊ตญ ๊ธฐ๋ฐ˜ ์ง์›์˜ ๊ฑฐ์˜ 1/5๋Š” AI ๋„๊ตฌ์— ๋กœ๊ทธ์ธ ์ž๊ฒฉ ์ฆ๋ช…์„ ์ž…๋ ฅํ•œ ๊ฒฝํ—˜์ด ์žˆ์—ˆ๋‹ค. ๋กœํŽ˜์ฆˆ๋Š” โ€œ์ข‹์€ ๋ฆฌ๋”์‹ญ์€ ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ๊ฐ€๋“œ๋ ˆ์ผ์„ ์„ธ์šฐ๋Š” ๊ฒƒ์—์„œ ์‹œ์ž‘๋œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ์ฑ—GPT ๊ฐ™์€ ๋„๊ตฌ์— ๋ฏผ๊ฐํ•œ ๋น„๋ฐ€ ๋ ˆ์‹œํ”ผ ๋ฐ์ดํ„ฐ๊ฐ€ ์ž…๋ ฅ๋˜์ง€ ์•Š๋„๋ก ํ•˜๋Š” ์ •์ฑ… ์ˆ˜๋ฆฝ๋„ ํฌํ•จ๋œ๋‹ค.

AI๋ฅผ ๋งŽ์ด ์“ธ์ˆ˜๋ก ๊ธฐ์—…์˜ ๊ณต๊ฒฉ ํ‘œ๋ฉด๋„ ๋„“์–ด์ง„๋‹ค. ๊ฒฝ์˜์ง„์€ AI ๊ธฐ๋ฐ˜ ๋ธŒ๋ผ์šฐ์ €์˜ ๋ณด์•ˆ ์ทจ์•ฝ์ , ์„€๋„์šฐ AI ์‚ฌ์šฉ, LLM์˜ ํ™˜๊ฐ ๋ฌธ์ œ๋ฅผ ์ง„์ง€ํ•˜๊ฒŒ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ์—์ด์ „ํŠธํ˜• AI๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค ํ•ต์‹ฌ ํ”„๋กœ์„ธ์Šค์— ๊นŠ์ด ๊ด€์—ฌํ• ์ˆ˜๋ก, ์ œ๋Œ€๋กœ ๋œ ๊ถŒํ•œ ๊ด€๋ฆฌ์™€ ์ ‘๊ทผ ์ œ์–ด ์—†์ด๋Š” ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ ๋…ธ์ถœ์ด๋‚˜ IT ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์•…์˜์  ์นจํˆฌ ์œ„ํ—˜์ด ์ปค์ง„๋‹ค.

์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๊ด€์ ์—์„œ ๋ณด๋ฉด, AI ์ฝ”๋”ฉ ์—์ด์ „ํŠธ๋ฅผ ํ†ตํ•ด ๋น„๋ฐ€๋ฒˆํ˜ธ๋‚˜ ํ‚ค, ํ† ํฐ์ด ์œ ์ถœ๋  ๊ฐ€๋Šฅ์„ฑ๋„ ๋งค์šฐ ํฌ๋‹ค. ๊ฐœ๋ฐœ์ž๋Š” ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋‚˜ ๋„๊ตฌ, API์— ์ ‘๊ทผํ•˜๋„๋ก MCP ์„œ๋ฒ„๋ฅผ ์‚ฌ์šฉํ•ด AI ์ฝ”๋”ฉ ์—์ด์ „ํŠธ๋ฅผ ๊ฐ•ํ™”ํ•ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์›”๋žŒ(Wallarm) ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, 2025๋…„ 2~3๋ถ„๊ธฐ MCP ๊ด€๋ จ ์ทจ์•ฝ์ ์ด 270% ์ฆ๊ฐ€ํ–ˆ๊ณ , ๋™์‹œ์— API ์ทจ์•ฝ์ ๋„ ๊ธ‰์ฆํ–ˆ๋‹ค.

์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” ๊ธฐ์—…์ด AI๋ฅผ ๋„์ž…ํ•  ๋•Œ ์—์ด์ „ํŠธ ID, ๊ถŒํ•œ, ๊ฐ์‚ฌ ์ด๋ ฅ์„ ์†Œํ™€ํžˆ ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค๊ณ  ์ง€์ ํ•˜๋ฉฐ, โ€œ์—์ด์ „ํŠธ ID ๋ฐ ์ ‘๊ทผ ๊ด€๋ฆฌ๋ฅผ ๋„์ž…ํ•ด, ์—์ด์ „ํŠธ๊ฐ€ ์‚ฌ๋žŒ๊ณผ ๋™์ผํ•œ ๊ถŒํ•œ๊ณผ ๊ฐ์‚ฌ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ–๋„๋ก ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋กœ๊ทธ ๊ธฐ๋ก๊ณผ ์Šน์ธ ์ ˆ์ฐจ๋„ ํฌํ•จ๋œ๋‹ค.

