Reading view

There are new articles available, click to refresh the page.

Meet NASA’s Astronaut Class of 2025 – Webby Submission

3 Min Read

Meet NASA’s Astronaut Class of 2025 – Webby Submission

Teams are evaluating how to train for lunar surface operations during Artemis missions, in the Neutral Buoyancy Lab at Johnson Space Center in Houston.
Credits: NASA

NASA engineers are laying the foundation for the moonwalks the first woman and next man will conduct when they land on the lunar South Pole in 2024 as part of the Artemis program. At the agency’s Johnson Space Center in Houston, teams are testing the tools and developing training approaches for lunar surface operations.

As part of a test series occurring in the Neutral Buoyancy Lab (NBL) at Johnson, astronauts in a demonstration version of the exploration spacesuit and engineers in “hard hat” dive equipment are simulating several different tasks crew could do on the surface of the Moon.

As part of a test series occurring in the Neutral Buoyancy Lab (NBL) at Johnson, astronauts in a demonstration version of the exploration spacesuit and engineers in “hard hat” dive equipment are simulating several different tasks crew could do on the surface of the Moon.

This early testing will help determine the best complement of facilities for hardware development and requirements for future Artemis training and missions

DAREN WELSH

DAREN WELSH

EVA Flight Controller & Crew Instructor

The tests are focused on evaluating Johnson’s facilities for Artemis spacewalk testing, development, and crew training. Astronauts are practicing a variety of tasks, including picking up samples of lunar regolith, examining a lunar lander, and planting an American flag. There are many fundamentals that the teams have to consider and work through, such as how crew might get up and down a ladder safely, how to swing a hammer safely, and how to conduct successful moonwalks in different lighting conditions than the Apollo-era moonwalks. The tests will inform future mission planning, including how many spacewalks to conduct during a mission, how long they’ll be, and how far away from a lander the crew will travel.

While NASA has extensive experience preparing astronauts for spacewalks in microgravity like those to construct and maintain the International Space Station over the past 20 years, preparing for Moon missions comes with different challenges.

We can evaluate tools in a lab or the rock yard, but you can learn so much when you put a pressurized spacesuit on and have to work within the limitations of its mobility.

Daren Welsh

Daren Welsh

EVA Flight Controller & Crew Instructor

There is a lot of work to do to get the facilities ready to work for lunar missions and figure out how to facilitate the training

Daren Welsh

Daren Welsh

EVA Flight Controller & Crew Instructor

In addition to testing in the NBL, teams also are using different analog environments to simulate lunar conditions. Tests are occurring at Johnson’s rock yard, a large, outdoor test area which simulates general features of the lunar surface terrain.

Rock yard testing is a critical analog environment for spacewalk tool development and operations. The interaction between the crewmembers and the Earth-based teams in mission control and the science control centers allows engineers to mature concepts of mission operations. The testing reveals spacewalking tool design improvements and helps formulate operational timelines. Analog environments allow iterations on designs to occur quickly such that the revisions can be reevaluated in subsequent tests.

“We have experience with space station, but we need to determine how we’re going to train the crew for surface operations during these specific missions,” Welsh said. “There is a lot of work to do to get the facilities ready to work for lunar missions and figure out how to facilitate the training.”

This collaborative effort is already paying dividends for the team as they are becoming more familiar with the surface operation concepts. As the tests continue, the team is expanding the scope of the testing, with plans to complete full lunar spacewalk timelines.

With the Artemis program, NASA will land the first woman and next man on the Moon in 2024, using innovative technologies to explore more of the lunar surface than ever before. We will collaborate with our commercial and international partners and establish sustainable exploration by the end of the decade. Then, we will use what we learn on and around the Moon to take the next giant leap – sending astronauts to Mars.

About the Author

Kelcie Nicole Howren

Kelcie Nicole Howren

Share

Details

Last Updated
Dec 19, 2025

Related Terms

Keep Exploring

Discover More Topics From NASA

NASA Shares SpaceX Crew-12 Assignments for Space Station Mission

From left to right, NASA astronauts Jessica Meir and Jack Hathaway, ESA (European Space Agency) astronaut Sophie Adenot, and Roscosmos cosmonaut Andrey Fedyaev.
Credit: NASA

As part of NASA’s SpaceX Crew-12 mission, four crew members from three space agencies will launch no earlier than Sunday, Feb. 15, 2026, to the International Space Station for a long-duration science expedition.

NASA astronauts Jessica Meir and Jack Hathaway will serve as spacecraft commander and pilot, respectively, and will be accompanied by ESA (European Space Agency) astronaut Sophie Adenot and Roscosmos cosmonaut Andrey Fedyaev, who will both serve as mission specialists. Crew-12 will join Expedition 74 crew members currently aboard the space station.

