โŒ

Reading view

There are new articles available, click to refresh the page.

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจไบบ้–“ใฎๅ”่ชฟ่จญ่จˆโ”€โ”€ใฉใ“ใพใงไปปใ›ใ€ใฉใ“ใงไป‹ๅ…ฅใ™ในใใ‹

ไบบ้–“ใฎๅฝนๅ‰ฒใ‚’ๅ‰ๆใซใ—ใŸใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ่จญ่จˆ

ใพใšๅคงๅ‰ๆใจใ—ใฆใ€LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏไบบ้–“ใฎไปฃใ‚ใ‚Šใงใฏใชใใ€ใ‚ใใพใงๅ”ๅƒใƒ‘ใƒผใƒˆใƒŠใƒผใจใ—ใฆ่จญ่จˆใ•ใ‚Œใ‚‹ในใใงใ™ใ€‚ไบบ้–“ใฎๅผทใฟใฏใ€ไพกๅ€คๅˆคๆ–ญใ‚„่ฒฌไปปใฎ่ฒ ๆ‹…ใ€็ต„็น”ใ‚„ๅ€‹ไบบใฎๆ–‡่„ˆใ‚’่ธใพใˆใŸๆ„ๆ€ๆฑบๅฎšใซใ‚ใ‚Šใพใ™ใ€‚้€†ใซใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅผทใฟใฏใ€ๆƒ…ๅ ฑใฎๆŽข็ดขใจๆ•ด็†ใ€็นฐใ‚Š่ฟ”ใ—ไฝœๆฅญใฎ้ซ˜้€Ÿๅ‡ฆ็†ใ€ๅคšๆ•ฐใฎ้ธๆŠž่‚ขใฎๆคœ่จŽใจใ„ใฃใŸ้ƒจๅˆ†ใงใ™ใ€‚ใฉใกใ‚‰ใ‹ไธ€ๆ–นใซๅ…จ้ข็š„ใซๅฏ„ใ›ใ‚‹ใฎใงใฏใชใใ€้•ทๆ‰€ใฎ็ต„ใฟๅˆใ‚ใ›ใ‚’ๆ„่ญ˜ใ™ใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚

ใใฎใŸใ‚ใซใฏใ€ใพใšๅฏพ่ฑกใจใชใ‚‹ๆฅญๅ‹™ใ‚’ๅˆ†่งฃใ—ใ€ใ€Œๅˆคๆ–ญใŒ้‡ใ„ใ‚นใƒ†ใƒƒใƒ—ใ€ใจใ€Œไบ‹ๅ‹™็š„ใชใ‚นใƒ†ใƒƒใƒ—ใ€ใ‚’่ฆ‹ๆฅตใ‚ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ใŸใจใˆใฐใ€้กงๅฎขใ‚ฏใƒฌใƒผใƒ ใธใฎๅฏพๅฟœใงใ‚ใ‚Œใฐใ€ไบ‹ๅฎŸ้–ขไฟ‚ใฎๆ•ด็†ใ‚„้ŽๅŽปใ‚ฑใƒผใ‚นใฎๆคœ็ดขใ€ๆ–‡้ขใฎใƒ‰ใƒฉใƒ•ใƒˆไฝœๆˆใชใฉใฏใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใ‚„ใ™ใ„้ ˜ๅŸŸใงใ™ใ€‚ไธ€ๆ–นใงใ€็„กๅ„Ÿๅฏพๅฟœใฎ็ฏ„ๅ›ฒใ‚’ใฉใ“ใพใง่ชใ‚ใ‚‹ใ‹ใ€ไปŠๅพŒใฎ้–ขไฟ‚ๆ€งใธใฎๅฝฑ้Ÿฟใ‚’ใฉใ†่€ƒใˆใ‚‹ใ‹ใจใ„ใฃใŸๅˆคๆ–ญใฏใ€ไบบ้–“ใซๆฎ‹ใ™ในใ้ ˜ๅŸŸใซใชใ‚Šใพใ™ใ€‚

ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ่จญ่จˆใงใฏใ€ใ“ใ†ใ—ใŸๆฅญๅ‹™ๅˆ†่งฃใฎ็ตๆžœใ‚’่ธใพใˆใ€ใ€Œใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒ่‡ชๅพ‹็š„ใซๅฎŒ็ตใ—ใฆใ‚ˆใ„็ฏ„ๅ›ฒใ€ใ€Œๅฟ…ใšไบบ้–“ใฎๆ‰ฟ่ชใ‚’่ฆใ™ใ‚‹็ฏ„ๅ›ฒใ€ใ€Œไบบ้–“ใฎๅˆคๆ–ญใฎใŸใ‚ใซๆƒ…ๅ ฑๆ•ด็†ใ ใ‘่กŒใ†็ฏ„ๅ›ฒใ€ใจใ„ใ†ไธ‰ใคใฎใ‚พใƒผใƒณใ‚’ๆ˜Ž็ขบใซๅฎš็พฉใ—ใพใ™ใ€‚ใใฎใ†ใˆใงใ€ๅ„ใ‚พใƒผใƒณใ”ใจใซใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆจฉ้™ใจใ‚คใƒณใ‚ฟใƒผใƒ•ใ‚งใƒผใ‚นใ‚’่ชฟๆ•ดใ™ใ‚‹ใ“ใจใงใ€ๅ”่ชฟใฎๅ‰ๆใŒๆ•ดใฃใฆใ„ใใพใ™ใ€‚

ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใ€Œใƒใƒณใƒ‰ใƒซใ€ใฎใƒ‡ใ‚ถใ‚คใƒณ

ไบบ้–“ใจใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ”่ชฟใ‚’ใ†ใพใๆฉŸ่ƒฝใ•ใ›ใ‚‹ใซใฏใ€ไบบ้–“ๅดใ‹ใ‚‰่ฆ‹ใฆใ€Œใ„ใคใงใ‚‚ไป‹ๅ…ฅใงใใ‚‹ใ€ใจใ„ใ†ๆ„Ÿ่ฆšใŒ้‡่ฆใงใ™ใ€‚ไธ€ๅบฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไป•ไบ‹ใ‚’ๆธกใ—ใŸใ‚‰ๆœ€ๅพŒใ€ๅ†…้ƒจใงไฝ•ใŒ่ตทใใฆใ„ใ‚‹ใ‹ๅˆ†ใ‹ใ‚‰ใšใ€่ชคใฃใŸ็ตๆžœใ ใ‘ใŒ็ช็„ถ่ฟ”ใฃใฆใใ‚‹ใจใ„ใ†็Šถๆ…‹ใงใฏใ€ใƒฆใƒผใ‚ถใƒผใฏๅฎ‰ๅฟƒใ—ใฆไปปใ›ใ‚‹ใ“ใจใŒใงใใพใ›ใ‚“ใ€‚

ใใ“ใง้ตใซใชใ‚‹ใฎใŒใ€ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใƒใƒณใƒ‰ใƒซใฎใƒ‡ใ‚ถใ‚คใƒณใงใ™ใ€‚ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใฏใ€ใƒฏใƒผใ‚ฏใƒ•ใƒญใƒผใฎไธญใงไบบ้–“ใŒๅฟ…ใš็ขบ่ชใ‚„ๆ‰ฟ่ชใ‚’่กŒใ†ใ‚นใƒ†ใƒƒใƒ—ใฎใ“ใจใงใ‚ใ‚Šใ€ใƒใƒณใƒ‰ใƒซใจใฏไบบ้–“ใŒใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆŒฏใ‚‹่ˆžใ„ใ‚’่ชฟๆ•ดใ™ใ‚‹ใŸใ‚ใฎๆ“ไฝœๆ‰‹ๆฎตใงใ™ใ€‚ๅ…ทไฝ“็š„ใซใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒๆๆกˆใ—ใŸใƒ—ใƒฉใƒณใ‚’ไธ€่ฆงใง่กจ็คบใ—ใ€ใƒฆใƒผใ‚ถใƒผใซใ€ŒๆŽก็”จใ€ใ€Œไฟฎๆญฃใ€ใ€Œๅดไธ‹ใ€ใ‚’้ธใฐใ›ใ‚‹็”ป้ขใ‚„ใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒไฝœๆˆใ—ใŸใƒ‰ใƒฉใƒ•ใƒˆใ‚’็ทจ้›†ใ™ใ‚‹ใ‚จใƒ‡ใ‚ฃใ‚ฟใ€ๅ‡ฆ็†ใ‚’้€”ไธญใงๆญขใ‚ใ‚‹ๅœๆญขใƒœใ‚ฟใƒณใชใฉใŒ่ฉฒๅฝ“ใ—ใพใ™ใ€‚

ใ•ใ‚‰ใซใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒใฉใฎใ‚ˆใ†ใซ่€ƒใˆใฆ่กŒๅ‹•ใ—ใŸใฎใ‹ใ‚’ใ€ใƒฆใƒผใ‚ถใƒผใซๅˆ†ใ‹ใ‚Šใ‚„ใ™ใๆ็คบใ™ใ‚‹ใ“ใจใ‚‚้‡่ฆใงใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ†…้ƒจใง่ตทใใฆใ„ใ‚‹ๆŽจ่ซ–ใƒ—ใƒญใ‚ปใ‚นใ‚’ๅฎŒๅ…จใซๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ใ“ใจใฏ้›ฃใ—ใ„ใซใ—ใฆใ‚‚ใ€ใ€Œใพใš้ŽๅŽปไธ‰ใƒถๆœˆใฎใƒ‡ใƒผใ‚ฟใ‚’้›†่จˆใ—ใ€ใใฎ็ตๆžœใ‚’ใ‚‚ใจใซไบŒใคใฎๆกˆใ‚’ๆฏ”่ผƒใ—ใŸใ€ใจใ„ใฃใŸ็ฐกๆฝ”ใช่ชฌๆ˜Žใ‚’ๆทปใˆใ‚‹ใ ใ‘ใงใ€ใƒฆใƒผใ‚ถใƒผใฎๅฎ‰ๅฟƒๆ„Ÿใฏๅคงใใๅค‰ใ‚ใ‚Šใพใ™ใ€‚ใ“ใฎใ‚ˆใ†ใชใ€Œๆ€่€ƒ้Ž็จ‹ใฎๅค–ๅœจๅŒ–ใ€ใฏใ€ไบบ้–“ใฎๅŒๅƒšใŒๅ ฑๅ‘Šใ™ใ‚‹ใจใใฎไฝœๆณ•ใซ่ฟ‘ใใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ใƒใƒผใƒ ใฎไธ€ๅ“กใจใ—ใฆๆ‰ฑใ†ๆ„Ÿ่ฆšใ‚’่‚ฒใฆใพใ™ใ€‚

ไฟก้ ผใ‚’่‚ฒใฆใ‚‹ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใจใ€Œๆ‰‹ๆ”พใ—้‹่ปขใ€ใฎ็ฏ„ๅ›ฒ

ๅ”่ชฟ่จญ่จˆใฎใ‚ดใƒผใƒซใฏใ€ใƒฆใƒผใ‚ถใƒผใŒใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ๅพใ€…ใซไฟก้ ผใ—ใ€้ฉๅˆ‡ใช็ฏ„ๅ›ฒใงใ€Œๆ‰‹ๆ”พใ—้‹่ปขใ€ใ‚’่จฑๅฎนใงใใ‚‹็Šถๆ…‹ใ‚’ไฝœใ‚‹ใ“ใจใงใ™ใ€‚ใ“ใ“ใง้‡่ฆใชใฎใฏใ€ๆœ€ๅˆใ‹ใ‚‰้ซ˜ใ„่‡ชๅพ‹ๆ€งใ‚’ไธŽใˆใ‚‹ใฎใงใฏใชใใ€ๆฎต้šŽ็š„ใซไฟก้ ผใ‚’็ฉใฟ้‡ใญใ‚‹ใ“ใจใงใ™ใ€‚

ๅˆๆœŸๆฎต้šŽใงใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซใ€Œๆๆกˆใ€ใ‚„ใ€Œใƒ‰ใƒฉใƒ•ใƒˆใ€ใ ใ‘ใ‚’ไปปใ›ใ€ๆœ€็ต‚ๆฑบๅฎšใฏๅฟ…ใšไบบ้–“ใŒ่กŒใ†ๅฝขใŒๆœ›ใพใ—ใ„ใงใ—ใ‚‡ใ†ใ€‚ใ“ใฎใƒ•ใ‚งใƒผใ‚บใงใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆๆกˆใŒใฉใ‚Œใ ใ‘ๆœ‰็”จใ‹ใ€ใฉใฎ็จ‹ๅบฆใฎ้ ปๅบฆใงไฟฎๆญฃใŒๅฟ…่ฆใ‹ใ‚’่ฆณๅฏŸใ—ใ€ใƒฆใƒผใ‚ถใƒผ่‡ช่บซใ‚‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจใฎไป˜ใๅˆใ„ๆ–นใ‚’ๅญฆใ‚“ใงใ„ใใพใ™ใ€‚ใ“ใฎ้Ž็จ‹ใงใ€ใ€Œใ“ใฎ็จฎ้กžใฎไป•ไบ‹ใชใ‚‰ใฐใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใฆใ‚‚ๅคงไธˆๅคซใใ†ใ ใ€ใจใ„ใ†ๆ„Ÿ่ฆšใŒๅฐ‘ใ—ใšใค่‚ฒใฃใฆใ„ใใพใ™ใ€‚

ๆฌกใฎๆฎต้šŽใงใฏใ€ใƒชใ‚นใ‚ฏใฎไฝŽใ„้ ˜ๅŸŸใ‹ใ‚‰่‡ชๅ‹•ๅฎŸ่กŒใฎ็ฏ„ๅ›ฒใ‚’ๅบƒใ’ใฆใ„ใใพใ™ใ€‚ใŸใจใˆใฐใ€ๅ†…้ƒจๅ‘ใ‘ใฎ้€ฑๆฌกใƒฌใƒใƒผใƒˆใฎๆ›ดๆ–ฐใ‚„ใ€ๅฎšๅž‹็š„ใชใƒชใƒžใ‚คใƒณใƒ‰ใƒกใƒผใƒซใฎ้€ไฟกใชใฉใฏใ€่‡ชๅ‹•ๅŒ–ใ—ใ‚„ใ™ใ„้ ˜ๅŸŸใงใ™ใ€‚ไธ€ๆ–นใงใ€ๅฏพๅค–็š„ใชใ‚ณใƒŸใƒฅใƒ‹ใ‚ฑใƒผใ‚ทใƒงใƒณใ‚„ๅฅ‘็ด„้–ข้€ฃใฎๅ‡ฆ็†ใชใฉใฏใ€้•ทใไบบ้–“ใฎใƒฌใƒ“ใƒฅใƒผใŒๅฟ…่ฆใช้ ˜ๅŸŸใจใ—ใฆๆฎ‹ใ‚‹ใ‹ใ‚‚ใ—ใ‚Œใพใ›ใ‚“ใ€‚็ต„็น”ใจใ—ใฆใ€Œใฉใฎใƒฌใƒ™ใƒซใฎใƒชใ‚นใ‚ฏใชใ‚‰ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใฆใ‚ˆใ„ใ‹ใ€ใจใ„ใ†ๆ–น้‡ใ‚’ๅ…ฑๆœ‰ใ—ใ€ใใ‚Œใซๆฒฟใฃใฆๆจฉ้™่จญๅฎšใ‚’่กŒใ†ใ“ใจใŒใ€ๅฅๅ…จใชไฟก้ ผ้–ขไฟ‚ใฎๅ‰ๆใซใชใ‚Šใพใ™ใ€‚

ๆœ€็ต‚็š„ใซใฏใ€ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใใฎใ‚‚ใฎใŒใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใธใฎไฟก้ ผใซๅคงใใชๅฝฑ้Ÿฟใ‚’ไธŽใˆใพใ™ใ€‚่ชคใ‚ŠใŒ่ตทใใŸใจใใซใ€ใฉใ‚Œใ ใ‘็ด ๆ—ฉใๅŽŸๅ› ใ‚’็‰นๅฎšใ—ใ€ไฟฎๆญฃใงใใ‚‹ใ‹ใ€‚ใƒฆใƒผใ‚ถใƒผใŒใ€Œใ“ใฎ็ตๆžœใฏใŠใ‹ใ—ใ„ใ€ใจๆ„Ÿใ˜ใŸใจใใ€ใƒฏใƒณใ‚ฏใƒชใƒƒใ‚ฏใงไบบ้–“ใฎๆ‹…ๅฝ“่€…ใซๅˆ‡ใ‚Šๆ›ฟใˆใ‚‰ใ‚Œใ‚‹ใ‹ใ€‚ใใ†ใ—ใŸใ€Œๅคฑๆ•—ใธใฎๅ‚™ใˆใ€ใŒๆ•ดใฃใฆใ„ใ‚‹ใปใฉใ€ใƒฆใƒผใ‚ถใƒผใฏๅฎ‰ๅฟƒใ—ใฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไป•ไบ‹ใ‚’ไปปใ›ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ไบบ้–“ใจใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ”่ชฟ่จญ่จˆใจใฏใ€ๅ˜ใซๅฝนๅ‰ฒๅˆ†ๆ‹…ใ‚’ๆฑบใ‚ใ‚‹ใ ใ‘ใงใฏใชใใ€ไฟก้ ผใŒๅพใ€…ใซ้†ธๆˆใ•ใ‚Œใ‚‹ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใฎๆตใ‚Œๅ…จไฝ“ใ‚’ใƒ‡ใ‚ถใ‚คใƒณใ™ใ‚‹ๅ–ถใฟใงใ‚‚ใ‚ใ‚Šใพใ™ใ€‚

Resops: Turning AI disruption into business momentum

The world has changed โ€” artificial intelligence (AI) is reshaping business faster than most can adapt


The rise of large language models and agentic AI has created unprecedented scale, speed, and complexity. Enterprises are moving from static infrastructures to hyperplexed, distributed, and autonomous systems. Organizations are pouring more than $400 billion into AI infrastructure, a wave expected to generate more than $2 trillion in new value. But without resilience at the core, that value remains at risk.

As innovation accelerates, new risks emerge just as quickly. Security is lagging behind transformation. Data is exploding, with nearly 40% year-over-year growth across hybrid and multicloud environments. Regulations are tightening, and ransomware and AI-powered attacks are multiplying. The result: Resilience now defines competitive advantage.

Resilience drives velocity

Resilience isnโ€™t just recovery. Itโ€™s also the foundation of sustained innovation. Traditional recovery models were built for yesterdayโ€™s outages, not todayโ€™s AI-driven disruptions, which unfold in milliseconds. In this world, recovery is table stakes. True resilience means that every system runs on clean, verifiable data, and it restores trust when itโ€™s tested.

The most resilient organizations are also the fastest movers. They adopt emerging technologies with confidence, recover with speed and integrity, and innovate at scale. Resilience has evolved from a safety net to the engine of enterprise speed and scalability.

Introducing resops, the model for next-generation resilience

Resops, short for resilience operations, is an operating model that unifies data protection, cyber recovery, and governance into a single intelligent system. It creates an ongoing loop that monitors, validates, and protects data across hybrid and multicloud environments, enabling organizations to detect risks early and recover with confidence.

By integrating resilience into every layer of operations, resops transforms it from an isolated function into a proactive discipline โ€” one that keeps businesses secure, compliant, and ready to adapt in the AI era.

To learn more about ResOps, read โ€œResOps: The future of resilient business in the era of AI.โ€ย 


Vertical AI development agents are the future of enterprise integrations

Enterprise Application Integration (EAI) and modern iPaaS platforms have become two of the most strategically important โ€“ and resource-constrained โ€“ functions inside todayโ€™s enterprises. As organizations scale SaaS adoption, modernize core systems, and automate cross-functional workflows, integration teams face mounting pressure to deliver faster while upholding strict architectural, data quality, and governance standards.

AI has entered this environment with the promise of acceleration. But CIOs are discovering a critical truth:

Not all AI is built for the complexity of enterprise integrations โ€“ whether in traditional EAI stacks or modern iPaaS environments.

Generic coding assistants such as Cursor or Claude Code can boost individual productivity, but they struggle with the pattern-heavy, compliance-driven reality of integration engineering. What looks impressive in a demo often breaks down under real-world EAI/iPaaS conditions.

This widening gap has led to the rise of a new category: Vertical AI Development Agents โ€“ domain-trained agents purpose-built for integration and middleware development. Companies like CurieTech AI are demonstrating that specialized agents deliver not just speed, but materially higher accuracy, higher-quality outputs, and far better governance than general-purpose tools.

For CIOs running mission-critical integration programs, that difference directly affects reliability, delivery velocity, and ROI.

Why EAI and iPaaS integrations are not a โ€œGeneric Codingโ€ problem

Integrationsโ€”whether built on legacy middleware or modern iPaaS platforms โ€“ operate within a rigid architectural framework:

  • multi-step orchestration, sequencing, and idempotency
  • canonical data transformations and enrichment
  • platform-specific connectors and APIs
  • standardized error-handling frameworks
  • auditability and enterprise logging conventions
  • governance and compliance embedded at every step

Generic coding models are not trained on this domain structure. They often produce code that looks correct, yet subtly breaks sequencing rules, omits required error handling, mishandles transformations, or violates enterprise logging and naming standards.

Vertical agents, by contrast, are trained specifically to understand flow logic, mappings, middleware orchestration, and integration patterns โ€“ across both EAI and iPaaS architectures. They donโ€™t just generate code โ€“ they reason in the same structures architects and ICC teams use to design integrations.

This domain grounding is the critical distinction.

The hidden drag: Context latency, expensive context managers, and prompt fatigue

Teams experimenting with generic AI encounter three consistent frictions:

Context Latency

Generic models cannot retain complex platform context across prompts. Developers must repeatedly restate platform rules, logging standards, retry logic, authentication patterns, and canonical schemas.

Developers become โ€œexpensive context managersโ€

A seemingly simple instructionโ€”โ€œTransform XML to JSON and publish to Kafkaโ€โ€”
quickly devolves into a series of corrective prompts:

  • โ€œUse the enterprise logging format.โ€
  • โ€œAdd retries with exponential backoff.โ€
  • โ€œFix the transformation rules.โ€
  • โ€œApply the standardized error-handling pattern.โ€

Developers end up managing the model instead of building the solution.

Prompt fatigue

The cycle of re-prompting, patching, and enforcing architectural rules consumes time and erodes confidence in outputs.

This is why generic tools rarely achieve the promised acceleration in integration environments.

Benchmarks show vertical agents are about twice as accurate

CurieTech AI recently published comparative benchmarks evaluating its vertical integration agents against leading generic tools, including Claude Code.
The tests covered real-world tasks:

  • generating complete, multi-step integration flows
  • building cross-system data transformations
  • producing platform-aligned retries and error chains
  • implementing enterprise-standard logging
  • converting business requirements into executable integration logic

The results were clear: generic tools performed at roughly half the accuracy of vertical agents.

Generic outputs often looked plausible but contained structural errors or governance violations that would cause failures in QA or production. Vertical agents produced platform-aligned, fully structured workflows on the first pass.

For integration engineering โ€“ where errors cascade โ€“ this accuracy gap directly impacts delivery predictability and long-term quality.

The vertical agent advantage: Single-shot solutioning

The defining capability of vertical agents is single-shot task execution.

Generic tools force stepwise prompting and correction. But vertical agentsโ€”because they understand patterns, sequencing, and governanceโ€”can take a requirement like:

โ€œCreate an idempotent order-sync flow from NetSuite to SAP S/4HANA with canonical transformations, retries, and enterprise logging.โ€

โ€ฆand return:

  • the flow
  • transformations
  • error handling
  • retries
  • logging
  • and test scaffolding

in one coherent output.

This shift โ€“ from instruction-oriented prompting to goal-oriented promptingโ€”removes context latency and prompt fatigue while drastically reducing the need for developer oversight.

Built-in governance: The most underrated benefit

Integrations live and die by adherence to standards. Vertical agents embed those standards directly into generation:

  • naming and folder conventions
  • canonical data models
  • PII masking and sensitive-data controls
  • logging fields and formats
  • retry and exception handling patterns
  • platform-specific best practices

Generic models cannot consistently maintain these rules across prompts or projects.

Vertical agents enforce them automatically, which leads to higher-quality integrations with far fewer QA defects and production issues.

The real ROI: Quality, consistency, predictability

Organizations adopting vertical agents report three consistent benefits:

1. Higher-Quality Integrations

Outputs follow correct patterns and platform rulesโ€”reducing defects and architectural drift.

2. Greater Consistency Across Teams

Standardized logic and structures eliminate developer-to-developer variability.

3. More Predictable Delivery Timelines

Less rework means smoother pipelines and faster delivery.

A recent enterprise using CurieTech AI summarized the impact succinctly:

โ€œFor MuleSoft users, generic AI tools wonโ€™t cut it. But with domain-specific agents, the ROI is clear. Just start.โ€

For CIOs, these outcomes translate to increased throughput and higher trust in integration delivery.

Preparing for the agentic future

The industry is already moving beyond single responses toward agentic orchestration, where AI systems coordinate requirements gathering, design, mapping, development, testing, documentation, and deployment.

Vertical agentsโ€”because they understand multi-step integration workflowsโ€”are uniquely suited to lead this transition.

Generic coding agents lack the domain grounding to maintain coherence across these interconnected phases.

The bottom line

Generic coding assistants provide breadth, but vertical AI development agents deliver the depth, structure, and governance enterprise integrations require.

Vertical agents elevate both EAI and iPaaS programs by offering:

  • significantly higher accuracy
  • higher-quality, production-ready outputs
  • built-in governance and compliance
  • consistent logic and transformations
  • predictable delivery cycles

As integration workloads expand and become more central to digital transformation, organizations that adopt vertical AI agents early will deliver faster, with higher accuracy, and with far greater confidence.

In enterprise integrations, specialization isnโ€™t optionalโ€”it is the foundation of the next decade of reliability and scale.

Learn more about CurieTech AI here.

Agile isnโ€™t just for software. Itโ€™s a powerful way to lead

In times of disruption, Agile leadership can help CIOs make better, faster decisions โ€” and guide their teams to execute with speed and discipline.

When the first case of COVID hit my home city, it was only two weeks after Iโ€™d become president of The Persimmon Group. For more than a decade, Iโ€™d coached leaders, teams and PMOs to execute their strategy with speed and discipline.

But now โ€” in a top job for the first time โ€” I was reeling.

Every plan we had in motion โ€” strategic goals, project schedules, hiring decisions โ€” was suddenly irrelevant. Clients froze budgets. Team members scrambled to set up remote work for the first time, many while balancing small children and shared spaces.

Within days, we were facing a dozen high-stakes questions about our business, all with incomplete information. Each answer carried massive operational and cultural implications.

We couldnโ€™t just make the right call. We had to make it fast. And often, we were choosing between a bunch of bad options.

From crisis to cadence

At first, we tried to lead the way we always had: gather the facts, debate the trade-offs and pick the best path forward. But in a landscape that changed daily, that rhythm broke down fast.

The information we needed didnโ€™t exist yet. The more we waited for certainty โ€” or gamed out endless hypotheticals โ€” the slower and more reactive we became.

And then something clicked. What if the same principles that helped software teams move quickly and learn in real time could help lead us through uncertainty?

So we started experimenting.

We shortened our time horizons. Made smaller bets. Created fast feedback loops. We became almost uncomfortably transparent, involving the team directly in critical decisions that affected them and their work.

In the months that followed, those experiments became the backbone of how we led through uncertainty โ€” and how we continue to lead today.

An operating system for change

What emerged wasnโ€™t a formal framework. It was a set of small, deliberate habits that brought the same rhythm and focus to leadership that Agile brings to delivery.

Hereโ€™s what that looked like in practice:

Develop a โ€˜fast frameโ€™ to focus decisions

In the first few months of the pandemic, our leadership meetings were a tangle of what-ifs. What if we lost 20% of planned revenue this year? What if we lost 40%? Would we do layoffs? Furloughs? Salary cuts? And when would we do them โ€” preemptively or reactively?

We were so busy living in multiple possible futures that it was difficult to move forward with purpose. To break out of overthinking mode, we built a lightweight framework we now call our fast frame. It centered on five questions:

  1. What do we know for sure?
  2. What can we find out quickly?
  3. What is unknowable right now?
  4. Whatโ€™s the risk of deciding today?
  5. Whatโ€™s the risk of not deciding today?

The fast frame forced us to separate facts from conjecture. It also helped us to get our timing right. When did we need to move fast, even with imperfect information? When could we afford to slow down and get more data points?

The fast frame helped us slash decision latency by 20% to 30%.

It kept us moving when the urge was to stall and it gave us language to talk about uncertainty without letting it rule the room.

Build plans around small, fast experiments

After using our fast frame for a while, we realized something: Our decisions were too big.

In an environment changing by the day, Big Permanent Decisions were impractical โ€” and a massive time sink. Every hour we spent debating a Big Permanent Decision was an hour we werenโ€™t learning something important.

So we replaced them with For-Now Decisions โ€” temporary postures designed to move us forward, fast, while we learned what was real.

Each For-Now Decision had four parts:

  1. The decision itself โ€” the action weโ€™d take based on what we knew at that moment.
  2. A trigger for when to revisit it โ€” either time-based (two weeks from now) or event-based (if a client delays a project).
  3. A few learning targets โ€” what we hoped to discover before the next checkpoint.
  4. An agility signal โ€” how we communicated the decision to the team. Weโ€™d say, โ€œThis is our posture for now, but we may change course if X. Weโ€™ll need your help watching for Y as we learn more.โ€

By framing decisions this way, we removed the pressure to be right. The goal wasnโ€™t to predict the future but to learn from it faster. By abandoning bad ideas early, we saved 300 to 400 hours a year.

Increase cadence and transparency of communication

In those early weeks, we learned that the only thing more dangerous than a bad decision was a silent one. When information moves slower than events, people fill the gaps with assumptions.

So we made communication faster โ€” and flatter. Every morning, our 20-person team met virtually for a 20-minute standup. The format was simple but consistent:

  • Executive push. We shared what the leadership team was working on, what decisions had been made and what input we needed next.
  • Team pull. Anyone could ask questions, raise issues or surface what they were hearing from clients.
  • Needs and lessons. We ended with what people needed to stay productive and what we were learning that others could benefit from.

The goal wasnโ€™t to broadcast information from the top โ€” or make all our decisions democratically. It was to create a shared operating picture. The standup became a heartbeat for the company, keeping everyone synchronized as conditions changed.

Transparency replaced certainty. Even when we didnโ€™t have all the answers, people knew how decisions were being made and what we were watching next. That openness built confidence faster than pretending we had it all figured out.

That transparency paid off.

While many small consulting firms folded in the first 18 months of the pandemic, Agile leadership helped us double revenue in 24 months.

We stayed fully staffed โ€” no layoffs, no pay cuts beyond the executive team. And the small bets we made during the pandemic helped rapidly expand our client base across new industries and international geographies.

Develop precise language to keep the team aligned

As we increased the speed of communication, we discovered something else: agility requires precision. When everything is moving fast, even small misunderstandings can send people sprinting in different directions.

We started tightening our language. Instead of broad discussions about what needed to get done, weโ€™d ask, โ€œWhat part of this can we get done by Friday?โ€ That forced us to think in smaller delivery windows, sustain momentum and get specific about what โ€œdoneโ€ looked like.

We also learned to clarify between two operating modes: planning versus doing. Before leaving a meeting where a direction was discussed, weโ€™d confirm our status:

  • Phase 1 meant we were still exploring, shaping and validating and would need at least one more meeting before implementing anything.
  • Phase 2 meant we were ready to execute.

That small distinction saved us hours of confusion, especially in cross-functional work.

Precise language gave us speed. It eliminated assumptions and kept everyone on the same page about where we were in the process. The more we reduced ambiguity, the faster โ€” and calmer โ€” the team moved.

Protect momentum by insisting on rest

Agility isnโ€™t about moving faster forever โ€” itโ€™s about knowing when to slow down. During the first months of the pandemic, that lesson was easy to forget. Everything felt urgent and everyone felt responsible.

In software, a core idea behind Agile sprints is maintaining a sustainable pace of work. A predictable, consistent level of effort that teams can plan around is far more effective than the heroics often needed in waterfall projects to hit a deadline.

Agile was designed to be human-centered, protecting the well-being and happiness of the team so that performance can remain optimal. We tried to lead the same way.

After the first few frenetic months, I capped my own workday at nine hours. That boundary forced me to get honest about what could actually be done in the time I had โ€” and prioritize ruthlessly. It also set a tone for the team. We adjusted scopes, redistributed work and held one another accountable for disconnecting at dayโ€™s end.

The expectation wasnโ€™t endless effort โ€” it was sustainable effort. That discipline kept burnout low and creativity high, even during our most demanding seasons. The consistency of our rest became as important as the intensity of our work. It gave us a rhythm we could trust โ€” one that protected our momentum long after the crisis passed.

Readiness is the new stability

Now that the pandemic has passed, disruption has simply changed shape โ€” AI, market volatility, new business models and the constant redefinition of โ€œnormal.โ€ What hasnโ€™t changed is the need for leaders who can act with speed and discipline at the same time.

For CIOs, that tension is sharper than ever. Technology leaders are being asked to deliver transformation at pace โ€” without burning out their people or breaking what already works. The pressures that once felt exceptional have become everyday leadership conditions.

But you donโ€™t have to be a Scrum shop or launch an enterprise Agile transformation to lead with agility. Agility is a mindset, not a method. To put the mindset into practice, focus on:

  • Shorter planning horizons
  • Faster, smaller decisions
  • Radical transparency
  • Language that brings alignment and calm
  • Boundaries that protect the energy of the team

These are the foundations of sustainable speed.