์œ„ํ—˜์ด ์ด๋ ‡๊ฒŒ ํฐ๋ฐ๋„ ๊ด€๋ฆฌ ์ฒด๊ณ„๋Š” ์—ฌ์ „ํžˆ ํ—ˆ์ˆ ํ•œ ๊ณณ์ด ๋งŽ๋‹ค. ์˜ค๋”ง๋ณด๋“œ(AuditBoard)์˜ ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, AI๋ฅผ ๋„์ž… ์ค‘์ธ ์กฐ์ง ๋น„์ค‘์€ 82%์— ์ด๋ฅด์ง€๋งŒ, ๊ฑฐ๋ฒ„๋„Œ์Šค ํ”„๋กœ๊ทธ๋žจ์„ ์™„์ „ํžˆ ๊ตฌํ˜„ํ•œ ๊ณณ์€ 25%์— ๋ถˆ๊ณผํ•˜๋‹ค. IBM ๋ถ„์„์— ๋”ฐ๋ฅด๋ฉด, ๋ฐ์ดํ„ฐ ์œ ์ถœ 1๊ฑด๋‹น ํ‰๊ท  ํ”ผํ•ด์•ก์€ ๊ฑฐ์˜ 450๋งŒ ๋‹ฌ๋Ÿฌ์— ์ด๋ฅด๋ฉฐ, IDC๋Š” โ€˜์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” AIโ€™๋ฅผ ๊ตฌ์ถ•ํ•œ ์กฐ์ง์ด ๊ทธ๋ ‡์ง€ ์•Š์€ ์กฐ์ง๋ณด๋‹ค AI ํ”„๋กœ์ ํŠธ ROI๊ฐ€ 2๋ฐฐ ์ด์ƒ ๋†’์„ ๊ฐ€๋Šฅ์„ฑ์ด 60% ๋” ํฌ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. AI ๊ฑฐ๋ฒ„๋„Œ์Šค์— ํˆฌ์žํ•ด์•ผ ํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๋…ผ๋ฆฌ๋Š” ๋”ํ•  ๋‚˜์œ„ ์—†์ด ๋ถ„๋ช…ํ•˜๋‹ค.

์Šค๋ฆฌ๋ฐ”์Šคํƒ€๋ฐ”๋Š” โ€œ๋†’์€ ๋ชฉํ‘œ ์˜์‹์— ๊ฐ•๋ ฅํ•œ ๊ฐ€๋“œ๋ ˆ์ผ์„ ์ง์ง€์–ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ โ€œ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ์ฃผ๊ธฐ์™€ ์ ‘๊ทผ ์ œ์–ด๋ฅผ ๋ช…ํ™•ํžˆ ํ•˜๊ณ , ํ‰๊ฐ€์™€ ๋ ˆ๋“œํŒ€, ๊ทธ๋ฆฌ๊ณ  ์œ„ํ—˜์ด ํฐ ๊ตฌ๊ฐ„์—๋Š” ํœด๋จผ ์ธ ๋” ๋ฃจํ”„ ๊ฒ€์ฆ ์ ˆ์ฐจ๋ฅผ ๋‘์–ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋˜ โ€œ๋ณด์•ˆ๊ณผ ํ”„๋ผ์ด๋ฒ„์‹œ, ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ผ์ดํ”„์‚ฌ์ดํด์— ๋…น์—ฌ ๋ฐฐํฌ์™€ ๋ณด์•ˆ์„ ๋™์‹œ์— ์ถ”์ง„ํ•ด์•ผ ํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ๊ณ„๋ณด๋‚˜ ๋ชจ๋ธ ๋™์ž‘์„ ์•Œ ์ˆ˜ ์—†๋Š” ๋ธ”๋ž™๋ฐ•์Šค๋ฅผ ํ—ˆ์šฉํ•ด์„œ๋Š” ์•ˆ ๋œ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

AI๋Š” ๋งˆ๋ฒ•์ด ์•„๋‹ˆ๋‹ค

BCG์— ๋”ฐ๋ฅด๋ฉด, ๊ธฐ์—… ๊ฐ€์šด๋ฐ 22%๋งŒ์ด AI๋ฅผ ๊ฐœ๋… ์ฆ๋ช… ๋‹จ๊ณ„ ์ด์ƒ์œผ๋กœ ์ง„์ฒ™์‹œ์ผฐ๊ณ , 4%๋งŒ์ด ์ƒ๋‹นํ•œ ๊ฐ€์น˜๋ฅผ ์ฐฝ์ถœํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ๋ƒ‰์ •ํ•œ ํ†ต๊ณ„๋ฅผ ๊ฐ์•ˆํ•˜๋ฉด, CIO๋Š” AI ํˆฌ์ž ์ˆ˜์ต์— ๋Œ€ํ•ด ๋น„ํ˜„์‹ค์ ์ธ ๊ธฐ๋Œ€๋ฅผ ์„ธ์›Œ์„œ๋Š” ์•ˆ ๋œ๋‹ค.

AI์—์„œ ์˜๋ฏธ ์žˆ๋Š” ROI๋ฅผ ์–ป์œผ๋ ค๋ฉด ์ƒ๋‹นํ•œ ์ดˆ๊ธฐ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋ฉฐ, ์กฐ์ง ํ”„๋กœ์„ธ์Šค๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ฐ”๊พธ๋Š” ์ž‘์—…์ด ๋’ค๋”ฐ๋ผ์•ผ ํ•œ๋‹ค. ๋งˆ์Šคํ„ฐ์นด๋“œ์˜ ์šด์˜ CTO ์กฐ์ง€ ๋งˆ๋‹ฌ๋กœ๋‹ˆ๋Š” ๋Ÿฐํƒ€์ž„(Runtime)๊ณผ์˜ ์ตœ๊ทผ ์ธํ„ฐ๋ทฐ์—์„œ ์ƒ์„ฑํ˜• AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋„์ž…์€ ๋ณธ์งˆ์ ์œผ๋กœ ๋ณ€ํ™” ๊ด€๋ฆฌ์™€ ์ฑ„ํƒ์˜ ๋ฌธ์ œ๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