The flight is the 12th crew rotation with SpaceX to the orbiting laboratory as part of NASA’s Commercial Crew Program. Crew-12 will conduct scientific investigations and technology demonstrations to help prepare humans for future exploration missions to the Moon and Mars, as well as benefit people on Earth.

This will be the second flight to the space station for Meir, who was selected as a NASA astronaut in 2013. The Caribou, Maine, native earned a bachelor’s degree in biology from Brown University, a master’s degree in space studies from the International Space University, and a doctorate in marine biology from Scripps Institution of Oceanography in San Diego. On her first spaceflight, Meir spent 205 days as a flight engineer during Expedition 61/62, and she completed the first three all-woman spacewalks with fellow NASA astronaut Christina Koch, totaling 21 hours and 44 minutes outside of the station. Since then, she has served in various roles, including assistant to the chief astronaut for commercial crew (SpaceX), deputy for the Flight Integration Division, and assistant to the chief astronaut for the human landing system.

A commander in the United States Navy, Hathaway was selected as part of the 2021 astronaut candidate class. This will be Hathaway’s first spaceflight. The South Windsor, Connecticut, native holds a bachelor’s degree in physics and history from the U.S. Naval Academy and master’s degrees in flight dynamics from Cranfield University and national security and strategic studies from the U.S. Naval War College, respectively. Hathaway also is a graduate of the Empire Test Pilot’s School, Fixed Wing Class 70 in 2011. At the time of his selection, Hathaway was deployed aboard the USS Truman, serving as Strike Fighter Squadron 81’s prospective executive officer. He has accumulated more than 2,500 flight hours in 30 different aircraft, including more than 500 carrier arrested landings and 39 combat missions.

The Crew-12 mission will be Adenot’s first spaceflight. Before her selection as an ESA astronaut in 2022, Adenot earned a degree in engineering from ISAE-SUPAERO in Toulouse, France, specializing in spacecraft and aircraft flight dynamics. She also earned a master’s degree in human factors engineering at Massachusetts Institute of Technology in Cambridge. After earning her master’s degree, she became a helicopter cockpit design engineer at Airbus Helicopters and later served as a search and rescue pilot at Cazaux Air Base from 2008 to 2012. She then joined the High Authority Transport Squadron in Villacoublay, France, and served as a formation flight leader and mission captain from 2012 to 2017. Between 2019 and 2022, Adenot worked as a helicopter experimental test pilot in Cazaux Flight Test Center with DGA (Direction Générale de l’Armement – the French Defence Procurement Agency). She has logged more than 3,000 hours flying 22 different helicopters.

This will be Fedyaev’s second long-duration stay aboard the orbiting laboratory. He graduated from the Krasnodar Military Aviation Institute in 2004, specializing in aircraft operations and air traffic organization, and earned qualifications as a pilot engineer. Prior to his selection as a cosmonaut, he served as deputy commander of an Ilyushin-38 aircraft unit in the Kamchatka Region, logging more than 600 flight hours and achieving the rank of second-class military pilot. Fedyaev was selected for the Gagarin Research and Test Cosmonaut Training Center Cosmonaut Corps in 2012 and has served as a test cosmonaut since 2014. In 2023, he flew to the space station as a mission specialist during NASA’s SpaceX Crew-6 mission, spending 186 days in orbit, as an Expedition 69 flight engineer. For his achievements, Fedyaev was awarded the title Hero of the Russian Federation and received the Yuri Gagarin Medal. 

For more than 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies concentrate on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing its resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Shaneequa Vereen
Johnson Space Center, Houston
281-483-5111
shaneequa.y.vereen@nasa.gov

Share

Details

Last Updated
Dec 19, 2025
Editor
Jessica Taveau

NASA Johnson’s 2025 Milestones

NASA’s Johnson Space Center in Houston closed 2025 with major progress across human spaceflight, research, and exploration. From Artemis II mission preparations to science aboard the International Space Station, teams at Johnson helped prepare for future missions to the Moon and, ultimately, Mars.

Orion Stacked for Artemis II, Orion Mission Evaluation Room Unveiled 

NASA’s Artemis II Orion spacecraft with its launch abort system is stacked atop the agency’s SLS (Space Launch System) rocket in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Oct. 20, 2025.
NASA/Kim Shiflett

As NASA prepares for the crewed Artemis II mission, a 10-day journey around the Moon and back in early 2026, teams at Johnson continue work to ensure the Orion spacecraft is flight-ready. The mission will carry NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen. 