We built those practices in crisis, but theyโ€™ve become our default operating system in calmer times. They remind me that agility isnโ€™t a reaction to change โ€” itโ€™s a readiness for it. And in a world where change never stops, that readiness may be a leaderโ€™s most reliable source of stability.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆๆ™‚ไปฃใฎใƒ—ใƒญใƒ€ใ‚ฏใƒˆใƒžใƒใ‚ธใƒกใƒณใƒˆโ”€โ”€ไป•ๆง˜ใฏโ€œๆŒฏใ‚‹่ˆžใ„โ€ใ‹ใ‚‰่จญ่จˆใ›ใ‚ˆ

ๆฉŸ่ƒฝๅฟ—ๅ‘ใ‹ใ‚‰ใ€ŒๆŒฏใ‚‹่ˆžใ„ๅฟ—ๅ‘ใ€ใธใฎใƒ‘ใƒฉใƒ€ใ‚คใƒ ใ‚ทใƒ•ใƒˆ

ๅพ“ๆฅใฎใ‚ฝใƒ•ใƒˆใ‚ฆใ‚งใ‚ข้–‹็™บใซใŠใ„ใฆใ€ไป•ๆง˜ใจใฏๆฉŸ่ƒฝใจ็”ป้ขใฎไธ€่ฆงใงใ‚ใ‚‹ใ“ใจใŒๅคšใใ‚ใ‚Šใพใ—ใŸใ€‚ใฉใฎใƒœใ‚ฟใƒณใ‚’ๆŠผใ™ใจใฉใฎAPIใŒๅ‘ผใฐใ‚Œใ€ใฉใฎใƒ‡ใƒผใ‚ฟใŒใฉใฎใ‚ˆใ†ใซๆ›ดๆ–ฐใ•ใ‚Œใ‚‹ใ‹ใ‚’ใ€ใƒ•ใƒญใƒผใƒใƒฃใƒผใƒˆใ‚„็”ป้ข้ท็งปๅ›ณใง่จ˜่ฟฐใ™ใ‚‹ใ‚„ใ‚Šๆ–นใงใ™ใ€‚ใ“ใฎใ‚ขใƒ—ใƒญใƒผใƒใฏใ€ๅ…ฅๅŠ›ใจๅ‡บๅŠ›ใŒๅŽณๅฏ†ใซๅฎš็พฉใงใใ‚‹ๆฑบๅฎš่ซ–็š„ใชใ‚ทใ‚นใƒ†ใƒ ใซๅฏพใ—ใฆใฏ้žๅธธใซๆœ‰ๅŠนใงใ—ใŸใ€‚

ใจใ“ใ‚ใŒใ€LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏๆœฌ่ณช็š„ใซ็ขบ็އ็š„ใชใ‚ทใ‚นใƒ†ใƒ ใงใ™ใ€‚ๅŒใ˜่ณชๅ•ใ‚’ใ—ใฆใ‚‚ใ€็”Ÿๆˆใ•ใ‚Œใ‚‹ๆ–‡็ซ ใฏๆฏŽๅ›žๅฐ‘ใ—ใšใค็•ฐใชใ‚Šใพใ™ใ—ใ€็Šถๆณใฎๅค‰ๅŒ–ใ‚„ใƒกใƒขใƒชใฎๅ†…ๅฎนใ€ๅค–้ƒจใƒ„ใƒผใƒซใ‹ใ‚‰ใฎใƒฌใ‚นใƒใƒณใ‚นใซใ‚ˆใฃใฆใ‚‚ๆŒฏใ‚‹่ˆžใ„ใŒๅค‰ใ‚ใ‚Šใพใ™ใ€‚ใ“ใฎใ‚ˆใ†ใชใ‚ทใ‚นใƒ†ใƒ ใซๅฏพใ—ใฆใ€Œใ™ในใฆใฎๅ…ฅๅŠ›ใƒ‘ใ‚ฟใƒผใƒณใจๅ‡บๅŠ›ใ‚’็ถฒ็พ…ใ™ใ‚‹ไป•ๆง˜ๆ›ธใ€ใ‚’ๆ›ธใ“ใ†ใจใ™ใ‚‹ใจใ€ใ™ใใซ็ ด็ถปใ—ใฆใ—ใพใ„ใพใ™ใ€‚็ตๆžœใจใ—ใฆใ€ใ€Œใชใ‚“ใจใชใ่ณขใ„ใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใ‚’ๅ…ฅใ‚ŒใฆใฟใŸใŒใ€ใฉใ†ใชใฃใฆใ„ใ‚ŒใฐๆˆๅŠŸใชใฎใ‹ๅˆ†ใ‹ใ‚‰ใชใ„ใ€ใจใ„ใ†็Šถๆ…‹ใซ้™ฅใ‚ŠใŒใกใงใ™ใ€‚

ใใ“ใงๅฟ…่ฆใซใชใ‚‹ใฎใŒใ€ๆฉŸ่ƒฝใƒ™ใƒผใ‚นใงใฏใชใๆŒฏใ‚‹่ˆžใ„ใƒ™ใƒผใ‚นใฎไป•ๆง˜่จญ่จˆใงใ™ใ€‚้‡่ฆใชใฎใฏใ€Œใ“ใฎใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏใฉใ‚“ใชไบบๆ ผใƒปๅฝนๅ‰ฒใ‚’ๆŒใกใ€ใƒฆใƒผใ‚ถใƒผใ‹ใ‚‰่ฆ‹ใฆใฉใฎใ‚ˆใ†ใซๆŒฏใ‚‹่ˆžใฃใฆใปใ—ใ„ใฎใ‹ใ€ใ‚’่จ€่ชžๅŒ–ใ™ใ‚‹ใ“ใจใงใ™ใ€‚ๅฐ‚้–€็”จ่ชžใ‚’ใฉใฎ็จ‹ๅบฆไฝฟใ†ใฎใ‹ใ€ใฉใ“ใพใง่ธใฟ่พผใ‚“ใ ๆๆกˆใ‚’ใ—ใฆใ‚ˆใ„ใฎใ‹ใ€ๅˆ†ใ‹ใ‚‰ใชใ„ใจใใซ้ป™ใ‚Š่พผใ‚€ใฎใงใฏใชใใฉใ†่ณชๅ•ใ—่ฟ”ใ™ใฎใ‹ใ€ใจใ„ใฃใŸๅฏพ่ฉฑไธŠใฎๆŒฏใ‚‹่ˆžใ„ใซๅŠ ใˆใ€ใฉใฎๅค–้ƒจใƒ„ใƒผใƒซใ‚’ใฉใฎ็Šถๆณใงไฝฟใฃใฆใ‚ˆใ„ใฎใ‹ใ€ใฉใ“ใ‹ใ‚‰ๅ…ˆใฏๅฟ…ใšไบบ้–“ใฎๆ‰ฟ่ชใ‚’ๆŒŸใ‚€ใฎใ‹ใจใ„ใฃใŸใ€ๆจฉ้™ใ‚„่ฒฌไปปใซ้–ขใ™ใ‚‹ใƒซใƒผใƒซใ‚‚ไป•ๆง˜ใฎไธ€้ƒจใซใชใ‚Šใพใ™ใ€‚

ใƒ—ใƒญใƒ€ใ‚ฏใƒˆใƒžใƒใƒผใ‚ธใƒฃใƒผใฏใ€ใ“ใ‚Œใ‚‰ใ‚’่‡ช็„ถ่จ€่ชžใง่จ˜่ฟฐใ•ใ‚ŒใŸใ€Œ่กŒๅ‹•ๆŒ‡้‡ใ€ใจใ—ใฆๅฎš็พฉใ—ใ€ใใ‚Œใ‚’ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚„ใ‚ทใ‚นใƒ†ใƒ ใƒกใƒƒใ‚ปใƒผใ‚ธใ€ใƒใƒชใ‚ทใƒผใƒ•ใ‚กใ‚คใƒซใจใ—ใฆๅฎŸ่ฃ…ใƒใƒผใƒ ใจๅ…ฑๆœ‰ใ—ใฆใ„ใๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ๅพ“ๆฅใฎ่ฆไปถๅฎš็พฉๆ›ธใซใ€ไบบๆ ผ่จญ่จˆใ‚„ๅฏพ่ฉฑใƒใƒชใ‚ทใƒผใ€ใƒ„ใƒผใƒซๅˆฉ็”จใƒซใƒผใƒซใจใ„ใฃใŸๆ–ฐใ—ใ„็ซ ใŒ่ฟฝๅŠ ใ•ใ‚Œใ‚‹ใ‚คใƒกใƒผใ‚ธใงใ™ใ€‚

ไป•ๆง˜ๆ›ธใจใ—ใฆใฎใƒ—ใƒญใƒณใƒ—ใƒˆใจใƒใƒชใ‚ทใƒผ่จญ่จˆ

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซใŠใ„ใฆใ€ใƒ—ใƒญใƒณใƒ—ใƒˆใฏๅ˜ใชใ‚‹ใ€Œใใฎๅ ดใ—ใฎใŽใฎ้ญ”ๆณ•ใฎๅ‘ชๆ–‡ใ€ใงใฏใชใใ€ไป•ๆง˜ๆ›ธใใฎใ‚‚ใฎใซ่ฟ‘ใ„ๅฝนๅ‰ฒใ‚’ๆžœใŸใ—ใพใ™ใ€‚ใจใใซใ‚ทใ‚นใƒ†ใƒ ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚„ใƒญใƒผใƒซๅฎš็พฉใ€ใƒ„ใƒผใƒซใฎ่ชฌๆ˜Žๆ–‡ใชใฉใซใฏใ€ใƒ—ใƒญใƒ€ใ‚ฏใƒˆใƒžใƒใƒผใ‚ธใƒฃใƒผใŒ่€ƒใˆๆŠœใ„ใŸ่กŒๅ‹•ใƒใƒชใ‚ทใƒผใŒๅๆ˜ ใ•ใ‚Œใ‚‹ในใใงใ™ใ€‚

ใŸใจใˆใฐใ€ใ‚ซใ‚นใ‚ฟใƒžใƒผใ‚ตใƒใƒผใƒˆๅ‘ใ‘ใฎใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’่จญ่จˆใ™ใ‚‹ๅ ดๅˆใ€ใ€Œ้กงๅฎขใฎๆ„Ÿๆƒ…ใ‚’ๅ…ˆใซๅ—ใ‘ๆญขใ‚ใ‚‹ใ€ใ€Œ่‡ช็คพใซ้žใŒใ‚ใ‚‹ๅฏ่ƒฝๆ€งใ‚’่ปฝใ€…ใ—ใ่ชใ‚ใชใ„ใŒใ€ๆฑบใ—ใฆ่ฒฌไปป่ปขๅซใ‚‚ใ—ใชใ„ใ€ใ€Œๆณ•็š„ใชๅˆคๆ–ญใ‚’ไผดใ†่กจ็พใฏๅฟ…ใšไฟ็•™ใ—ใ€ไบบ้–“ใฎๆ‹…ๅฝ“่€…ใซใ‚จใ‚นใ‚ซใƒฌใƒผใ‚ทใƒงใƒณใ™ใ‚‹ใ€ใจใ„ใฃใŸใƒ‹ใƒฅใ‚ขใƒณใ‚นใ‚’ใƒ—ใƒญใƒณใƒ—ใƒˆใซๅŸ‹ใ‚่พผใ‚€ใ“ใจใŒใงใใพใ™ใ€‚ใ“ใ“ใงๆœ‰ๅŠนใชใฎใฏใ€ๆŠฝ่ฑก็š„ใช็พŽ่พž้บ—ๅฅใงใฏใชใใ€ๅฎŸ้š›ใซใ‚ใ‚Šๅพ—ใ‚‹ไผš่ฉฑไพ‹ใ‚’ๅซใ‚ใŸๅ…ทไฝ“็š„ใชๆŒ‡็คบใงใ™ใ€‚่‰ฏใ„ๅฟœ็ญ”ไพ‹ใจๆ‚ชใ„ๅฟœ็ญ”ไพ‹ใ‚’ไธฆในใ€ใฉใกใ‚‰ใ‚’็›ฎๆŒ‡ใ™ใ‹ใ‚’ๆ˜Ž็คบใ™ใ‚‹ใ“ใจใงใ€ใƒขใƒ‡ใƒซใฎๆŒฏใ‚‹่ˆžใ„ใฏๅคงใใๅค‰ใ‚ใ‚Šใพใ™ใ€‚

ใ•ใ‚‰ใซใ€ใƒ„ใƒผใƒซๅˆฉ็”จใƒใƒชใ‚ทใƒผใ‚‚ไป•ๆง˜ใจใ—ใฆๆ˜Žๆ–‡ๅŒ–ใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ใฉใฎใƒ„ใƒผใƒซใฏ่ชญใฟๅ–ใ‚Šๅฐ‚็”จใชใฎใ‹ใ€ใฉใฎAPIใ‚’ๅ‘ผใถ้š›ใซใฏๅฟ…ใšใƒฆใƒผใ‚ถใƒผใซ็ขบ่ชใ‚’ๆฑ‚ใ‚ใ‚‹ใฎใ‹ใ€้€ฃ็ถšใ—ใฆๅค–้ƒจใ‚ตใƒผใƒ“ใ‚นใ‚’ๅฉใใ™ใŽใชใ„ใŸใ‚ใฎใƒฌใƒผใƒˆๅˆถ้™ใฏใฉใ†่จญ่จˆใ™ใ‚‹ใฎใ‹ใจใ„ใฃใŸ็‚นใ‚’ใ€ใƒ—ใƒญใƒ€ใ‚ฏใƒˆใƒžใƒใƒผใ‚ธใƒฃใƒผใŒใƒ“ใ‚ธใƒใ‚นๅดใƒปใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃๅดใฎๅˆฉๅฎณใ‚’่ชฟๆ•ดใ—ใชใŒใ‚‰ๆฑบใ‚ใฆใ„ใใพใ™ใ€‚ใใฎ็ตๆžœใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎใƒฉใƒณใ‚ฟใ‚คใƒ ่จญๅฎšใจใƒ—ใƒญใƒณใƒ—ใƒˆไธกๆ–นใซๅๆ˜ ใ•ใ‚Œใพใ™ใ€‚

ใ“ใฎใ‚ˆใ†ใซใ€ใƒ—ใƒญใƒณใƒ—ใƒˆใจใƒใƒชใ‚ทใƒผใฏใ€Œใ‚ณใƒผใƒ‰ใงใฏใชใ„ไป•ๆง˜ใ€ใงใ‚ใ‚ŠใชใŒใ‚‰ใ€ใ‚ทใ‚นใƒ†ใƒ ใฎๆŒฏใ‚‹่ˆžใ„ใ‚’ๅผทใ่ฆๅฎšใ—ใพใ™ใ€‚ใ—ใŸใŒใฃใฆใ€ใƒ—ใƒญใƒณใƒ—ใƒˆใฎๆ”น่จ‚ใฏไป•ๆง˜ๅค‰ๆ›ดใใฎใ‚‚ใฎใงใ‚ใ‚Šใ€ๅค‰ๆ›ด็ฎก็†ใ‚„ใƒฌใƒ“ใƒฅใƒผใฎใƒ—ใƒญใ‚ปใ‚นใŒๅฟ…่ฆใงใ™ใ€‚่ชฐใŒใฉใฎ็›ฎ็š„ใงใƒ—ใƒญใƒณใƒ—ใƒˆใ‚’ๆ›ดๆ–ฐใ—ใ€ใใ‚Œใซใ‚ˆใฃใฆใฉใฎๆŒ‡ๆจ™ใŒใฉใฎใ‚ˆใ†ใซๅค‰ๅŒ–ใ—ใŸใฎใ‹ใ‚’่จ˜้Œฒใ—ใฆใŠใใ“ใจใฏใ€ๅ“่ณชใจใ‚ฌใƒใƒŠใƒณใ‚นใฎไธก้ขใ‹ใ‚‰้‡่ฆใซใชใฃใฆใ„ใใพใ™ใ€‚

่ฉ•ไพกใƒปใƒญใƒผใƒซใ‚ขใ‚ฆใƒˆใƒป็ต„็น”ไฝ“ๅˆถใฎๅ†่จญ่จˆ

ๆŒฏใ‚‹่ˆžใ„ใƒ™ใƒผใ‚นใฎไป•ๆง˜ใ‚’่จญ่จˆใงใใŸใจใ—ใฆใ‚‚ใ€ใใ‚ŒใŒใ€Œ่‰ฏใ„ใ‹ใฉใ†ใ‹ใ€ใ‚’ใฉใ†่ฉ•ไพกใ™ใ‚‹ใ‹ใจใ„ใ†ๅ•้กŒใŒๆฎ‹ใ‚Šใพใ™ใ€‚LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใงใฏใ€ไธ€ไปถไธ€ไปถใฎๅฟœ็ญ”ใฎๆญฃใ—ใ•ใ ใ‘ใงใชใใ€ใ‚ฟใ‚นใ‚ฏๅ…จไฝ“ใจใ—ใฆใฎๆˆๅŠŸ็އใ€ใƒฆใƒผใ‚ถใƒผใŒ็ฏ€็ด„ใงใใŸๆ™‚้–“ใ€่ชคๅ‹•ไฝœใซใ‚ˆใ‚‹ใƒชใ‚นใ‚ฏใฎ้ ปๅบฆใจ้‡ๅคงๆ€งใชใฉใ€่ค‡ๆ•ฐใฎๆŒ‡ๆจ™ใ‚’็ต„ใฟๅˆใ‚ใ›ใฆๅˆคๆ–ญใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚

ๅฎŸๅ‹™ไธŠใฏใ€ใพใš้™ๅฎšใ•ใ‚ŒใŸใƒฆใƒผใ‚นใ‚ฑใƒผใ‚นใ‚’ๅฏพ่ฑกใซใ€ใƒ‘ใ‚คใƒญใƒƒใƒˆใƒฆใƒผใ‚ถใƒผใ‚’็›ธๆ‰‹ใซใƒ™ใƒผใ‚ฟ้‹็”จใ‚’่กŒใ†ใฎใŒ็พๅฎŸ็š„ใงใ™ใ€‚ใใฎ้š›ใ€ใƒฆใƒผใ‚ถใƒผใซใฏใชใ‚‹ในใใใฎใพใพใฎใƒญใ‚ฐใ‚’ๆฎ‹ใ—ใฆใ‚‚ใ‚‰ใ„ใ€ใฉใฎๅ ด้ขใงใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒๅฝนใซ็ซ‹ใกใ€ใฉใฎๅ ด้ขใงใ‚คใƒฉใƒƒใจใ•ใ›ใ‚‰ใ‚ŒใŸใฎใ‹ใ‚’ๅฎšๆ€ง็š„ใƒปๅฎš้‡็š„ใซๅˆ†ๆžใ—ใพใ™ใ€‚ใƒ—ใƒญใƒ€ใ‚ฏใƒˆใƒžใƒใƒผใ‚ธใƒฃใƒผใฏใ€ใใฎ็ตๆžœใ‚’ใ‚‚ใจใซใ€ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚„ใƒ„ใƒผใƒซๆง‹ๆˆใ€ใ‚คใƒณใ‚ฟใƒผใƒ•ใ‚งใƒผใ‚นใ‚’็นฐใ‚Š่ฟ”ใ—่ชฟๆ•ดใ—ใฆใ„ใใพใ™ใ€‚่ฉ•ไพกๆŒ‡ๆจ™ใจใ—ใฆใฏใ€ใ‚ฟใ‚นใ‚ฏๅฎŒไบ†ใพใงใซๅฟ…่ฆใชใ‚นใƒ†ใƒƒใƒ—ๆ•ฐใฎๆธ›ๅฐ‘ใ€ๆ‰‹ๅ‹•ๅฏพๅฟœใธใฎใ‚จใ‚นใ‚ซใƒฌใƒผใ‚ทใƒงใƒณ็އใ€ใƒฆใƒผใ‚ถใƒผใฎไธป่ฆณ็š„ๆบ€่ถณๅบฆใชใฉใŒไฝฟใ‚ใ‚Œใ‚‹ใ“ใจใŒๅคšใใชใ‚Šใพใ™ใ€‚

ใƒญใƒผใƒซใ‚ขใ‚ฆใƒˆใฎๆˆฆ็•ฅใ‚‚ใ€ๅพ“ๆฅใฎๆฉŸ่ƒฝใƒชใƒชใƒผใ‚นใจใฏๅฐ‘ใ—็•ฐใชใ‚Šใพใ™ใ€‚LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏใ€ๆจฉ้™ใฎ็ฏ„ๅ›ฒใซใ‚ˆใฃใฆใƒชใ‚นใ‚ฏใŒๅคงใใๅค‰ใ‚ใ‚‹ใŸใ‚ใ€ๆœ€ๅˆใฏใ€Œๆๆกˆใฎใฟใ€ใ€Œใƒ‰ใƒฉใƒ•ใƒˆใฎใฟใ€ใจใ„ใฃใŸๆŽงใˆใ‚ใชใƒขใƒผใƒ‰ใงๅฐŽๅ…ฅใ—ใ€ไธ€ๅฎšใฎๅฎŸ็ธพใŒ็ขบ่ชใงใใฆใ‹ใ‚‰ใ€Œ่‡ชๅ‹•ๅฎŸ่กŒใ€ใฎ็ฏ„ๅ›ฒใ‚’ๅบƒใ’ใฆใ„ใๆฎต้šŽ็š„ใชใ‚ขใƒ—ใƒญใƒผใƒใŒๆœ›ใพใ—ใ„ใงใ—ใ‚‡ใ†ใ€‚ใใฎ้Ž็จ‹ใงใ€ใƒฆใƒผใ‚ถใƒผๆ•™่‚ฒใ‚„ๅˆฉ็”จใƒใƒชใ‚ทใƒผใฎๆ˜Žๆ–‡ๅŒ–ใ‚‚ไธฆ่กŒใ—ใฆ้€ฒใ‚ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚

ๆœ€ๅพŒใซใ€็ต„็น”ไฝ“ๅˆถใซใคใ„ใฆใ‚‚่งฆใ‚ŒใฆใŠใๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎใƒ—ใƒญใƒ€ใ‚ฏใƒˆใซใฏใ€ใƒขใƒ‡ใƒซใฎใƒใƒฅใƒผใƒ‹ใƒณใ‚ฐใ‚„ใƒ—ใƒญใƒณใƒ—ใƒˆ่จญ่จˆใซ่ฉณใ—ใ„ใƒกใƒณใƒใƒผใ€ใƒ‰ใƒกใ‚คใƒณ็Ÿฅ่ญ˜ใ‚’ๆŒใคๆฅญๅ‹™ๅดใฎใƒกใƒณใƒใƒผใ€ใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใƒปๆณ•ๅ‹™ใฎ่ฆณ็‚นใ‹ใ‚‰ใƒชใ‚นใ‚ฏใ‚’่ฆ‹ใ‚‰ใ‚Œใ‚‹ใƒกใƒณใƒใƒผใชใฉใ€ๅคšๆง˜ใชๅฐ‚้–€ๆ€งใŒๆฑ‚ใ‚ใ‚‰ใ‚Œใพใ™ใ€‚ใƒ—ใƒญใƒ€ใ‚ฏใƒˆใƒžใƒใƒผใ‚ธใƒฃใƒผใฏใ€ใใฎๆฉ‹ๆธกใ—ๅฝนใจใ—ใฆใ€ๆŠ€่ก“ใจใƒ“ใ‚ธใƒใ‚นใจใ‚ฌใƒใƒŠใƒณใ‚นใ‚’็ตฑๅˆใ™ใ‚‹ใ€Œ็ฟป่จณ่€…ใ€ใฎใ‚ˆใ†ใชๅญ˜ๅœจใซใชใ‚Šใพใ™ใ€‚ใ“ใฎๆ–ฐใ—ใ„ๅฝนๅ‰ฒใ‚’่‡ช่ฆšใ—ใ€ๅญฆใณ็ถšใ‘ใ‚‹ใ“ใจใŒใ€LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆๆ™‚ไปฃใฎPMใซๆฑ‚ใ‚ใ‚‰ใ‚Œใ‚‹ๆœ€ๅคงใฎ่ณ‡่ณชใ ใจ่จ€ใˆใ‚‹ใงใ—ใ‚‡ใ†ใ€‚

Agents-as-a-service are poised to rewire the software industry and corporate structures

This was the year of AI agents. Chatbots that simply answered questions are now evolving into autonomous agents that can carry out tasks on a userโ€™s behalf, so enterprises continue to invest in agentic platforms as transformation evolves. Software vendors are investing in it as fast as they can, too.

According to a National Research Group survey of more than 3,000 senior leaders, more than half of executives say their organization is already using AI agents. Of the companies that spend no less than half their AI budget on AI agents, 88% say theyโ€™re already seeing ROI on at least one use case, with top areas being customer service and experience, marketing, cybersecurity, and software development.

On the software provider side, Gartner predicts 40% of enterprise software applications in 2026 will include agentic AI, up from less than 5% today. And agentic AI could drive approximately 30% of enterprise application software revenue by 2035, surpassing $450 billion, up from 2% in 2025. In fact, business users might not have to interact directly with the business applications at all since AI agent ecosystems will carry out user instructions across multiple applications and business functions. At that point, a third of user experiences will shift from native applications to agentic front ends, Gartner predicts.

Itโ€™s already starting. Most enterprise applications will have embedded assistants, a precursor to agentic AI, by the end of this year, adds Gartner.

IDC has similar predictions. By 2028, 45% of IT product and service interactions will use agents as the primary interface, the firm says. Thatโ€™ll change not just how companies work, but how CIOs work as well.

Agents as employees

At financial services provider OneDigital, chief product officer Vinay Gidwaney is already working with AI agents, almost as if they were people.

โ€œWe decided to call them AI coworkers, and we set up an AI staffing team co-owned between my technology team and our chief people officer and her HR team,โ€ he says. โ€œThat team is responsible for hiring AI coworkers and bringing them into the organization.โ€ You heard that right: โ€œhiring.โ€

The first step is to sit down with the business leader and write a job description, which is fed to the AI agent, and then it becomes known as an intern.

โ€œWe have a lot of interns weโ€™re testing at the company,โ€ says Gidwaney. โ€œIf they pass, they get promoted to apprentices and we give them our best practices, guardrails, a personality, and human supervisors responsible for training them, auditing what they do, and writing improvement plans.โ€

The next promotion is to a full-time coworker, and it becomes available to be used by anyone at the company.

โ€œAnyone at our company can go on the corporate intranet, read the skill sets, and get ice breakers if they donโ€™t know how to start,โ€ he says. โ€œYou can pick a coworker off the shelf and start chatting with them.โ€

For example, thereโ€™s Ben, a benefits expert whoโ€™s trained on everything having to do with employee benefits.

โ€œWe have our employee benefits consultants sitting with clients every day,โ€ Gidwaney says. โ€œBen will take all the information and help the consultants strategize how to lower costs, and how to negotiate with carriers. Heโ€™s the consultantsโ€™ thought partner.โ€

There are similar AI coworkers working on retirement planning, and on property and casualty as well. These were built in-house because theyโ€™re core to the companyโ€™s business. But there are also external AI agents who can provide additional functionality in specialized yet less core areas, like legal or marketing content creation. In software development, OneDigital uses third-party AI agents as coding assistants.

When choosing whether to sign up for these agents, Gidwaney says he doesnโ€™t think of it the way he thinks about licensing software, but more to hiring a human consultant or contractor. For example, will the agent be a good cultural fit?

But in some cases, itโ€™s worse than hiring humans since a bad human hire who turns out to be toxic will only interact with a small number of other employees. But an AI agent might interact with thousands of them.

โ€œYou have to apply the same level of scrutiny as how you hire real humans,โ€ he says.

A vendor who looks like a technology company might also, in effect, be a staffing firm. โ€œThey look and feel like humans, and you have to treat them like that,โ€ he adds.

Another way that AI agents are similar to human consultants is when they leave the company, they take their expertise with them, including what they gained along the way. Data can be downloaded, Gidwaney says, but not necessarily the fine-tuning or other improvements the agent received. Realistically, there might not be any practical way to extract that from a third-party agent, and that could lead to AI vendor lock-in.

Edward Tull, VP of technology and operations at JBGoodwin Realtors, says he, too, sees AI agents as something akin to people. โ€œI see it more as a teammate,โ€ he says. โ€œAs we implement more across departments, I can see these teammates talking to each other. It becomes almost like a person.โ€

Today, JBGoodwin uses two main platforms for its AI agents. Zapier lets the company build its own and HubSpot has its own AaaS, and theyโ€™re already pre-built. โ€œThere are lead enrichment agents and workflow agents,โ€ says Tull.

And the company is open to using more. โ€œIn accounting, if someone builds an agent to work with this particular type of accounting software, we might hire that agent,โ€ he says. โ€œOr a marketing coordinator that we could hire thatโ€™s built and ready to go and connected to systems we already use.โ€

With agents, his job is becoming less about technology and more about management, he adds. โ€œItโ€™s less day-to-day building and more governance, and trying to position the company to be competitive in the world of AI,โ€ he says.

Heโ€™s not the only one thinking of AI agents as more akin to human workers than to software.

โ€œWith agents, because the technology is evolving so far, itโ€™s almost like youโ€™re hiring employees,โ€ says Sheldon Monteiro, chief product officer at Publicis Sapient. โ€œYou have to determine whom to hire, how to train them, make sure all the business units are getting value out of them, and figure when to fire them. Itโ€™s a continuous process, and this is very different from the past, where I make a commitment to a platform and stick with it because the solution works for the business.โ€

This changes how the technology solutions are managed, he adds. What companies will need now is a CHRO, but for agentic employees.

Managing outcomes, not persons

Vituity is one of the largest national, privately-held medical groups, with 600 hospitals, 13,800 employees, and nearly 14 million patients. The company is building its own AI agents, but is also using off-the-shelf ones, as AaaS. And AI agents arenโ€™t people, says CIO Amith Nair. โ€œThe agent has no feelings,โ€ he says. โ€œAGI isnโ€™t here yet.โ€

Instead, it all comes down to outcomes, he says. โ€œIf you define an outcome for a task, thatโ€™s the outcome youโ€™re holding that agent to.โ€ And that part isnโ€™t different to holding employees accountable to an outcome. โ€œBut you donโ€™t need to manage the agent,โ€ he adds. โ€œTheyโ€™re not people.โ€

Instead, the agent is orchestrated and you can plug and play them. โ€œIt needs to understand our business model and our business context, so you ground the agent to get the job done,โ€ he says.

For mission-critical functions, especially ones related to sensitive healthcare data, Vituity is building its own agents inside a HIPAA-certified LLM environment using the Workato agent development platform and the Microsoft agentic platform.

For other functions, especially ones having to do with public data, Vituity uses off-the-shelf agents, such as ones from Salesforce and Snowflake. The company is also using Claude with GitHub Copilot for coding. Nair can already see that agentic systems will change the way enterprise software works.

โ€œMost of the enterprise applications should get up to speed with MCP, the integration layer for standardization,โ€ he says. โ€œIf they donโ€™t get to it, itโ€™s going to become a challenge for them to keep selling their product.โ€

A company needs to be able to access its own data via an MCP connector, he says. โ€œAI needs data, and if they donโ€™t give you an MCP, you just start moving it all to a data warehouse,โ€ he adds.

Sharp learning curve

In addition to providing a way to store and organize your data, enterprise software vendors also offer logic and functionality, and AI will soon be able to handle that as well.

โ€œAll you need is a good workflow engine where you can develop new business processes on the fly, so it can orchestrate with other agents,โ€ Nair says. โ€œI donโ€™t think weโ€™re too far away, but weโ€™re not there yet. Until then, SaaS vendors are still relevant. The question is, can they charge that much money anymore.โ€

The costs of SaaS will eventually have to come down to the cost of inference, storage, and other infrastructure, but they canโ€™t survive the way theyโ€™re charging now he says. So SaaS vendors are building agents to augment or replace their current interfaces. But that approach itself has its limits. Say, for example, instead of using Salesforceโ€™s agent, a company can use its own agents to interact with the Salesforce environment.

โ€œItโ€™s already happening,โ€ Nair adds. โ€œMy SOC agent is pulling in all the log files from Salesforce. Theyโ€™re not providing me anything other than the security layer they need to protect the data that exists there.โ€

AI agents are set to change the dynamic between enterprises and software vendors in other ways, too. One major difference between software and agents is software is well-defined, operates in a particular way, and changes slowly, says Jinsook Han, chief of strategy, corporate development, and global agentic AI at Genpact.

โ€œBut we expect when the agent comes in, itโ€™s going to get smarter every day,โ€ she says. โ€œThe world will change dramatically because agents are continuously changing. And the expectations from the enterprises are also being reshaped.โ€

Another difference is agents can more easily work with data and systems where they are. Take for example a sales agent meeting with customers, says Anand Rao, AI professor at Carnegie Mellon University. Each salesperson has a calendar where all their meetings are scheduled, and they have emails, messages, and meeting recordings. An agent can simply access those emails when needed.

โ€œWhy put them all into Salesforce?โ€ Rao asks. โ€œIf the idea is to do and monitor the sale, it doesnโ€™t have to go into Salesforce, and the agents can go grab it.โ€

When Rao was a consultant having a conversation with a client, heโ€™d log it into Salesforce with a note, for instance, saying the client needs a white paper from the partner in charge of quantum.

With an agent taking notes during the meeting, it can immediately identify the action items and follow up to get the white paper.

โ€œRight now weโ€™re blindly automating the existing workflow,โ€ Rao says. โ€œBut why do we need to do that? Thereโ€™ll be a fundamental shift of how we see value chains and systems. Weโ€™ll get rid of all the intermediate steps. Thatโ€™s the biggest worry for the SAPs, Salesforces, and Workdays of the world.โ€

Another aspect of the agentic economy is instead of a human employee talking to a vendorโ€™s AI agent, a company agent can handle the conversation on the employeeโ€™s behalf. And if a company wants to switch vendors, the experience will be seamless for employees, since they never had to deal directly with the vendor anyway.

โ€œI think thatโ€™s something thatโ€™ll happen,โ€ says Ricardo Baeza-Yates, co-chair of theย  US technology policy committee at the Association for Computing Machinery. โ€œAnd it makes the market more competitive, and makes integrating things much easier.โ€

In the short term, however, it might make more sense for companies to use the vendorsโ€™ agents instead of creating their own.

โ€œI recommend people donโ€™t overbuild because everything is moving,โ€ says Bret Greenstein, CAIO at West Monroe Partners, a management consulting firm. โ€œIf you build a highly complicated system, youโ€™re going to be building yourself some tech debt. If an agent exists in your application and itโ€™s localized to the data in that application, use it.โ€

But over time, an agent thatโ€™s independent of the application can be more effective, he says, and thereโ€™s a lot of lock-in that goes into applications. โ€œItโ€™s going to be easier every day to build the agent you want without having to buy a giant license. โ€œThe effort to get effective agents is dropping rapidly, and the justification for getting expensive agents from your enterprise software vendors is getting less,โ€ he says.

The future of software

According to IDC, pure seat-based pricing will be obsolete by 2028, forcing 70% of vendors to figure out new business models.

With technology evolving as quickly as it is, JBGoodwin Realtors has already started to change its approach to buying tech, says Tull. It used to prefer long-term contracts, for example but thatโ€™s not the case anymore โ€œYou save more if you go longer, but Iโ€™ll ask for an option to re-sign with a cap,โ€ he says.

That doesnโ€™t mean SaaS will die overnight. Companies have made significant investments in their current technology infrastructure, says Patrycja Sobera, SVP of digital workplace solutions at Unisys.

โ€œTheyโ€™re not scrapping their strategies around cloud and SaaS,โ€ she says. โ€œTheyโ€™re not saying, โ€˜Letโ€™s abandon this and go straight to agentic.โ€™ Iโ€™m not seeing that at all.โ€

Ultimately, people are slow to change, and institutions are even slower. Many organizations are still running legacy systems. For example, the FAA has just come out with a bold plan to update its systems by getting rid of floppy disks and upgrading from Windows 95. They expect this to take four years.

But the center of gravity will move toward agents and, as it does, so will funding, innovation, green-field deployments, and the economics of the software industry.

โ€œThere are so many organizations and leaders who need to cross the chasm,โ€ says Sobera. โ€œYouโ€™re going to have organizations at different levels of maturity, and some will be stuck in SaaS mentality, but feeling more in control while some of our progressive clients will embrace the move. Weโ€™re also seeing those clients outperform their peers in revenue, innovation, and satisfaction.โ€

CIOs take note: talent will walk without real training and leadership

Tech talent, especially with advanced and specialized skills, remains elusive. Findings from a recent IT global HR trends report by Gi Group show a 47% enterprise average struggles with sourcing and retaining talent. As a consequence, turnover remains high.

Another international study by Cegos highlights that 53% of 200 directors or managers of information systems in Italy alone say the difficulty of attracting and retaining IT talent is something they face daily.ย Cybersecurityย is the most relevant IT problem but a majority, albeit slight, feels confident of tackling it. Conversely, however, only 8% think theyโ€™ll be able to solve the IT talent problem. IT team skills development and talent retention are the next biggest issues facing CIOs in Italy, and only 24% and 9%, respectively, think they can successfully address it.

โ€œTalents arenโ€™t rare,โ€ says Cecilia Colasanti, CIO of Istat, the National Institute of Statistics. โ€œTheyโ€™re there but theyโ€™re not valued. Thatโ€™s why, more often, they prefer to go abroad. For me, talent is the right person in the right place. Managers, including CIOs, must have the ability to recognize talents, make them understand theyโ€™ve been identified, and enhance them with the right opportunities.โ€

The CIO as protagonist of talent management

Colasanti has very clear ideas on how to manage her talents to create a cohesive and motivated group. โ€œThe goal I set myself as CIO was to release increasingly high-quality products for statistical users, both internal and external,โ€ she says. โ€œI want to be concrete and close the projects weโ€™ve opened, to ensure the institution continues to improve with the contribution of IT, which is a driver of statistical production. I have the task of improving the IT function, the quality of the products released, the relevance of the management, and the well-being of people.โ€

Istatโ€™s IT department currently has 195 people, and represents about 10% of the instituteโ€™s entire staff. Colasantiโ€™s first step after her CIO appointment in October 2023 was to personally meet with all the resources assigned to management for an interview.

โ€œIโ€™ve been working at Istat since 2001 and almost everyone knows each other,โ€ she says. โ€œIโ€™ve held various roles in the IT department, and in my latest role as CIO, I want to listen to everyone to gather every possible viewpoint. Because how well we know each other, I feel my colleagues have a high expectation of our work together. Thatโ€™s why I try to establish a frank dialogue and avoid ambiguity. But I make it clear that listening doesnโ€™t mean delegating responsibility. I accept some proposals, reject others, and try to justify choices.โ€

Another move was to reinstate the two problems, two solutions initiative launched in Istat many years ago. Colasanti asked staff, on a voluntary basis, to identify two problems and propose two solutions. She then processed the material and shared the results in face-to-face meetings, commenting on the proposals, and evaluating those to be followed up.