AI์—๋Š” ํ•จ์ •์ด ๋์—†์ด ๋งŽ๊ณ , ์กฐ์ง์ด ๊ฐ€์น˜๋ฅผ ๋”ฐ์ง€๊ธฐ๋ณด๋‹ค ์œ ํ–‰์„ ์ข‡๋Š” ๊ฒฝ์šฐ๋„ ํ”ํ•˜๋‹ค. ๋ฐ์ดํ„ฐ ์ „๋žต ์—†์ด ์„ฑ๊ธ‰ํžˆ ํ”„๋กœ์ ํŠธ๋ฅผ ์‹œ์ž‘ํ•˜๊ฑฐ๋‚˜ ๋„ˆ๋ฌด ๋นจ๋ฆฌ ํ™•์žฅํ•˜๊ฑฐ๋‚˜ ๋ณด์•ˆ์„ ์‚ฌํ›„์— ๋ถ™์ด๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ๋‹ค. ๋งŽ์€ AI ํ”„๋กœ๊ทธ๋žจ์ด ๋ชฉํ‘œํ•œ ์ˆ˜์ค€์— ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•˜๋Š” ์ด์œ ๋Š” ์ตœ๊ณ  ๊ฒฝ์˜์ง„์˜ ํ›„์›์ด๋‚˜ ๊ฑฐ๋ฒ„๋„Œ์Šค๊ฐ€ ๋ถ€์กฑํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ฐ˜๋Œ€๋กœ, ์†”๋ฃจ์…˜ ์—…์ฒด์˜ ํ™๋ณด๋ฅผ ๊ณง์ด๊ณง๋Œ€๋กœ ๋ฏฟ๊ณ  ๊ณผ๋„ํ•˜๊ฒŒ ์ง€์ถœํ•˜๊ฑฐ๋‚˜ AI ํ”Œ๋žซํผ์„ ๊ธฐ์กด ๋ ˆ๊ฑฐ์‹œ ์ธํ”„๋ผ์™€ ํ†ตํ•ฉํ•˜๋Š” ๋‚œ์ด๋„๋ฅผ ๊ณผ์†Œํ‰๊ฐ€ํ•˜๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ๋‹ค.

์•ž์œผ๋กœ AI์˜ ๋น„์ฆˆ๋‹ˆ์Šค ์˜ํ–ฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๋ ค๋ฉด, ํ™•์žฅ์„ ๋’ท๋ฐ›์นจํ•  ๋ฐ์ดํ„ฐ ์ธํ”„๋ผ์™€ ํ”Œ๋žซํผ ์—ญ๋Ÿ‰์— ํˆฌ์žํ•˜๊ณ , ์‚ฌ๋žŒ์˜ ๋ฐ˜๋ณต ์ž‘์—…์„ ์ค„์ด๊ณ  ๋งค์ถœ์ด๋‚˜ ํšจ์œจ์„ ๋ถ„๋ช…ํ•˜๊ฒŒ ๋Œ์–ด์˜ฌ๋ฆด ์ˆ˜ ์žˆ๋Š” ์†Œ์ˆ˜์˜ ํ•ต์‹ฌ ์‚ฌ์šฉ๋ก€์— ์ง‘์ค‘ํ•ด์•ผ ํ•œ๋‹ค.

AI ์—ด๊ธฐ๋ฅผ ํ•ต์‹ฌ ์›์น™์— ๋‹ค์‹œ ์—ฐ๊ฒฐํ•˜๊ณ , ์กฐ์ง์ด ์ถ”๊ตฌํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ์ „๋žต์„ ๋ช…ํ™•ํžˆ ์ดํ•ดํ•˜๋Š” ์ž‘์—…์ด ์žˆ์–ด์•ผ๋งŒ ROI์— ํ•œ ๊ฑธ์Œ์”ฉ ๋‹ค๊ฐ€๊ฐˆ ์ˆ˜ ์žˆ๋‹ค. ํƒ„ํƒ„ํ•œ ๋ฆฌ๋”์‹ญ๊ณผ ๋ถ„๋ช…ํ•œ ๋ชฉํ‘œ ์—†์ด AI์—๋งŒ ๊ธฐ๋Œ€๋ฉด, AI๋Š” ์†์— ์žกํž ๋“ฏ ์žกํžˆ์ง€ ์•Š๋Š” ๋ณด์ƒ์„ ์•ฝ์†ํ•˜๋Š” ํฅ๋ฏธ๋กœ์šด ๊ธฐ์ˆ ์— ๊ทธ์น  ๋ฟ์ด๋‹ค.
dl-ciokorea@foundryco.com

A CIOโ€™s 5-point checklist to drive positive AI ROI

Earlier this year, MIT made headlines with a report that found 95% of organizations are getting no return from AI โ€” and this despite a groundbreaking $30 billion investment, or more, into US-based internal gen AI initiatives. So why do so many AI initiatives fail to deliver positive ROI? Because they often lack a clear connection to business value, says Neal Ramasamy, global CIO at Cognizant, an IT consulting firm. โ€œThis leads to projects that are technically impressive but donโ€™t solve a real need or create a tangible benefit,โ€ he says.