In October, NASA completed stacking of the Orion spacecraft and launch abort system atop the agency’s SLS (Space Launch System) rocket inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Following Orion stacking, teams completed testing critical communications systems between SLS and Orion, and confirmed the interfaces function properly between the rocket, Orion, and the ground systems. 

The new Orion Mission Evaluation Room inside the Mission Control Center at NASA’s Johnson Space Center in Houston.
NASA/Bill Stafford

Teams also unveiled the Orion Mission Evaluation Room inside NASA’s Mission Control Center in Houston. The new facility will support Artemis II by allowing engineers to monitor Orion spacecraft systems in real time and assess vehicle performance throughout the mission, strengthening flight operations beyond low Earth orbit. 

These milestones were made possible by teams across Johnson, including the Orion Program, Flight Operations Directorate, Systems Engineering and Integration Office, Crew and Thermal Systems Division, and the Human Health and Performance Directorate, working closely with other NASA centers and industry partners. 

Together, these accomplishments mark steady progress toward Artemis II and reflect the work underway across NASA to advance the next era of human spaceflight. 

Gateway Lunar Space Station

The primary structure of Gateway’s Power and Propulsion Element (PPE) undergoing assembly, integration, and testing at Lanteris Space Systems in Palo Alto, California, on September 29, 2025.
Lanteris Space Systems

Together with international and industry partners, the Gateway Program continued progress toward building humanity’s first lunar space station. The powerhouse reached a major milestone this fall with its successful initial power on.

A Space Station Anniversary

NASA and its partners have supported humans continuously living and working in space since November 2000.
NASA/Jonny Kim

On Nov. 2, 2025, NASA marked 25 years of continuous human presence aboard the space station. What began as a set of connected modules has grown into a cornerstone of international partnership, scientific discovery, and technology development in low Earth orbit.
For a quarter of century, the orbiting laboratory has supported research that advances human health, drives innovation, and prepares NASA for future crewed missions to the Moon and Mars.

A truly global endeavor, the space station has been visited by more than 290 people from 26 countries and a variety of international and commercial spacecraft. The unique microgravity laboratory has hosted more than 4,000 experiments from over 5,000 researchers from 110 countries. The orbital outpost also is facilitating the growth of a commercial market in low Earth orbit for research, technology development, and crew and cargo transportation.

After 25 years of habitation, the space station remains a symbol of international cooperation and a proving ground for humanity’s next giant leaps.

Record-Breaking Spacewalks

NASA astronaut and Expedition 72 Commander Suni Williams is pictured during a six-hour spacewalk for science and maintenance on the International Space Station. At upper right, is the SpaceX Dragon crew spacecraft docked to the Harmony module's space-facing port.
NASA astronaut and Expedition 72 Commander Suni Williams is pictured during a six-hour spacewalk for science and maintenance on the International Space Station. At upper right, is the SpaceX Dragon crew spacecraft docked to the Harmony module’s space-facing port.
NASA

NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore began 2025 with two successful spacewalks, completing key maintenance and research tasks. Their work included removing an antenna assembly and collecting surface material samples for analysis at Johnson’s Astromaterials Research and Exploration Services, or ARES, division.

With her latest spacewalks, Williams now holds the record for the most cumulative spacewalking time by a woman–62 hours and 6 minutes–placing her fourth among the most experienced spacewalkers.

NASA astronauts Anne McClain and Nichole Ayers also conducted spacewalk operations, installing a mounting bracket to prepare for the future installation of an additional set of International Space Station Rollout Solar Arrays and relocating a space station communications antenna.

These achievements were made possible by countless Johnson teams across the International Space Station, Flight Operations Directorate, and Exploration Architecture, Integration, and Science Directorate.

Two Expeditions Take Flight

NASA’s SpaceX Crew-10 arrived at the space station on March 15 and returned to Earth on on Aug. 9. Crew-10 included NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov—all of whom are trained pilots. Crew-9 also splashed down off Florida’s coast on March 18. 

NASA astronaut Jonny Kim launched aboard the Soyuz MS-27 spacecraft on April 8, marking his first mission to the space station. Expedition 73 officially began following the departure of NASA astronaut Don Pettit aboard Soyuz MS-26 on April 19. NASA astronaut Chris Williams then launched aboard the Soyuz MS-28 spacecraft on Nov. 27 with Kim returning to Earth shortly after on Dec. 9, marking the start of Expedition 74.