โ€œIโ€™ve been very vocal about this initiative,โ€ she says, โ€œBut I also believe itโ€™s been an effective way to cement the relationship of trust with my colleagues.โ€

Some of the inquiries related to career opportunities and technical issues, but the most frequent pain points that emerged were internal communication and staff shortages. Colasanti spoke with everyone, clarifying which points she could or couldnโ€™t act on. Career paths and hiring in the public sector, for example, follow precise procedures where little could be influenced.

โ€œI tried to address all the issues from a proactive perspective,โ€ she says. โ€œWhere I perceived a generic resistance to change rather than a specific problem, I tried to focus on intrinsic motivation and peopleโ€™s commitment. Itโ€™s important to explain the strategies of the institution and the role of each person to achieve objectives. After all, people need and have the right to know the context in which they operate, and be aware of how their work affects the bigger picture.โ€

Engagement must be built day by day, so Colasanti regularly meets with staff including heads of department and service managers.

Small enterprise, big concerns

The case of Istat stands out for the size of its IT department, but in SMEs, IT functions can be just a handful of people, including the CIO, and much of the work is done by external consultants and suppliers. Itโ€™s a structure that has to be worked with, dividing themselves between coordinating various resources across different projects, and the actual IT work. Outsourcing to the cloud is an additional support but CIOs would generally like to have more in-house expertise rather than depend on partners to control supplier products.

โ€œAttracting and retaining talent is a problem, so things are outsourced,โ€ says the CIO of a small healthcare company with an IT team of three. โ€œYou offload the responsibility and free up internal resources at the risk of losing know-how in the company. But at the moment, we have no other choice. We canโ€™t offer the salaries of a large private group, and IT talent changes jobs every two years, so keeping people motivated is difficult. We hire a candidate, go through the training, and see them grow only to see them leave. But our sector is highly specialized and the necessary skills are rare.โ€

The sirens of the market are tempting for those with the skills to command premium positioning, and the private sector is able to attract talent more easily than public due to its hiring flexibility and career paths.

โ€œThe public sector offers the opportunity to research, explore and deepen issues that private companies often donโ€™t invest in because they donโ€™t see the profit,โ€ says Colasanti. โ€œThe public has the good of the community as its mission and can afford long-term investments.โ€

Training builds resource retention

To meet demand, CIOs are prioritizing hiring new IT profiles and training their teams, according to the Cegos international barometer. Offering reskilling and upskilling are effective ways to overcome the pitfalls of talent acquisition and retention.

โ€œThe market is competitive, so retaining talent requires barriers to exit,โ€ says Emanuela Pignataro, head of business transformation and execution at Cegos Italia. โ€œIf an employer creates a stimulating and rewarding environment with sufficient benefits, people are less likely to seek other opportunities or get caught up in the competition. Many feel theyโ€™re burdened with too many tasks they canโ€™t cope with on their own, and these are people with the most valuable skills, but who often work without much support. So if the company spends on training or onboarding new people who support these people, they create reassurance, which generates loyalty.โ€

In fact, Colasanti is a staunch supporter of life-long learning, and the experience that brings balance and management skills. But she doesnโ€™t have a large budget for IT training, yet solutions in response to certain requests are within reach.

โ€œIn these cases, I want serious commitment,โ€ she says. โ€œThe institution invests and the course must give a result. A higher budget would be useful, of course, especially for an ever-evolving subject like cybersecurity.โ€

The need for leadership

CIOs also recognize the importance of following people closely, empowering them, and giving them a precise and relevant role that enhances motivation. Itโ€™s also essential to collaborate with the HR function to develop tools for welfare and well-being.

According to the Gi Group study, the factors that IT candidates in Italy consider a priority when choosing an employer are, in descending order, salary, a hybrid job offer, work-life balance, the possibility of covering roles that donโ€™t involve high stress levels, and opportunities for career advancement and professional growth.

But thereโ€™s another aspect that helps solve the age-old issue of talent management. CIOs need to recognize more of the role of their leadership. At the moment, Italian IT directors place it at the bottom of their key qualities. In the Cegos study, technical expertise, strategic vision, and ability to innovate come first, while leadership came a distant second. But the leadership of the CIO is a founding basis, even when thereโ€™s disagreement with choices.

โ€œI believe in physical presence in the workplace,โ€ says Colasanti. โ€œIstat has a long tradition of applying teleworking and implementing smart working, which everyone can access if they wish. Personally, I prefer to be in the office, but I respect the need to reconcile private life and work, and I have no objection to agile working. Iโ€™m on site every day, though. My colleagues know Iโ€™m here.โ€

El MIT empieza a contabilizar los agentes de IA que ahora hacen trabajos que antes desempeรฑaban personas

El prestigioso instituto tecnolรณgico estadounidense MIT ha comenzado a desarrollar un รญndice, llamado Iceberg, para realizar un seguimiento de los diferentes tipos de agentes de IA que ahora realizan trabajos que hasta ahora hacรญan humanos. La idea del centro es contabilizar los agentes de IA que hay en todo el mundo para obtener una visiรณn mรกs amplia de cรณmo la tecnologรญa podrรญa sustituir al trabajo humano.

Las cifras iniciales del รญndice indican que solo 13.000 agentes podrรญan exponer a 151 millones de trabajadores humanos, es decir, alrededor del 11,7% de la poblaciรณn activa, a la pรฉrdida de puestos de trabajo o salarios.

Un artรญculo de investigaciรณn del MIT afirma que es necesario cuantificar la poblaciรณn de agentes de IA, que en รบltima instancia podrรญa superar a la poblaciรณn humana. La mรฉtrica ofrece una foto de cรณmo la era de la IA estรก cambiando la productividad, el desarrollo de habilidades y la creaciรณn y el desarrollo de puestos de trabajo.

Los investigadores del MIT cuentan que, dado que las cifras de empleo existentes de la Oficina de Estadรญsticas Laborales de EE. UU. miran hacia atrรกs y no hacia adelante, se necesita un รญndice de empleo de IA. Argumentan que los datos ofrecen una visiรณn prospectiva de cรณmo la IA sustituirรก a los trabajadores y ayuda a los lรญderes a planificar el desarrollo de habilidades y la inversiรณn. โ€œEl mercado laboral estรก evolucionando mรกs rรกpido de lo que los sistemas de datos actuales pueden captarโ€, afirman los investigadores, aรฑadiendo que โ€œlos marcos de planificaciรณn de la mano de obra existentes se han diseรฑado para economรญas exclusivamente humanasโ€.

La pรฉrdida de puestos de trabajo o salarios se debe a la automatizaciรณn en las empresas, que ya se estรก produciendo, segรบn seรฑala el estudio. La IA se utiliza habitualmente para generar cรณdigo y se estรก empleando para automatizar diversas tareas administrativas y de apoyo.

Los รญndices de empleo tรญpicos cubren las cifras de pรฉrdida de puestos de trabajo, pero no reflejan las oportunidades creadas por la IA en รกreas como los mercados de trabajos esporรกdicos, los copilotos de IA y las redes de autรณnomos. โ€œPara cuando estos cambios aparezcan en las estadรญsticas oficiales, es posible que los responsables polรญticos ya estรฉn reaccionando a problemas del pasado, destinando miles de millones a programas que se centran en habilidades que ya han quedado obsoletasโ€, apuntan los investigadores.

El MIT se enfrenta a un gran reto, ya que predecir los puestos de trabajo creados y perdidos por la IA serรก una tarea difรญcil, segรบn Jack Gold, analista de J. Gold Associates. โ€œEstรก claro que la IA hace algunas cosas bien, pero tambiรฉn estรก claro que aรบn no comprendemos plenamente el alcance total de sus capacidades y sus inconvenientesโ€, afirma.

Es muy difรญcil hacer proyecciones mรกs allรก de unos pocos aรฑos vista, cuando la IA agentiva alcance su pleno desarrollo, segรบn Gold. โ€œConsiderarรญa cualquier predicciรณn como potencialmente poco precisa en esta fase temprana de la implantaciรณn de la IAโ€, afirma. En todo caso, segรบn el experto, la IA tiene mรกs potencial para ayudar que para sustituir a las personas en los prรณximos aรฑos, incluso cuando surja la IA fรญsica.

No obstante, la falta de datos sobre el empleo relacionado con la IA ya es motivo de preocupaciรณn en Estados Unidos. El pasado mes de septiembre, algunos de los principales economistas del paรญs enviaron una carta al Departamento de Trabajo de los Estados Unidos pidiendo que โ€œmejorara estos conjuntos de datos para ayudar a los responsables polรญticos y a los investigadores a evaluar mejor cรณmo la IA estรก transformando los mercados laboralesโ€. Las cifras ayudarรกn a recopilar datos econรณmicos de alta calidad que servirรกn de base para las polรญticas destinadas a abordar los problemas laborales que genera la IA, segรบn los economistas. Entre los firmantes del escrito se encontraban Ben Bernanke y Janet Yellen, antiguos presidentes de la Reserva Federal de los Estados Unidos.

Segรบn recientes estadรญsticas de empleo de Challenger, Gray and Christmas unos 153.074 puestos de trabajo han sido eliminados por la IA. Muchos de ellos eran puestos considerados superfluos en las empresas y puestos de nivel inicial. Varias empresas, entre ellas Amazon y Meta, han estado reduciendo su plantilla mientras aumentaban las inversiones en IA. Las empresas estรกn implantando poco a poco agentes de IA para la gestiรณn del conocimiento, las tareas administrativas y el control de calidad.

BASF Agricultural Solutions, por ejemplo, ha desplegado mil agentes Copilot (de Microsoft), mientras que EY tiene 41.000 agentes en producciรณn, segรบn expusieron recientemente ejecutivos de estas empresas en una mesa redonda celebrada en el evento Ignite de Microsoft, que tuvo lugar el mes pasado en Estados Unidos. Sin embargo, las herramientas de IA que se utilizan actualmente tienen como objetivo aumentar la productividad humana, en lugar de sustituirla, segรบn indicaron los participantes en dicho debate.

Los investigadores del MIT no han respondido ante la peticiรณn de declaraciones realizada por este medio.

HPE CEO ๋„ค๋ฆฌ, ์ฃผ๋‹ˆํผ ์ธ์ˆ˜ ํšจ๊ณผ ๊ณต๊ฐœยทยทยท๋„คํŠธ์›ŒํฌยทAI ๊ฒฐํ•ฉ ๊ฐ€์†



HPE๊ฐ€ HP์—์„œ ๋ถ„๋ฆฌ๋ผ ๋…๋ฆฝ์ ์ธ ์—ฌ์ •์„ ์‹œ์ž‘ํ•œ ์ง€ 10๋…„์ด ์ง€๋‚œ ์‹œ์ ์—, ์ตœ๊ณ ๊ฒฝ์˜์ž ์•ˆํ† ๋‹ˆ์˜ค ๋„ค๋ฆฌ๋Š” 12์›” 3์™€ 4์ผ ๋ฐ”๋ฅด์…€๋กœ๋‚˜์—์„œ ์—ด๋ฆฐ HPE์˜ ์ฃผ์š” ์—ฐ๋ก€ ์œ ๋Ÿฝ ํ–‰์‚ฌ ๋ฌด๋Œ€์— ์˜ฌ๋ž๋‹ค. ๋„ค๋ฆฌ๋Š” ์ด ์ž๋ฆฌ์—์„œ ๋„คํŠธ์›Œํฌ, ํด๋ผ์šฐ๋“œ, ์ธ๊ณต์ง€๋Šฅ(AI)์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ๊ธฐ์ˆ  ์ถ•์„ ์ค‘์‹ฌ์œผ๋กœ ํ•œ HPE์˜ ๋กœ๋“œ๋งต์„ ๊ณต๊ฐœํ–ˆ๋‹ค.

๋„ค๋ฆฌ๋Š” HPE ๋””์Šค์ปค๋ฒ„ ๋ฐ”๋ฅด์…€๋กœ๋‚˜ 2025 ํ–‰์‚ฌ์— ์ฐธ์„ํ•œ 6,000์—ฌ ๋ช…์˜ ์ฒญ์ค‘์„ ํ–ฅํ•ด โ€œ์ง€๋‚œ 10๋…„ ๋™์•ˆ ์šฐ๋ฆฌ๊ฐ€ ํ•จ๊ป˜ ๋งŒ๋“ค์–ด๋‚ธ ์„ฑ๊ณผ๊ฐ€ ๋งค์šฐ ์ž๋ž‘์Šค๋Ÿฝ๋‹คโ€๋ผ๋ฉฐ โ€œ์•ž์œผ๋กœ ํŽผ์ณ์งˆ ๋ณ€ํ™”๋Š” ๋”์šฑ ๊ธฐ๋Œ€๋œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

HPE๊ฐ€ ์ œ์‹œํ•œ ์„ธ ์ถ•์˜ ์ „๋žต์€ ์˜ค๋Š˜๋‚  ๊ธฐ์—…์ด ์ง๋ฉดํ•œ ํ•ต์‹ฌ IT ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด๋‹ค. ๋„ค๋ฆฌ์— ๋”ฐ๋ฅด๋ฉด ๊ธฐ์—…๋“ค์€ ์—ฌ์ „ํžˆ ๋ ˆ๊ฑฐ์‹œ ์ธํ”„๋ผ ์ฒ˜๋ฆฌ, ๋ฐ์ดํ„ฐ ์ฃผ๊ถŒ ํ™•๋ณด, ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๋น„์šฉ ๊ด€๋ฆฌ, AI ํ™•์‚ฐ์œผ๋กœ ๋†’์•„์ง„ ์ปดํ“จํŒ… ์ˆ˜์š” ๋“ฑ์˜ ๋„์ „์— ๋งž์„œ๊ณ  ์žˆ๋‹ค.

ํŠนํžˆ ์ฃผ๋‹ˆํผ๋„คํŠธ์›์Šค(Juniper Networks)๋ฅผ ์ง€๋‚œํ•ด 7์›” ์ธ์ˆ˜ํ•˜๋ฉฐ ํฌ๊ฒŒ ๊ฐ•ํ™”๋œ ๋„คํŠธ์›Œํฌ ๊ธฐ์ˆ ์€ ์ด๋ฒˆ ๋ฐ”๋ฅด์…€๋กœ๋‚˜ ํ–‰์‚ฌ์—์„œ ํ•ต์‹ฌ ์š”์†Œ๋กœ ๋ถ€๊ฐ๋๋‹ค.

์ฃผ๋‹ˆํผ์˜ ์ „ CEO์ด์ž ํ˜„์žฌ HPE ๋„คํŠธ์›Œํ‚น ์‚ฌ์—… ์ด๊ด„์„ ๋งก๊ณ  ์žˆ๋Š” ๋ผ๋ฏธ ๋ผํž˜์€ ํ–‰์‚ฌ์— ์ฐธ์„ํ•ด ์–‘์‚ฌ ํ†ตํ•ฉ์˜ ์ฒซ ๊ธฐ์ˆ  ์„ฑ๊ณผ๋ฅผ ์†Œ๊ฐœํ–ˆ๋‹ค. ์–‘์‚ฌ์˜ ๋„คํŠธ์›Œํฌ ๊ด€๋ฆฌ ํ”Œ๋žซํผ์— ์ƒˆ๋กœ์šด AI ๊ธฐ๋ฐ˜ ์šด์˜ ๊ธฐ๋Šฅ์„ ํ†ตํ•ฉํ•˜๊ณ , ๊ณต๋™ ํ•˜๋“œ์›จ์–ด๋ฅผ ์ฒ˜์Œ์œผ๋กœ ๊ณต๊ฐœํ•œ ๊ฒƒ์ด๋‹ค.

๋ผํž˜์€ โ€œ์ง€๊ธˆ์ฒ˜๋Ÿผ ๋„คํŠธ์›Œํฌ์˜ ์ค‘์š”์„ฑ์ด ๋†’์•„์ง„ ์‹œ๊ธฐ๋Š” ์—†์—ˆ๋‹คโ€๋ผ๊ณ  ๋งํ•˜๋ฉด์„œ, ์ด์ œ ๋„คํŠธ์›Œํฌ์˜ ๋ชฉํ‘œ๋Š” ๋‹จ์ˆœ ์—ฐ๊ฒฐ์ด ์•„๋‹ˆ๋ผ โ€˜์ž์œจ์  ๊ด€๋ฆฌโ€™๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ๋„คํŠธ์›Œํฌ๊ฐ€ ์Šค์Šค๋กœ ๊ตฌ์„ฑยท์ตœ์ ํ™”ยท๋ณต๊ตฌํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋‚˜์•„๊ฐ€์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ•์กฐํ•˜๋ฉฐ, AI๋กœ ์„ค๊ณ„๋˜๊ณ  AI๋ฅผ ์œ„ํ•œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ธฐ๊ธฐ ์—ฐ๊ฒฐ, ๋ณต์žกํ•ด์ง€๋Š” ํ™˜๊ฒฝ, ๊ณ ๋„ํ™”๋˜๋Š” ๋ณด์•ˆ ์œ„ํ˜‘์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

๋„ค๋ฆฌ๋Š” โ€œ๋ผ๋ฏธ์™€ ๋‚ด๊ฐ€ ๊ฐ€์ง„ ๊ณตํ†ต์˜ ๋ชฉํ‘œ๋Š” ๋„คํŠธ์›Œํ‚น ๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ์šด ๋ฆฌ๋”๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” ์ฃผ๋‹ˆํผ ์ธ์ˆ˜ ํ›„ 5๊ฐœ์›” ๋งŒ์— HPE๊ฐ€ ์ด๋ฏธ ์ด์ „ ๊ฒฝ์Ÿ์‚ฌ์˜€๋˜ ์ฃผ๋‹ˆํผ ๊ธฐ์ˆ ๊ณผ 2015๋…„ ์ธ์ˆ˜ํ•œ ์•„๋ฃจ๋ฐ” ์†”๋ฃจ์…˜์„ ๊ฒฐํ•ฉํ•œ ์ปค๋„ฅํ‹ฐ๋น„ํ‹ฐ ์ œํ’ˆ์„ ์‹œ์žฅ์— ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด์–ด โ€œ์•ž์œผ๋กœ๋Š” ์–‘์‚ฌ๊ฐ€ ๊ฐ๊ฐ ๋ฌด์—‡์„ ํ•˜๊ณ  ์žˆ๋Š”์ง€์กฐ์ฐจ ๊ตฌ๋ถ„๋˜์ง€ ์•Š์„ ๊ฒƒโ€์ด๋ผ๋ฉฐ, โ€œ๊ธฐ๋ณธ์ ์ธ ์ด์ค‘ ์„ค๊ณ„๋ฅผ ์ด๋ฏธ ์ง€์›ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ ๋‘ ์กฐ์ง์ด ์–ผ๋งˆ๋‚˜ ๋น ๋ฅด๊ฒŒ ํ•˜๋‚˜๋กœ ์œตํ•ฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋™์‹œ์— HPE์˜ ํ˜์‹  ์—ญ๋Ÿ‰์ด ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋Š”์ง€๋ฅผ ์ž˜ ๋ณด์—ฌ์ค€๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

HPE์˜ ์ฃผ๋‹ˆํผ ์ธ์ˆ˜, ๋ณต์žกํ•œ ๊ณผ์ •์„ ๊ฑฐ์น˜๋‹ค

140์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 20์กฐ ์›) ๊ทœ๋ชจ์˜ HPE์˜ ์ฃผ๋‹ˆํผ ์ธ์ˆ˜๋Š” ๋‹จ์ˆœํ•œ ๊ฑฐ๋ž˜๊ฐ€ ์•„๋‹ˆ๋ผ ๋งค์šฐ ๋ณต์žกํ•˜๊ณ  ๊ธด ์—ฌ์ •์ด์—ˆ๋‹ค. 2024๋…„ 1์›” ์ธ์ˆ˜ ๊ณ„ํš์ด ๋ฐœํ‘œ๋์ง€๋งŒ ์ตœ์ข… ๊ฑฐ๋ž˜๋Š” 2025๋…„ 7์›”์— ์ด๋ฅด๋Ÿฌ์„œ์•ผ ๋งˆ๋ฌด๋ฆฌ๋๋‹ค. ๋ฏธ๊ตญ์—์„œ๋Š” ํŠนํžˆ ๋…ผ๋ž€๋„ ์ ์ง€ ์•Š์•˜๋‹ค. ๋ฏธ๊ตญ ๋ฒ•๋ฌด๋ถ€(DOJ)๊ฐ€ ์ด๋ฒˆ ์ธ์ˆ˜๊ฐ€ ๋„คํŠธ์›Œํฌ ์žฅ๋น„ ์‹œ์žฅ, ํŠนํžˆ ๋ฌด์„ ๋žœ(WLAN) ๋ถ„์•ผ์˜ ๊ฒฝ์Ÿ์„ ์•ฝํ™”์‹œํ‚จ๋‹ค๋ฉฐ ์†Œ์†ก์„ ์ œ๊ธฐํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์ด๋ฒˆ ์ธ์ˆ˜ ์Šน์ธ ๊ณผ์ •์—์„œ ๊ฒช์€ ๋‚œ๊ด€๊ณผ ์—ฌ์ „ํžˆ ๋‚จ์•„ ์žˆ๋Š” ๋ฏธ๊ตญ ๋‚ด ๋น„ํŒ์— ๋Œ€ํ•ด ํŒŒ์šด๋“œ๋ฆฌ ์‚ฐํ•˜ ์–ธ๋ก ์‚ฌ ์ปดํ“จํ„ฐ์›”๋“œ์˜ ์งˆ๋ฌธ์„ ๋ฐ›์€ ๋„ค๋ฆฌ๋Š” ๋จผ์ € โ€œ๋ฏธ๊ตญ์„ ์ œ์™ธํ•œ ๊ตญ๊ฐ€์—์„œ๋Š” ํ†ต์ƒ์ ์ธ 6๊ฐœ์›” ๋‚ด ์Šน์ธ์ด ์™„๋ฃŒ๋๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. 2024๋…„ ์—ฌ๋ฆ„์—๋Š” 3๊ฐœ๊ตญ๋งŒ ์Šน์ธ์ด ๋‚จ์•„ ์žˆ์—ˆ๊ณ , ๊ทธ์ค‘ 2๊ฐœ๊ตญ์€ ๋‹ค์Œ 3๊ฐœ์›” ๋‚ด ์Šน์ธ์„ ๋งˆ์ณค๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋„ค๋ฆฌ๋Š” ๋ฏธ๊ตญ์˜ ๊ฒฝ์šฐ โ€œ์„ ๊ฑฐ์™€ ํ–‰์ •๋ถ€ ๊ต์ฒด๋ผ๋Š” ๋ณ€์ˆ˜๊ฐ€ ์žˆ์—ˆ๊ณ , ์ดํ›„ ์ ˆ์ฐจ๊ฐ€ ๋‹ค์‹œ ์ง„ํ–‰๋๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

๋„ค๋ฆฌ๋Š” ์ด๋ฒˆ ์‚ฌ๋ก€๋ฅผ ๋ถ„์„ํ•˜๋ฉด์„œ โ€œ๋ฏธ๊ตญ ๋ฒ•๋ฌด๋ถ€๋Š” ์บ ํผ์Šค์™€ ์ง€์‚ฌ ์‹œ์žฅ, ํŠนํžˆ ๋ฌด์„  ๋ถ„์•ผ์—์„œ ๊ฒฝ์Ÿ์‚ฌ๊ฐ€ 3๊ณณ์—์„œ 2๊ณณ์œผ๋กœ ์ค„์–ด๋“ค ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ–ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ ์‹œ์žฅ์€ ๊ทธ๋ณด๋‹ค ํ›จ์”ฌ ํฌ๋‹ค๋Š” ๊ฒŒ ๋„ค๋ฆฌ์˜ ์„ค๋ช…์ด๋‹ค. ๊ทธ๋Š” โ€œ๋ฏธ๊ตญ ์‹œ์žฅ๋งŒ ๋ณด๋”๋ผ๋„ ์‹œ์Šค์ฝ”, ์ฃผ๋‹ˆํผ, HPE, ์บ„๋น„์›€๋„คํŠธ์›์Šค(Cambium Networks), ์œ ๋น„์ฟผํ‹ฐ(Ubiquity), ์•„๋ฆฌ์Šคํƒ€(Arista) ๋“ฑ 7~8๊ฐœ ์—…์ฒด๊ฐ€ ๊ฒฝ์Ÿํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ ์‚ฐ์—…๊ตฐ๋ณ„๋กœ ๊ฐ•์ ์ด ๋‹ค๋ฅด๊ณ  ๋Œ€๊ธฐ์—… ์‹œ์žฅ๊ณผ ๊ณต๊ณต ๋ถ€๋ฌธ์—์„œ๋„ ๊ฒฝ์Ÿ ๊ตฌ๋„๊ฐ€ ๋‹ค๋ฅด๋‹ค๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค. ์ด์–ด โ€œ์—ฌ๋Ÿฌ๋ถ„(๊ธฐ์ž๋“ค)์ด ๋ณด๋„ํ•˜๋Š” ์‹œ์žฅ์ ์œ ์œจ๋งŒ ๋ด๋„ ์‹œ์žฅ ๊ทœ๋ชจ๊ฐ€ ํฌ๊ณ  ๋งค์šฐ ๋ถ„์‚ฐ๋ผ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๊ฒฐ๊ตญ ๋ฏธ๊ตญ ๋ฒ•๋ฌด๋ถ€์™€๋Š” โ€œ์ƒํ˜ธ์— ๋„์›€์ด ๋˜๋Š” ๊ฑด์„ค์ ์ธ ๊ณผ์ •์„ ๊ฑฐ์ณค๋‹คโ€๋ผ๊ณ  ๋„ค๋ฆฌ๋Š” ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ด๋ฒˆ ์ธ์ˆ˜ ์‹œ์žฅ์€ ๊ฒฝ์Ÿ์„ ์ด‰์ง„ํ•˜๋Š” ํ™˜๊ฒฝ์ž„์„ ์ž…์ฆํ–ˆ๋‹คโ€๋ผ๋ฉฐ, ๋ฏธ๊ตญ์˜ ๋Œ€ํ˜• M&A ์ตœ์ข… ์‹ฌ์‚ฌ ๋‹จ๊ณ„์—์„œ๋„ ๊ณ ๊ฐ์ด๋‚˜ ๊ฒฝ์Ÿ์‚ฌ๋กœ๋ถ€ํ„ฐ ์–ด๋– ํ•œ ์ด์˜ ์ œ๊ธฐ๋„ ๋ฐ›์ง€ ์•Š์•˜๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

AI์™€ ํด๋ผ์šฐ๋“œ์— ์ง‘์ค‘๋˜๋‹ค

๋ฐ”๋ฅด์…€๋กœ๋‚˜์—์„œ ๋„ค๋ฆฌ๋Š” ์ตœ๊ทผ ๋ช‡ ๋‹ฌ ๋™์•ˆ HPE๊ฐ€ ํด๋ผ์šฐ๋“œ์™€ AI ๋ถ„์•ผ์—์„œ ์ด๋ค„๋‚ธ ๊ธฐ์ˆ ์  ์ง„์ „์„ ๊ฐ•์กฐํ–ˆ๋‹ค. ๊ทธ๋Š” AI๋ฅผ โ€œ์ „ํ˜•์ ์ธ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์›Œํฌ๋กœ๋“œโ€๋ผ๊ณ  ๊ทœ์ •ํ•˜๋ฉด์„œ, ๋‘ ๊ธฐ์ˆ ์ด ๋ถˆ๊ฐ€๋ถ„ํ•˜๊ฒŒ ์—ฐ๊ฒฐ๋ผ ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋„ค๋ฆฌ๋Š” ์‚ฌ์šฉ๋Ÿ‰ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋กœ ์‹œ์ž‘ํ•ด ํ˜„์žฌ ์ „ ์„ธ๊ณ„ 4๋งŒ 6,000๋ช… ๊ณ ๊ฐ์„ ํ™•๋ณดํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํด๋ผ์šฐ๋“œ ํ”Œ๋žซํผ ๊ทธ๋ฆฐ๋ ˆ์ดํฌ(GreenLake)๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์—ฌ๊ธฐ์— ์ž์œจ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ โ€˜๊ทธ๋ฆฐ๋ ˆ์ดํฌ ์ธํ…”๋ฆฌ์ „์Šค(GreenLake Intelligence)โ€™์™€ ๊ฐ™์€ AI ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•  ๊ณ„ํš์ด๋ผ๊ณ  ๋ฐํ˜”๋‹ค. ์ด ๊ธฐ๋Šฅ์€ ์ง€๋‚œ 6์›” HPE๊ฐ€ ๋ฐœํ‘œํ•œ ๊ฒƒ์œผ๋กœ, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ IT ์šด์˜์„ ์ž๋™ํ™”ํ•˜๊ณ  ๋‹จ์ˆœํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘”๋‹ค. ๋„ค๋ฆฌ๋Š” โ€œIT ์šด์˜ ๋‹จ์ˆœํ™”์˜ ๋ฏธ๋ž˜๊ฐ€ ์ด๋ฏธ ๋„์ฐฉํ–ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋„ค๋ฆฌ๋Š” ๋˜ HPE์˜ ์—์–ด๊ฐญ ๊ธฐ๋ฐ˜ ํ”„๋ผ์ด๋น— ํด๋ผ์šฐ๋“œ ์ „๋žต์ด EU์ฒ˜๋Ÿผ ๊ทœ์ œ๊ฐ€ ๊ฐ•ํ•œ ์ง€์—ญ, ๊ทธ๋ฆฌ๊ณ  ๊ตฐ๊ณผ ๊ฐ™์ด ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๊ฐ€ ์ค‘์š”ํ•œ ์ „๋žต ๋ถ„์•ผ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

๋„ค๋ฆฌ๋Š” ๋ฐ”๋ฅด์…€๋กœ๋‚˜์—์„œ ๊ณต๊ฐœ๋œ ๋˜ ํ•˜๋‚˜์˜ ์†”๋ฃจ์…˜์—๋„ ์ฃผ๋ชฉํ–ˆ๋‹ค. AMD์˜ โ€˜ํ—ฌ๋ฆฌ์˜ค์Šค(Helios)โ€™ ๋ž™ ์Šค์ผ€์ผ AI ์•„ํ‚คํ…์ฒ˜๊ฐ€ ์ด๋”๋„ท ๋„คํŠธ์›Œํ‚น๊ณผ ํ†ตํ•ฉ๋œ ์ฒซ ์‚ฌ๋ก€๋‹ค. ๊ทธ๋Š” ์ด ์†”๋ฃจ์…˜์ด ์ฃผ๋‹ˆํผ์˜ ์—ฐ๊ฒฐ ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด, ๋ธŒ๋กœ๋“œ์ปด ํ† ๋งˆํ˜ธํฌ6 ๋„คํŠธ์›Œํ‚น ์นฉ์„ ๊ฒฐํ•ฉํ•ด โ€œ์ˆ˜์กฐ ๊ฐœ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ชจ๋ธ์˜ ํ•™์Šต ํŠธ๋ž˜ํ”ฝ, ๋†’์€ ์ถ”๋ก  ์ฒ˜๋ฆฌ๋Ÿ‰, ์ดˆ๋Œ€ํ˜• ๋ชจ๋ธ์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด ๊ตฌ์„ฑ์€ HPE ์„œ๋น„์ŠคํŒ€์ด ๊ณต๊ธ‰ํ•œ๋‹ค.

๋„ค๋ฆฌ๋Š” ๋˜ํ•œ ์Šˆํผ์ปดํ“จํŒ… ๋ถ„์•ผ์—์„œ HPE๊ฐ€ ๋ณด์œ ํ•œ ๊ฐ•๋ ฅํ•œ ์ž…์ง€๋„ ๊ฐ•์กฐํ–ˆ๋‹ค. ์ด๋Š” 2019๋…„ ์Šˆํผ์ปดํ“จํ„ฐ ์ „๋ฌธ ๊ธฐ์—… ํฌ๋ ˆ์ด(Cray)๋ฅผ ์ธ์ˆ˜ํ•˜๋ฉฐ ํ™•๋ณดํ•œ ๊ธฐ๋ฐ˜์ด ํฌ๊ฒŒ ์ž‘์šฉํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œHPE๋Š” ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ํฐ ์Šˆํผ์ปดํ“จํ„ฐ 6๋Œ€๋ฅผ ๊ตฌ์ถ•ํ•œ ๊ธฐ์—…์ด๋ฉฐ ์ด ๋ถ„์•ผ์˜ ๊ธ€๋กœ๋ฒŒ ์„ ๋„ ๊ธฐ์—…โ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋‹ค๋งŒ โ€œAI ์ˆ˜์š”๊ฐ€ ๊ทธ ์–ด๋А ๋•Œ๋ณด๋‹ค ์ปค์กŒ์ง€๋งŒ ๋ชจ๋“  ๊ธฐ์—…์ด ์ด๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์Šˆํผ์ปดํ“จํ„ฐ๊ฐ€ ํ•„์š”ํ•œ ๊ฒƒ์€ ์•„๋‹ˆ๋‹คโ€๋ผ๋ฉฐ, ๊ทธ๋Ÿฌ๋‚˜ โ€œ๋ชจ๋“  ๊ธฐ์—…์—๋Š” ์•ˆ์ „ํ•œ AI ์Šคํƒ์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

HPE๋Š” ์ด๋Ÿฌํ•œ ์š”๊ตฌ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ์—”๋น„๋””์•„์™€ ํ˜‘๋ ฅํ•ด ํ”„๋ผ์ด๋น— ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ์ƒ์„ฑํ˜• AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ฐœ๋ฐœยท๋ฐฐํฌ๋ฅผ ๊ฐ€์†ํ™”ํ•˜๋Š” ํ†ตํ•ฉ ์ธํ”„๋ผ ์†”๋ฃจ์…˜ โ€˜HPE ํ”„๋ผ์ด๋น— ํด๋ผ์šฐ๋“œ AIโ€™๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค. ๋„ค๋ฆฌ๋Š” ์ด ์†”๋ฃจ์…˜์ด โ€œ๋ฒ•์  ๋ฐ์ดํ„ฐ ์š”๊ตฌ์‚ฌํ•ญ์„ ์ถฉ์กฑํ•˜๋ฉฐโ€, ๋™์‹œ์— AI ํ˜์‹ ์˜ ํ•ต์‹ฌ ๊ณผ์ œ์ธ โ€œ์‹œ๊ฐ„, ๋น„์šฉ, ์œ„ํ—˜โ€์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ทธ๋Š” ์—ฌ๊ธฐ์— ๋”ํ•ด HPE๊ฐ€ ์ตœ๊ทผ ์—”๋น„๋””์•„์™€ AMD์™€ ํ•จ๊ป˜ AI ๊ตฌ์ถ•์„ ๊ฐ€์†ํ™”ํ•˜๋Š” ๊ณ ์„ฑ๋Šฅ ๋„คํŠธ์›Œํ‚น ์†”๋ฃจ์…˜์„ ์ถ”๊ฐ€ํ–ˆ๋‹ค๊ณ  ๋ฐ”๋ฅด์…€๋กœ๋‚˜์—์„œ ๋ฐํ˜”๋‹ค.

๋ณธ์‚ฌ์—… ๊ธฐ๋ฐ˜ ์„ฑ์žฅ๊ณผ M&A ๊ธฐ๋ฐ˜ ํ™•์žฅ

HPE๊ฐ€ ์ง€๋‚œํ•ด 9์›” ํšŒ๊ณ„์—ฐ๋„ 3๋ถ„๊ธฐ ์‹ค์  ๋ฐœํ‘œ์—์„œ ์ œ์‹œํ•œ ์ „๋ง์— ๋”ฐ๋ฅด๋ฉด, ํšŒ์‚ฌ๋Š” 2025 ํšŒ๊ณ„์—ฐ๋„(10์›” 31์ผ ์ข…๋ฃŒ) ๋งค์ถœ์ด ๊ณ ์ • ํ™˜์œจ ๊ธฐ์ค€ 14~16% ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜๊ณ  ์žˆ๋‹ค. 2024 ํšŒ๊ณ„์—ฐ๋„ ๋งค์ถœ์€ 301์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 44์กฐ ์›)๋กœ, 2023๋…„ ๋Œ€๋น„ 3.4% ์ฆ๊ฐ€ํ–ˆ๋‹ค.