Technologists often follow the hype, diving headfirst into AI tests without considering business results. โ€œMany start with models and pilots rather than business outcomes,โ€ says Saket Srivastava, CIO of Asana, the project management application. โ€œTeams run demos in isolation, without redesigning the underlying workflow or assigning a profit and loss owner.โ€

A combination of a lack of upfront product thinking, poor underlying data practices, nonexistent governance, and minimal cultural incentives to adopt AI can produce negative results. So to avoid poor outcomes, many of the techniques boil down to better change management. โ€œWithout process change, AI speeds todayโ€™s inefficiencies,โ€ adds Srivastava.

Here, we review five tips to manage change within an organization that CIOs can put into practice today. By following this checklist, enterprises should start to turn the tide on negative AI ROI, learn from anti-patterns, and discover which sort of metrics validate successful company-wide AI ventures.

1. Align leadership upfront by communicating business goals and stewarding the AI initiative

AI initiatives require executive sponsorship and a clear vision for how they improve the business. โ€œStrong leadership is essential to translate AI investments into results,โ€ says Adam Lopez, president and leadโ€ฏvCIO at managed IT support provider CMIT Solutions. โ€œExecutive sponsorship and oversight of AI programs, ideally at the CEO or board level, correlates with higher ROI.โ€

For example, at IT services and consulting company Xebia, a subgroup of executives steers its internal AI efforts. Chaired by global CIO Smit Shanker, the team includes the global CFO, head of AI and automation, head of IT infrastructure and security, and head of business operations.

Once upper leadership is assembled, accountability becomes critical. โ€œStart by assigning business ownership,โ€ advises Srivastava. โ€œEvery AI use case needs an accountable leader with a target tied to objectives and key results.โ€ He recommends standing up a cross-functional PMO to define lighthouse use cases, set success targets, enforce guardrails, and regularly communicate progress.

Still, even with leadership in place, many employees will need hands-on guidance to apply AI in their daily work. โ€œFor most individuals, even if you give them the tools in the morning, they donโ€™t know where to start,โ€ says Orla Daly, CIO of Skillsoft, a learning management system. She recommends identifying champions across the organization who can surface meaningful use cases and share practical tips, such as how to get more out of tools like Copilot. Those with a curiosity and a willingness to learn will make the most headway, she says.

Finally, executives must invest in infrastructure, talent, and training. โ€œLeaders must champion a data-driven culture and promote a clear vision for how AI will solve business problems,โ€ says Cognizantโ€™s Ramasamy. This requires close collaboration between business leaders, data scientists, and IT to execute and measure pilot projects before scaling.

2. Evolve by shifting the talent framework and investing in upskilling

Organizations must be open to shift their talent framework and redesign roles. โ€œCIOs should adapt their talent and management strategies to ensure successful AI adoption and ROI for the organization,โ€ says Ramasamy. โ€œThis could involve creating new roles and career paths for AI-focused professionals, such as data scientists and prompt engineers, while upskilling existing employees.โ€

CIOs should also view talent as a cornerstone of any AI strategy, adds CMITโ€™s Lopez. โ€œBy investing in people through training, communication, and new specialist roles, CIOs can be assured that employees will embrace AI tools and drive success.โ€ He adds that internal hackathons and training sessions often yield noticeable boosts in skills and confidence.

Upskilling, for instance, should meet employees where they are, so Asanaโ€™s Srivastava recommends tiered paths: all staff need basic prompt literacy and safety training, while power users require deeper workflow design and agent-building knowledge. โ€œWe took the approach of surveying the workforce, targeting enablement, and remeasuring to confirm that maturity moved in the right direction,โ€ he says.

But assessing todayโ€™s talent framework goes beyond human skillsets. It also means reassessing your work to be done, and who or what performs what tasks. โ€œItโ€™s essential to review business processes for opportunities to refactor them, given the new capabilities that AI brings,โ€ says Scott Wheeler, cloud practice lead at cloud consulting firm Asperitas Consulting.

For Skillsoftโ€™s Daly, todayโ€™s AI age necessitates a modern talent management framework that artfully balances the four Bs: build, buy, borrow, and bots. In other words, leaders should view their organization as a collection of skills rather than fixed roles, and apply the right mix of in-house staff, software, partners, or automation as needed. โ€œItโ€™s requiring us to break things down into jobs or tasks to be done, and looking at your work in a more fragmented way,โ€ says Daly.

For instance, her team used GitHub Copilot to quickly code a learning portal for a certain customer. The project highlighted how pairing human developers with AI assistants can dramatically accelerate delivery, raising new questions about what skills other developers need to be equally productive and efficient.

But as AI agents take over more routine work, leaders must dispel fears that AI will replace jobs outright. โ€œCommunicating the why behind AI initiatives can alleviate fears and demonstrate how these tools can augment human roles,โ€ says Ramasamy. Srivastava agrees. โ€œThe throughline is trust,โ€ he says, โ€œShow people how AI removes toil and increases impact; keep humans in the decision loop and adoption will follow.โ€

3. Adapt organizational processes to fully capture AI benefitsย 

Shifting the talent framework is only the beginning. Organizations must also reengineer core processes. โ€œFully unlocking AIโ€™s value often requires reengineering how the organization works,โ€ says CMITโ€™s Lopez, who urges embedding AI into day-to-day operations and supporting it with continual experimentation rather than treating it as a static add-on.