๋„ค๋ฆฌ์˜ ๋ฆฌ๋”์‹ญ ์•„๋ž˜ HPE๋Š” ์ด 35๊ฑด์˜ ์ธ์ˆ˜๋ฅผ ์ง„ํ–‰ํ–ˆ๋‹ค. ๋„ค๋ฆฌ๋Š” ๋ฐ”๋ฅด์…€๋กœ๋‚˜ ๊ธฐ์žํšŒ๊ฒฌ์—์„œ ์ด๋ฅผ ์ง์ ‘ ์ƒ๊ธฐ์‹œํ‚ค๋ฉฐ, ์•ž์„œ ์–ธ๊ธ‰ํ•œ ์ฃผ๋‹ˆํผ๋„คํŠธ์›์Šค์™€ ํฌ๋ ˆ์ด ์™ธ์—๋„ ์—ฌ๋Ÿฌ ์ฃผ์š” ์ธ์ˆ˜๋ฅผ ๋‚˜์—ดํ–ˆ๋‹ค.

2020๋…„์—๋Š” SD-WAN ๊ธฐ์—… ์‹ค๋ฒ„ํ”ผํฌ(Silver Peak)๋ฅผ, 2021๋…„์—๋Š” ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ ๋ฐ ์žฌํ•ด๋ณต๊ตฌ ๊ธฐ์—… ์ œ๋ฅดํ† (Zerto)๋ฅผ ์ธ์ˆ˜ํ–ˆ๋‹ค. 2023๋…„์—๋Š” ๋ณด์•ˆ ๋ฐ IT ์šด์˜ ๋ถ„์•ผ์˜ ์•ก์‹œ์Šค์‹œํ๋ฆฌํ‹ฐ(Axis Security)์™€ ์˜ต์Šค๋žจํ”„(OpsRamp)๋ฅผ ์ถ”๊ฐ€ํ–ˆ์œผ๋ฉฐ, 2024๋…„์—๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํด๋ผ์šฐ๋“œ ๊ด€๋ฆฌ ๊ธฐ์—… ๋ชจ๋ฅดํŽ˜์šฐ์Šค๋ฐ์ดํ„ฐ(Morpheus Data)๋ฅผ ์ธ์ˆ˜ํ–ˆ๋‹ค.

๋„ค๋ฆฌ๋Š” โ€œ์šฐ๋ฆฌ๋Š” ํฌํŠธํด๋ฆฌ์˜ค๋ฅผ ๋ณด์™„ํ•˜๊ณ  ๋ชฉํ‘œ ์‹œ์žฅ์—์„œ ๊ทœ๋ชจ๋ฅผ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋Š” ์ ์ ˆํ•œ ์ž์‚ฐ์„ ์ฐพ๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ์ด ์ž์‚ฐ์€ ๋งค์ถœ๊ณผ ์ˆ˜์ต ์ธก๋ฉด์—์„œ ํƒ€๋‹นํ•ด์•ผ ํ•˜๋ฉฐ, ๋™์‹œ์— ์ฃผ์ฃผ๋“ค์—๊ฒŒ ๊ฐ€์น˜๋„ ์ œ๊ณตํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com


์นผ๋Ÿผ | ๋‹จ์ผํ˜• ERP์˜ ์ข…๋งยทยทยท์กฐ๋ฆฝํ˜• ์•„ํ‚คํ…์ฒ˜๊ฐ€ ๊ธฐ์—… ๋ฏผ์ฒฉ์„ฑ์„ ์ขŒ์šฐํ•œ๋‹ค

ํ•„์ž๊ฐ€ ERP ํ˜„๋Œ€ํ™” ํ”„๋กœ์ ํŠธ๋ฅผ ์ด๋Œ๊ณ  IT ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ์ž„์›๋“ค๊ณผ ํ˜‘๋ ฅํ•ด ์˜จ ๊ฒฝํ—˜์„ ๋Œ์ด์ผœ๋ณด๋ฉด, ์„ฑ๊ณต์„ ๊ฒฐ์ •์ง“๋Š” ์š”์ธ์€ ๊ธฐ์ˆ  ๊ทธ ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ์‚ฌ๊ณ ๋ฐฉ์‹๊ณผ ์•„ํ‚คํ…์ฒ˜์˜€๋‹ค. ๊ฐ€ํŠธ๋„ˆ๋Š” โ€œ2027๋…„๊นŒ์ง€ ์ƒˆ๋กญ๊ฒŒ ๊ตฌ์ถ•๋œ ERP ํ”„๋กœ์ ํŠธ์˜ 70% ์ด์ƒ์ด ์ดˆ๊ธฐ ๋น„์ฆˆ๋‹ˆ์Šค ์ผ€์ด์Šค ๋ชฉํ‘œ๋ฅผ ์˜จ์ „ํžˆ ๋‹ฌ์„ฑํ•˜์ง€ ๋ชปํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ์ „๋งํ•˜๊ธฐ๋„ ํ–ˆ๋‹ค. ์ด์ œ ERP ์„ฑ๊ณต์€ ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค.

์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ERP๋Š” ์žฌ๋ฌด, ๊ณต๊ธ‰๋ง, ์ œ์กฐ, HR ๋“ฑ ๊ธฐ์—… ์šด์˜์˜ ์ค‘์‹ฌ์— ์ž๋ฆฌํ•ด ์™”๋‹ค. ํ†ตํ•ฉ๊ณผ ํ†ต์ œ๋ฅผ ์•ฝ์†ํ–ˆ๋˜ ์ด ์‹œ์Šคํ…œ์€ ์ง€๊ธˆ ์œ ์—ฐ์„ฑ์„ ์–ต๋ˆ„๋ฅด๊ณ  ํ˜์‹  ์†๋„๋ฅผ ๋Šฆ์ถ”๋ฉฐ ๊ธฐ์ˆ  ๋ถ€์ฑ„๋ฅผ ์Œ“๋Š” ๊ตฌ์กฐ๋กœ ๋ณ€์งˆ๋˜๊ณ  ์žˆ๋‹ค.

์—ฌ๋Ÿฌ ERP ํ”„๋กœ๊ทธ๋žจ์„ ์ง€์ผœ๋ณธ ๊ฒฝํ—˜์— ๋”ฐ๋ฅด๋ฉด ๋ฌธ์ œ๋Š” ERP ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ERP๋ฅผ ๋Œ€ํ•˜๋Š” ์šฐ๋ฆฌ์˜ ๊ด€์ ์— ์žˆ๋‹ค. ๋งŽ์€ ๊ธฐ์—…์ด ERP๋ฅผ ๋‹จ์ˆœํ•œ ๊ธฐ๋ก ์‹œ์Šคํ…œ์œผ๋กœ ์ทจ๊ธ‰ํ•˜๋ฉฐ, ๊ทธ ๋„ˆ๋จธ์— ์žˆ๋Š” ๋” ํฐ ๊ธฐํšŒ๋ฅผ ๋†“์น˜๊ณ  ์žˆ๋‹ค.

๋‹ค๊ฐ€์˜ฌ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฏผ์ฒฉ์„ฑ์˜ ์‹œ๋Œ€๋Š” ERP๋ฅผ ๋ชจ๋“ˆํ˜•, ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ, ํด๋ผ์šฐ๋“œ ๋„ค์ดํ‹ฐ๋ธŒ, AI ๊ธฐ๋ฐ˜์˜ ์กฐ๋ฆฝํ˜• ํ”Œ๋žซํผ์œผ๋กœ ์žฌ์ •์˜ํ•˜๋Š” ๊ธฐ์—…์ด ์ฃผ๋„ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ํ•„์ž๊ฐ€ ํ•จ๊ป˜ํ•ด ์˜จ ์—ฌ๋Ÿฌ ์กฐ์ง์—์„œ๋„ ๊ธฐ์ˆ  ๋ฆฌ๋”๋“ค์€ ํ˜„๋Œ€ํ™” ์—ฌ๋ถ€๋ฅผ ๋‘๊ณ  ๋…ผ์Ÿํ•˜์ง€ ์•Š๋Š”๋‹ค. ์˜คํžˆ๋ ค โ€˜์‚ฌ์—…์„ ๋ฉˆ์ถ”์ง€ ์•Š๊ณ  ์–ด๋–ป๊ฒŒ ์‹คํ–‰ํ•  ๊ฒƒ์ธ๊ฐ€โ€™๊ฐ€ ํ•ต์‹ฌ ๊ณผ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค.

ํฌ๋ธŒ์Šค์˜ ํ•œ ์นผ๋Ÿผ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋ฅผ ๋‘๊ณ  โ€œ์ „ ์„ธ๊ณ„ ๊ธฐ์—…์˜ 75%๊ฐ€ ์œ ์—ฐ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด ๋‹จ์ผํ˜• ERP๋ฅผ ๋ชจ๋“ˆํ˜• ์†”๋ฃจ์…˜์œผ๋กœ ๋Œ€์ฒดํ•˜๊ธฐ ์‹œ์ž‘ํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ํ‘œํ˜„ํ–ˆ๋‹ค. ์ด๋Š” ERP๊ฐ€ ๋ ˆ๊ฑฐ์‹œ ๋‹จ์ผ ์ œํ’ˆ์—์„œ ์ ์‘ํ˜•ยทํ˜์‹  ์ค‘์‹ฌ ํ”Œ๋žซํผ์œผ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

์ด ํ๋ฆ„์„ ์ˆ˜์šฉํ•œ ๊ธฐ์—…์€ ERP๋ฅผ ํ˜์‹ ์˜ ์ด‰๋งค๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ ์ „ํ™˜์— ์‹คํŒจํ•œ ๊ธฐ์—…์€ ํ•ต์‹ฌ ์‹œ์Šคํ…œ์ด ๊ฐ€์žฅ ํฐ ๋ณ‘๋ชฉ์œผ๋กœ ๋‚จ์€ ์ฑ„ ๋’ค์ฒ˜์งˆ ์œ„ํ—˜์„ ์•ˆ๊ฒŒ ๋œ๋‹ค.

๋‹จ์ผํ˜•์—์„œ ๋ชจ๋“ˆํ˜• ๋ฐฑ๋ณธ์œผ๋กœ์˜ ์ „ํ™˜

1990~2000๋…„๋Œ€ ERP๋Š” ๋‹จ์ผ ๋ฒค๋”, ๋‹จ์ผ ์ฝ”๋“œ๋ฒ ์ด์Šค, ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์—… ์ „ ์˜์—ญ์„ ์•„์šฐ๋ฅด๋Š” ์ดˆ๋Œ€ํ˜• ๊ตฌ์ถ• ํ”„๋กœ์ ํŠธ๋ฅผ ์˜๋ฏธํ–ˆ๋‹ค. ๊ธฐ์—…๋“ค์€ ๋ชจ๋“  ํ”„๋กœ์„ธ์Šค์˜ ์„ธ๋ถ€์ ์ธ ์š”๊ตฌ์‚ฌํ•ญ์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์ˆ˜๋ฐฑ๋งŒ ๋‹ฌ๋Ÿฌ๋ฅผ ํˆฌ์ž…ํ•ด ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์ปค์Šคํ„ฐ๋งˆ์ด์ง•ํ–ˆ๋‹ค.

ํด๋ผ์šฐ๋“œ ์‹œ๋Œ€๊ฐ€ ๋„๋ž˜ํ•˜๋ฉด์„œ ๋‹ค์Œ ์žฅ์ด ์—ด๋ ธ๋‹ค. SAP, ์˜ค๋ผํด, ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ(MS), ์ธํฌ ๋“ฑ์€ ํฌํŠธํด๋ฆฌ์˜ค๋ฅผ SaaS ์ค‘์‹ฌ์œผ๋กœ ์ „ํ™˜ํ–ˆ๊ณ , ์—…์ข… ํŠนํ™” ๋ชจ๋“ˆํ˜• ERP ํ”Œ๋žซํผ์„ ์•ž์„ธ์šด ์Šคํƒ€ํŠธ์—…๋“ค๋„ ์ž‡๋”ฐ๋ผ ๋“ฑ์žฅํ–ˆ๋‹ค. API์™€ ์„œ๋น„์Šค ๊ฐœ๋…์ด ํ™•์‚ฐ๋˜๋ฉด์„œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ณ€ํ™”์— ๋งž์ถฐ ์ง„ํ™”ํ•˜๋Š” ERP๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ธฐ๋Œ€๊ฐ€ ๋ณธ๊ฒฉ์ ์œผ๋กœ ์ž๋ฆฌ ์žก์•˜๋‹ค.

ํ•„์ž๊ฐ€ ์ฐธ์—ฌํ•œ ํ•œ ์ „ํ™˜ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” ERP๋ฅผ ๋‹จ์ผ ๊ตฌํ˜„์ฒด๋กœ ์ทจ๊ธ‰ํ•˜๋˜ ๊ด€์ ์„ ๋‚ด๋ ค๋†“์€ ์ˆœ๊ฐ„ ๋ณ€ํ™”๊ฐ€ ์‹œ์ž‘๋๋‹ค. ๊ธฐ๋Šฅ์„ ๋ชจ๋“ˆ ๋‹จ์œ„๋กœ ๋ถ„ํ•ดํ•ด ๋น„์ฆˆ๋‹ˆ์Šค ํŒ€์ด ์ง์ ‘ ์†Œ์œ ํ•˜๊ณ  ๋…๋ฆฝ์ ์œผ๋กœ ๋ฐœ์ „์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์กฐ๋ฅผ ์žฌ์„ค๊ณ„ํ•œ ๊ฒƒ์ด ๊ฒฐ์ •์ ์ธ ์ „ํ™˜์ ์ด์—ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๊ธฐ์—…์—์„œ ์ด๋Ÿฌํ•œ ๊ฐ€๋Šฅ์„ฑ์€ ์™„์ „ํžˆ ์‹คํ˜„๋˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ด์ œ ๋ฌธ์ œ๋Š” ๊ธฐ์ˆ ์ด ์•„๋‹ˆ๋ผ ์‚ฌ๊ณ ๋ฐฉ์‹์ด๋‹ค. ์—ฌ์ „ํžˆ ์ƒ๋‹น์ˆ˜ ์กฐ์ง์ด ERP๋ฅผ ์„ฑ์žฅํ•˜๊ณ  ์ ์‘ํ•ด์•ผ ํ•˜๋Š” โ€˜์‚ด์•„ ์žˆ๋Š” ํ”Œ๋žซํผโ€™์ด ์•„๋‹ˆ๋ผ, ํ•œ๋ฒˆ ์„ค์น˜ํ•˜๋ฉด ๋๋‚˜๋Š” โ€˜์™„๋ฃŒ๋œ ์‹œ์Šคํ…œโ€™์œผ๋กœ ๋ฐ”๋ผ๋ณด๊ณ  ์žˆ๋‹ค.

๊ธฐ์กด ์‚ฌ๊ณ ๋ฐฉ์‹์ด ์ดˆ๋ž˜ํ•˜๋Š” ๋น„์šฉ

๋ ˆ๊ฑฐ์‹œ ERP ๊ด€์ ์œผ๋กœ๋Š” ์˜ค๋Š˜๋‚  ๋ณ€ํ™” ์†๋„๋ฅผ ๋”ฐ๋ผ๊ฐˆ ์ˆ˜ ์—†๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํ˜์‹ ์€ ๋Šฆ์–ด์ง€๊ณ , ๋ฐ์ดํ„ฐ๋Š” ํŒŒํŽธํ™”๋˜๋ฉฐ, IT ์กฐ์ง์€ ๋Š์ž„์—†์ด ๋’ค์ฒ˜์ง„ ์ƒํƒœ๋ฅผ ๋งŒํšŒํ•˜๋А๋ผ ์†Œ๋ชจ์ „์„ ๋ฐ˜๋ณตํ•˜๊ฒŒ ๋œ๋‹ค. ๊ธฐ์—…์€ ๋น„์ฆˆ๋‹ˆ์Šค ๋ณ€ํ™”๋งŒํผ ๋น ๋ฅด๊ฒŒ ์›€์ง์ผ ์ˆ˜ ์žˆ๋Š” ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ•„์š”๋กœ ํ•˜๊ณ  ์žˆ๋‹ค.

๋ฆฐIX๋Š” ๊ฐ€ํŠธ๋„ˆ ๋ถ„์„์„ ์ธ์šฉํ•ด โ€œ์กฐ๋ฆฝํ˜• IT ์ ‘๊ทผ๋ฒ•์„ ์ฑ„ํƒํ•œ ์กฐ์ง์€ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ ๊ตฌํ˜„ ์†๋„๊ฐ€ 80% ๋นจ๋ผ์ง„๋‹ค. ํŠนํžˆ ๊ฐ€ํŠธ๋„ˆ๊ฐ€ ์ •์˜ํ•œ ์กฐ๋ฆฝํ˜• ERP ํ”Œ๋žซํผ์„ ์ ์šฉํ•  ๋•Œ ์ด ํšจ๊ณผ๊ฐ€ ๋‘๋“œ๋Ÿฌ์ง„๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋ชจ๋“ˆํ˜• ERP์™€ ์ „ํ†ต์ ์ธ ๋‹จ์ผํ˜• ERP ์‚ฌ์ด์˜ ๋šœ๋ ทํ•œ ์„ฑ๋Šฅ ๊ฒฉ์ฐจ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค๋Š” ์˜๋ฏธ์ด๊ธฐ๋„ ํ•˜๋‹ค.

ํ•„์ž๊ฐ€ ์‹ค์ œ ํ”„๋กœ์ ํŠธ์—์„œ ํ™•์ธํ•œ ๋ ˆ๊ฑฐ์‹œ ERP ์‚ฌ๊ณ ๋ฐฉ์‹์˜ ๋น„์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

โ€ข ์œ ์—ฐ์„ฑ ๋ถ€์กฑ: ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ์€ ์†Œํ”„ํŠธ์›จ์–ด ์ฃผ๊ธฐ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ๋ณ€ํ•˜๋ฉฐ, ์ „ํ†ต์  ERP๋Š” ๊ทธ ์†๋„๋ฅผ ๋”ฐ๋ผ๊ฐ€์ง€ ๋ชปํ•œ๋‹ค.
โ€ข ๊ณผ๋„ํ•œ ์ปค์Šคํ„ฐ๋งˆ์ด์ง•: ์ˆ˜๋…„๊ฐ„ ์ถ•์ ๋œ ๋งž์ถคํ˜• ์ฝ”๋“œ๋Š” ์—…๊ทธ๋ ˆ์ด๋“œ๋ฅผ ์œ„ํ—˜ํ•˜๊ณ  ๋น„์šฉ ๋†’์€ ์ž‘์—…์œผ๋กœ ๋งŒ๋“ ๋‹ค.
โ€ข ๋ฐ์ดํ„ฐ ํŒŒํŽธํ™”: ์—ฌ๋Ÿฌ ERP ์ธ์Šคํ„ด์Šค์™€ ๋ถ„๋ฆฌ๋œ ๋ชจ๋“ˆ์€ ๋ฐ์ดํ„ฐ ์ผ๊ด€์„ฑ์„ ๊นจ๊ณ  ๋ถ„์„ ์‹ ๋ขฐ๋„๋ฅผ ๋–จ์–ด๋œจ๋ฆฐ๋‹ค.
โ€ข ์‚ฌ์šฉ์ž ๋ถˆ๋งŒ: ๋…ธํ›„ํ™”๋œ ์ธํ„ฐํŽ˜์ด์Šค๋Š” ์šฐํšŒ ์ž‘์—…์„ ๋ถ€๋ฅด๊ณ  ์‚ฌ์šฉ์ž ์ฐธ์—ฌ๋ฅผ ๋–จ์–ด๋œจ๋ฆฐ๋‹ค.
โ€ข ๋†’์€ TCO: ์œ ์ง€๋ณด์ˆ˜์™€ ์—…๊ทธ๋ ˆ์ด๋“œ์— ์˜ˆ์‚ฐ์ด ์ž ์‹๋˜๋ฉด์„œ ํ˜์‹  ํˆฌ์ž ์—ฌ๋ ฅ์ด ์‚ฌ๋ผ์ง„๋‹ค.


์กฐ๋ฆฝํ˜• ERP์˜ ๋“ฑ์žฅ

์ƒˆ๋กญ๊ฒŒ ๋ถ€์ƒํ•˜๋Š” ์กฐ๋ฆฝํ˜• ERP ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋‹จ์ผํ˜• ๊ตฌ์กฐ๋ฅผ ํ•ด์ฒดํ•œ๋‹ค. ๊ฐ€ํŠธ๋„ˆ๋Š” ์ด๋ฅผ โ€œ๋ชจ๋“ˆํ˜• ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ API๋กœ ์—ฐ๊ฒฐ๋˜๊ณ  ๋ฐ์ดํ„ฐ ํŒจ๋ธŒ๋ฆญ์œผ๋กœ ํ†ตํ•ฉ๋˜๋Š” ์•„ํ‚คํ…์ฒ˜โ€๋ผ๊ณ  ์ •์˜ํ•œ๋‹ค.

SAP์— ์ธ์ˆ˜๋œ ์•„ํ‚คํ…์ฒ˜ ๊ด€๋ฆฌ ๋„๊ตฌ ๊ธฐ์—… ๋ฆฐIX(LeanIX)๋Š” โ€œ๋ชจ๋“ˆํ˜•ยท์ƒํ˜ธ์šด์šฉ ๊ตฌ์„ฑ์š”์†Œ๋กœ ๊ตฌ์ถ•๋œ ์กฐ๋ฆฝํ˜• ERP๋Š” ๋‹จ์ผํ˜• ์ œํ’ˆ๊ตฐ์— ์˜์กดํ•˜์ง€ ์•Š๊ณ  ํ•„์š”ํ•œ ๊ธฐ๋Šฅ์„ ์กฐ๋ฆฝํ•˜๋“ฏ ๊ตฌ์„ฑํ•ด ๋ณ€ํ™”์— ๋น ๋ฅด๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹คโ€๊ณ  ์„ค๋ช…ํ•œ๋‹ค. ์ด๋Š” ์ •์ ์ธ ERP์—์„œ ๋™์ ์ด๊ณ  ์ ์‘์ ์ธ ๋น„์ฆˆ๋‹ˆ์Šค ํ”Œ๋žซํผ์œผ๋กœ์˜ ์ „ํ™˜์„ ๋ณด์—ฌ์ค€๋‹ค.

๋งž์ถค ๊ฐœ๋ฐœ๊ณผ ํŒจํ‚ค์ง€ํ˜• ERP ์–‘์ชฝ์„ ๊ฒฝํ—˜ํ•œ ํ•„์ž๋กœ์„œ๋Š” ์กฐ๋ฆฝํ˜• ์ ‘๊ทผ์˜ ์ง„์ •ํ•œ ํž˜์ด ๋‹จ์ˆœํ•œ โ€˜ํ†ตํ•ฉโ€™์ด ์•„๋‹ˆ๋ผ โ€˜์กฐ๋ฆฝ ์†๋„โ€™์— ์žˆ๋‹ค๋Š” ์ ์„ ํ™•์ธํ•ด ์™”๋‹ค. ERP๋ฅผ ๋‹จ์ผ ์ œํ’ˆ๊ตฐ์ด ์•„๋‹ˆ๋ผ ๊ธฐ์—… ์šด์˜์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์œผ๋กœ ๋ฐ”๋ผ๋ณด๋Š” ๊ด€์ ์ด ์ค‘์š”ํ•˜๋‹ค. ์žฌ๋ฌด, ๊ณต๊ธ‰๋ง, ์ œ์กฐ, HR ๊ฐ™์€ ํ•ต์‹ฌ ํ”„๋กœ์„ธ์Šค๋Š” ๊ธฐ๋ฐ˜์œผ๋กœ ๋‘๊ณ , AI ์˜ˆ์ธก, ๊ณ ๊ฐ ๋ถ„์„, ์ง€์†๊ฐ€๋Šฅ์„ฑ ์ถ”์  ๊ฐ™์€ ๋ชจ๋“ˆํ˜• ๊ธฐ๋Šฅ์€ ๋น„์ฆˆ๋‹ˆ์Šค ๋ณ€ํ™”์— ๋”ฐ๋ผ ๋™์ ์œผ๋กœ ์—ฐ๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ธฐ์—…์— ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ด์ ์„ ์ œ๊ณตํ•œ๋‹ค.

โ€ข ์„œ๋กœ ๋‹ค๋ฅธ ๋ฒค๋” ๋˜๋Š” ๋‚ด๋ถ€ ๊ฐœ๋ฐœํŒ€์˜ ๋ชจ๋“ˆ์„ ์กฐํ•ฉ
โ€ข ๋ถˆ์•ˆ์ •ํ•œ ์ปค์Šคํ„ฐ๋งˆ์ด์ง• ๋Œ€์‹  ํ‘œ์ค€ API ๊ธฐ๋ฐ˜์˜ ํด๋ผ์šฐ๋“œ ์•ฑ ํ†ตํ•ฉ
โ€ข ์ž๋™ํ™”ยท์ธ์‚ฌ์ดํŠธยท์˜ˆ์ธก ์˜์‚ฌ๊ฒฐ์ •์— AI ํ™œ์šฉ
โ€ข ์—ญํ•  ๊ธฐ๋ฐ˜(persona-based) ๊ฒฝํ—˜ ์ œ๊ณต

ํŽ˜๋ฅด์†Œ๋‚˜: ์กฐ๋ฆฝํ˜• ERP๊ฐ€ ๋“œ๋Ÿฌ๋‚ด๋Š” โ€˜์‚ฌ์šฉ์ž ์ค‘์‹ฌโ€™์˜ ์–ผ๊ตด

์ „ํ†ต์ ์ธ ERP๋Š” ๋ชจ๋“  ์‚ฌ์šฉ์ž๋ฅผ ๋™์ผํ•˜๊ฒŒ ์ทจ๊ธ‰ํ•ด ํ•˜๋‚˜์˜ ์ธํ„ฐํŽ˜์ด์Šค์— ์ˆ˜๋ฐฑ ๊ฐœ ๋ฉ”๋‰ด์™€ ๋์—†๋Š” ์ž…๋ ฅ ํ™”๋ฉด์„ ์Œ“์•„ ์˜ฌ๋ ธ๋‹ค. ์กฐ๋ฆฝํ˜• ERP๋Š” ์ด๋ฅผ ๋’ค์ง‘์–ด ๊ฐ ์—ญํ• ์ด ์‹ค์ œ๋กœ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ์—…๋ฌด๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์„ค๊ณ„๋œ โ€˜ํŽ˜๋ฅด์†Œ๋‚˜ ๊ธฐ๋ฐ˜ ๋””์ž์ธโ€™์„ ์ ์šฉํ•œ๋‹ค.

โ€ข CFO๋Š” AI ๊ธฐ๋ฐ˜ ์‹œ๋‚˜๋ฆฌ์˜ค ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ์กฐ์ง ์ „๋ฐ˜์˜ ์žฌ๋ฌด ๊ฑด์ „์„ฑ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ™•์ธํ•œ๋‹ค.
โ€ข ๊ณต๊ธ‰๋ง ๋ฆฌ๋”๋Š” ์‹ค์‹œ๊ฐ„ ์ˆ˜์š” ์‹ ํ˜ธ, ๊ณต๊ธ‰์—…์ฒด ์„ฑ๊ณผ, ์ง€์†๊ฐ€๋Šฅ์„ฑ ์ง€ํ‘œ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•œ๋‹ค.
โ€ข ๊ณต์žฅ ๊ด€๋ฆฌ์ž๋Š” IoT ๊ธฐ๋ฐ˜ ์„ค๋น„ ์ƒํ™ฉ, ์˜ˆ์ง€์ •๋น„ ์ •๋ณด, ์ƒ์‚ฐ KPI๋ฅผ ์ถ”์ ํ•œ๋‹ค.
โ€ข ์˜์—… ๋ฐ ์„œ๋น„์Šค ํŒ€์€ ์‹œ์Šคํ…œ์„ ์ด๋™ํ•  ํ•„์š” ์—†์ด ์šด์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋Š๊น€ ์—†์ด ํ™œ์šฉํ•œ๋‹ค.

ํ•„์ž์˜ ๊ฒฝํ—˜์ƒ ERP๊ฐ€ ๋ฒ”์šฉ ํŠธ๋žœ์žญ์…˜์ด ์•„๋‹ˆ๋ผ ์‹ค์ œ ์‚ฌ์šฉ์ž ํŽ˜๋ฅด์†Œ๋‚˜ ์ค‘์‹ฌ์œผ๋กœ ์„ค๊ณ„๋  ๋•Œ ๋„์ž… ํšจ๊ณผ๊ฐ€ ๋†’์•„์ง€๊ณ  ์˜์‚ฌ๊ฒฐ์ • ์†๋„๋„ ๋นจ๋ผ์กŒ๋‹ค.


๋„์ „๊ณผ ํ•จ์ •

์ด ๋ฌธ์ œ๋“ค์€ ์ด๋ก ์  ๋…ผ์˜๊ฐ€ ์•„๋‹ˆ๋ผ IT์™€ ๋น„์ฆˆ๋‹ˆ์Šค ์กฐ์ง์ด ๋งค์ผ ๋งˆ์ฃผํ•˜๋Š” ์‹ค์ œ ๊ณผ์ œ๋“ค์ด๋‹ค.

โ€ข ๋ฐ์ดํ„ฐ ๊ฑฐ๋ฒ„๋„Œ์Šค: ํ†ตํ•ฉ๋œ ๋ฐ์ดํ„ฐ ์ „๋žต์ด ์—†์œผ๋ฉด ๋ชจ๋“ˆ์„ฑ์€ ๊ณง ํ˜ผ๋ž€์œผ๋กœ ์ด์–ด์ง„๋‹ค.
โ€ข ํ†ตํ•ฉ ๋ณต์žก์„ฑ: API๋Š” ๋ฒ„์ „ ๊ด€๋ฆฌ, ์ธ์ฆ, ์˜๋ฏธ ์ฒด๊ณ„ ์ •๋ ฌ ๋“ฑ ์—„๊ฒฉํ•œ ๊ทœ์œจ์ด ํ•„์š”ํ•˜๋‹ค.
โ€ข ๋ฒค๋” ์ข…์†: ๊ฐœ๋ฐฉํ˜• ํ”Œ๋žซํผ์ด๋ผ๋„ ๋ฏธ๋ฌ˜ํ•œ ์˜์กด์„ฑ์ด ์ƒ๊ธธ ์ˆ˜ ์žˆ๋‹ค.
โ€ข ๋ณ€ํ™” ๊ด€๋ฆฌ: ์ง์›์€ ๊ธฐ์กด ์Šต๊ด€์„ ๋ฒ„๋ฆฌ๊ณ  ์ƒˆ๋กœ์šด ๋ฐฉ์‹์„ ์ตํžˆ๊ธฐ ์œ„ํ•œ ์ง€์›๊ณผ ๊ต์œก์ด ํ•„์š”ํ•˜๋‹ค.
โ€ข ๋ณด์•ˆ: ์‹œ์Šคํ…œ ๊ฐ„ ์—ฐ๊ฒฐ์ด ํ™•๋Œ€๋ ์ˆ˜๋ก ๊ณต๊ฒฉ ํ‘œ๋ฉด๋„ ๋„“์–ด์ง„๋‹ค. ์ œ๋กœํŠธ๋Ÿฌ์ŠคํŠธ ์ „๋žต์€ ํ•„์ˆ˜๋‹ค.

์ง„์ •ํ•œ ์„ฑ๊ณต์€ ๊ธฐ์ˆ ์  ํ†ต์ฐฐ๊ณผ ์กฐ์ง์— ๋Œ€ํ•œ ๊ณต๊ฐ ๋Šฅ๋ ฅ์„ ๊ท ํ˜• ์žˆ๊ฒŒ ๊ฐ–์ถ˜ ๋ฆฌ๋”์‹ญ์—์„œ ๋‚˜์˜จ๋‹ค.


CIO์˜ ์ƒˆ๋กœ์šด ํ”Œ๋ ˆ์ด๋ถ

์ˆ˜๋…„๊ฐ„ ERP ํ”„๋กœ์ ํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ๋น„์ฆˆ๋‹ˆ์ŠคยทIT ์กฐ์ง๊ณผ ํ˜‘์—…ํ•ด ์˜จ ๊ฒฝํ—˜์„ ๋Œ์•„๋ณด๋ฉด, ERP ์„ฑ๊ณต์„ ๊ฐ€๋กœ๋ง‰๋Š” ๊ฐ€์žฅ ํฐ ์žฅ์• ๋ฌผ์€ ERP๋ฅผ ๋Š์ž„์—†์ด ์ง„ํ™”ํ•˜๋Š” ํ˜์‹  ํ”Œ๋žซํผ์ด ์•„๋‹ˆ๋ผ โ€˜์™„์„ฑ๋œ ์‹œ์Šคํ…œโ€™์œผ๋กœ ๋ฏฟ๋Š” ๊ณ ์ •๊ด€๋…์ด์—ˆ๋‹ค.

์ด ๋ณ€ํ™”๋Š” ๋„๊ตฌ์˜ ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ, ERP๊ฐ€ ๋น„์ฆˆ๋‹ˆ์Šค ์•ˆ์—์„œ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•  ์—ญํ• ์„ ์žฌ์ •์˜ํ•˜๋Š” ๋ฌธ์ œ๋‹ค. ๋งฅํ‚จ์ง€๋Š” โ€œERP ์ฝ”์–ด์˜ ํ˜„๋Œ€ํ™”๋Š” ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ์—…๊ทธ๋ ˆ์ด๋“œ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ธฐ์—… ์ „๋ฐ˜์˜ ์ƒˆ๋กœ์šด ์—ญ๋Ÿ‰์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๋ณ€ํ˜โ€์ด๋ผ๊ณ  ์„ค๋ช…ํ•œ๋‹ค. ํŠนํžˆ ํ˜„๋Œ€ํ™”๋ฅผ ์ด๋„๋Š” CIO๋ผ๋ฉด ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ํ”Œ๋ ˆ์ด๋ถ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์˜๋ฏธ๋‹ค.

  1. ์†Œํ”„ํŠธ์›จ์–ด๊ฐ€ ์•„๋‹Œ ๋น„์ฆˆ๋‹ˆ์Šค ์•„ํ‚คํ…์ฒ˜์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ๊ธฐ์—…์ด ์–ด๋–ป๊ฒŒ ์šด์˜๋˜๊ธธ ์›ํ•˜๋Š”์ง€ ์ •์˜ํ•œ ๋’ค, ๊ทธ ๊ตฌ์กฐ์— ๋งž์ถฐ ERP ์—ญ๋Ÿ‰์„ ์„ค๊ณ„ํ•œ๋‹ค.
  2. ํ†ตํ•ฉ ๋ฐ์ดํ„ฐ ํŒจ๋ธŒ๋ฆญ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ์กฐ๋ฆฝํ˜• ERP์˜ ์„ฑํŒจ๋Š” ์ผ๊ด€๋˜๊ณ  ํ’ˆ์งˆ ๋†’์€ ๋ฐ์ดํ„ฐ์— ๋‹ฌ๋ ค ์žˆ๋‹ค.
  3. ๋ชจ๋“ˆํ˜• ์‚ฌ๊ณ ๋ฅผ ์ ์ง„์ ์œผ๋กœ ์ ์šฉํ•œ๋‹ค. ์†Œ๊ทœ๋ชจ ํŒŒ์ผ๋Ÿฟ์œผ๋กœ ๊ฐ€์น˜๋ฅผ ์ž…์ฆํ•œ ํ›„ ํ™•์žฅํ•œ๋‹ค.
  4. ํ“จ์ „ํŒ€์„ ๊ฐ•ํ™”ํ•œ๋‹ค. ITยท์šด์˜ยท๋น„์ฆˆ๋‹ˆ์Šค ์ „๋ฌธ๊ฐ€๋ฅผ ํ•˜๋‚˜์˜ ์• ์ž์ผ ํŒ€์œผ๋กœ ๋ฌถ์–ด ๋น ๋ฅด๊ฒŒ ์†”๋ฃจ์…˜์„ ์กฐํ•ฉํ•œ๋‹ค.
  5. ์„ฑ๊ณต ๊ธฐ์ค€์„ โ€˜์˜คํ”ˆ์ผโ€™์ด ์•„๋‹ˆ๋ผ ๊ฒฐ๊ณผ๋กœ ์ธก์ •ํ•œ๋‹ค. ๋ชฉํ‘œ๋Š” ๋‹จ์ผ ๋Ÿฐ์น˜๊ฐ€ ์•„๋‹ˆ๋ผ ๋ฏผ์ฒฉ์„ฑ๊ณผ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์ด๋‹ค.
  6. ๋ฒค๋”์— ๊ฐœ๋ฐฉ์„ฑ์„ ์š”๊ตฌํ•œ๋‹ค. ๊ณต๊ฐœ API์™€ ์ง„์ •ํ•œ ์ƒํ˜ธ์šด์šฉ์„ฑ์„ ํ™•๋ณดํ•˜๊ณ , ๋…์ ์  ํด๋ผ์šฐ๋“œ ๋ผ๋ฒจ์— ์˜์กดํ•˜์ง€ ์•Š๋Š”๋‹ค.

์˜ค๋ผํด์€ ์ด๋Ÿฌํ•œ ํ•„์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ โ€œ๊ธฐ์—…์€ ๋ณ€ํ™”์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ๋ฆฝํ˜• ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ํฌํŠธํด๋ฆฌ์˜ค๋กœ ์ด๋™ํ•ด์•ผ ํ•˜๋ฉฐ, ์ด๋Š” ์žฌ์กฐ๋ฆฝยทํ™•์žฅ์ด ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ์—ฌ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ด๋Š” ERP ์„ ํƒ ๊ธฐ์ค€์—์„œ ์œ ์—ฐ์„ฑ์ด ํ•ต์‹ฌ ์š”์†Œ๊ฐ€ ๋ผ์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค.

ERP๋ฅผ ํ˜์‹  ํ”Œ๋žซํผ์œผ๋กœ ์žฌ์ •์˜ํ•ด์•ผ ํ•œ๋‹ค. ๋กœ์šฐ์ฝ”๋“œ ์›Œํฌํ”Œ๋กœ์šฐ, ๋ถ„์„, AI ๊ธฐ๋ฐ˜ ๋ณด์กฐ ๋„๊ตฌ ๋“ฑ ์ƒˆ๋กœ์šด ๋ฐฉ์‹์„ ์‹คํ—˜ํ•˜๋Š” ๋ฌธํ™”๋ฅผ ์žฅ๋ คํ•ด์•ผ ํ•œ๋‹ค.


ERP๊ฐ€ โ€˜๋ณด์ด์ง€ ์•Š๊ฒŒโ€™ ๋˜๋Š” ๋•Œ

๋ช‡ ๋…„ ํ›„์—๋Š” ERP๋ผ๋Š” ์šฉ์–ด์กฐ์ฐจ ์‚ฌ์šฉํ•˜์ง€ ์•Š์„ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค. CRM์ด ๊ณ ๊ฐ ๊ฒฝํ—˜ ํ”Œ๋žซํผ์œผ๋กœ ํ™•์žฅ๋๋“ฏ, ERP๋„ ๊ธฐ์—…์˜ ๋ณด์ด์ง€ ์•Š๋Š” ๋””์ง€ํ„ธ ๋ฐฑ๋ณธ์œผ๋กœ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋…น์•„๋“ค ๊ฒƒ์ด๋‹ค.

ํ•„์ž๋Š” ERP๊ฐ€ ์˜จํ”„๋ ˆ๋ฏธ์Šค์—์„œ ํด๋ผ์šฐ๋“œ, ๊ทธ๋ฆฌ๊ณ  AI ๊ธฐ๋ฐ˜ ํ”Œ๋žซํผ์œผ๋กœ ์ง„ํ™”ํ•˜๋Š” ๊ณผ์ •์„ ์ง€์ผœ๋ดค๋‹ค. ๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์—๋Š” AI๊ฐ€ ํŠธ๋žœ์žญ์…˜๊ณผ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๋ฐฑ์—”๋“œ์—์„œ ์ฒ˜๋ฆฌํ•˜๊ณ , ์ง์›๋“ค์€ ๋Œ€ํ™”ํ˜• ์ธํ„ฐํŽ˜์ด์Šค์™€ ๋‚ด์žฅ ๋ถ„์„ ๊ธฐ๋Šฅ์„ ํ†ตํ•ด ๊ฒฐ๊ณผ๋งŒ ์š”์ฒญํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์‹œ์Šคํ…œ์— ๋กœ๊ทธ์ธํ•˜๋Š” ๋Œ€์‹  ์›ํ•˜๋Š” ์—…๋ฌด ๊ฒฐ๊ณผ๋ฅผ ๋งํ•˜๋ฉด, ์กฐ๋ฆฝํ˜• ERP ํŒจ๋ธŒ๋ฆญ์ด ์ด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ๋ชจ๋“  ๋‹จ๊ณ„๋ฅผ ๋™์ ์œผ๋กœ ์กฐ์œจํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค.

์ด ๋ฏธ๋ž˜๋Š” ์ง€๊ธˆ ERP๋ฅผ ์žฌ์ •์˜ํ•˜๋Š” ๊ธฐ์—…์ด ์ฐจ์ง€ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํ•œ ์—…๊ทธ๋ ˆ์ด๋“œ ์ฃผ๊ธฐ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ธฐ์—… ์šด์˜ ๋ฐฉ์‹์„ ๋‹ค์‹œ ์„ค๊ณ„ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค.


๊ธฐ๋ก ์ค‘์‹ฌ์—์„œ ๊ฐ€์น˜ ์ฐฝ์ถœ ์ค‘์‹ฌ์œผ๋กœ

ERP๋Š” ํ•œ๋•Œ ์žฌ๊ณ  ๊ด€๋ฆฌ, ๋งˆ๊ฐ ์ฒ˜๋ฆฌ, ํ”„๋กœ์„ธ์Šค ํ†ต์ œ ๋“ฑ ํšจ์œจ์„ฑ ์ค‘์‹ฌ์˜ ์‹œ์Šคํ…œ์ด์—ˆ๋‹ค. ์˜ค๋Š˜๋‚  ERP๋Š” ํšŒ๋ณตํƒ„๋ ฅ์„ฑ๊ณผ ํ˜์‹ ์„ ๊ฒฌ์ธํ•˜๋Š” ๊ตฌ์กฐ๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ํ•„์ž๋Š” ์—ฌ๋Ÿฌ ERP ํ”„๋กœ๊ทธ๋žจ์„ ๊ฒฝํ—˜ํ•˜๋ฉฐ, CIO์˜ ์ง„์งœ ๊ณผ์ œ๋Š” ๋‹จ์ˆœํžˆ ์‹œ์Šคํ…œ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ธฐ์—… ์šด์˜ ๋ฐฉ์‹ ์ž์ฒด์— โ€˜๋ฏผ์ฒฉ์„ฑโ€™์„ ๊ตฌ์กฐ์ ์œผ๋กœ ์„ค๊ณ„ํ•˜๋Š” ์ผ์ด๋ผ๋Š” ์ ์„ ํ™•์ธํ•ด ์™”๋‹ค.

ํด๋ผ์šฐ๋“œยทAIยท์‚ฌ๋žŒ ์ค‘์‹ฌ ์„ค๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์กฐ๋ฆฝํ˜• ERP๋Š” ์ด๋Ÿฌํ•œ ์ „ํ™˜์„ ์œ„ํ•œ ์ฒญ์‚ฌ์ง„์ด๋‹ค. ERP๋ฅผ ๊ธฐ๋ก ์‹œ์Šคํ…œ์—์„œ ํ˜์‹  ์‹œ์Šคํ…œ์œผ๋กœ ๋ฐ”๊พธ๋ฉฐ, ์‹œ์žฅ ๋ณ€ํ™” ์†๋„์— ๋งž๊ฒŒ ๋Š์ž„์—†์ด ์ง„ํ™”ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“ ๋‹ค.

๊ธฐํšŒ๋Š” ๋ถ„๋ช…ํ•˜๋‹ค. ์ง€๊ธˆ ๋ณ€ํ™”๋ฅผ ์ฃผ๋„ํ•  ๊ฒƒ์ธ๊ฐ€, ์•„๋‹ˆ๋ฉด ์–ด์ œ์˜ ์•„ํ‚คํ…์ฒ˜์— ๋จธ๋ฌด๋ฅธ ์ฑ„ ๋‚ด์ผ์˜ ๊ธฐ์—…์„ ๋งŒ๋“ค์–ด๊ฐ€๋Š” ์ด๋“ค์„ ๋ฐ”๋ผ๋ณผ ๊ฒƒ์ธ๊ฐ€. ํ•จ๊ป˜ ์ƒ๊ฐํ•ด ๋ณผ ์งˆ๋ฌธ์ด๋‹ค.
dl-ciokorea@foundryco.com



์˜คํ”ˆAI, โ€˜๋„ตํŠ โ€™ ์ธ์ˆ˜๋กœ AI ํ•™์Šต ์ถ”์  ๋„๊ตฌ ๋‚ด์žฌํ™”

์˜คํ”ˆAI๋Š” AI ํ•™์Šต ๊ณผ์ •์„ ์ถ”์ ํ•˜๋Š” ๋„๊ตฌ๋ฅผ ๊ฐœ๋ฐœํ•ด์˜จ ์Šคํƒ€ํŠธ์—… ๋„ตํŠ (Neptune)์„ ์ธ์ˆ˜ํ•˜๊ธฐ๋กœ ํ•ฉ์˜ํ–ˆ์œผ๋ฉฐ, ๋„ตํŠ ์€ ๊ณง๋ฐ”๋กœ ์ž์‚ฌ ์ œํ’ˆ์„ ์‹œ์žฅ์—์„œ ์ฒ ์ˆ˜ํ•œ๋‹ค๊ณ  3์ผ ๊ณต์‹ ๋ฐœํ‘œํ–ˆ๋‹ค.

์ฑ—GPT ๊ฐœ๋ฐœ์‚ฌ์ธ ์˜คํ”ˆAI๋Š” 1๋…„ ๋„˜๊ฒŒ ๋„ตํŠ ์˜ ๊ณ ๊ฐ์œผ๋กœ ์ด ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•ด์˜จ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์กŒ๋‹ค.

๋„ตํŠ ๊ณผ ๊ฐ™์€ ์‹คํ—˜ ์ถ”์  ๋„๊ตฌ๋Š” ๋ฐ์ดํ„ฐ ๊ณผํ•™ํŒ€์ด AI ๋ชจ๋ธ ํ•™์Šต ์‹คํ–‰์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ , ๋‹ค์–‘ํ•œ ์„ค์ • ๊ฐ„ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜๋ฉฐ, ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์‹๋ณ„ํ•˜๋„๋ก ๋•๋Š”๋‹ค. ๋„ตํŠ  ํ”Œ๋žซํผ์€ ๋ชจ๋ธ์ด ํ•™์Šต ๊ณผ์ •์—์„œ ์–ผ๋งˆ๋‚˜ ์˜ค์ฐจ๋ฅผ ์ค„์ด๊ณ  ์žˆ๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์†์‹ค ๊ณก์„ , ๊ฐ€์ค‘์น˜๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๊ณ  ์žˆ๋Š”์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ทธ๋ž˜๋””์–ธํŠธ(gradient) ํ†ต๊ณ„, ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ๋‰ด๋Ÿฐ์ด ์ž…๋ ฅ์— ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ํ™œ์„ฑํ™” ํŒจํ„ด ๋“ฑ ์ฃผ์š” ์ง€ํ‘œ๋ฅผ ์ˆ˜์ฒœ ๊ฑด์˜ ๋™์‹œ ์‹คํ—˜์—์„œ ์ถ”์ ํ•ด์™”๋‹ค.

๋„ตํŠ ์ด ์‹œ์žฅ์—์„œ ์ฒ ์ˆ˜ํ•จ์— ๋”ฐ๋ผ SaaS ๋ฒ„์ „ ์‚ฌ์šฉ์ž๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋‚ด๋ณด๋‚ด๊ณ  ๋‹ค๋ฅธ ํ”Œ๋žซํผ์œผ๋กœ ์ด๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋ช‡ ๊ฐœ์›”์˜ ์œ ์˜ˆ ๊ธฐ๊ฐ„์„ ๊ฐ–๊ฒŒ ๋œ๋‹ค. ๋„ตํŠ ์€ ์ด ๊ธฐ๊ฐ„ ๋™์•ˆ ์•ˆ์ •์„ฑ๊ณผ ๋ณด์•ˆ ํŒจ์น˜๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ์€ ์ถ”๊ฐ€๋˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋„ตํŠ ์€ ์ „ํ™˜ ์•ˆ๋‚ด ํŽ˜์ด์ง€์—์„œ โ€œ2026๋…„ 3์›” 4์ผ ์˜ค์ „ 10์‹œ(ํƒœํ‰์–‘ ํ‘œ์ค€์‹œ)์— ํ˜ธ์ŠคํŒ… ์•ฑ๊ณผ API๊ฐ€ ์ข…๋ฃŒ๋˜๋ฉฐ, ๋‚จ์•„ ์žˆ๋Š” ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋Š” ์•ˆ์ „ํ•˜๊ฒŒ ์˜๊ตฌ ์‚ญ์ œ๋œ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

์…€ํ”„ ํ˜ธ์ŠคํŒ… ํ˜•ํƒœ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ณ ๊ฐ์— ๋Œ€ํ•ด์„œ๋Š” ๊ณ„์ • ๋‹ด๋‹น์ž๊ฐ€ ๋ณ„๋„๋กœ ์—ฐ๋ฝ์„ ์ทจํ•œ ์ƒํƒœ๋ผ๊ณ  ํšŒ์‚ฌ๋Š” ์ „ํ–ˆ๋‹ค.

ํ†ตํ•ฉ์— ๋Œ€ํ•œ ์šฐ๋ ค

์ด๋ฒˆ ๊ฒฐ์ •์€ AI ๊ฐœ๋ฐœ ๋„๊ตฌ ์‹œ์žฅ์—์„œ ๋ฒค๋” ํ†ตํ•ฉ์ด ๊ฐ€์†ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ถ„์„๊ฐ€๋“ค์˜ ์šฐ๋ ค๋ฅผ ๋ถˆ๋Ÿฌ์™”๋‹ค. ์ปจ์„คํŒ… ๊ธฐ์—… ํ…Œํฌ์•„ํฌ(Techarc)์˜ ์ˆ˜์„ ์• ๋„๋ฆฌ์ŠคํŠธ ํŒŒ์ด์‚ด ์นด์šฐ๋Š” โ€œํ…Œ์ŠคํŠธ๋‚˜ ์‹คํ—˜ ์ถ”์  ๋„๊ตฌ ๋“ฑ์€ AI๋ฅผ ํฌํ•จํ•œ ์–ด๋–ค ๊ธฐ์ˆ  ๋ฒค๋”์—๋„ ์—ฐ๊ฒฐ๋˜๊ฑฐ๋‚˜ ์ข…์†๋ผ์„œ๋Š” ์•ˆ ๋œ๋‹คโ€๋ผ๋ฉฐ โ€œ์ด๋Ÿฐ ํ”Œ๋žซํผ์€ ํ•ญ์ƒ ์ œ3์ž ํ˜•ํƒœ๋กœ ๋‚จ์•„์•ผ ํ•˜๋ฉฐ, ๋…๋ฆฝ์ ์ด๊ณ  ์ค‘๋ฆฝ์ ์ธ ๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ํŽธํ–ฅ์ด ์žˆ์–ด์„œ๋Š” ์•ˆ ๋œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์นด์šฐ์‚ฌ๋Š” AI ์—…๊ณ„๊ฐ€ ์•„์ง ๋ช…ํ™•ํ•œ ๋ฐœ์ „ ๋ฐฉํ–ฅ์„ ์ •ํ•˜์ง€ ๋ชปํ•œ ๋งŒํผ, ๋„๊ตฌ ์ธํ”„๋ผ ํ†ตํ•ฉ์€ ์‹œ๊ธฐ์ƒ์กฐ๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œAI์˜ ํ™•์‹คํ•œ ํ–ฅ๋ฐฉ์ด ์ •ํ•ด์ง€์ง€ ์•Š์€ ์ƒํ™ฉ์—์„œ ์ง€๊ธˆ ๋„๊ตฌ ์ธํ”„๋ผ๋ฅผ ํ†ตํ•ฉํ•˜์ž๋Š” ๋…ผ์˜๋Š” ๋„ˆ๋ฌด ์ด๋ฅด๋‹คโ€๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค.

๋ฐ˜๋ฉด, ๋˜ ๋‹ค๋ฅธ ์ปจ์„คํŒ… ๊ธฐ์—… ๋ฌด์–ด ์ธ์‚ฌ์ดํŠธ&์ŠคํŠธ๋ž˜ํ‹ฐ์ง€(Moor Insights & Strategy)์˜ ์ˆ˜์„ ์• ๋„๋ฆฌ์ŠคํŠธ ์•ˆ์…ธ ์ƒˆ๊ทธ๋Š” ์—…๊ณ„๊ฐ€ ์„ฑ์ˆ™ ๋‹จ๊ณ„๋กœ ์ ‘์–ด๋“ค๋ฉด์„œ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ํ๋ฆ„์œผ๋กœ ํ‰๊ฐ€ํ–ˆ๋‹ค. ์ƒˆ๊ทธ๋Š” โ€œ์˜คํ”ˆAI๊ฐ€ ๋‚ด๋ถ€์—์„œ ๊พธ์ค€ํžˆ ํ™œ์šฉํ•˜๊ณ  ์‹ถ์€ ๋„๊ตฌ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ๊ฒฐ์ •์ฒ˜๋Ÿผ ๋ณด์ธ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์˜คํ”ˆAI๋Š” ๋…ผํ‰ ์š”์ฒญ์— ์ฆ‰๊ฐ ์‘๋‹ตํ•˜์ง€ ์•Š์•˜๋‹ค.

๋„ตํŠ ์€ ๋ชจ๋ธ ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ํ•™์Šต ์ง€ํ‘œ๋ฅผ ์ถ”์ ํ•˜๊ณ  ๋ฌธ์ œ ์ง•ํ›„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋ฉฐ, ์ด์ „ ์‹คํ—˜์˜ ๊ธฐ๋ก ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๊ด€ํ•˜๋Š” ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ด ํ”Œ๋žซํผ์€ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ ๊ตฌ์กฐ์—์„œ์˜ ํ•™์Šต ์‹คํ–‰์„ ๋น„๊ตํ•˜๊ณ , ์ˆ˜์ฒœ ๊ฑด์˜ ์‹คํ—˜์„ ๋™์‹œ์— ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•œ๋‹ค.

๋„ตํŠ ์˜ ์ตœ๊ณ ๊ฒฝ์˜์ž ํ”ผ์˜คํŠธ๋ฅด ๋‹ˆ์—์ฆˆ๋น„์—์น˜๋Š” ์ด๋ฒˆ ์ธ์ˆ˜๋ฅผ ์•Œ๋ฆฌ๋Š” ๋ธ”๋กœ๊ทธ ๊ธ€์—์„œ ์ž์‚ฌ์˜ ์—ญํ• ์„ โ€œ๋ฐ˜๋ณต์ ์ด๊ณ  ๋ณต์žกํ•˜๋ฉฐ ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ๋ชจ๋ธ ํ•™์Šต ๋‹จ๊ณ„์—์„œ ํŒ€์ด ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๋„๋ก ์ง€์›ํ•˜๋Š” ๊ฒƒโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ด€๋ จ ๊ณ ๊ฐ์„ ์œ„ํ•œ ์„ ํƒ์ง€

์ƒˆ๊ทธ๋Š” ๋„ตํŠ ๊ณผ ๊ฐ™์€ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๋Š” ๊ธฐ์—…์ด ์ด์™ธ์—๋„ ์กด์žฌํ•œ๋‹ค๋ฉฐ, ์›จ์ด์ธ ์•ค๋“œ๋ฐ”์ด์–ด์‹œ์Šค(Weights & Biases), ํ…์„œ๋ณด๋“œ(TensorBoard), MLํ”Œ๋กœ์šฐ(MLflow) ๋“ฑ์ด ์ด ์‹œ์žฅ์—์„œ ํ™œ๋ฐœํžˆ ํ™œ๋™ ์ค‘์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์‹ค์ œ๋กœ ๋„ตํŠ ์€ ์‚ฌ์šฉ์ž๊ฐ€ ๋ฐ์ดํ„ฐ๋ฅผ ๋‚ด๋ณด๋‚ด MLํ”Œ๋กœ์šฐ ๋˜๋Š” ์›จ์ด์ธ ์•ค๋“œ๋ฐ”์ด์–ด์‹œ์Šค๋กœ ์ด์ „ํ•  ์ˆ˜ ์žˆ๋„๋ก ์•ˆ๋‚ด ๋ฌธ์„œ๋ฅผ ์ œ๊ณตํ–ˆ๋‹ค.

์›จ์ด์ธ ์•ค๋“œ๋ฐ”์ด์–ด์‹œ์Šค๋Š” ์‹œ๊ฐํ™” ๋ฐ ํ˜‘์—… ๊ธฐ๋Šฅ์„ ํฌํ•จํ•œ ๊ด€๋ฆฌํ˜• ํ”Œ๋žซํผ์„ ์ œ๊ณตํ•˜๋ฉฐ, ๋ฐ์ดํ„ฐ๋ธŒ๋ฆญ์Šค๊ฐ€ ๊ฐœ๋ฐœํ•œ ์˜คํ”ˆ์†Œ์Šค MLํ”Œ๋กœ์šฐ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๋ผ์ดํ”„์‚ฌ์ดํด ์ „๋ฐ˜์„ ๋‹ค๋ฃจ๋Š” ํ”Œ๋žซํผ์˜ ์ผ๋ถ€๋กœ ์‹คํ—˜ ์ถ”์  ๊ธฐ๋Šฅ์„ ์ง€์›ํ•œ๋‹ค.

๋˜ ๋‹ค๋ฅธ ๋Œ€์•ˆ์œผ๋กœ๋Š” ์ฝ”๋ฉง(Comet)์ด ์žˆ์œผ๋ฉฐ, ์ด ํ”Œ๋žซํผ์€ ์‹คํ—˜ ์ถ”์  ๊ธฐ๋Šฅ๊ณผ ํ•จ๊ป˜ ๋ฐฐํฌ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ๋Šฅ๋„ ์ œ๊ณตํ•œ๋‹ค.

ํด๋ผ์šฐ๋“œ ์„œ๋น„์Šค ์ œ๊ณต์—…์ฒด๋“ค๋„ ์ž์ฒด ํ”Œ๋žซํผ์„ ํ†ตํ•ด ์‹คํ—˜ ์ถ”์  ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋‹ค. ๊ตฌ๊ธ€์˜ ๋ฒ„ํ…์Šค AI(Vertex AI)๋Š” ๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํŒ€์„ ์œ„ํ•œ ์ถ”์  ๊ธฐ๋Šฅ์„ ์ง€์›ํ•˜๋ฉฐ, AWS์˜ ์„ธ์ด์ง€๋ฉ”์ด์ปค(SageMaker)์™€ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ ์• ์ € ๋จธ์‹ ๋Ÿฌ๋‹(Azure Machine Learning) ์—ญ์‹œ ๊ฐ๊ฐ์˜ ์ƒํƒœ๊ณ„์—์„œ ์œ ์‚ฌํ•œ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค.
dl-ciokorea@foundryco.com

โ€œAI ์‹œ์žฅ, ๊ณจ๋“œ๋Ÿฌ์‹œ์— ์กฐ์ •์œผ๋กœโ€ ๊ธฐ์—…๊ณผ ์†”๋ฃจ์…˜ ์—…์ฒด ๋ชจ๋‘ ์†๋„ ์ค„์ธ๋‹ค

AI ์‹œ์žฅ์ด ์ง€๋‚˜์น˜๊ฒŒ ๊ณผ์—ด๋œ ํƒ“์ด๋“ , ๊ธฐ์—… CIO๋“ค์ด ๊ตฌ๋งค ๊ณ„ํš์„ ์ถ•์†Œํ•˜๊ธฐ๋กœ ๊ฒฐ์ •ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋“ , ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์™€ ์˜คํ”ˆAI๋ฅผ ๋น„๋กฏํ•œ ์ฃผ์š” AI ์„œ๋น„์Šค ์—…์ฒด๊ฐ€ ๋งค์ถœ ์ „๋ง์„ ํ•˜ํ–ฅ ์กฐ์ •ํ•˜๋Š” ์›€์ง์ž„์ด ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค.

๋”์ธํฌ๋ฉ”์ด์…˜(The Information)์€ ์—ฌ๋Ÿฌ ์˜์—… ์กฐ์ง์ด ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜์ง€ ๋ชปํ•œ ์ดํ›„ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ๊ฐ€ ์ผ๋ถ€ ์ œํ’ˆ์˜ AI ์˜์—… ํ• ๋‹น๋Ÿ‰์„ ์ค„์˜€๋‹ค๊ณ  ๋ณด๋„ํ•˜๋ฉด์„œ, ๋ณต์žกํ•œ ์—…๋ฌด๋ฅผ ์ž๋™ํ™”ํ•˜๋Š” AI ์—์ด์ „ํŠธ์—์„œ ๊ธฐ๋Œ€ํ•œ ๋งค์ถœ์— ๋Œ€ํ•œ ์ „๋ง์„ โ€œ์กฐ์ •ํ•˜๊ณ  ์žˆ๋Š”โ€ ๊ธฐ์—…์ด ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ๋งŒ์ด ์•„๋‹ˆ๋ผ๊ณ  ์ „ํ–ˆ๋‹ค. ๋ณด๋„์— ๋”ฐ๋ฅด๋ฉด, ์˜คํ”ˆAI๋Š” ํ–ฅํ›„ 5๋…„ ๋™์•ˆ AI ์—์ด์ „ํŠธ ๋งค์ถœ ์ „๋ง์„ 260์–ต ๋‹ฌ๋Ÿฌ ๊ทœ๋ชจ๋กœ ํ•˜ํ–ฅ ์กฐ์ •ํ–ˆ๋‹ค.

๊ทธ๋ ˆ์ดํ•˜์šด๋“œ ๋ฆฌ์„œ์น˜(Greyhound Research)์˜ ์ตœ๊ณ  ์• ๋„๋ฆฌ์ŠคํŠธ ์‚ฐ์น˜ํŠธ ๋น„๋ฅด ๊ณ ๊ธฐ์•„๋Š” โ€œAI ์˜์—… ํ• ๋‹น๋Ÿ‰ ์ถ•์†Œ๋Š” ์‹œ์žฅ ์œ„๊ธฐ์˜ ์ „์กฐ๊ฐ€ ์•„๋‹ˆ๋ผ, ์ง€๋‚œ 1๋…„ ๋™์•ˆ ๊ตฌ์กฐ์ ์ธ ์‚ฐ์—… ์ „ํ™˜์ด๋ผ๊ธฐ๋ณด๋‹ค ๊ณจ๋“œ๋Ÿฌ์‹œ ๊ฐ™์€ ์—ดํ’์ด ์ด์–ด์กŒ๋˜ ์ƒํ™ฉ์ด๋ผ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ธฐ์ˆ  ์‹œ์žฅ์ด ๋งˆ์นจ๋‚ด ํ˜„์‹ค๋กœ ๋Œ์•„์˜ค๊ณ  ์žˆ๋‹ค๋Š” ์‹ ํ˜ธโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๊ณ ๊ธฐ์•„๋Š” โ€œ์ง€๋‚œ 18๊ฐœ์›” ๋™์•ˆ ๋งŽ์€ ์—…์ฒด๊ฐ€ ๊ณ ๊ฐ์ด ํ˜„์‹ค์ ์œผ๋กœ ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ค€์„ ํ›จ์”ฌ ๋›ฐ์–ด๋„˜๋Š” ๊ณต๊ฒฉ์ ์ธ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ–ˆ๋‹คโ€๋ฉด์„œ โ€œ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ตฌ๋งค ๋‹ด๋‹น์ž๋Š” ์ด๋Ÿฐ ๋„๊ตฌ๋ฅผ ์ถฉ๋ถ„ํžˆ ์‹œํ—˜ํ•ด ๋ณด๊ฑฐ๋‚˜ ํ†ตํ•ฉ ๋ณต์žก์„ฑ์„ ์ ๊ฒ€ํ•˜๊ฑฐ๋‚˜, ๋ณต์žกํ•˜๊ฒŒ ์–ฝํžŒ ์ž์‚ฌ ์‹œ์Šคํ…œ ์•ˆ์—์„œ ์•ฝ์†ํ•œ ํšจ๊ณผ๊ฐ€ ์‹ค์ œ๋กœ ์œ ์ง€๋˜๋Š”์ง€ ํ‰๊ฐ€ํ•ด ๋ณผ ๊ธฐํšŒ๋„ ๊ฐ–์ง€ ๋ชปํ•œ ์ฑ„ ๋‹ค๋…„๊ฐ„ AI์— ํˆฌ์žํ•˜๋ผ๋Š” ์š”๊ตฌ๋ฅผ ๋ฐ›์•˜๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๊ณผ๋Œ€ํฌ์žฅ์—์„œ ํ•œ๋ฐœ ๋ฌผ๋Ÿฌ์„œ๋Š” ๊ธฐ์—… ๊ณ ๊ฐ

๊ณ ๊ธฐ์•„๋Š” ์˜์—… ์••๋ฐ•์ด ๋А์Šจํ•ด์ง€๋Š” ํ˜„์ƒ์— ๋Œ€ํ•ด โ€œ๊ธ‰ํ•œ ์ชฝ์œผ๋กœ ๋„ˆ๋ฌด ๊ธฐ์šธ์–ด ์žˆ๋˜ ๋Œ€ํ™”์˜ ๊ท ํ˜•์„ ๋˜์ฐพ๋Š” ๊ฑด๊ฐ•ํ•œ ์›€์ง์ž„โ€์ด๋ผ๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ๋˜ โ€œ์ด๋ฒˆ ์กฐ์ •์˜ ํ•ต์‹ฌ์€ ์†”๋ฃจ์…˜ ์—…์ฒด๊ฐ€ ๋‚ด์„ธ์šด ์•ฝ์†๊ณผ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์‚ฌ์šฉ ๊ฒฝํ—˜ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋‹ค. ๊ตฌ๋งค์ž๊ฐ€ AI๋ฅผ ํฌ๊ธฐํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๊ณผ๋Œ€๊ด‘๊ณ ์—์„œ ํ•œ ๋ฐœ ๋ฌผ๋Ÿฌ์„œ๋Š” ๊ฒƒโ€์ด๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

๊ธฐ์—…์€ ์ด๋ฏธ ๊ฐ€์น˜๊ฐ€ ์ž…์ฆ๋œ ๊ณณ์—๋งŒ ํˆฌ์žํ•˜๊ธฐ๋กœ ์„ ํƒํ•˜๊ณ  ์žˆ๋‹ค. ๊ณ ๊ธฐ์•„๋Š” โ€œ2023๋…„๋ถ€ํ„ฐ 2025๋…„๊นŒ์ง€ ๊ทธ๋ ˆ์ดํ•˜์šด๋“œ ๋ฆฌ์„œ์น˜ ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด, ๋Œ€๋ถ€๋ถ„ ์กฐ์ง์ด ๊ฑฐ์˜ ๋น„์Šทํ•œ ์‹œ์ ์— ๊ฐ™์€ ๊นจ๋‹ฌ์Œ์— ๋„๋‹ฌํ–ˆ๋‹ค. ์ง€์† ๊ฐ€๋Šฅํ•œ AI ์„ฑ๊ณผ๋ฅผ ๋งŒ๋“ค๋ ค๋ฉด ์ดˆ๊ธฐ ๋งˆ์ผ€ํŒ…์ด ๋‚ด์„ธ์šด ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋งŽ์€ ๊ธฐ์ดˆ ์ž‘์—…์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ๊ฒŒ ๋๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์ค€๋น„์—๋Š” ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๊ณ , AI ๋ชจ๋ธ์˜ ๋™์ž‘์„ ์กฐ์œจํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋œป์ด๋‹ค. ๊ณ ๊ธฐ์•„๋Š” โ€œAI ๊ฑฐ๋ฒ„๋„Œ์Šค ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฆ‰ํฅ์ ์œผ๋กœ ๋งŒ๋“ค ์ˆ˜ ์—†๋‹ค. ๋งŽ์€ ๊ฒฝ์šฐ ๊ธฐ๋Œ€ํ–ˆ๋˜ ํšจ๊ณผ์˜ ์†๋„์™€ ๋ฒ”์œ„๊ฐ€, ์‹ค์ œ ํ”„๋กœ๋•์…˜ ์‹œ์Šคํ…œ์— ์ ์šฉ๋์„ ๋•Œ ๊ธฐ์ˆ ์ด ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ค€๋ณด๋‹ค ์ง€๋‚˜์น˜๊ฒŒ ๋น ๋ฅด๊ณ  ๋„“์—ˆ๋‹คโ€๋ผ๊ณ  ๋น„ํŒํ–ˆ๋‹ค.

์ธํฌํ…Œํฌ ๋ฆฌ์„œ์น˜ ๊ทธ๋ฃน(Info-Tech Research Group) ์ž๋ฌธ ํŽ ๋กœ์šฐ ์Šค์ฝง ๋น…ํด๋ฆฌ๋Š” ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์˜ ์˜์—… ํ• ๋‹น๋Ÿ‰ ์ถ•์†Œ ๋ฐฐ๊ฒฝ์—๋Š” ์ž์ดˆํ•œ ์ธก๋ฉด์ด ์žˆ๋‹ค๋ฉฐ, โ€œ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์˜ AI ์‹œ์žฅ ๊ณต๋žต ๋ฐฉ์‹์€ ์˜ค๋งŒํ•จ์— ๊ธฐ๋ฐ˜ํ•˜๊ณ , ์‹œ์žฅ ์ง€๋ฐฐ๋ ฅ์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜๋Š” ์ „๋žต์ด์—ˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๋น…ํด๋ฆฌ๋Š” โ€œ์ถœ๋ฐœ์ ๋ถ€ํ„ฐ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ๋Š” ๊ณ ๊ฐ์ด AI๋ฅผ ๋Œ€๊ทœ๋ชจ๋กœ ๋„์ž…ํ•˜๋”๋ผ๋„ ์ •๊ฐ€๋ฅผ ๋งค์šฐ ๋†’๊ฒŒ ์ฑ…์ •ํ•˜๊ณ  ํ• ์ธ์€ ์ตœ์†Œํ™”ํ–ˆ๋‹ค. ์ฝ”ํŒŒ์ผ๋Ÿฟ์ด๋“  ์• ์ € ํŒŒ์šด๋“œ๋ฆฌ๋“  ์ด๋“ค ์ œํ’ˆ์„ โ€˜์™„์ „ํžˆ ์ค€๋น„๋œ ์†”๋ฃจ์…˜, ์ฆ‰์‹œ ๋„์ž…ํ•  ์ˆ˜ ์žˆ๊ณ , ๋ง‰๋Œ€ํ•œ ํˆฌ์ž ๋Œ€๋น„ ํšจ๊ณผ๋ฅผ ๋‚ด๋Š” ํ„ดํ‚ค ํŒจํ‚ค์ง€โ€™์ธ ๊ฒƒ์ฒ˜๋Ÿผ ์ œ์‹œํ•ด ์™”๋‹คโ€๋ผ๋ฉฐ, โ€œ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ๊ฐ€ ์ด๋Ÿฐ ์ œํ’ˆ์— ๋Œ€ํ•ด ํ”„๋ฆฌ๋ฏธ์—„ ๊ฐ€๊ฒฉ์„ ์ฒญ๊ตฌํ•˜์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ์ ˆ๋ฐ˜๋งŒ ์™„์„ฑ๋œ ์ˆ˜์ค€์ด์–ด์„œ ๋ณธ๊ฒฉ์ ์ธ ์šด์˜ ํ™˜๊ฒฝ์— ํˆฌ์ž…ํ•  ์ค€๋น„๊ฐ€ ์ „ํ˜€ ๋ผ ์žˆ์ง€ ์•Š๊ณ  ๊ฐ€๊ฒฉ๋„ ์ง€๋‚˜์น˜๊ฒŒ ๋น„์‹ธ๋‹คโ€๋ผ๊ณ  ๋น„ํŒํ–ˆ๋‹ค.