To this end, one necessary adaptation is toward treating internal AI-driven workflows like products and codifying patterns across the organization, says Srivastava. โ€œEstablish productโ€‘management rigor for intake, prioritization, and roadmapping of AI use cases, with clear owners, problem statements, and value hypotheses,โ€ he says.

At Xebia, a governance board oversees this rigor through a three-stage tollgate process of identifying and assessing value, securing business acceptance, and then handing off to IT for monitoring and support. โ€œA core group is responsible for organizational and functional simplification with each use case,โ€ says Shanker. โ€œThat encourages cross-functional processes and helps break down silos.โ€

Similarly for Ramasamy, the biggest hurdle is organizational resistance. โ€œMany companies underestimate the change management required for successful adoption,โ€ he says. โ€œThe most critical shift is moving from siloed decision-making to a data-centric approach. Business processes should integrate AI outputs seamlessly, automating tasks and empowering employees with data-driven insights.โ€

Identifying the right areas to automate also depends on visibility. โ€œThis is where most companies fall down because they donโ€™t have good, documented processes,โ€ says Skillsoftโ€™s Daly. She recommends enlisting subject-matter experts across business lines to examine workflows for optimization. โ€œItโ€™s important to nominate individuals within the business to ask how to drive AI into your flow of work,โ€ she says.

Once you identify units of work common across functions that AI can streamline, the next step is to make them visible and standardize their application. Skillsoft is doing this through an agent registry that documents agentic capabilities, guardrails, and data management processes. โ€œWeโ€™re formalizing an enterprise AI framework in which ethics and governance are part of how we manage the portfolio of use cases,โ€ she adds.

Organizations should then anticipate roadblocks and create support structures to help users. โ€œOne strategy to achieve this is to have AI SWAT teams whose purpose is to facilitate adoption and remove obstacles,โ€ says Asperitasโ€™ Wheeler.

4. Measure progress to validate your returnย ย ย 

To evaluate ROI, CIOs must establish a pre-AI baseline and set benchmarks upfront. Leaders recommend assigning ownership around metrics such as time to value, cost savings, time savings, work handled by human agents, and new revenue opportunities generated.

โ€œBaseline measurements should be established before initiating AI projects,โ€ says Wheeler, who advises integrating predictive indicators from individual business units into leadershipโ€™s regular performance reviews. A common fault, he says, is only measuring technical KPIs like model accuracy, latency, or precision, and failing to link these to business outcomes, such as savings, revenue, or risk reduction.

Therefore, the next step is to define clear, measurable goals that demonstrate tangible value. โ€œBuild measurement into projects from day one,โ€ says CMITโ€™s Lopez. โ€œCIOs should define a set of relevant KPIs for each AI initiative. For example, 20% faster processing time or a 15% boost in customer satisfaction.โ€ Start with small pilots that yield quick, quantifiable results, he adds.

One clear measurement is time savings. For instance, Eamonn Oโ€™Neill, CTO at Lemongrass, a software-enabled services provider, shares how heโ€™s witnessed clients documenting SAP development manually, which can be an extremely time-intensive process. โ€œLeveraging generative AI to create this documentation provides a clear reduction in human effort, which can be measured and translated to a dollar ROI quite simply,โ€ he says.

Reduction of human labor per task is another key signal. โ€œIf the goal is to reduce the number of support desk calls handled by human agents, leaders should establish a clear metric and track it in real time,โ€ says Ram Palaniappan, CTO at full-stack tech services provider TEKsystems. He adds that new revenue opportunities may also surface through AI adoption.

Some CIOs are monitoring multiple granular KPIs across individual use cases and adjusting strategies based on results. Asanaโ€™s Srivastava, for instance, tracks engineering efficiency by monitoring cycle time, throughput, quality, cost per transaction, and risk events. He also measures the percentage of agent-assisted runs, active users, human-in-the-loop acceptance, and exception escalations. Reviewing this data, he says, helps tune prompts and guardrails in real time.

The resounding point is to set metrics early on, and not fall into the anti-patterns of not tracking signals or value gained. โ€œMeasurement is often bolted on late, so leaders canโ€™t prove value or decide what to scale,โ€ says Srivastava. โ€œThe remedy is to begin with a specific mission metric, baseline it, and embed AI directly in the flow of work so people can focus on higher-value judgment.โ€

5. Govern your AI culture to avoid breaches and instability

Gen AI tools are now commonplace, yet many employees still lack training to use them safely. For instance, nearly one in five US-based employees has entered login credentials into AI tools, according to a 2025 study from SmallPDF. โ€œGood leadership involves establishing governance and guardrails,โ€ says Lopez. That includes setting policies to prevent sensitive secret sauce data from being fed into tools like ChatGPT.

Heavy AI use also widens the enterprise attack surface. Leadership must now seriously consider things like security vulnerabilities in AI-driven browsers, shadow AI use, and LLM hallucinations. As agentic AI gets more involved in business-critical processes, proper authorization and access controls are essential to prevent exposure of sensitive data or malicious entry into IT systems.

From a software development standpoint, the potential for leaking passwords, keys, and tokens through AI coding agents is very real. Engineers have jumped at MCP servers to empower AI coding agents with access to external data, tools, and APIs, yet research from Wallarm found a 270% rise in MCP-related vulnerabilities from Q2 to Q3 2025, alongside surging API vulnerabilities.

Neglecting agent identity, permissions, and audit trails is a common trap that CIOs often stumble into with enterprise AI, says Srivastava. โ€œIntroduce agent identity and access management so agents inherit the same permissions and auditability as humans, including logging and approvals,โ€ he says.