๋น…ํด๋ฆฌ๋Š” โ€œ์—ฌ๊ธฐ์— ๋”ํ•ด, ์ด๋Ÿฐ ๋„๊ตฌ๋ฅผ ์ œ๋Œ€๋กœ ํ™œ์šฉํ•˜๊ณ  ๋น„์ฆˆ๋‹ˆ์Šค ํ”„๋กœ์„ธ์Šค๋ฅผ ๋‹ค์‹œ ์„ค๊ณ„ํ•˜๋ ค๋ฉด ๊ณ ๊ฐ ์กฐ์ง ์•ˆ์— ์ƒ๋‹นํ•œ ์ธ์žฌ ์—ญ๋Ÿ‰์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์€ ์•„์˜ˆ ๊ณ ๋ ค์กฐ์ฐจ ํ•˜์ง€ ์•Š๋Š”๋‹คโ€๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๋น…ํด๋ฆฌ๋Š” CIO์˜ ์ž…์žฅ์—์„œ ๋ฐ”๋ผ๋ณธ๋‹ค๋ฉด, โ€œ์ด๋ฒˆ ์›€์ง์ž„์„ ํ•˜๋‚˜์˜ ๋‹จ์„œ๋กœ ์‚ผ์•„ ๊ธฐ์ˆ  ์ž์ฒด ์™ธ์— ํ•„์š”ํ•œ ๋ชจ๋“  ์š”์†Œ๋ฅผ ํฌ๊ด„ํ•˜๋Š” ์ œ๋Œ€๋กœ ๋œ AI ์ „๋žต์„ ์‹ค์ œ๋กœ ๊ตฌ์ถ•ํ•˜๊ณ  ์žˆ๋Š”์ง€, ๊ธฐ์ˆ ๋กœ ๋ฌด์—‡์„ ๋‹ฌ์„ฑํ•˜๋ ค๊ณ  ํ•˜๋Š”์ง€ ํ•œ ๋ฐœ ๋–จ์–ด์ ธ์„œ ์ ๊ฒ€ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ๋˜ํ•œ, โ€œ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์€ ๋ฐฉ์ •์‹์˜ ํ•œ ๋ถ€๋ถ„์ผ ๋ฟ์ด๋ฉฐ, ์ง„์ •ํ•œ ๊ฐ€์น˜๋ฅผ ๋‚ด๋ ค๋ฉด ์ง€๊ธˆ๊นŒ์ง€ ์—†์—ˆ๋˜ ์ˆ˜์ค€์˜ ๊ฐœ์ธํ™”, ์ƒˆ๋กœ์šด ์˜ˆ์ธก ๋Šฅ๋ ฅ, ์ƒˆ๋กœ์šด ์„ฑ๊ณผ์™€ ๋งค์ถœ ์„ฑ์žฅ์„ ์ด๋„๋Š” ํผํฌ๋จผ์Šค๊ฐ€ ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

ํ“จ์ฒ˜๋Ÿผ ๊ทธ๋ฃน(Futurum Group) ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์†Œํ”„ํŠธ์›จ์–ดยท๋””์ง€ํ„ธ ์›Œํฌํ”Œ๋กœ์šฐ ๋‹ด๋‹น ๋ฆฌ์„œ์น˜ ๋””๋ ‰ํ„ฐ ํ‚ค์Šค ์ปคํฌํŒจํŠธ๋ฆญ์€ AI ์ง€ํ˜•์ด ๋‹ค๋ฅธ ์ธก๋ฉด์—์„œ๋„ ํฌ๊ฒŒ ๋ฐ”๋€Œ๊ณ  ์žˆ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค. ์ปคํฌํŒจํŠธ๋ฆญ์€ ์ˆ˜์š”์ผ ๋ฐœํ‘œํ•œ ๋ถ„์„ ๋ณด๊ณ ์„œ์—์„œ โ€œ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์†Œํ”„ํŠธ์›จ์–ด ์‹œ์žฅ์€ AI ๊ณผ๋Œ€๊ด‘๊ณ ์—์„œ ์ž„๋ฒ ๋””๋“œ ๋ฐฉ์‹์˜ ์šด์˜ AI๋กœ ๋ณ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ฃผ์š” ์†”๋ฃจ์…˜ ์—…์ฒด๋Š” AI๋ฅผ ์›Œํฌํ”Œ๋กœ์šฐ์™€ ๋ฐ์ดํ„ฐ ๊ณ„์ธต, ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ์— ์ง์ ‘ ํ†ตํ•ฉํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ฐํ˜”๋‹ค.

AI ๋ฐœ์ „์€ โ€˜์ ˆ์ œโ€™์—์„œ ๋‚˜์˜จ๋‹ค

์ปคํฌํŒจํŠธ๋ฆญ์€ โ€œAI ๋„์ž…์ด ํ™•์‚ฐ๋˜๋ฉด์„œ ๋…ผ์˜์˜ ์ดˆ์ ๋„ ๋‹จ์ˆœํ•œ ๊ธฐ๋Šฅ ๋น„๊ต์—์„œ ๊ฐ€์น˜ ์‹คํ˜„, ๊ฑฐ๋ฒ„๋„Œ์Šค, ์ƒํ˜ธ์šด์šฉ์„ฑ, ์ง„ํ™”ํ•˜๋Š” AI ๊ฐ€๊ฒฉ ๋ชจ๋ธ๋กœ ์˜ฎ๊ฒจ๊ฐ”๋‹คโ€๋ผ๋ฉฐ, โ€œ2026๋…„์„ ๋‚ด๋‹ค๋ณด๋ฉด ๊ตฌ๋งค์ž๋Š” ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ๋ฅผ ์šฐ์„ ํ•˜๋ฉด์„œ ํ†ตํ•ฉ๋œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜๊ณผ ์ž˜ ์„ค๊ณ„๋œ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•ด AI ๊ธฐ๋ฐ˜ ๋งค์ถœ ์„ฑ์žฅ, ๋น„์šฉ ์ ˆ๊ฐ, ์šด์˜ ํ™•์žฅ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•ด ๋ณด์ด๋Š” ์—…์ฒด๋ฅผ ์„ ํƒํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

๊ธฐ์—…์ด ์ด๋ฅธ๋ฐ” โ€œ๊ณผ์žฅ ๊ฒฝ์Ÿโ€๊ณผ ์ˆ˜์‹์–ด ๋‚จ๋ฐœ์— ์ ์  ํ”ผ๋กœ๊ฐ์„ ๋А๋ผ๊ณ  ์žˆ๋‹ค๋Š” ์ ๋„ ์ง€์ ํ–ˆ๋‹ค. ์ปคํฌํŒจํŠธ๋ฆญ์€ โ€œ2026๋…„์—๋Š” ์กฐ๋‹ฌ ๋ถ€์„œ๊ฐ€ ๋‹จ์ˆœํžˆ ์—…๋ฌด ๋‹จ์œ„ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ๋งŒ ๋ณด์—ฌ์ฃผ๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋น„์ฆˆ๋‹ˆ์Šค ํ•ต์‹ฌ ์„ฑ๊ณผ ์ง€ํ‘œ์— ์ง์ ‘ ์—ฐ๊ณ„๋œ ๊ณ ๊ฐ ์‚ฌ๋ก€๋ฅผ ์ œ์‹œํ•˜๋Š” ์—…์ฒด์— ๋” ๋†’์€ ์ ์ˆ˜๋ฅผ ์ค„ ๊ฒƒ์ด๋ฏ€๋กœ ์†”๋ฃจ์…˜ ์—…์ฒด๋Š” ๊ฒฝ์Ÿ์‚ฌ์˜ ์‹ ๊ทœ ๊ณ ๊ฐ ์‚ฌ๋ก€์™€ ์„ฑ๊ณผ ์ง€ํ‘œ๋ฅผ ๋ฉด๋ฐ€ํžˆ ๋ชจ๋‹ˆํ„ฐ๋งํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํ•œํŽธ ๋น…ํด๋ฆฌ๋Š” CIO์—๊ฒŒ AI ๊ด€๋ จ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆด ๋•Œ โ€œAI ๊ณผ๋Œ€๊ด‘๊ณ ์˜ ์†Œ์šฉ๋Œ์ด ์†์œผ๋กœ ์„œ๋‘˜๋Ÿฌ ๋›ฐ์–ด๋“ค ํ•„์š”๊ฐ€ ์—†๋‹ค๋Š” ์ ์„ ๋ฐ›์•„๋“ค์ด๋ผโ€๊ณ  ์กฐ์–ธํ–ˆ๋‹ค. ๋น…ํด๋ฆฌ๋Š” โ€œ๊ฐ ๊ธฐ์—…์— ๋งž๋Š” ๋ฐฉํ–ฅ์„ ์ฐจ๋ถ„ํ•˜๊ฒŒ ์„ค๊ณ„ํ•˜๊ณ  ๊ณ„ํšํ•  ์‹œ๊ฐ„์„ ์ถฉ๋ถ„ํžˆ ๊ฐ€์ ธ๋„ ์‹ค์ œ๋กœ ๋’ค์ฒ˜์ง€๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹คโ€๋ผ๋ฉฐ, โ€œAI ํ•˜์ดํ”„ ์‚ฌ์ดํด์ด ์›Œ๋‚™ ์‹œ๋„๋Ÿฝ๊ณ  ์–ด๋””์—๋‚˜ ์กด์žฌํ•˜๋‹ค ๋ณด๋‹ˆ ์ด์„ฑ์ ์ธ ๋…ผ๋ฆฌ์™€ ํ•ฉ๋ฆฌ์ ์ธ ํŒ๋‹จ์ด ์™„์ „ํžˆ ๋ฌปํ˜€ ๋ฒ„๋ ธ๋‹คโ€๋ผ๊ณ  ๋น„ํŒํ–ˆ๋‹ค.

๊ณ ๊ธฐ์•„๋„ ์ด๋Ÿฐ ๊ฒฌํ•ด์— ๋™์˜ํ–ˆ๋‹ค. ๊ณ ๊ธฐ์•„๋Š” โ€œ์ดˆ๊ธฐ ํ•˜์ดํ”„ ์‚ฌ์ดํด์˜ ์—ดํ’์€ ์ด๋ฏธ ์ง€๋‚˜๊ฐ”๋‹คโ€๋ผ๋ฉฐ, โ€œ๊ธฐ์ˆ ์˜ ์ž ์žฌ๋ ฅ์€ ์—ฌ์ „ํžˆ ๊ฐ•๋ ฅํ•˜์ง€๋งŒ, ์ง€๊ธˆ์€ ํ›จ์”ฌ ๋” ๋ƒ‰์ •ํ•œ ์‹œ๊ฐ๊ณผ ์•ˆ์ •๋œ ํƒœ๋„๋กœ ํ‰๊ฐ€๊ฐ€ ์ด๋ค„์ง€๊ณ  ์žˆ๋‹ค. AI ์†”๋ฃจ์…˜ ์—…์ฒด๋Š” ๋น ๋ฅด๊ฒŒ ๋งค์ถœ์„ ์˜ฌ๋ฆฌ๋Š” ๊ฒƒ๋ณด๋‹ค ์‹œ๊ฐ„์„ ๋“ค์—ฌ ์Œ“์€ ์‹ ๋ขฐ๊ฐ€ ํ›จ์”ฌ ๋” ๊ฐ€์น˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊นจ๋‹ซ๊ณ  ์ด๋Ÿฐ ์ƒˆ๋กœ์šด ๋ฆฌ๋“ฌ์— ๋งž์ถฐ ์›€์ง์ด๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋˜ํ•œ, โ€œ์ด๋Ÿฐ ์„ฑ์ˆ™ํ•จ์„ ๋ฐ›์•„๋“ค์ด๋Š” ์กฐ์ง์ด ํ–ฅํ›„ 10๋…„๊ฐ„ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ AI์˜ ๋ฐฉํ–ฅ์„ ์ง€์† ๊ฐ€๋Šฅํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹ค์ œ ์šด์˜ ํ˜„์‹ค์— ๊ธฐ๋ฐ˜ํ•œ ๋ชจ์Šต์œผ๋กœ ๋งŒ๋“ค์–ด ๊ฐˆ ๊ฒƒโ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

๊ณ ๊ธฐ์•„๋Š” ํ˜„์žฌ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ ๋“ฑ์—์„œ ๋ฒŒ์–ด์ง€๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์— ๋Œ€ํ•ด โ€œ๋ชจ๋ฉ˜ํ…€์˜ ์ƒ์‹ค์ด ์•„๋‹ˆ๋ผ ๊ฒ‰๋ณด๊ธฐ์— ํ™”๋ คํ•œ ์„ฑ๊ณผ์—์„œ ์ง„์งœ ์‹ค์งˆ์ ์ธ ๋‚ด์šฉ์œผ๋กœ ์ค‘์‹ฌ์ถ•์ด ์ด๋™ํ•˜๋Š” ๊ณผ์ •โ€์ด๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค. ๊ณ ๊ธฐ์•„๋Š” โ€œ์ง€๊ธˆ AI ์‹œ์žฅ์€ ์ง„์ •ํ•œ ์ง„๋ณด๋Š” ๊ณผ์žฅ๋œ ํผํฌ๋จผ์Šค๊ฐ€ ์•„๋‹ˆ๋ผ, ์กฐ์šฉํ•˜์ง€๋งŒ ์ผ๊ด€๋œ ์‹คํ–‰๊ณผ ์ ˆ์ œ์—์„œ ๋‚˜์˜จ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊นจ๋‹ซ๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ, โ€œ์ด๋ฒˆ ์‚ฌ์ดํด์—์„œ ์ฒ˜์Œ์œผ๋กœ ์ด๋Ÿฐ โ€˜์ ˆ์ œโ€™๊ฐ€ ๋ˆˆ์— ๋ณด์ด๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.
dl-ciokorea@foundryco.com

์ง€์—ญยท์„ธ๋Œ€๋ณ„ AI ํ™œ์šฉ ๋ฐ ๋””์ง€ํ„ธ ์›ฐ๋น™ ๊ฒฉ์ฐจ ํ™•๋Œ€โ€ฆ์‹œ์Šค์ฝ”ยทOECD ๋ถ„์„

์‹œ์Šค์ฝ”์™€ ๊ฒฝ์ œํ˜‘๋ ฅ๊ฐœ๋ฐœ๊ธฐ๊ตฌ(OECD)๊ฐ€ ํ˜‘๋ ฅํ•˜์—ฌ ๊ณต๋™์œผ๋กœ ๊ตฌ์ถ•ํ•œ โ€˜๋””์ง€ํ„ธ ์›ฐ๋น™ ํ—ˆ๋ธŒ(Digital Well-being Hub)โ€™๊ฐ€ ๊ธฐ์ˆ ์˜ ์œ„ํ—˜๊ณผ ์ด์ , ๊ทธ๋ฆฌ๊ณ  AI๊ฐ€ ์‚ฌ๋žŒ์˜ ์‚ถ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•œ ์ตœ์‹  ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๊ณต๊ฐœํ–ˆ๋‹ค. ์ƒ์„ฑํ˜• AI๊ฐ€ ์ผ์ƒ์— ๋น ๋ฅด๊ฒŒ ์ž๋ฆฌ ์žก๋Š” ๊ฐ€์šด๋ฐ, AI ํ™œ์šฉ์„ ๋‘˜๋Ÿฌ์‹ผ ์ง€์—ญ๋ณ„/์„ธ๋Œ€๋ณ„ ๊ฒฉ์ฐจ๊ฐ€ ๋”์šฑ ๋šœ๋ ทํ•ด์ง€๊ณ  ์žˆ๋‹ค๋Š” ๋ถ„์„์ด๋‹ค. ์ด๋Ÿฐ ๊ฒฉ์ฐจ๋Š” ๋ˆ„๊ฐ€ AI์˜ ํ˜œํƒ์„ ๋ˆ„๋ฆฌ๊ณ , ๋ˆ„๊ฐ€ ๋” ํฐ ์œ„ํ—˜์„ ๊ฐ์ˆ˜ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๋””์ง€ํ„ธ ์ƒํ™œ์ด ๊ฐœ์ธ์˜ ์›ฐ๋น™์— ์–ด๋–ค ๋ฐฉ์‹์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์ขŒ์šฐํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘๋Œ€ํ•œ ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค.

๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ 35์„ธ ๋ฏธ๋งŒ ์ Š์€ ์„ธ๋Œ€๋Š” ์ƒ์„ฑํ˜• AI์™€ ๊ฐ์ข… ๋””์ง€ํ„ธ ์„œ๋น„์Šค ํ™œ์šฉ์˜ ํ•ต์‹ฌ ์‚ฌ์šฉ์ž์ธต์ด๋‹ค. ํŠนํžˆ ์ธ๋„ยท๋ธŒ๋ผ์งˆยท๋ฉ•์‹œ์ฝ”ยท๋‚จ์•„ํ”„๋ฆฌ์นด๊ณตํ™”๊ตญ ๋“ฑ ์‹ ํฅ๊ตญ ์ฒญ๋…„์ธต์ด ๋‘๋“œ๋Ÿฌ์ง€๋ฉฐ AI ์‚ฌ์šฉ๋ฅ , ์‹ ๋ขฐ ์ˆ˜์ค€, ๊ต์œก ์ฐธ์—ฌ๋„ ๋“ฑ ๊ฑฐ์˜ ๋ชจ๋“  ์ง€ํ‘œ์—์„œ ์ƒ์œ„๊ถŒ์„ ๊ธฐ๋กํ–ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ ๋งŽ์€ ์œ ๋Ÿฝ ๊ตญ๊ฐ€์—์„œ๋Š” AI ๊ด€๋ จ ์‹ ๋ขฐ๋„๊ฐ€ ๋‚ฎ๊ณ  ๋ถˆํ™•์‹ค์„ฑ์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ธฐ์ˆ  ๋„์ž…์ด ์„ ์ง„๊ตญ์—์„œ ๋จผ์ € ์ผ์–ด๋‚˜๋˜ ๊ธฐ์กด ํ๋ฆ„๊ณผ ๋‹ค๋ฅธ ์–‘์ƒ์ด๋‹ค.

ํฅ๋ฏธ๋กœ์šด ์ ์€ AI ํ™œ์šฉ๋„๊ฐ€ ๋†’์€ ์‹ ํฅ๊ตญ ์ฒญ๋…„์ธต์ด ๋™์‹œ์— โ€˜๋””์ง€ํ„ธ ์›ฐ๋น™โ€™ ์ €ํ•˜ ์ง€ํ‘œ์—์„œ๋„ ๋†’์€ ์ˆ˜์น˜๋ฅผ ๋ณด์˜€๋‹ค๋Š” ์‚ฌ์‹ค์ด๋‹ค. ์ด๋“ค์€ ์—ฌ๊ฐ€ ์‹œ๊ฐ„๋Œ€ ์Šคํฌ๋ฆฐ ์‚ฌ์šฉ ์‹œ๊ฐ„์ด ๊ฐ€์žฅ ๊ธธ๊ณ  ์˜จ๋ผ์ธ ๊ธฐ๋ฐ˜์˜ ์‚ฌํšŒ์  ์˜์กด๋„ ์—ญ์‹œ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ๊ธฐ์ˆ  ์‚ฌ์šฉ์œผ๋กœ ์ธํ•œ ๊ฐ์ • ๊ธฐ๋ณต๋„ ๊ฐ€์žฅ ์‹ฌํ•œ ๊ฒฝํ–ฅ์„ ๋ณด์—ฌ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ์ ‘๊ทผ์„ฑ ์ด์ƒ์˜ ๊ท ํ˜• ์žกํžŒ ๋””์ง€ํ„ธ ํ™˜๊ฒฝ์ด ํ•„์š”์„ฑ์„ ๋ถ€๊ฐํ–ˆ๋‹ค.

์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ•˜๋ฃจ 5์‹œ๊ฐ„์„ ์ดˆ๊ณผํ•˜๋Š” ์—ฌ๊ฐ€ ์‹œ๊ฐ„๋Œ€ ์Šคํฌ๋ฆฐ ์‚ฌ์šฉ ์‹œ๊ฐ„์€ ๊ฐœ์ธ์˜ ์ „๋ฐ˜์ ์ธ ์›ฐ๋น™ ์ €ํ•˜์™€ ์‚ถ์˜ ๋งŒ์กฑ๋„ ๊ฐ์†Œ์™€ ์—ฐ๊ด€๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ ํ•œ๊ตญ์€ ์ „ ์„ธ๊ณ„์—์„œ โ€˜์Šคํฌ๋ฆฐ ํ”ผ๋กœ๊ฐ(screen fatigue)โ€™์ด ๊ฐ€์žฅ ๋†’์€ ๊ตญ๊ฐ€๋กœ ์กฐ์‚ฌ๋๋‹ค. ์ด๋Ÿฐ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋ฐ˜๋“œ์‹œ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹ˆ์ง€๋งŒ, ์ง€์† ๊ฐ€๋Šฅํ•œ ๋””์ง€ํ„ธ ๋ฏธ๋ž˜๋ฅผ ์œ„ํ•ด์„œ๋Š” ๊ธฐ์ˆ  ํ˜์‹ ๋งŒํผ์ด๋‚˜ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•๊ณผ ํ–‰๋ณต์„ ์ง€ํ‚ค๋Š” ๋””์ง€ํ„ธ ์›ฐ๋น™์— ๋Œ€ํ•œ ๊พธ์ค€ํ•œ ๊ด€์‹ฌ๊ณผ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค.

์‹œ์Šค์ฝ” ์ˆ˜์„๋ถ€์‚ฌ์žฅ ๊ฒธ ๊ธ€๋กœ๋ฒŒํ˜์‹ ์ฑ…์ž„์ž ๊ฐ€์ด ๋””๋“œ๋ฆฌํžˆ๋Š” โ€œ์‹ ํฅ๊ตญ์ด AI ์—ญ๋Ÿ‰์„ ๊ฐ–์ถœ ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•˜๋Š” ๊ฒƒ์€ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ๋ณด๊ธ‰์ด ์•„๋‹ˆ๋ผ, ์‹ ํฅ๊ตญ์˜ ๊ฐ ๊ฐœ์ธ์ด ์Šค์Šค๋กœ์˜ ๋ฏธ๋ž˜๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ž ์žฌ๋ ฅ์„ ์—ด์–ด ์ฃผ๋Š” ์ผโ€์ด๋ผ๋ฉฐ โ€œAI๊ฐ€ ์šฐ๋ฆฌ์˜ ์ผ์ƒ๊ณผ ์ผํ„ฐ์— ๋น ๋ฅด๊ฒŒ ๋ณด๊ธ‰๋˜๊ณ  ์žˆ๋Š” ์ง€๊ธˆ, ์šฐ๋ฆฌ๋Š” ํˆฌ๋ช…์„ฑ, ๊ณต์ •์„ฑ, ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ํ•ต์‹ฌ ๊ฐ€์น˜๋กœ ์‚ผ์•„ ์ด๋“ค ๋„๊ตฌ๊ฐ€ ์ฑ…์ž„๊ฐ ์žˆ๊ฒŒ ์„ค๊ณ„๋˜๋„๋ก ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ด์–ด โ€œ์—…๋ฌด๋ฅผ ํšจ์œจํ™”ํ•˜๊ณ  ํ˜‘์—…์„ ๊ฐœ์„ ํ•˜๋ฉฐ, ์„ฑ์žฅ๊ณผ ํ•™์Šต์˜ ์ƒˆ๋กœ์šด ๊ธฐํšŒ๋ฅผ ๋งŒ๋“ค์–ด ์ค„ ๋•Œ AI๋Š” ์›ฐ๋น™์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๊ทธ ์ž ์žฌ๋ ฅ์„ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œ๊ธฐ์ˆ ๊ณผ ์‚ฌ๋žŒ, ๊ทธ๋ฆฌ๊ณ  ๋ถ„๋ช…ํ•œ ๋ชฉ์ ์„ฑ์ด ๊ฒฐํ•ฉ๋  ๋•Œ์—์•ผ ๋น„๋กœ์†Œ, ํšŒ๋ณตํƒ„๋ ฅ์„ฑ ์žˆ๊ณ  ๊ฑด๊ฐ•ํ•˜๋ฉฐ ๋ฒˆ์˜ํ•˜๋Š” ์ปค๋ฎค๋‹ˆํ‹ฐ๊ฐ€ ๋ชจ๋“  ๊ณณ์—์„œ ํ˜•์„ฑ๋  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ธ๋Œ€ ๊ฐ„ ๊ฒฉ์ฐจ๋„ ๋‘๋“œ๋Ÿฌ์กŒ๋‹ค. ์ „ ์„ธ๊ณ„ ์ฒญ๋…„์ธต์€ ๊ณตํ†ต์ ์œผ๋กœ ์‚ฌํšŒ์  ์ƒํ˜ธ์ž‘์šฉ ๋Œ€๋ถ€๋ถ„ ๋˜๋Š” ์ „๋ถ€๊ฐ€ ์˜จ๋ผ์ธ์—์„œ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค๊ณ  ๋‹ตํ–ˆ์œผ๋ฉฐ, AI์˜ ์œ ์šฉ์„ฑ์— ๋Œ€ํ•ด์„œ๋„ ๋†’์€ ์‹ ๋ขฐ๋„๋ฅผ ๋ณด์˜€๋‹ค. 35์„ธ ๋ฏธ๋งŒ์˜ ์กฐ์‚ฌ๋Œ€์ƒ์ž ์ค‘ ์ ˆ๋ฐ˜ ์ด์ƒ์ด ์ ๊ทน์ ์œผ๋กœ AI๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, 75% ์ด์ƒ์€ AI๊ฐ€ ์œ ์šฉํ•˜๋‹ค๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ๋˜ํ•œ 26~35์„ธ ์‘๋‹ต์ž์˜ ์ ˆ๋ฐ˜๊ฐ€๋Ÿ‰์€ ์ด๋ฏธ AI ๊ด€๋ จ ๊ต์œก์„ ์ด์ˆ˜ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๋ฐ˜๋Œ€๋กœ, 45์„ธ ์ด์ƒ ์ค‘์žฅ๋…„์ธต์€ AI์˜ ์œ ์šฉ์„ฑ์— ๋Œ€ํ•ด ๋น„๊ต์  ํšŒ์˜์ ์ด์—ˆ์œผ๋ฉฐ, ์ ˆ๋ฐ˜ ์ด์ƒ์€ AI๋ฅผ ์ „ํ˜€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค. 55์„ธ ์ด์ƒ์—์„œ๋Š” โ€œAI๋ฅผ ์‹ ๋ขฐํ•˜๋Š”์ง€ ์ž˜ ๋ชจ๋ฅด๊ฒ ๋‹คโ€๋ผ๋Š” ์‘๋‹ต์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ์ด๋Š” ๋ช…ํ™•ํ•œ ๊ฑฐ๋ถ€๊ฐ์ด๋ผ๊ธฐ๋ณด๋‹ค ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ๋‚ฎ์€ ์นœ์ˆ™๋„์™€ ๊ฒฝํ—˜ ๋ถ€์กฑ์—์„œ ๋น„๋กฏ๋œ ๋ถˆํ™•์‹ค์„ฑ์œผ๋กœ ํ•ด์„๋œ๋‹ค.

์„ธ๋Œ€๋ณ„ ์นœ์ˆ™๋„์˜ ๊ฒฉ์ฐจ๋Š” AI๊ฐ€ ์ผ์ž๋ฆฌ์™€ ์—…๋ฌด ํ™˜๊ฒฝ์— ๋ฏธ์น  ์˜ํ–ฅ์— ๋Œ€ํ•œ ๊ธฐ๋Œ€์™€ ์ธ์‹์—์„œ๋„ ๊ณ ์Šค๋ž€ํžˆ ๋“œ๋Ÿฌ๋‚œ๋‹ค. 35์„ธ ๋ฏธ๋งŒ๊ณผ ์‹ ํฅ๊ตญ ์‘๋‹ต์ž๋Š” AI๊ฐ€ ํ–ฅํ›„ ์ผ์ž๋ฆฌ์— ๋ฏธ์น  ์ž ์žฌ์  ์˜ํ–ฅ์ด ๊ฐ€์žฅ ํด ๊ฒƒ์œผ๋กœ ์ „๋งํ•œ ๋ฐ˜๋ฉด, ๊ณ ๋ น์ธต์—์„œ๋Š” ๊ทธ ์ˆ˜์ค€์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์•˜๋‹ค.

๋””๋“œ๋ฆฌํžˆ๋Š” โ€œ๋””์ง€ํ„ธ๊ณผ AI ๋„์ž…์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์„ธ๋Œ€ ์ฐจ์ด๋Š” ์–ด์ฉ” ์ˆ˜ ์—†๋‹ค๋ฉฐ ํฌ๊ธฐํ•  ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ, ์šฐ๋ฆฌ๊ฐ€ ๋ถ„๋ช…ํ•œ ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง€๊ณ  ํ–‰๋™ํ•จ์œผ๋กœ์จ ์ถฉ๋ถ„ํžˆ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ณผ์ œโ€๋ผ๋ฉฐ โ€œ์ Š์€ ์„ธ๋Œ€๊ฐ€ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ๋” ๋นจ๋ฆฌ ๋ฐ›์•„๋“ค์ผ ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ๋ชจ๋“  ์—ฐ๋ น๋Œ€์˜ ์‚ฌ๋žŒ์ด ๊ฐ์ž์˜ ๊ณ ์œ ํ•˜๊ณ ๋„ ์†Œ์ค‘ํ•œ ๊ฒฝํ—˜๊ณผ ํ†ต์ฐฐ์„ ๊ฐ–๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ โ€œAI ์„ฑ๊ณต์˜ ํ•ต์‹ฌ ๊ธฐ์ค€์€ ๋‹จ์ง€ ๋„์ž… ์†๋„๊ฐ€ ์•„๋‹ˆ๋ผ, ๋ชจ๋“  ์—ฐ๋ นยท๊ธฐ์ˆ  ์ˆ˜์ค€ยท์ง€์—ญ์˜ ์‚ฌ๋žŒ์ด AI๋ฅผ ํ™œ์šฉํ•ด ์‹ค์ œ๋กœ ์‚ถ์„ ์–ผ๋งˆ๋‚˜ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”๊ฐ€์— ๋‘์–ด์•ผ ํ•œ๋‹ค. ๊ทธ๋ž˜์•ผ๋งŒ โ€˜AI ์„ธ๋Œ€(Generation AI)โ€™๊ฐ€ ์ง„์ •์œผ๋กœ ๋ชจ๋‘๋ฅผ ํฌ์šฉํ•˜๋Š” ์„ธ๋Œ€๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.
dl-ciokorea@foundryco.com

๋ ˆ๊ฑฐ์‹œ ์œ ์ง€๋ณด์ˆ˜์— ๋ฐœ๋ชฉ ์žกํžŒ IT, ์„œ๋“œํŒŒํ‹ฐ๋กœ ๋ŒํŒŒ๊ตฌ ๋ชจ์ƒ‰

๊ธฐ์ˆ  ๋ถ€์ฑ„๊ฐ€ IT ์กฐ์ง์„ ๋งˆ๋น„์‹œํ‚ฌ ์œ„ํ˜‘ ์š”์ธ์œผ๋กœ ๋– ์˜ค๋ฅด์ž ์ƒ๋‹น์ˆ˜ CIO๊ฐ€ ๋ ˆ๊ฑฐ์‹œ ์†Œํ”„ํŠธ์›จ์–ด์™€ ์‹œ์Šคํ…œ ์œ ์ง€๋ณด์ˆ˜ยท์—…๊ทธ๋ ˆ์ด๋“œ๋ฅผ ์œ„ํ•ด ์„œ๋“œํŒŒํ‹ฐ ์„œ๋น„์Šค ์—…์ฒด์— ๋ˆˆ์„ ๋Œ๋ฆฌ๊ณ  ์žˆ๋‹ค. ๋งค๋‹ˆ์ง€๋“œ ์„œ๋น„์Šค ์—…์ฒด ์—”์†Œ๋…ธ(Ensono)๊ฐ€ ์‹ค์‹œํ•œ ์„ค๋ฌธ์กฐ์‚ฌ ๊ฒฐ๊ณผ, IT ๋ฆฌ๋” 100๋ช… ๊ฐ€์šด๋ฐ 95๋ช…์ด ๋ ˆ๊ฑฐ์‹œ IT๋ฅผ ํ˜„๋Œ€ํ™”ํ•˜๊ณ  ๊ธฐ์ˆ  ๋ถ€์ฑ„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€ ์„œ๋น„์Šค ์—…์ฒด๋ฅผ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

์ด ๊ฐ™์€ ์›€์ง์ž„์€ ๋ถ€๋ถ„์ ์œผ๋กœ ๋ ˆ๊ฑฐ์‹œ IT ๋น„์šฉ ์ฆ๊ฐ€์—์„œ ๋น„๋กฏ๋๋‹ค. ์‘๋‹ต์ž ๊ฐ€์šด๋ฐ ๊ฑฐ์˜ ์ ˆ๋ฐ˜์€ ์ง€๋‚œํ•ด ๋…ธํ›„ IT ์‹œ์Šคํ…œ ์œ ์ง€๋ณด์ˆ˜์— ์˜ˆ์‚ฐ๋ณด๋‹ค ๋” ๋งŽ์€ ๋น„์šฉ์„ ์ง€์ถœํ–ˆ๋‹ค๊ณ  ๋‹ตํ–ˆ๋‹ค. ๋” ํฐ ๋ฌธ์ œ๋Š” ๋ ˆ๊ฑฐ์‹œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ์ธํ”„๋ผ๊ฐ€ IT ์กฐ์ง์˜ ๋ฐœ๋ชฉ์„ ์žก๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. IT ๋ฆฌ๋” 10๋ช… ๊ฐ€์šด๋ฐ 9๋ช…์€ ๋ ˆ๊ฑฐ์‹œ ์œ ์ง€๋ณด์ˆ˜๊ฐ€ AI ํ˜„๋Œ€ํ™” ๊ณ„ํš์— ๊ฑธ๋ฆผ๋Œ์ด ๋˜๊ณ  ์žˆ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์—”์†Œ๋…ธ์˜ CTO ํŒ€ ๋ฒ ์–ด๋จผ์€ โ€œ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ ์œ ์ง€๋ณด์ˆ˜๊ฐ€ ํ˜„๋Œ€ํ™” ๋…ธ๋ ฅ์— ํฐ ๋ฐฉํ•ด๊ฐ€ ๋˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ, โ€œ์ „ํ˜•์ ์ธ ํ˜์‹ ๊ฐ€์˜ ๋”œ๋ ˆ๋งˆ๋‹ค. ํ˜์‹ ๋ณด๋‹ค๋Š” ๋…ธํ›„ ์‹œ์Šคํ…œ๊ณผ ๊ทธ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์—๋งŒ ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์ผ๋ถ€ CIO๋Š” ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ ์šด์˜์„ ์„œ๋น„์Šค ์—…์ฒด์— ๋งก๊ธฐ๊ฑฐ๋‚˜ ์™ธ๋ถ€ ITํŒ€์„ ํ™œ์šฉํ•ด ๊ธฐ์ˆ  ๋ถ€์ฑ„๋ฅผ ์ •๋ฆฌํ•˜๊ณ  ์†Œํ”„ํŠธ์›จ์–ด์™€ ์‹œ์Šคํ…œ์„ ํ˜„๋Œ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ๋ฒ ์–ด๋จผ์€ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์„ ์™ธ๋ถ€์— ๋งก๊ธฐ๋Š” ๊ธฐ์—…์ด ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐฐ๊ฒฝ์œผ๋กœ ๊ณ ๋ นํ™”๋œ ์ธ๋ ฅ์„ ๊ผฝ์•˜๋‹ค. ๊ธฐ์—… ๋‚ด๋ถ€์˜ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ ์ „๋ฌธ๊ฐ€๊ฐ€ ์€ํ‡ดํ•˜๋ฉด์„œ ์ถ•์ ๋œ ์ง€์‹๋„ ํ•จ๊ป˜ ๋น ์ ธ๋‚˜๊ฐ€๊ณ  ์žˆ๋‹ค๋Š” ์˜๋ฏธ๋‹ค.