Despite the risks, oversight remains weak. An AuditBoard report found that while 82% of organizations are deploying AI, only 25% have fully implemented governance programs. With data breaches now averaging nearly $4.5 million each, according to IBM, and IDC reporting organizations that build trustworthy AI are 60% more likely to double the ROI of AI projects, the business case for AI governance is crystal clear.

โ€œPair ambition with strong guardrails: clear data lifecycle and access controls, evaluation and redโ€‘teaming, and humanโ€‘inโ€‘theโ€‘loop checkpoints where stakes are high,โ€ says Srivastava. โ€œBake security, privacy, and data governance into the SDLC so ship and secure move together โ€” no black boxes for data lineage or model behavior.โ€

Itโ€™s not magic

According to BCG, only 22% of companies have advanced their AI beyond the POC stage, and just 4% are creating substantial value. With these sobering statistics in mind, CIOs shouldnโ€™t set unrealistic expectations for getting a return.

Finding ROI from AI will require significant upfront effort, and necessitate fundamental changes to organizational processes. As Mastercardโ€™s CTO for operations George Maddaloni said in a recent interview with Runtime, he thinks gen AI app adoption is largely about change management and adoption.

The pitfalls with AI are nearly endless and itโ€™s common for organizations to chase hype rather than value, launch without a clear data strategy, scale too quickly, and implement security as an afterthought. Many AI programs simply donโ€™t have the executive sponsorship or governance to get where they need to be, either. Alternatively, itโ€™s easy to buy into vendor hype on productivity gains and overspend, or underestimate the difficulty of integrating AI platforms with legacy IT infrastructure.


Looking ahead, to better maximize AIโ€™s business impact, leaders recommend investing in the data infrastructure and platform capabilities needed to scale, and hone on one or two high-impact use cases that can remove human toil and clearly drive revenue or efficiency.

Grounding AI fervor in core tenets and understanding the business strategy youโ€™re aiming for is necessary to inch toward ROI. Because, without sound leadership and clear objectives, AI is only a fascinating technology with a reward thatโ€™s just always out of reach.

The hidden costs of premature scale โ€” and how to avoid them

โ€œScaleโ€ is often mistaken for success โ€” a signal that something works. But in practice, growth stresses not just the roadmap, but the architecture, the data layer, the incident response system and the teamโ€™s ability to operate under load. SLAs, SLOs and latency budgets that felt โ€œgood enoughโ€ at early stages begin to collapse under new concurrency and traffic patterns. Iโ€™ve seen healthy metrics mask brittle systems โ€” until one feature launch brings everything crashing down.

  • Scaling too early โ€” without aligned metrics and operational resilience โ€” remains a top reason for product failure.
  • Metrics are only meaningful when rooted in your specific context, not borrowed benchmarks.
  • Engineering readiness (DORA, error budgets, SLOs) must evolve alongside product growth or risk failure under load.

Over the past decade, Iโ€™ve watched promising teams burn out chasing vanity metrics and products buckle from premature scale. In fact, 70% of startups fail because they try to grow before the product and platform are truly ready. The real challenge isnโ€™t how to grow faster โ€” itโ€™s how to grow without collapsing the system. That requires alignment across metrics, product maturity and engineering resilience.

One of the earliest lessons I learned: Metrics arenโ€™t trophies โ€” theyโ€™re mirrors. Chasing a single number, like monthly active users, once gave us impressive charts but a weak business. We were scaling vanity, not value. Today, instead of generic KPIs, I focus on 4โ€“6 product-specific indicators โ€” signup conversion rate, CAC, DAU-to-MAU ratio, first key action rate, retention in specific action โ€” that reflect how value actually moves through the system. Metrics should guide awareness, not just validate success. As Goodhartโ€™s Law reminds us: Once a measure becomes a target, it stops being a good measure.

People start gaming the number or optimizing for it at the expense of true outcomes. A notorious example was Wells Fargoโ€™s sales scandal โ€” management fixated on a metric (number of accounts per customer) and set such aggressive targets that employees began opening millions of fake accounts just to hit the goal. The metric looked great on paper, but it destroyed customer trust and led to billions in fines. The lesson: Donโ€™t let any single metric become a false idol. Define success in a more balanced way that reflects real value creation for your product and users.

Benchmarks as guardrails

Benchmarks are useful โ€” but only when treated as reference points, not commandments. They help spot when somethingโ€™s off (say, an unusually low conversion rate), but theyโ€™re not meant to define what success should look like for your product. Early on, I made the mistake of comparing our โ€œchapter twoโ€ to someone elseโ€™s โ€œchapter ten.โ€ Iโ€™d see another SaaS boasting 50% Day-1 retention and panic that we were underperforming at 30%, without factoring in that we were solving a different problem, at a different stage, with a different user base.

Thatโ€™s how teams end up racing in a lane that isnโ€™t theirs. Every product exists in its own context โ€” timing, budget, team maturity, market complexity. Benchmarks can inform, but they should never dictate. Treating them as gospel can create a dangerous illusion of objectivity โ€” leading you to ignore your actual constraints or chase metrics that were never yours to begin with.

In practice, I use benchmarks the way I use weather forecasts: They tell me what kind of conditions to expect, but they donโ€™t determine the route. The real job is understanding which metrics actually reflect value for your product โ€” and then tuning the rest of the system around that.