๋ฒ ์–ด๋จผ์€ โ€œ์ด ์ผ์„ ๋‚ด๋ถ€์—์„œ ์ง์ ‘ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์ธ๋ ฅ์ด ๋งŽ์ง€ ์•Š๋‹ค. ์กฐ์ง ๋‚ด ์ธ๋ ฅ์ด ๊ณ ๋ นํ™”๋˜๊ณ  ํ‡ด์ง์ž๊ฐ€ ๋Š˜์–ด๋‚˜๋Š” ์ƒํ™ฉ์—์„œ, ํ•„์š”ํ•œ ์ธ์žฌ๋ฅผ ์ฑ„์šฉํ•˜๊ธฐ ์–ด๋ ค์šด ์˜์—ญ์—์„œ๋Š” ์™ธ๋ถ€์—์„œ ์ „๋ฌธ ์ธ๋ ฅ์„ ์ฐพ์•„์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๋˜, โ€œMSP ๋ชจ๋ธ ์ž์ฒด๋Š” ์ˆ˜์‹ญ ๋…„ ์ „๋ถ€ํ„ฐ ์กด์žฌํ–ˆ์ง€๋งŒ, ์ตœ๊ทผ์—๋Š” ์˜ˆ์‚ฐ์„ ํ™•๋ณดํ•˜๊ณ  AI๋ฅผ ๋„์ž…ํ•  ์‹œ๊ฐ„์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด MSP๋ฅผ ๊ธฐ์ˆ  ๋ถ€์ฑ„ ๊ด€๋ฆฌ ์ˆ˜๋‹จ์œผ๋กœ ํ™œ์šฉํ•˜๋Š” ํ๋ฆ„์ด ์ปค์ง€๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

AI์ฒ˜๋Ÿผ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜๋Š” ๊ฒƒ๋„ ์ด๋Ÿฐ ํ๋ฆ„์— ์ผ์กฐํ•˜๊ณ  ์žˆ๋‹ค. ๋ฒ ์–ด๋จผ์€ โ€œํ•œ์ชฝ์—๋Š” ๊ด€๋ฆฌยท์œ ์ง€ํ•ด์•ผ ํ•˜๋Š” ๋ ˆ๊ฑฐ์‹œ ๋ฌธ์ œ๊ฐ€ ์žˆ๊ณ , ๋‹ค๋ฅธ ํ•œ์ชฝ์—๋Š” ์ˆ˜๋…„ ๋™์•ˆ ๊ฒฝํ—˜ํ•˜์ง€ ๋ชปํ•œ ์†๋„๋กœ ๋ฐœ์ „ํ•˜๋Š” ์ตœ์‹  ๊ธฐ์ˆ ์ด ์žˆ์–ด ์–‘์ชฝ์„ ๋™์‹œ์— ๋”ฐ๋ผ๊ฐ€๊ธฐ ์–ด๋ ต๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

์œ„ํ—˜์˜ ์•„์›ƒ์†Œ์‹ฑ

์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ์„œ๋น„์Šค ์—…์ฒด ๋‰ด๋น…(Neuvik)์˜ CEO ๋ผ์ด์–ธ ๋ ˆ์ด๋ฅด๋น…์€ ๋ ˆ๊ฑฐ์‹œ IT ๊ด€๋ฆฌ๋ฅผ ์„œ๋น„์Šค ์—…์ฒด์— ๋งก๊ธฐ๋Š” ํ๋ฆ„์ด ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์— ๋™์˜ํ–ˆ๋‹ค. ๋ ˆ์ด๋ฅด๋น…์€ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์— ์ ํ•ฉํ•œ ์ „๋ฌธ๊ฐ€๋ฅผ ๋งค์นญํ•˜๋Š” ๋“ฑ ์—ฌ๋Ÿฌ ์žฅ์ ์„ ์–ธ๊ธ‰ํ•˜๋ฉด์„œ๋„, CIO๊ฐ€ ์œ„ํ—˜ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•ด MSP๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ฒฝํ–ฅ๋„ ์žˆ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค.

๋ ˆ์ด๋ฅด๋น…์€ โ€œ๋งŽ์€ ์žฅ์  ๊ฐ€์šด๋ฐ ์ž์ฃผ ์–ธ๊ธ‰๋˜์ง€ ์•Š๋Š” ํ•ต์‹ฌ์€ ์ทจ์•ฝ์  ์•…์šฉ์ด๋‚˜ ์„œ๋น„์Šค ์ค‘๋‹จ ์œ„ํ—˜์„ ์„œ๋น„์Šค ์—…์ฒด์— ๋งก๊ธธ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ โ€์ด๋ผ๋ฉฐ, โ€œ์ทจ์•ฝ์  ๋ฐœ๊ฒฌ๊ณผ ํŒจ์น˜, ์ „๋ฐ˜์ ์ธ ์œ ์ง€๋ณด์ˆ˜์— ์ง€์†์ ์œผ๋กœ ๋งŽ์€ ๋น„์šฉ์ด ๋“œ๋Š” ํ™˜๊ฒฝ์—์„œ๋Š” ์ž˜๋ชป ๋Œ€์‘ํ–ˆ์„ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์œ„ํ—˜์„ ์„œ๋น„์Šค ์—…์ฒด๊ฐ€ ๋– ์•ˆ๊ฒŒ ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ฏธ ๊ตญ๋ฐฉ๋ถ€(US Department of Defense)์—์„œ ๋น„์„œ์‹ค์žฅ ๊ฒธ ์‚ฌ์ด๋ฒ„ ๋ถ€๋ฌธ ๋ถ€๊ตญ์žฅ์„ ์ง€๋‚ธ ๋ ˆ์ด๋ฅด๋น…์€ ๋ ˆ๊ฑฐ์‹œ IT ์œ ์ง€๋ณด์ˆ˜ ์˜ˆ์‚ฐ์„ ์ดˆ๊ณผ ์ง‘ํ–‰ํ•œ IT ์ฑ…์ž„์ž๊ฐ€ ๋งŽ๋‹ค๋Š” ๊ฒƒ์ด ๋†€๋ž„ ์ผ์€ ์•„๋‹ˆ๋ผ๊ณ  ๋งํ•œ๋‹ค. ๋งŽ์€ ์กฐ์ง์ด ํ˜„์žฌ ๋ณด์œ ํ•œ IT ์ธํ”„๋ผ์™€ ์•ž์œผ๋กœ ์ „ํ™˜ํ•ด์•ผ ํ•  ์ธํ”„๋ผ ์‚ฌ์ด์—์„œ ํ•„์š”ํ•œ ์ธ์žฌ ์—ญ๋Ÿ‰์ด ๋งž์ง€ ์•Š๋Š” ์ƒํ™ฉ์— ๋†“์—ฌ ์žˆ๋‹ค๊ณ  ์ง€์ ํ•˜๋ฉฐ, ๋ ˆ๊ฑฐ์‹œ ์†Œํ”„ํŠธ์›จ์–ด์™€ ์‹œ์Šคํ…œ์˜ ์ง€์†์ ์ธ ์œ ์ง€๋ณด์ˆ˜ ๋น„์šฉ์ด ์˜ˆ์ƒ๋ณด๋‹ค ๋” ๋งŽ์ด ๋“œ๋Š” ๊ฒฝ์šฐ๋„ ์žฆ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค.

๋ ˆ์ด๋ฅด๋น…์€ โ€œ์ดˆ๊ธฐ ๋„์ž… ๋น„์šฉ์ด 1์ด๋ผ๋ฉด, ์œ ์ง€๋ณด์ˆ˜ ๋น„์šฉ์€ 1X์ด๊ธฐ ๋•Œ๋ฌธ์— ์˜ˆ์ƒํ•˜์ง€ ๋ชปํ•œ ๊ฑฐ๋Œ€ํ•œ ์œ ์ง€๋ณด์ˆ˜ ๊ผฌ๋ฆฌ๊ฐ€ ์ƒ๊ธด๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

๋ ˆ๊ฑฐ์‹œ ์œ ์ง€๋ณด์ˆ˜์˜ ๋ซ์—์„œ ๋ฒ—์–ด๋‚˜๋ ค๋ฉด ์ ์ ˆํ•œ ์„œ๋“œํŒŒํ‹ฐ ์—…์ฒด๋ฅผ ๊ณ ๋ฅด๋Š” ์„ ๊ฒฌ์ง€๋ช…๊ณผ ์„ ํƒ ๊ธฐ์ค€์ด ํ•„์š”ํ•˜๋‹ค. ๋ ˆ์ด๋ฅด๋น…์€ โ€œ์žฅ๊ธฐ์ ์ธ ๊ด€์ ์—์„œ ํ•ด๋‹น ์—…์ฒด์™€ ํ–ฅํ›„ 5๋…„ ๊ณ„ํš์ด ๋งž๋ฌผ๋ฆฌ๋Š”์ง€ ๋ฐ˜๋“œ์‹œ ํ™•์ธํ•ด์•ผ ํ•œ๋‹ค. ๋˜ ์กฐ์ง์˜ ๋ชฉํ‘œ์™€ ์—…์ฒด๊ฐ€ ์ œ๊ณตํ•˜๋ ค๋Š” ์ง€์› ๋ฐฉํ–ฅ์ด ์ผ์น˜ํ•˜๋Š”์ง€๋„ ์ ๊ฒ€ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

๋‘ ๋ฒˆ ์ง€๋ถˆํ•˜๋Š” ๋น„์šฉ

์ผ๋ถ€ IT ๋ฆฌ๋”๊ฐ€ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ ํ˜„๋Œ€ํ™”๋ฅผ ์„œ๋“œํŒŒํ‹ฐ ์—…์ฒด์— ๋งก๊ธฐ๊ณ  ์žˆ์ง€๋งŒ, IT ์„œ๋น„์Šค ๊ด€๋ฆฌ ๋ฐ ๊ณ ๊ฐ ์„œ๋น„์Šค ์†Œํ”„ํŠธ์›จ์–ด ์—…์ฒด ํ”„๋ ˆ์‹œ์›์Šค(Freshworks)๊ฐ€ ์ตœ๊ทผ ๊ณต๊ฐœํ•œ ๋ณด๊ณ ์„œ๋Š” ์ด๋Ÿฐ ํ˜„๋Œ€ํ™” ๋…ธ๋ ฅ์ด ๊ณผ์—ฐ ํšจ์œจ์ ์ธ์ง€์— ์˜๋ฌธ์„ ์ œ๊ธฐํ–ˆ๋‹ค.

ํ”„๋ ˆ์‹œ์›์Šค์˜ ์กฐ์‚ฌ์—์„œ ์‘๋‹ต์ž์˜ 3/4 ์ด์ƒ์€ ์†Œํ”„ํŠธ์›จ์–ด ๋„์ž…์— ์˜ˆ์ƒ๋ณด๋‹ค ๋” ๋งŽ์€ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฐ๋‹ค๊ณ  ๋‹ตํ–ˆ๊ณ , ํ”„๋กœ์ ํŠธ ๊ฐ€์šด๋ฐ 2/3์€ ์˜ˆ์‚ฐ์„ ์ดˆ๊ณผํ–ˆ๋‹ค๊ณ  ์‘๋‹ตํ–ˆ๋‹ค. ํ”„๋ ˆ์‹œ์›์Šค์˜ CIO ์•„์Šˆ์œˆ ๋ฐœ๋ž„์€ ์„œ๋“œํŒŒํ‹ฐ ์„œ๋น„์Šค ์—…์ฒด๊ฐ€ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด ์ฃผ์ง€ ๋ชปํ•  ์ˆ˜๋„ ์žˆ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๋ฐœ๋ž„์€ โ€œ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์ด ๋„ˆ๋ฌด ๋ณต์žกํ•ด์ง€๋ฉด์„œ ๊ธฐ์—…์ด ๋„์›€์„ ๊ตฌํ•˜๋ ค๊ณ  ์„œ๋“œํŒŒํ‹ฐ ์—…์ฒด์™€ ์ปจ์„คํ„ดํŠธ์— ์ ์  ๋” ์˜์กดํ•˜๊ณ  ์žˆ์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ์ˆ˜์ค€ ์ดํ•˜์˜ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์„ ๋‹ค๋ฅธ ์ˆ˜์ค€ ์ดํ•˜ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์œผ๋กœ ๋ฐ”๊พธ๋Š” ๊ฒฐ๊ณผ์— ๊ทธ์น˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๋ฉฐ, โ€œ์„œ๋“œํŒŒํ‹ฐ ์—…์ฒด์™€ ์ปจ์„คํ„ดํŠธ๋ฅผ ์ถ”๊ฐ€ํ•˜๋ฉด ๊ธฐ์กด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ๋ณด๋‹ค๋Š” ์ƒˆ๋กœ์šด ๋ณต์žก์„ฑ๋งŒ ๋”ํ•ด ๋ฌธ์ œ๋ฅผ ์•…ํ™”์‹œํ‚ค๋Š” ์‚ฌ๋ก€๋„ ์ ์ง€ ์•Š๋‹คโ€๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

ํ•ด๋ฒ•์€ ์„œ๋“œํŒŒํ‹ฐ ์—…์ฒด๋ฅผ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๋ณ„๋„์˜ ๋ณต์žกํ•œ ์ž‘์—… ์—†์ด ๋ฐ”๋กœ ์“ธ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ๋„์ž…ํ•˜๋Š” ๋ฐ ์žˆ๋‹ค. ๋ฐœ๋ž„์€ โ€œ์ด๋ก ์ ์œผ๋กœ ์„œ๋“œํŒŒํ‹ฐ ์—…์ฒด๋Š” ์ „๋ฌธ์„ฑ๊ณผ ์†๋„๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํ˜„์‹ค์—์„œ๋Š” ๋ณต์žกํ•œ ๊ธฐ์ˆ ์„ ๋„์ž…ํ•˜๋Š” ๋ฐ ํ•œ ๋ฒˆ, ํ•ด๋‹น ๊ธฐ์ˆ ์ด ์ œ๋Œ€๋กœ ์ž‘๋™ํ•˜๋„๋ก ์ปจ์„คํ„ดํŠธ๋ฅผ ํˆฌ์ž…ํ•˜๋Š” ๋ฐ ๋˜ ํ•œ ๋ฒˆ ๋“ฑ ๋‘ ๋ฒˆ ๋น„์šฉ์„ ์ง€๋ถˆํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹คโ€๋ผ๊ณ  ๊ผฌ์ง‘์—ˆ๋‹ค.

ํ”ผํ•˜๊ธฐ ์–ด๋ ค์šด ์„œ๋“œํŒŒํ‹ฐ ์—…์ฒด ํ™œ์šฉ

์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ์†”๋ฃจ์…˜ ์—…์ฒด ์›Œ์น˜๊ฐ€๋“œ ํ…Œํฌ๋†€๋กœ์ง€์Šค(WatchGuard Technologies)์˜ ํ•„๋“œ CTO ๊ฒธ CISO ์• ๋ค ์œˆ์Šคํ„ด์€ ์ƒ๋‹น์ˆ˜ IT ๋ฆฌ๋”๊ฐ€ ์ผ์ • ์ˆ˜์ค€์˜ ์„œ๋“œํŒŒํ‹ฐ ์ง€์›์„ ์‚ฌ์‹ค์ƒ ํ”ผํ•  ์ˆ˜ ์—†๋Š” ์„ ํƒ์œผ๋กœ ๋ณด๊ณ  ์žˆ๋‹ค. ์œˆ์Šคํ„ด์€ ์˜ค๋ž˜๋œ ์ฝ”๋“œ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๊ฑฐ๋‚˜ ์›Œํฌ๋กœ๋“œ๋ฅผ ํด๋ผ์šฐ๋“œ๋กœ ์ด์ „ํ•˜๊ณ  SaaS ๋„๊ตฌ๋ฅผ ๋„์ž…ํ•˜๊ณ , ์‚ฌ์ด๋ฒ„๋ณด์•ˆ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋“ฑ ๋Œ€๋ถ€๋ถ„์˜ ๊ณผ์ œ์—์„œ ์ด์ œ ์™ธ๋ถ€ ์ง€์›์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ๋งํ–ˆ๋‹ค.

์œˆ์Šคํ„ด์€ ๋…ธํ›„ ์›๊ฒฉ์ ‘์† ๋„๊ตฌ์™€ VPN์„ ํฌํ•จํ•œ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์ด ์Œ“์ด๋ฉด ๊ธฐ์ˆ  ๋ถ€์ฑ„๊ฐ€ ๋ˆˆ๋ฉ์ด์ฒ˜๋Ÿผ ๋ถˆ์–ด๋‚˜ ์กฐ์ง์„ ์ง“๋ˆ„๋ฅผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค. ๋˜, ์•„์ง ๋งŽ์€ ์กฐ์ง์ด ํด๋ผ์šฐ๋“œ๋‚˜ SaaS ๋„๊ตฌ๋กœ ์™„์ „ํžˆ ํ˜„๋Œ€ํ™”ํ•˜์ง€ ๋ชปํ•œ ์ƒํƒœ์ด๋ฉฐ, ์ „ํ™˜ ์‹œ์ ์ด ์˜ค๋ฉด ์™ธ๋ถ€ ์—…์ฒด์— ๋„์›€์„ ์š”์ฒญํ•  ์ˆ˜๋ฐ–์— ์—†์„ ๊ฒƒ์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค.

์œˆ์Šคํ„ด์€ โ€œ๋Œ€๋ถ€๋ถ„ ๊ธฐ์—…์€ ์ž์ฒด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์„ค๊ณ„ยท๊ฐœ๋ฐœยท์šด์˜ํ•˜์ง€ ์•Š๊ณ , ๊ทธ๋Ÿฐ ์˜์—ญ์— ๊ธฐ์ˆ  ๋ถ€์ฑ„๊ฐ€ ์Œ“์—ฌ ์žˆ๋Š” ์ƒํ™ฉ์—์„œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ IT ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๋ฉฐ, โ€œ์—ฌ์ „ํžˆ ์ฝ”๋กœ์ผ€์ด์…˜๊ณผ ์˜จํ”„๋ ˆ๋ฏธ์Šค ์ค‘์‹ฌ์ด๋˜ ์‹œ์ ˆ์˜ ํ™˜๊ฒฝ์„ ์œ ์ง€ํ•˜๋Š” ๊ธฐ์—…๋„ ๋งŽ๊ณ , ์ด๋Ÿฐ ํ™˜๊ฒฝ์—๋Š” ๊ฑฐ์˜ ์˜ˆ์™ธ ์—†์ด ๋ ˆ๊ฑฐ์‹œ ์„œ๋ฒ„์™€ ๋ ˆ๊ฑฐ์‹œ ๋„คํŠธ์›Œํฌ, ํ˜„๋Œ€์ ์ธ ์„ค๊ณ„๋‚˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋”ฐ๋ฅด์ง€ ์•Š๋Š” ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ์ด ํฌํ•จ๋ผ ์žˆ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ด๋Ÿฐ ๊ธฐ์—…์˜ IT ๋ฆฌ๋”๋Š” ๋…ธํ›„ ๊ธฐ์ˆ ์„ ๋‹จ๊ณ„์ ์œผ๋กœ ํ‡ด์—ญ์‹œํ‚ค๋Š” ๊ณ„ํš์„ ์„ธ์šฐ๊ณ , IT ํˆฌ์ž๊ฐ€ ๊ฐ€๋Šฅํ•œ ํ•œ ์ตœ์‹  ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋„๋ก ์†”๋ฃจ์…˜ ์—…์ฒด์˜ ์ฑ…์ž„์„ ๋ช…ํ™•ํžˆ ํ•˜๋Š” ์„œ๋น„์Šค ๊ณ„์•ฝ์„ ์ฒด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค. ์œˆ์Šคํ„ด์€ ๋งŽ์€ ์†”๋ฃจ์…˜ ์—…์ฒด๊ฐ€ ์‹ ์ œํ’ˆ์„ ๋‚ด๋†“์œผ๋ฉด์„œ ๊ธฐ์กด ์ œํ’ˆ ์ง€์›์„ ๋„ˆ๋ฌด ์‰ฝ๊ฒŒ ์ค‘๋‹จํ•œ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค.

์œˆ์Šคํ„ด์€ โ€œ์—…๊ทธ๋ ˆ์ด๋“œ๋ฅผ ํ•˜์ง€ ์•Š์„ ๊ณ„ํš์ด๋ผ๋ฉด ๋ ˆ๊ฑฐ์‹œ ์ง€์› ๋น„์šฉ์„ ๋ฉด๋ฐ€ํžˆ ๋”ฐ์ ธ ๋ณด๊ณ , ์—…๊ทธ๋ ˆ์ด๋“œํ•  ์ˆ˜ ์—†๋‹ค๋ฉด ์–ด๋–ป๊ฒŒ ๊ฒฉ๋ฆฌํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ๋‹ต์„ ์ค€๋น„ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ, โ€œ์—…๊ทธ๋ ˆ์ด๋“œ๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•  ๊ฒฝ์šฐ ์œ„ํ—˜์„ ์˜ฎ๊ธฐ๊ธฐ ์œ„ํ•œ ์ด๋ฅธ๋ฐ” โ€˜๋ฌด๋ค ๊ฒฉ๋ฆฌ ์ „๋žต(graveyard segmentation strategy)โ€™์„ ์–ด๋–ป๊ฒŒ ์„ค๊ณ„ํ• ์ง€๋„ ๊ณ ๋ฏผํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋˜ โ€œ์†”๋ฃจ์…˜ ์—…์ฒด ์‹ค์‚ฌ ๊ณผ์ •์—์„œ ์ด๋Ÿฐ ๋…ผ์˜๊ฐ€ ๋น ์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๊ณ , ๊ทธ๋Ÿฌ๋‹ค ๋ฌธ์ œ๊ฐ€ ํ„ฐ์ง€๋ฉด ์กฐ์ง์ด ๋’ค๋Šฆ๊ฒŒ ๋†€๋ผ๊ฒŒ ๋œ๋‹คโ€๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

๊ทธ๋ ‡๋‹ค๊ณ  CIO๊ฐ€ ๋ ˆ๊ฑฐ์‹œ IT ์ „๋ฌธ์„ฑ์„ ์Œ“๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ปค๋ฆฌ์–ด๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์€ ํ”ผํ•ด์•ผ ํ•œ๋‹ค. ์œˆ์Šคํ„ด์€ โ€œ์†Œํ”„ํŠธ์›จ์–ด๋‚˜ ๊ตฌ์ถ• ๋น„์šฉ์„ ์ถฉ๋ถ„ํžˆ ์ƒ๊ฐํ•˜์ง€ ๋ชปํ–ˆ๋‹ค๋ฉด, ์•ž์œผ๋กœ ๋„์ž…ํ•˜๋Š” ๋ชจ๋“  ์‹ ๊ทœ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—๋Š” ์ตœ์‹  ์ปดํฌ๋„ŒํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๊ฒ ๋‹ค๊ณ  ์Šค์Šค๋กœ ๋‹ค์งํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

ํด๋ผ์šฐ๋“œํ”Œ๋ ˆ์–ด ๊ธฐ๊ณ | AI ์‹œ๋Œ€, ์ฝ˜ํ…์ธ  ํ†ต์ œ๊ถŒ์„ ์œ„ํ•œ โ€˜ํ—ˆ๊ฐ€ ๊ธฐ๋ฐ˜ ์ธํ„ฐ๋„ทโ€™์œผ๋กœ ์ „ํ™˜ํ•ด์•ผ

๊ณผ๊ฑฐ ๊ฒ€์ƒ‰ ์—”์ง„ ํฌ๋กค๋ง์€ ์›น์œผ๋กœ ๋‹ค์‹œ ํŠธ๋ž˜ํ”ฝ์„ ๋Œ๋ ค์ฃผ๋Š” ์ด๋กœ์šด ๊ตฌ์กฐ์˜€์ง€๋งŒ, ์ด์ œ๋Š” ์ƒํ™ฉ์ด ๋‹ค๋ฅด๋‹ค. AI ๊ธฐ์—…๋“ค์€ ์›น์—์„œ ์ˆ˜์ง‘ํ•œ ์ฝ˜ํ…์ธ ๋ฅผ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•ด ์š”์•ฝยท์‘๋‹ตยท๊ฐœ์š” ํ˜•ํƒœ์˜ ํŒŒ์ƒ ์ฝ˜ํ…์ธ ๋ฅผ ์ œ๊ณตํ•˜๊ณ , ์‚ฌ์šฉ์ž๋Š” ์›๋ณธ ์‚ฌ์ดํŠธ๋ฅผ ๋ฐฉ๋ฌธํ•˜์ง€ ์•Š๊ณ ๋„ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์–ป๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ํŠธ๋ž˜ํ”ฝ๊ณผ ๊ด‘๊ณ  ์ˆ˜์ต์„ ๊ฐ์†Œ์‹œ์ผœ ์ฝ˜ํ…์ธ  ์ œ์ž‘์ž์˜ ์ˆ˜์ต ๊ตฌ์กฐ๋ฅผ ์œ„ํ˜‘ํ•  ๋ฟ ์•„๋‹ˆ๋ผ, ์ง€์  ์žฌ์‚ฐ๊ถŒ ๋ณดํ˜ธยท๋ฐ์ดํ„ฐ ์ถœ์ฒ˜ ํ™•๋ณดยท์ฝ˜ํ…์ธ  ์˜ค๋‚จ์šฉ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•˜๋Š” ๊ตฌ์กฐ์  ๋ณ€ํ™”๋‹ค. ์ฝ˜ํ…์ธ  ์ œ์ž‘์ž๊ฐ€ ์ž์‹ ์˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํ†ต์ œ๋ ฅ์„ ์žƒ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.

๋” ํฐ ๋ฌธ์ œ๋Š” AI ๊ธฐ๋ฐ˜ ๋ด‡์ด ๋ณด์•ˆ ์œ„ํ˜‘์œผ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์ผ๋ถ€ ์•…์„ฑ ๋ด‡์€ ๋‹จ์ˆœ ํฌ๋กค๋ง์„ ๋„˜์–ด ์›น ์ทจ์•ฝ์ ์„ ์ž๋™์œผ๋กœ ํƒ์ƒ‰ํ•˜๊ณ , ๊ณ„์ • ํƒˆ์ทจ, ์‚ฌ๊ธฐ์„ฑ ๊ฒฐ์ œ ์‹œ๋„ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ณต๊ฒฉ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ธฐ์—…์ด ์ฆ์‹œ ๋งˆ๊ฐ ํ›„ ๋ฐœํ‘œํ•  ์˜ˆ์ •์ด์—ˆ๋˜ ์ค‘์š” ๋น„๊ณต๊ฐœ ์žฌ๋ฌด ์ •๋ณด๊ฐ€ ์•…์„ฑ ๋ด‡์— ์˜ํ•ด ์œ ์ถœ๋  ๊ฒฝ์šฐ, ์ด๋Š” ๋ถˆ๋ฒ• ์ฃผ์‹ ๊ฑฐ๋ž˜์™€ ๊ทœ์ œ ์œ„๋ฐ˜์œผ๋กœ ์ด์–ด์ ธ ํšŒ์‚ฌ์— ์น˜๋ช…์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

AI ๋ด‡์˜ ์–‘์  ํ™•์‚ฐ์€ ์ด์ œ ๋ฌด์‹œํ•˜๊ธฐ ์–ด๋ ค์šด ์ˆ˜์ค€์ด๋‹ค. ์ธํ„ฐ๋„ท ํ˜„ํ™ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”Œ๋žซํผ ํด๋ผ์šฐ๋“œ ๋ ˆ์ด๋”์˜ ๋ฐ์ดํ„ฐ์— ๋”ฐ๋ฅด๋ฉด, ํŠนํžˆ ๋ฉ”ํƒ€์˜ AI ๋ด‡ โ€˜๋ฉ”ํƒ€-์ต์Šคํ„ฐ๋„ ์—์ด์ „ํŠธ(Meta-External Agent)โ€™๋Š” 1๋…„ ์ƒˆ ์š”์ฒญ๋Ÿ‰์ด 843%๋ผ๋Š” ํญ๋ฐœ์ ์ธ ์ฆ๊ฐ€์„ธ๋ฅผ ๋ณด์˜€๋‹ค. ์˜คํ”ˆAI์˜ GPT๋ด‡(GPTBot) ์—ญ์‹œ 147% ์ฆ๊ฐ€ํ•˜๋ฉฐ ๊ธฐ์กด์˜ IP ์ฐจ๋‹จ์ด๋‚˜ ๋‹จ์ˆœ ๋ ˆ์ดํŠธ ๋ฆฌ๋ฏธํŒ…๋งŒ์œผ๋กœ๋Š” ์ด๋“ค์„ ํ†ต์ œํ•˜๊ธฐ ์–ด๋ ค์›Œ์กŒ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐ˜์ฆํ•œ๋‹ค. ๋”๋ถˆ์–ด, AI๊ฐ€ โ€˜CAPTCHA(์บก์ฐจ)โ€™๋ฅผ ํ•™์Šตํ•ด ์šฐํšŒํ•˜๋Š” ์‚ฌ๋ก€๋„ ๋Š˜๊ณ  ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ๋ณ€ํ™” ์†์—์„œ ๊ธฐ์—…๊ณผ ํผ๋ธ”๋ฆฌ์…”๋Š” ์•…์˜์ ์ธ AI ๋ด‡์„ ์ฐจ๋‹จํ•˜๊ณ  ์ฝ˜ํ…์ธ  ์Šคํฌ๋ž˜ํ•‘์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ฐพ์•„์•ผ ํ•œ๋‹ค. AI๊ฐ€ ๋งŒ๋“ค์–ด๋‚ด๋Š” ์ƒˆ๋กœ์šด ๋น„์ฆˆ๋‹ˆ์Šค ๊ธฐํšŒ๋ฅผ ์ฐจ๋‹จํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„, ์กฐ์ง์˜ ๋ฐ์ดํ„ฐยท๋ณด์•ˆยท๋ธŒ๋žœ๋“œ๋ฅผ ๋ณดํ˜ธํ•˜๋ ค๋ฉด ๊ธฐ์กด๋ณด๋‹ค ํ›จ์”ฌ ์ •๊ตํ•œ ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹ค.

๋”ฐ๋ผ์„œ AI ๋ด‡ ์œ„ํ˜‘์— ๋Œ€์‘ํ•˜๊ณ  ์ฝ˜ํ…์ธ  ํ†ต์ œ๊ถŒ์„ ๋˜์ฐพ๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‹ค์ค‘ ๊ณ„์ธต ๋ณด์•ˆ ์ „๋žต๊ตฌ์ถ•์ด ์š”๊ตฌ๋œ๋‹ค:

์ฒซ์งธ, ๊ธฐ์ดˆ ๋‹จ๊ณ„์ธ ์ •์  ์ œ์–ด(Layer 1)๋‹ค. ์ด๋Š” ๋Œ€๊ทœ๋ชจ ๋ด‡ ๊ณต๊ฒฉ์„ ๊ฒฌ๋””๊ณ , AI ๊ธฐ๋ฐ˜ ๋ด‡์ด ๊ธฐ์กด ๋ฐฉ์–ด์„ ์„ ์‰ฝ๊ฒŒ ์šฐํšŒํ•˜์ง€ ๋ชปํ•˜๋„๋ก ํ•˜๋Š” ์ถœ๋ฐœ์ ์ด ๋œ๋‹ค. CAPTCHA๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ์ธ์ฆ ๋ฐฉ์‹, ๋‹ค์ค‘ ์ธ์ฆ(MFA), ๋ ˆ์ดํŠธ ๋ฆฌ๋ฏธํŒ…๊ณผ ๊ฐ™์€ ์š”์†Œ๋“ค์€ ์‹ค์ œ ์‚ฌ์šฉ์ž์˜ ๊ฒฝํ—˜์„ ์ €ํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ์ž๋™ํ™”๋œ ์‹œ๋„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ฐจ๋‹จํ•œ๋‹ค. ๋˜ํ•œ ์•…์„ฑ ๋ด‡์„ ์ •์ƒ ํŽ˜์ด์ง€ ๋Œ€์‹  ๋Œ€์ฒด ์ฝ˜ํ…์ธ ๋กœ ์œ ๋„ํ•ด ๋ฆฌ์†Œ์Šค๋ฅผ ์†Œ๋น„์‹œํ‚ค๋Š” ๊ธฐ๋ฒ•๋„ ์ •์  ์ œ์–ด์˜ ์ผํ™˜์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

๋‘˜์งธ, ๋™์  ์ œ์–ด(Layer 2)๋Š” ์˜ˆ์ธก์  ๋ฐฉ์–ด ๋Šฅ๋ ฅ์„ ๋”ํ•œ๋‹ค. ์ •์  ์ œ์–ด ์œ„์— ๋”ํ•ด์ง€๋Š” ๋™์  ์ œ์–ด๋Š” ๋ณ€ํ™”ํ•˜๋Š” AI ๋ด‡์˜ ์›€์ง์ž„์„ ์กฐ๊ธฐ์— ๊ฐ์ง€ํ•˜๊ณ  ๋Œ€์‘ํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ์‹ค์‹œ๊ฐ„ ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค ๋ถ„์„์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ณต๊ฒฉ ํŒจํ„ด์ด ๋„๋‹ฌํ•˜๊ธฐ ์ „์— ์ฐจ๋‹จํ•  ์ˆ˜ ์žˆ๊ณ , ์ƒ์„ธํ•œ ํŠธ๋ž˜ํ”ฝ ๋กœ๊ทธ๋Š” ์‚ฌ๋žŒ์ด ๋ณด๊ธฐ ์–ด๋ ค์šด ํ–‰๋™ ํŒจํ„ด์˜ ์ฐจ์ด๋ฅผ ์‹๋ณ„ํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค€๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹(ML) ๊ธฐ๋ฐ˜ ํ–‰๋™ ๋ถ„์„์€ ์ •์ƒ ์‚ฌ์šฉ์ž์™€ ๋น„์ •์ƒ์  ํŠธ๋ž˜ํ”ฝ์˜ ๊ฐ„๊ทน์„ ์ž๋™์œผ๋กœ ํŒŒ์•…ํ•ด ์ด์ƒ ์ง•ํ›„๋ฅผ ์‹๋ณ„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋™์  ์ œ์–ด๋Š” AI ๋ด‡์ด ์‹œ์‹œ๊ฐ๊ฐ ํŒจํ„ด์„ ๋ฐ”๊พธ๋ฉฐ ๋“ฑ์žฅํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ํ•„์ˆ˜์ ์ด๋‹ค.

์…‹์งธ, ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์„ธ๋ถ„ํ™”๋œ ๊ฑฐ๋ฒ„๋„Œ์Šค(Layer 3)๋‹ค. ์ด๋Š” ๋ฌด์กฐ๊ฑด์ ์ธ ์ฐจ๋‹จ ์ „๋žต์—์„œ ๋ฒ—์–ด๋‚˜, ์–ด๋–ค ๋ด‡์ด ์–ด๋–ค ๋ชฉ์ ์„ ๊ฐ€์ง€๊ณ  ์–ด๋–ค ํŽ˜์ด์ง€์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์กฐ์ง์ด ์ง์ ‘ ๊ฒฐ์ •ํ•˜๋Š” ์ฒด๊ณ„๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์กฐ์ง์€ ๋จผ์ € AI ๊ฐ์‚ฌ(AI Auditing) ๊ธฐ๋Šฅ์„ ํ†ตํ•ด ์–ด๋–ค AI ๋ด‡์ด ์‚ฌ์ดํŠธ์— ์ ‘๊ทผํ•˜๊ณ  ์žˆ๋Š”์ง€ ํˆฌ๋ช…ํ•˜๊ฒŒ ํŒŒ์•…ํ•ด์•ผ ํ•œ๋‹ค. ๋ด‡์ด ์ ‘๊ทผ ๋ชฉ์ ๊ณผ ์†Œ์† ์„œ๋น„์Šค๋ฅผ ์•”ํ˜ธํ™” ์„œ๋ช…์œผ๋กœ ์ฆ๋ช…ํ•˜๋„๋ก ์š”๊ตฌํ•จ์œผ๋กœ์จ, ๋ด‡์˜ ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ•˜๊ณ  ์ •์‹ ํฌ๋กค๋Ÿฌ์™€ ๋น„์ •์ƒ์ ์ธ ์ ‘๊ทผ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ํŽ˜์ด์ง€ ๋‹จ์œ„๋กœ ์ ‘๊ทผ ๊ถŒํ•œ์„ ์กฐ์ •ํ•ด ๊ด‘๊ณ  ๊ธฐ๋ฐ˜ ์ˆ˜์ต ํŽ˜์ด์ง€๋Š” ์ฐจ๋‹จํ•˜๊ณ  ๊ฐœ๋ฐœ์ž ๋ฌธ์„œ๋‚˜ ๊ณต๊ณต์„ฑ ์žˆ๋Š” ์ž๋ฃŒ๋Š” ํ—ˆ์šฉํ•˜๋Š” ๋“ฑ ์ฝ˜ํ…์ธ  ์„ฑ๊ฒฉ์— ๋”ฐ๋ผ ์ „๋žต์  ์„ ํƒ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, ํฌ๋กค๋ง๋‹น ๊ฒฐ์ œ(pay-per-crawl) ๋ชจ๋ธ์„ ์ ์šฉํ•˜๋ฉด AI ๊ธฐ์—…์ด ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต์— ํ™œ์šฉํ•  ๋•Œ ํ•ฉ๋‹นํ•œ ๋น„์šฉ์„ ์ง€๋ถˆํ•˜๋„๋ก ํ•  ์ˆ˜ ์žˆ์–ด ์ฝ˜ํ…์ธ  ์ œ์ž‘์ž์—๊ฒŒ ์ƒˆ๋กœ์šด ์ˆ˜์ต ๋ชจ๋ธ์„ ์—ด์–ด์ค„ ์ˆ˜ ์žˆ๋‹ค.