Operational readiness

No matter how promising the metrics look, scaling a product without engineering readiness is like building on soft ground. Growth puts operational systems under pressure โ€” deployment pipelines, observability tools, latency budgets and release cadences all get stress-tested in real time.ย  Thatโ€™s why we treat DORA metrics (like deployment frequency and change failure rate) as early indicators of scaling capacity, not just engineering KPIs.

Before dialing up growth loops, we ask: Are our incident response processes resilient? Do we have error budgets in place, and are they respected? Are performance regressions visible early enough to prevent customer pain?

Scaling isnโ€™t just about acquiring more users โ€” itโ€™s about handling them without breaking trust or stability. Tech debt may not block your next release, but it will compound under pressure. In that sense, infrastructure and platform health are product decisions โ€” because they shape how fast and safely you can move when growth actually arrives.

But metrics donโ€™t just fail at scale because of bad infrastructure โ€” they fail because of how we interpret them.

Metric hygiene

Before any big โ€œresults reviewโ€ meeting or growth update, my team knows Iโ€™ll be declaring a data hygiene day. Itโ€™s not glamorous, but itโ€™s essential. We verify that key events are tracked correctly, naming is consistent and funnels reflect actual user flows. This habit formed after we celebrated a spike in onboarding โ€” only to later discover it was caused by a faulty event firing too early. That incident taught me the cost of bad data: It creates fake confidence and misleads decision-making. Bad data creates fake confidence โ€“ and fake confidence is the most expensive bug of all.

I now treat metric hygiene as seriously as fixing a critical software bug. This isnโ€™t just my eccentricity; itโ€™s borne out by broader evidence. Surveys indicate that 58% of business leaders claim key decisions are often based on inaccurate or inconsistent data. Imagine that โ€“ more than half of companies may be betting on wrong numbers, or at least shaky. In the long run, the cost of poor data quality is substantial: A Gartner study reveals that poor data quality costs organizations an average of $15 million annually. Clean metrics are not just technical hygiene โ€” theyโ€™re a form of risk management. Before celebrating progress, make sure your measurement system isnโ€™t lying.

Beware of proxy metrics, the โ€˜blind spotsโ€™ of growth

Not every growing number means youโ€™re winning. In fact, some metrics can grow impressively while masking stagnation or decline in actual value. I call these proxy metrics (or sometimes โ€œblind metricsโ€). Theyโ€™re the numbers that give an illusion of success while your core value proposition languishes. Classic examples: App downloads can be skyrocketing, but active usage could be flat. Or page views on your site might be high (perhaps due to clickbait marketing) while conversion to paying customers remains low. We often become metric-blind in these cases: We see the graph going up, but donโ€™t question what it really means.

To stay grounded, I organize metrics in a simple hierarchy โ€” a metric pyramid of sorts. At the base are operational metrics (the day-to-day numbers you can directly control or influence: e.g., number of sales calls made, bugs resolved or marketing spend). In the middle are behavioral or product metrics (these show user behavior and engagement: e.g., daily active users, time spent, feature adoption rates โ€” they result from your operations but arenโ€™t solely under your control).

At the top are outcome metrics, which capture the ultimate goals or the โ€œWhyโ€ โ€” often things like revenue, customer retention rate or customer satisfaction that reflect delivered value. This pyramid ensures we connect the tactical metrics to strategic outcomes. Itโ€™s similar to the North Star framework many teams use, where a single top-level metric is supported by a few key drivers, and beneath those are a plethora of granular metrics. In fact, product management guides suggest using a metrics pyramid for clarity: At the top you have a North Star outcome, in the middle, the metrics tied to actions youโ€™re taking to influence that outcome, and at the bottom, the finer data points that help troubleshoot and inform decisions.

When I see a metric like โ€œmonthly sessionsโ€ rising, I force myself to ask: Is this an outcome or just an output? More sessions could mean success if it correlates to the outcome (say, higher revenue or better retention), but it could also be a proxy metric โ€” perhaps users are opening the app more frequently because of a UI change, but not actually getting more value. By structuring our thinking in a pyramid, we remind ourselves that an uptick at the bottom doesnโ€™t guarantee movement at the top.

The myth of โ€˜product-market fitโ€™

In startup lore, few concepts are more celebrated than product-market fit (PMF) โ€” that magical moment when everything clicks: Users love the product, growth surges and you feel like youโ€™ve โ€œmade it.โ€ But Iโ€™ve grown skeptical of framing PMF as a one-time epiphany. In reality, fit is a moving target โ€” a continuous process, not a milestone. Early traction doesnโ€™t guarantee long-term alignment. Customer needs shift, competitors respond and what fit yesterday might not work tomorrow. Thatโ€™s why I treat PMF as ongoing calibration, not a finish line.

So instead of chasing a mythical moment, I pay attention to trends and trajectories. Rather than declaring โ€œwe have PMF,โ€ I ask: How well are we still solving a real problem for real people โ€” and are we doing it better than alternatives? Teams that endure donโ€™t just find fit once โ€” they continuously refine it.

In fast-paced product cycles, itโ€™s easy to jump from one project to the next without pausing. But Iโ€™ve made it a ritual that after every major release or growth experiment, we hold a reflection session. In that session, we ask three questions:

  1. Did we measure the right things?
  2. Which metrics truly gave us clarity, and which ended up misleading or blinding us?
  3. Which of our growth assumptions were proven wrong by reality?

Iโ€™ve noticed that teams who embrace this reflective practice become much more data-savvy over time. The metrics then stop being a scorecard or cudgel, and become a flashlight โ€” something that illuminates the path forward.

Final thoughts

If thereโ€™s one theme that ties all these lessons together, itโ€™s the importance of consciousness in growth. Frameworks and tactics โ€” North Star metrics, growth loops, viral coefficients, OKRs โ€” all of these are useful tools, but only if wielded with self-awareness and context. I often tell myself and my team: When the numbers say one thing and your context (your intuition, user research, market signals) says another, trust the context.

Growth is an outcome, not a strategy. If I could send advice to my younger self, it would be: Donโ€™t chase the trendline, chase understanding. Ironically, when you truly understand your users and your value, growth tends to follow naturally โ€” and it will be healthier and more sustainable.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

Discount your AI ROI because mileage always varies

Everyone has been car shopping and noticed the miles per gallon printed on the window sticker. You get excited when you see a number like 35 MPG, but once you drive the car home, your dashboard seems to stay closer to 26. It often feels as though those numbers assume you are driving downhill with the wind at your back.

A similar pattern shows up in conversations about AI productivity. Whether the estimates come from a major consulting report, a vendor eager to sell the latest platform or an urgent request from a CEO for a quick ROI projection, they almost always paint an overly optimistic picture. The results look great on paper, but they rarely hold up in practice. When leaders plan around those inflated expectations, they set themselves up to miss the mark.

As a digital and strategy consultant, I have found that we need a better way to set realistic expectations, one that balances the excitement of potential with the discipline of execution. Interestingly, the inspiration for that approach came not from technology but from finance.

Borrowing from finance: The power of discounting

Anyone who has taken an introductory finance course remembers the concept of discounted cash flow analysis. When valuing an investment, you do not simply total all future cash flows. You discount them to reflect both time and risk. A dollar tomorrow is worth less than a dollar today, especially if there is uncertainty about whether that dollar will ever appear.

A similar mindset helps when assessing AI productivity. The headline productivity gain, for example, โ€œCopilot can double developer output,โ€ represents the gross potential. To reach a realistic number that you can plan around, you need to apply discounts that account for three things: the human effort required to reach an outcome, the gradual ramp-up of adoption and the risk that comes with AIโ€™s imperfections.

Human effort: The human + machine reality

Generative AI acts as an accelerator, not an autopilot. People are still essential to frame the problem, guide the model and validate the output. In software engineering, for instance, tools like GitHub Copilot can produce working code instantly, yet much of that code still needs debugging, testing and revision.

In one client pilot, our team found that engineers spent roughly a quarter of their time reviewing or rewriting AI-generated code. The net productivity gain was meaningful but well below the theoretical doubling of output that vendors often cite. It was closer to a 40% improvement, which proved far more believable and sustainable. The key lesson was clear: AI amplifies talent but does not replace human judgment. Accounting for that in your projections makes your models more credible and your plans more realistic.

Ramp-up and adoption curve

Another important discount reflects the pace of adoption. Productivity gains from AI do not arrive all at once. As with any enterprise technology, adoption follows a curve shaped by learning, experimentation and scaling.

One of our Fortune 500 manufacturing clients modeled this curve while deploying Copilot for code development. In the first year, only about a quarter of developers were active users. Over time, they projected steady growth in adoption, with both costs and benefits expanding as the tool became part of daily workflows. By modeling a four-year adoption period, they could present a credible ROI trajectory that matched the organizationโ€™s ability to absorb change. The result was a measured, believable forecast rather than a sharp, unrealistic surge.

Even with a strong business case, productivity must be earned. Adoption takes time, training and reinforcement. When you include that reality in your estimates, the projections become both defensible and actionable.

Risk adjustment: Accounting for AIโ€™s hallucinations

Every productivity model should also include a discount for risk. Even the best systems can produce errors and the costs of those mistakes, both operational and reputational, can be significant.

We have all seen examples in the news. Earlier this year, a global technology company withdrew a marketing campaign after its AI image generator created offensive results. The issue was not a lack of oversight; it was an underestimation of risk. The company spent weeks addressing the problem, coordinating communications and repairing trust. That period of recovery consumed time and resources that could have been spent on productive work.

When estimating productivity, CIOs need to plan for these inevitable setbacks. The time and effort required to validate outputs, correct errors and perform remediation should be built into the analysis. Just as investors demand higher returns for riskier assets, technology leaders should temper productivity expectations for higher-risk AI applications.

From concept to practice

This idea of discounted productivity becomes powerful when applied in real situations. Imagine a software engineer using Copilot. The theoretical potential might suggest a doubling of productivity, but after adjusting for human oversight, the gradual adoption curve and risk, the realistic gain might fall closer to 30% or 40%.

When visualized, the result looks like a waterfall chart. You begin with the total AI opportunity, then reduce it step by step to account for human effort, phased implementation and risk. What remains is the achievable productivity impact, the number you can confidently share with your CFO and CEO, knowing it reflects how your teams actually operate. And as your teams gain experience, you may even outperform that estimate.

The bottom line: Your AI mileage will vary

AI is transforming how we work, but just like the miles per gallon rating on a new car, your results will depend on your terrain, your driver and your discipline. By adopting a discounted productivity mindset, CIOs and technology leaders can close the gap between AI promise and practical performance, setting expectations that are credible, defensible and achievable.

Because with AI, just like with driving, your mileage will vary.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

โŒ