๊ถ๊ทน์ ์œผ๋กœ ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ ๊ณ„์ธต ์ „๋žต์€ ์ธํ„ฐ๋„ท์ด AI๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์žฌํŽธ๋˜๋Š” ํ๋ฆ„ ์†์—์„œ ์ฝ˜ํ…์ธ  ์ œ์ž‘์ž์™€ ๊ธฐ์—…์ด ๋‹ค์‹œ ํ†ต์ œ๊ถŒ์„ ํ™•๋ณดํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ๋‹จ์ˆœํžˆ ์œ ํ•ดํ•œ ๋ด‡์„ ๋ง‰๋Š” ๊ฒƒ์— ๊ทธ์น˜์ง€ ์•Š๊ณ , ์–ด๋–ค ์ฃผ์ฒด๊ฐ€ ์–ด๋–ค ๋ฐฉ์‹์œผ๋กœ ์ฝ˜ํ…์ธ ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ถŒํ•œ์„ ๋˜์ฐพ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋‚˜์•„๊ฐ€์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์กฐ์ง์€ AI๊ฐ€ ๋งŒ๋“ค์–ด๋‚ด๋Š” ์œ„ํ˜‘์œผ๋กœ๋ถ€ํ„ฐ ์Šค์Šค๋กœ๋ฅผ ๋ณดํ˜ธํ•˜๋Š” ๋™์‹œ์—, ์ƒˆ๋กœ์šด ์ธํ„ฐ๋„ท ์‹œ๋Œ€๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ธฐํšŒ๋ฅผ ๋ณด๋‹ค ๊ณต์ •ํ•˜๊ณ  ์•ˆ์ •์ ์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

*ํ•„์ž ์กฐ์›๊ท  ํด๋ผ์šฐ๋“œํ”Œ๋ ˆ์–ด(Cloudflare) ํ•œ๊ตญ ์ง€์‚ฌ์žฅ์€ ํ•œ๊ตญ ๋‚ด ํด๋ผ์šฐ๋“œํ”Œ๋ ˆ์–ด์˜ ์ž…์ง€ ๊ฐ•ํ™”์™€ ๋ธŒ๋žœ๋“œ ์ธ์ง€๋„ ์ œ๊ณ ์— ์ฃผ๋ ฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์„ธ์ผ์ฆˆ ๋ฐ ์ฑ„๋„ ํŒŒํŠธ๋„ˆ๋ฅผ ํ†ตํ•œ ๊ณ ๊ฐ ์ ‘์  ์ตœ์ ํ™”์—๋„ ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹ค. ์›๊ท  ์ง€์‚ฌ์žฅ์€ 25๋…„ ์ด์ƒ ๋ฆฌ๋”์‹ญ ๊ฒฝํ—˜์„ ๋ณด์œ ํ•œ ๋ฒ ํ…Œ๋ž‘์œผ๋กœ, ํด๋ผ์šฐ๋“œํ”Œ๋ ˆ์–ด ํ•ฉ๋ฅ˜ ์ „ F5, ํฌํ‹ฐ๋„ท, ์‹œ์Šค์ฝ” ๋“ฑ์„ ํฌํ•จํ•œ ์ฃผ์š” ๊ธ€๋กœ๋ฒŒ ํ…Œํฌ ๊ธฐ์—…์—์„œ ๊ทผ๋ฌดํ•œ ๋ฐ” ์žˆ๋‹ค.
dl-ciokorea@foundryco.com

Closing the IT estate expectation gap

Talk to CEOs today and some common themes emerge: theyโ€™re moving faster, making bigger bets and relying more heavily on technology to execute their strategic agenda. Expectations on the IT estate have never been higher, yet many CEOs feel itโ€™s a โ€œblack boxโ€ โ€“ essential, but difficult to see into and even harder to gauge.

At the same time, CIOs know that aging infrastructure is struggling to keep pace with AI-driven transformation, rising cyber risks or the agility their CEO has come to expect.ย ย 

This expectation gap is exactly why Netskopeโ€™sย Crucial Conversationsย research identifies the IT estate as one of the six essential discussions CIOs must master today if they are to successfully align with their CEO on their modernization agenda.ย 

CEOsโ€™ growing frustration with the โ€œblack boxโ€

CEOs that took part in the research admitted they donโ€™t understand whatโ€™s happening deep inside the IT stack and that makes them uncomfortable. Some feel their CIO shields them from the complexity; others feel the CIO overcomplicates it. Either way, this impacts confidence.ย 

Why the IT estate has become a strategic conversation

Three forces are pushing the IT estate onto the CEO agenda faster than many CIOs expected:

1. AI demands modern foundations

Organizations are moving from AI experiments to AI integration at pace. But AI doesnโ€™t run effectively on infrastructure designed for a pre-AI world. CEOs need to understand that modernization is not a technology preference โ€“ itโ€™s a prerequisite for delivering the business outcomes they now expect from AI.

2. The cost/risk trade-off is shifting

CEOs expect CIOs to be โ€œgatekeepersโ€ of cost, challenging suppliers and avoiding unnecessary spending. But they also expect CIOs to be candid about the real cost of doing nothing โ€“ outages, slowdowns, security exposure and innovation bottlenecks that compound, year after year.

3. The estate has moved from technical debt to strategic debt

Aging infrastructure no longer just slows down IT; it slows down the business. It limits agility, restricts transformation, and reduces competitiveness. CEOs may not use the words โ€œtechnical debt,โ€ but they understand when the organization is weighed down by the past.

How CIOs should reframe the conversation

To build trust and alignment, CIOs need to take ownership of this conversation rather than waiting for disruption to force it, and CEOs want three things from them.ย 

They want issues surfaced early and directly, with no surprises. CIOs need to lead with transparency.

Second is proactivity and the confidence to embrace change, make bold strategic calls, and recognize that even small fixes can have outsized impact, especially in an AI-driven environment.

And third is practicality. CEOs arenโ€™t interested in โ€œnew toys,โ€ but in well-evidenced, sensible solutions that reduce risk and address problems decisively when they arise.ย 

Above all, they want CIOs to think long term, planning infrastructure over the next decade rather than the next budget cycle and moving beyond an โ€œif it isnโ€™t brokenโ€ mindset.ย 

The moment for this conversation is now

Most enterprises are at an inflection point. Modernize the estate to unlock AI-driven advantageย orย carry forward a legacy footprint that cannot support the ambitions the CEO now expects the CIO to deliver. The CIO who leads this conversation will be seen as a true strategic partner.ย ย 

Explore all six crucial conversations

The IT estate is only one of six crucial conversations CIOs need to master with their CEO. To dive deeper into the rest โ€“ cost, risk, innovation, people and measurement โ€“ read the fullย Crucial Conversationsย report now.ย 

US federal software reform bill aims to strengthen software management controls

Software management struggles that have pained enterprises for decades cause the same anguish to government agencies, and a bill making its way through the US House of Representatives to strengthen controls around government software management holds lessons for enterprises too.

The Strengthening Agency Management and Oversight of Software Assets (SAMOSA) bill, H.R. 5457, received unanimous approval from a key US House of Representative committee, the Committee on Oversight and Government Reform, on Tuesday.

SAMOSA is mostly focused on trying to fix โ€œsoftware asset management deficienciesโ€ as well as requiring more โ€œautomation of software license management processes and incorporation of discovery tools,โ€ issues that enterprises also have to deal with.

In addition, it requires anyone involved in software acquisition and development to be trained in the agencyโ€™s policies and, more usefully, in negotiation of contract terms, especially those that put restrictions on software deployment and use.

This training could also be quite useful for enterprise IT operations. It would teach โ€œnegotiating optionsโ€ and specifically the โ€œdifferences between acquiring commercial software products and services and acquiring or building custom software and determining the costs of different types of licenses and options for adjusting licenses to meet increasing or decreasing demand.โ€

The mandated training would also include tactics for measuring โ€œactual software usage via analytics that can identify inefficiencies to assist in rationalizing software spendingโ€ along with methods to โ€œsupport interoperable capabilities between software.โ€

Outlawing shadow IT

The bill also attempts to rein in shadow IT by โ€œrestricting the ability of a bureau, program, component, or operational entity within the agency to acquire, use, develop, or otherwise leverage any software entitlement without the approval of the Chief Information Officer of the agency.โ€ But there are no details about how such a rule would be enforced.

It would require agencies โ€œto provide an estimate of the costs to move toward more enterprise, open-source, or other licenses that do not restrict the use of software by the agency, and the projected cost savings, efficiency measures, and improvements to agency performance throughout the total software lifecycle.โ€ But the hiccup is that benefits will only materialize if technology vendors change their ways, especially in terms of transparency.

However, analysts and consultants are skeptical that such changes are likely to happen.

CIOs could be punished

Yvette Schmitter, a former Price Waterhouse Coopers principal who is now CEO of IT consulting firm Fusion Collective, was especially pessimistic about what would happen if enterprises tried to follow the billโ€™s rules.

โ€œIf the bill were to become law, it would set enterprise CIOs up for failure,โ€ she said. โ€œThe bill doubles down on the permission theater model, requiring CIO approval for every software acquisition while providing zero framework for the thousands of generative AI tools employees are already using without permission.โ€

She noted that although the bill mandates comprehensive assessments of โ€œsoftware paid for, in use, or deployed,โ€ it neglects critical facets of todayโ€™s AI software landscape. โ€œIt never defines how you access an AI agent that writes its own code, a foundation model trained on proprietary data, or an API that charges per token instead of per seat,โ€ she said. โ€œInstead of oversight, the bill would unlock chaos, potentially creating a compliance framework where CIOs could be punished for buying too many seats for a software tool, but face zero accountability for safely, properly, and ethically deploying AI systems.โ€

Schmitter added: โ€œThe bill is currently written for the 2015 IT landscape and assumes that our current AI systems come with instruction manuals and compliance frameworks, which they obviously do not.โ€

She also pointed out that the government seems to be working at cross-purposes. โ€œThe H.R. 5457 bill is absurd,โ€ she said. โ€œCongress is essentially mandating 18-month software license inventories while the White House is simultaneously launching the Genesis Mission executive order for AI that will spin up foundation models across federal agencies in the next nine months. Both of these moves are treating software as a cost center and AI as a strategic weapon, without recognizing that AI systems are software.โ€

Scott Bickley, advisory fellow at Info-Tech Research Group, was also unimpressed with the bill. โ€œIt is a sad, sad day when the US Federal government requires a literal Act of Congress to mandate the Software Asset Management (SAM) behaviors that should be in place across every agency already,โ€ Bickley said. โ€œOne can go review the [Office of Inspector General] reports for various government agencies, and it is clear to see that the bureaucracy has stifled all attempts, assuming there were attempts, at reining in the beast of software sprawl that exists today.โ€

Right goal, but toothless

Bickley said that the US government is in dire need of better software management, but that this bill, even if it was eventually signed into law, would be unlikely to deliver any meaningful reforms.ย 

โ€œThis also presumes the federal government actually negotiates good deals for its software. It unequivocally does not. Never has there been a larger customer that gets worse pricing and commercial terms than the [US] federal government,โ€ Bickley said. โ€œAt best, in the short term, this bill will further enrich consultants, as the people running IT for these agencies do not have the expertise, tooling, or knowledge of software/subscription licensing and IP to make headway on their own.โ€

On the bright side, Bickley said the goal of the bill is the right one, but the fact that the legislation didnโ€™t deliver or even call for more funding makes it toothless. โ€œThe bill is noble in its intent. But the fact that it requires a host of mandatory reporting, [Government Accountability Office] oversight, and actions related to inventory and overall [software bill of materials] rationalization with no new budget authorization is a pipe dream at best,โ€ he said.ย 

Sanchit Vir Gogia, the chief analyst at Greyhound Research, was more optimistic, saying that the bill would change the law in a way that should have happened long ago.

โ€œ[It] corrects a long-standing oversight in federal technology management. Agencies are currently spending close to $33 billion every year on software. Yet most lack a basic understanding of what software they own, what is being used, or where overlap exists. This confusion has been confirmed by the Government Accountability Office, which reported that nine of the largest agencies cannot identify their most-used or highest-cost software,โ€ Gogia said. โ€œAudit reports from NASA and the Environmental Protection Agency found millions of dollars wasted on licenses that were never activated or tracked. This legislation is designed to stop such inefficiencies by requiring agencies to catalogue their software, review all contracts, and build plans to eliminate unused or duplicate tools.โ€

Lacks operational realism

Gogia also argued, โ€œthe added pressure of transparency may also lead software providers to rethink their pricing and make it easier for agencies to adjust contracts in response to actual usage.โ€ If that happens, it would likely trickle into greater transparency for enterprise IT operations.ย 

Zahra Timsah, co-founder and CEO of i-GENTIC AI, applauded the intent of the bill, while raising logistical concerns about whether much would ultimately change even if it ultimately became law.

โ€œThe language finally forces agencies to quantify waste and technical fragmentation instead of talking about it in generalities. The section restricting bureaus from buying software without CIO approval is also a smart, direct hit on shadow IT. Whatโ€™s missing is operational realism,โ€ Timsah said. โ€œThe bill gives agencies a huge mandate with no funding, no capacity planning, and no clear methodology. You canโ€™t ask for full-stack interoperability scoring and lifecycle TCO analysis without giving CIOs the tools or budget to produce it. My concern is that agencies default to oversized consulting reports that check the box without actually changing anything.โ€

Timsah said that the bill โ€œis going to be very difficult to implement and to measure. How do you measure it is being followed?โ€ She added that agencies will parrot the billโ€™s wording and then try to hire people to manage the process. โ€œItโ€™s just going to be for opticโ€™s sake.โ€

The year ahead: What will become the 3 pillars of trust in an AI-first world?

Today, the conversation in every boardroom is most likely centered on a single, transformative force: artificial intelligence (AI). Many see it as the engine for unprecedented growth, efficiency, and innovation. And, while this belief is justifiable, the entire revolution is being built on a fragile foundation of trust โ€” an already fragile ground that is about to shift even further.

As AI systems begin to manage supply chains, deploy code, and execute financial transactions, the nature of risk changes entirely. The primary threat becomes the catastrophic cost of disruption to the intelligent systems that form the central nervous system of modern business.

To harness AIโ€™s promise while mitigating its existential risks, we already know that leaders must move beyond a defensive security posture. To be effective, leaders must also fundamentally shift how they view security as a whole. They must view it as the foundation that innovation is built on, not as a barrier to progress. To do this, we, as a collective, must build a proactive strategy based on three core pillars of trust.

1. Engineering for trust

Trust cannot be an afterthought; it must be an engineering outcome. In the past, security was often a gate that slowed progress. Today, that model is inverted. A modern, unified security platform with trust built in by design now serves as a powerful strategic accelerator.

Automated security, when treated as a native component of the AI development lifecycle, eliminates the traditional brakes on progress. This enables our teams to innovate and deploy new models with the speed and confidence that delivers a direct, quantifiable competitive advantage. This transition from a reactive posture to one that ensures innovation velocity is key.

The โ€œengineering for trustโ€ approach also allows us to address a silent liability plaguing many organizations: decades of accumulated security debt. A patchwork of disconnected point products creates a complex and vulnerable attack surface, a problem now amplified by the cloud. Our exclusive internal research found that a majority of cloud databases related to AI development are not properly secured, lacking basic encryption or access controls.

Moving to a unified, trustworthy platform is akin to refinancing this debt โ€”ย a solution that any board member would be amenable to. This type of platform simplifies operations, reduces long-term risk, and frees up our most valuable resources to focus on growth instead of just defense.

2. Cultivating cultures of trust

A single human error can undermine even the most perfectly engineered system. While technology provides the foundation, a vigilant and security-conscious culture forms the crucial human layer of the trust stack.

In an era of AI-powered phishing and sophisticated social engineering, every employee must become a steward of their organizationโ€™s security. This challenge is magnified by the rise of shadow AI. Our latest research on SaaS risks reveals that the use of unsanctioned third-party AI tools in the enterprise has skyrocketed, creating a massive blind spot where sensitive corporate data is regularly fed into untrusted models. That is why this pillar demands more than annual training videos. It requires a deep-seated culture of awareness where people are empowered to question anomalies and act as the first line of defense.

The value of this culture extends far beyond risk mitigation. A strong culture provides the ethical guardrails that ensure AI is used responsibly, protecting the brand and maintaining customer confidence that is so difficult to earn and so easy to lose. Its essential, human-driven process protects the organization from the inside out.

3. Governing for trust

The speed and scale of modern AI demand a new governance model built on two key principles: unwavering human control and radical industry-wide cooperation.

First, we must design systems that guarantee human oversight. Robust, human-in-the-loop governance is the ultimate safeguard against the catastrophic business disruption that autonomous systems could otherwise trigger. It is the board-level guarantee that our most valuable tools remain under our command, operating as intended.

Second, we must recognize that we cannot face this new threat landscape alone. AI-powered attacks are an ecosystem-wide problem that demands an ecosystem-wide defense. Sharing threat intelligence and best practices across companies and industries is a core business necessity for our collective survival and stability.

Trust as the ultimate ROI

To lead in the age of AI, our strategy must be clear. We need well-engineered systems that accelerate the business, a vigilant culture that protects it, and a robust governance that ensures its resilience. The goal of a modern security strategy has fundamentally changed, shifting from merely preventing incidents to actively creating and protecting value.

In the AI-first world, thriving organizations will understand that trust is the most valuable asset on their balance sheet and the ultimate driver of their success.

Curious what else Ben has to say? Check out his other articles on Perspectives.

Building tech leaders who think like CEOs (and deliver like operators)

So your newly promoted CTO walks into their first executive meeting, armed with deep technical expertise and genuine enthusiasm for transformation. Six months later, theyโ€™re frustrated, your digital initiatives have stalled and your board is questioning the technology leadership strategy.

This isnโ€™t a story about hiring the wrong person. Itโ€™s a story about building the wrong environment.

Hereโ€™s the truth your consultants wonโ€™t share: When technical leaders fail, itโ€™s rarely a failure of intelligence. Itโ€™s a failure of integration.

Charles Sims notes this in his analysis of C-suite dynamics, โ€œIf youโ€™re seated in the โ€˜big chair,โ€™ you canโ€™t expect people to intuit where they need to go. You need to build the bridge.โ€

The organizations winning the transformation race arenโ€™t just hiring better CTOs; theyโ€™re creating fundamentally different conditions for technology leadership to thrive.

The hidden architecture of failure

Before we dive into solutions, letโ€™s diagnose whatโ€™s actually broken.

The problem isnโ€™t individual competence, itโ€™s institutional design.

Most C-suite structures were established when technology was viewed as a cost center, rather than a competitive weapon. The processes, meeting rhythms and decision-making frameworks assume technology comes after strategy, not during it.

This creates what I call the integration gap, the space between where technology leaders sit and where they need to be to drive real transformation.

Deloitte research on resilient technology functions reveals a telling insight: High-performing โ€œtech vanguardโ€ businesses fundamentally differ in how they structure technology leadership.

As Khalid Kark and Anh Nguyen Phillips point out, these organizations embrace โ€œjoint accountabilityโ€ and โ€œestablish sensing mechanisms that help anticipate business change.โ€

Translation: They donโ€™t just include technology in business strategy, they integrate it.

The strategic exclusion problem

Hereโ€™s the most expensive mistake organizations make: bringing technology leaders into strategy validation, not strategy formation.

Iโ€™ve watched this pattern across dozens of transformations. The business leadership team spends months crafting the digital strategy. They debate market positioning, customer experience and competitive responses. Then, in the final act, they bring in the CTO to confirm technical feasibility.

This isnโ€™t collaboration, itโ€™s a recipe for execution failure.

CIO advisor Isaac Sacolick sums it up nicely, โ€œWhat the risk here for CIOs is to get something out there on paper and start communicating. Letting your business partners know that youโ€™re going to be the center point of putting a strategy together.

โ€œBeing able to do blue sky planning with business leaders, with technologists and data scientists on a very frequent basis to say, โ€˜is our strategy aligned or do we need a pivotโ€™ or do we need to add I think thatโ€™s really the goal for a CIO now is to continually do that over the course of how this technology is changing.โ€

When technologists inherit fully formed strategies, they inherit the constraints, assumptions and blind spots of non-technical decision-making. The result? Strategies that sound compelling in PowerPoint but break down in reality.

The integration solution: As Sims emphasizes, successful businesses bring technology leaders in โ€œwhen the goals are still being shaped.โ€ Technology leaders become co-architects of strategy, not just implementers of it.

The translation challenge

Every business talks about wanting CTOs who can โ€œtranslate technical complexity into business value.โ€

But most create conditions that make effective translation impossible.

The problem isnโ€™t that technology leaders canโ€™t communicate. Itโ€™s that business leaders structure every interaction to discourage strategic thinking. Fifteen-minute slots for infrastructure decisions. โ€œHigh-level onlyโ€ constraints on technical briefings. Interruptions when discussions get into architectural details.

Sims captures the real need perfectly: โ€œAsk them to explain how tech can enable outcomes, not just avoid outages.โ€ But enabling outcomes requires time, context and genuine dialogue โ€” not rapid-fire status updates.

The integration solution: Create forums for substantive technical dialogue. Allocate time for technology leaders to educate business counterparts on possibilities, constraints and trade-offs.

The four pillars of technology leadership integration

The rebel leaders Iโ€™ve studied donโ€™t just talk about integration, they systematically engineer it. Here are the four pillars that separate transformation winners from digital theater performers.

Pillar one: Strategic co-creation

Instead of: Bringing technology leaders in for feasibility validation.

Rebels: Include them in strategic formation from day one.

The breakthrough insight is simple: Technology constraints and possibilities should shape strategy, not just constrain it. When technologists participate in strategic formation, they help identify opportunities that pure business thinking might miss.

Actionable implementation:

  • Include your CTO in quarterly business reviews, not just technology reviews
  • Require technology input before major strategic initiatives get funded
  • Create joint business-technology planning sessions for all transformation efforts
  • Give technology leaders access to the same market intelligence and customer feedback as other executives

Pillar two: Outcome-driven accountability

Instead of: Asking for deliverables and timelines.

Rebels: Define success in business outcomes and measure accordingly.

This shift eliminates the translation problem entirely. When success is defined in business terms from the beginning, technology leaders naturally think about impact, not just implementation.

The Deloitte study talks about โ€œvalue-based investmentsโ€ aligned with โ€œiterative Agile sprints.โ€ But the real innovation isnโ€™t methodological, itโ€™s definitional. Success gets measured by business value delivered, not features completed.

Actionable implementation:

  • Replace project status meetings with outcome review sessions
  • Tie technology leader compensation to business metrics, not just technical ones
  • Create shared dashboards that track business impact of technology initiatives
  • Require business case updates, not just project updates

Pillar three: Information symmetry

Instead of: Functional hierarchy with information silos.

Rebels: Ensure technology leaders have the same strategic context as business leaders.

Sims makes a crucial point: โ€œTechnology touches every department. The org chart should reflect that.โ€ But organizational design goes beyond reporting structures; itโ€™s about information flow and decision rights.

The Deloitte research highlights the need for โ€œsensing mechanisms that help anticipate business change.โ€ But sensing requires access to information, not just responsibility for reaction.

Actionable implementation:

  • Include technology leaders in customer advisory boards and market research reviews
  • Share competitive intelligence and industry analysis with the entire C-suite, not just business functions
  • Create cross-functional intelligence-sharing sessions where every leader contributes market insights
  • Ensure technology leaders participate in customer meetings and strategic partnerships

Pillar four: Translation excellence

Instead of: Expecting natural translation ability.

Rebels: Systematically develop two-way translation competence.

Hereโ€™s where most organizations get it backwards. They expect CTOs to be great translators but provide no development, feedback or support for this critical skill.

As Sims notes, โ€œThe best CTOs turn complexity into clarity. They make everyone around them smarter. Thatโ€™s the leadership skill we should be measuring.โ€

But translation is a two-way street. Business leaders also need to develop competence in asking strategic questions that unlock technological insight.

Actionable implementation:

  • Create monthly translation labs where technology leaders practice explaining complex concepts to different audiences
  • Train business leaders to ask better questions: โ€œWhat are the trade-offs?โ€ instead of โ€œIs this feasible?โ€
  • Establish technology education sessions for non-technical executives
  • Reward and recognize technology leaders who effectively educate their peers

Better leadership means faster business

When you get technology leadership integration right, the impact extends far beyond individual performance. You create what the Deloitte research calls enterprise agility: the ability to โ€œnimbly strategize and operateโ€ in response to constant change.

The data reveals so much: businesses with integrated technology leadership outperform peers across every meaningful metric. Revenue growth, profit margins, customer satisfaction, employee engagement and market share all improve when business and technology leadership truly collaborate.

But the most significant impact might be speed. Integrated organizations move faster because they eliminate the handoff delays, translation loops and rework cycles that plague siloed structures.

The competitive reality

While youโ€™re optimizing technology leadership integration, your competitors are making a choice. Some will continue the old patterns: hiring smart technologists, giving them business requirements and wondering why transformation is hard.

Others will join the integration revolution. Theyโ€™ll create conditions where technology leaders thrive. Theyโ€™ll build strategic collaboration into their organizational DNA. Theyโ€™ll accelerate past competitors while others struggle with digital theater.

The study reveals that tech vanguard organizations are already pulling away from baseline performers. The gap isnโ€™t just technical: itโ€™s structural, cultural and strategic.

Ready to ramp up?

The path forward isnโ€™t about your next technology hire, itโ€™s about the environment you create for technology leadership to succeed.

Week one: Audit your current integration points. Where does your CTO participate in strategic decision-making? Where are they excluded? Map the information flows and decision rights.

Month one: Redesign your leadership meeting rhythms. Include technology leaders in strategic formation, not just implementation planning. Create forums for substantive business-technology dialogue.

Month two: Implement outcome-based accountability. Replace deliverable tracking with business impact measurement. Align technology leader success metrics with business results.

Month three: Launch translation competence development. Create systematic programs for both business-to-technology and technology-to-business communication improvement.

Month six: Measure integration velocity. How quickly do business insights flow into technology decisions? How rapidly do technological possibilities inform business strategy?

The businesses that systematically build technology leadership integration wonโ€™t just transform their trajectory; theyโ€™ll transform their markets. Theyโ€™ll set the pace while competitors struggle to keep up.

The choice is yours: Continue with traditional technology leadership models or build the integration capabilities that drive real transformation.

The rebels are already deciding. What about you?

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

Why CIOs must reimagine ERP as the enterpriseโ€™s composable backbone

In my experience leading ERP modernization projects and collaborating with IT and business executives, Iโ€™ve learned that technology alone rarely determines success, but mindset and architecture do. Gartner reports, โ€œBy 2027, more than 70% of recently implemented ERP initiatives will fail to fully meet their original business case goals.โ€ ERP success now requires a fundamentally different architecture.

For decades, ERP systems have been the core of enterprise operations: managing finance, supply chain, manufacturing, HR and more. The same systems that once promised control and integration are now stifling flexibility, slowing innovation and piling up technical debt.

From what Iโ€™ve observed across multiple ERP programs, the problem isnโ€™t ERP itself, but rather, itโ€™s how weโ€™ve come to think about it. Many organizations still treat ERP purely as a system of record, missing the broader opportunity in front of them.

The next era of business agility will be defined by ERP as a composable platform: modular, data-centric, cloud-native and powered by AI. In many of the organizations Iโ€™ve worked with, technology leaders arenโ€™t debating whether to modernize the core. Instead, theyโ€™re focused on how to do it without stalling the business.

Forbes captures the shift succinctly: โ€œit is anticipated thatโ€ฏ75% of global businesses will begin replacing traditional monolithic ERP systems with modular solutions โ€” driven by the need for enhanced flexibility and scalability in business operations.โ€ This highlights ERPโ€™s evolution from monolithic legacy suites to an adaptive, innovation-driven platform.

Those who embrace this shift will make ERP an enabler of innovation. Those who donโ€™t will watch their core systems become their biggest bottleneck and stay held back.

From monoliths to modular backbones

In the 1990s and 2000s, ERP meant one vendor, one codebase and one massive implementation project touching every corner of the business. Companies spent millions customizing software to fit every process nuance.

I saw the next chapter unfold with the cloud era. Companies such as SAP, Oracle, Microsoft and Infor transitioned their portfolios to SaaS, while a wave of startups emerged with modular, industry-focused ERP platforms. APIs and services finally promised a system that could evolve with the business.

In one transformation I supported, our biggest turning point came when we stopped treating ERP as a single implementation. We began decomposing capabilities into modules that business teams could own and evolve independently.

But for many enterprises, that promise never fully materialized. The issue isnโ€™t the technology anymore, but the mindset. In many organizations, ERP is still viewed as a finished installation rather than a living platform meant to grow and adapt.

The cost of the old mindset

Legacy ERP thinking simply canโ€™t keep up with todayโ€™s pace of change. The result is slower innovation, fragmented data and IT teams locked in perpetual catch-up mode. Organizations need architectures that change as fast as the business does.

LeanIX, citing Gartner research, highlights the advantage: โ€œOrganizations that have adopted a composable approach to IT are 80% faster in new-feature implementation, particularly when using what Gartner defines as composable ERP platforms,โ€ demonstrating the performance gap between modular ERP and traditional monolithic systems.

Iโ€™ve seen legacy ERP thinking carry a high price tag in real projects:

  • Inflexibility: Business models evolve faster than software cycles. Traditional ERP canโ€™t keep up.
  • Over-customization: Years of bespoke code make upgrades risky and expensive.
  • Data fragmentation: Multiple ERP instances and disconnected modules create inconsistent data and unreliable analytics.
  • User frustration: Outdated interfaces drive workarounds and disengagement.
  • High total cost of ownership: Maintenance and upgrades consume budgets that should fund innovation.

Enter the composable ERP

The emerging composable ERP model breaks this monolith apart. Gartner defines it as an architecture where enterprise applications are assembled from modular building blocks, connected through APIs and unified by a data fabric.

As LeanIX explains, โ€œComposable ERP, built on modular and interoperable components, allows organizations to respond faster to change by assembling capabilities as needed rather than relying on a rigid, monolithic suite,โ€ illustrating the transition from static ERP systems to a dynamic, adaptable business platform.

Having worked on both sides โ€” custom development and packaged ERP โ€” Iโ€™ve learned that the real power of composability lies in how easily teams can assemble, not just integrate, capabilities. Rather than seeing ERP as a single suite, think of it as the system that enables how an enterprise operates. The core processes โ€” finance, supply chain, manufacturing, HR โ€” are what make up the base. Modular features such as AI forecasting, customer analytics and sustainability tracking can plug in dynamically as the business evolves.

This approach enables organizations to:

  • Mix and match modules from different vendors or in-house teams.
  • Integrate best-of-breed cloud apps through standard APIs instead of brittle custom code.
  • Leverage AI for automation, insights and predictive decisions.
  • Deliver persona-based experiences tailored to each userโ€™s role.

Personas: The human face of composable ERP

Traditional ERP treated every user the same, in which there would be one interface, hundreds of menus, endless forms. Composable ERP flips that script with persona-based design, built around what each role needs to accomplish.

  • CFOs see real-time financial health across entities with AI-driven scenario modeling.
  • Supply chain leaders monitor live demand signals, supplier performance and sustainability metrics.
  • Plant managers track IoT-enabled equipment, predictive maintenance and production KPIs.
  • Sales and service teams access operational data seamlessly without switching systems.

From my experience, when ERP is designed around real personas rather than generic transactions, adoption rises and decisions happen faster.

Challenges and pitfalls

These are not theoretical issues; theyโ€™re the practical challenges I see IT and business teams grappling with every day.

  • Data governance: Without a unified data strategy, modularity turns to chaos.
  • Integration complexity: APIs require discipline for versioning, authentication, semantic alignment.
  • Vendor lock-in: Even open platforms can create subtle dependencies.
  • Change management: Employees need support and training to unlearn old habits.
  • Security: A more connected system means a larger attack surface. Zero-trust security is essential.

True success demands leadership that balances technical depth with organizational empathy.

The CIOโ€™s new playbook

Through years of ERP work and collaboration between business and IT teams, Iโ€™ve realized that the biggest hurdle to ERP success is the belief that ERP is a fixed system instead of a constantly evolving platform for innovation.

This shift isnโ€™t about tools, but rather itโ€™s about redefining the ERPโ€™s role in the business. McKinsey reinforces this reality, stating, โ€œModernizing the ERP core is not just a technology upgrade โ€” it is a business transformation that enables new capabilities across the enterprise.โ€ Itโ€™s a shift that calls for a fundamentally different playbook, especially for CIOs leading modernization efforts.

  1. Start with the business architecture, not the software. Define how you want your enterprise to operate, then design ERP capabilities to fit.
  2. Build a unified data fabric. A composable ERP lives or dies by consistent, high-quality data.
  3. Adopt modular thinking incrementally. Start small by piloting a few modules, prove the value, then scale.
  4. Empower fusion teams. Blend IT, operations and business experts into agile squads that compose solutions quickly.
  5. Measure success by outcomes, not go-lives. The goal is agility and resilience and not a single launch date.
  6. Push vendors for openness. Demand published APIs and true interoperability, not proprietary cloud labels.

Oracle reinforces this imperative: โ€œCompanies need to move toward a portfolio that is more adaptable to business change, with composable applications that can be assembled, reassembled and extended,โ€ highlighting flexibility as a core selection criterion.

Reframe ERP as an innovation platform. Encourage experimentation with low-code workflows, analytics and AI copilots.

Looking ahead: When ERP becomes invisible

In a few years, we might not even use the term ERP. Like CRMโ€™s evolution into customer experience platforms, ERP will fade into the background, becoming the invisible digital backbone of the enterprise.

Iโ€™ve watched ERP evolve from on-premises to cloud to AI-driven platforms. AI will soon handle transactions and workflows behind the scenes, while employees interact through conversational interfaces and embedded analytics. Instead of logging into systems, theyโ€™ll simply request outcomes โ€” and the composable ERP fabric will dynamically orchestrate everything required to deliver them.

That future belongs to organizations rethinking ERP today. This isnโ€™t just another upgrade cycle โ€” itโ€™s a redefinition of how enterprises operate.

From record-keeping to value creation

ERP was once about efficiency โ€” tracking inventory, closing books, enforcing process discipline. Today, itโ€™s about resilience and innovation. From my own journey across multiple ERP programs, Iโ€™ve seen that the CIOโ€™s challenge isnโ€™t just keeping systems running, but also architecting agility into how the enterprise operates.

Composable ERP, which is built on cloud, AI and human-centered design, is the blueprint. It turns ERP from a system of record into a system of innovation that evolves as fast as the market around it.

The opportunity is clear: Lead the transformation or risk maintaining yesterdayโ€™s architecture while others design tomorrowโ€™s enterprise.

This article is published as part of the Foundry Expert Contributor Network.
Want to join?

โŒ