A Year of Lunar Firsts

Firefly’s Blue Ghost lunar lander captured a bright image of the Moon’s South Pole (on the far left) through the cameras on its top deck, while it travels to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.
Firefly Aerospace

Firefly Aerospace’s Blue Ghost Mission 1 launched delivering 10 NASA science and technology instruments to the Moon on March 2. The lander touched down near Mons Latreille in Mare Crisium, a basin on the near side of the Moon. Just days later on March 6, Intuitive Machines’ IM-2 mission landed closer to the lunar South Pole than any previous lander.  

Part of NASA’s Commercial Lunar Payload Services (CLPS) and Artemis campaign, these lunar deliveries are helping scientists address challenges like lunar dust mitigation, resource utilization, and radiation tolerance. 

These milestones were made possible by the collaborative efforts of Johnson teams across NASA’s CLPS initiative, as well as the Engineering; Exploration Architecture, Integration, and Science; and Flight Operations directorates—along with support from other NASA centers. 

First Asteroid-Detecting Space Telescope Completes Testing

A picture of a massive, silver, statuesque piece of hardware inside a cavernous testing chamber. The image is mostly dark, with an illuminated section in the lower center half of the picture. The hardware has two large, vertical silver metal posts on either side of it, and two silver metal posts that cross horizontally between them. In the center of those posts is a large portion of silver thermal blanketing that is gathered toward the middle. White lights shine upward from the base of either side of the hardware. A line of six, small, white lights with a blueish starburst effect crown the hardware.
The instrument enclosure of NASA’s Near-Earth Object Surveyor is prepared for critical environmental tests inside the historic Chamber A at the Space Environment Simulation Laboratory at NASA’s Johnson Space Center.
NASA

NASA’s Near-Earth Object (NEO) Surveyor—its first space-based telescope designed specifically for planetary defense—has successfully completed thermal vacuum testing in Johnson’s Space Environment Simulation Laboratory in Chamber A. 

Set to launch no earlier than late 2027, NEO Surveyor will seek out, measure, and characterize hard-to-detect asteroids and comets that could pose a hazard to Earth. The spacecraft is now at NASA’s Jet Propulsion Laboratory in Southern California for continued development. 

Explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A. 

These achievements were made possible by countless Johnson teams across the ARES Division and Engineering Directorate. 

First Houston AutoBoative Show

Johnson Space Center employees present the Artemis Exhibit at the 2025 Houston AutoBoative Show at NRG Center.
NASA/Robert Markowitz 

For the first time, NASA rolled out its Artemis exhibit at the Houston AutoBoative Show at NRG Center from Jan. 29 to Feb. 2. Johnson employees introduced vehicle enthusiasts to the technologies NASA and its commercial partners will use to explore more of the lunar surface than ever before.

The Artemis exhibit stood alongside some of the world’s most advanced cars and boats, offering visitors an up-close look at the future of human space exploration.

Attendees explored Artemis II and Artemis III mission road maps, practiced a simulated Orion docking with Gateway in lunar orbit, and tested their skills driving a virtual lunar rover simulator.

NASA showcased lunar rover concepts, highlighting vehicles under development to help Artemis astronauts travel farther across the Moon’s surface.

All three Lunar Terrain Vehicle (LTV) contractors, Astrolab, Intuitive Machines, and Lunar Outpost, completed their Preliminary Design Review milestones in June 2025, marking the end of Phase 1 feasibility study task orders that began in May 2024. NASA is preparing to award Phase 2 of the Lunar Terrain Vehicle Services contract with a demonstration mission task order that will result in the development, delivery, and demonstration of an LTV on the Moon  later this decade.

First Dual NBL Run for NASA’s Artemis III Lunar Spacesuit

NASA astronauts Loral O’Hara (left) and Stan Love (right) pose during the first dual spacesuit run at NASA’s Neutral Buoyancy Laboratory in Houston on Sept. 24, 2025. The astronauts wore Axiom Space’s Artemis III lunar spacesuit, known as the Axiom Extravehicular Mobility Unit (AxEMU), during the final integrated underwater test, confirming the spacesuit and facility are ready to support Artemis training.
NASA

NASA and Axiom Space teams held the first dual spacesuit run at NASA’s Neutral Buoyancy Laboratory with NASA astronauts Stan Love and Loral O’Hara. Both crewmembers wore Axiom Space’s lunar spacesuit, called the Axiom Extravehicular Mobility Unit (AxEMU), while performing simulated lunar surface operations underwater to test the spacesuit’s functionality and mobility. This was the final integration test in the pool, proving both the spacesuit and facility are ready to support NASA Artemis training. To date, the Axiom team has conducted over 700 hours of manned, pressurized testing of the Artemis III lunar spacesuit. Axiom Space is scheduled to complete the critical design review in 2026.

These efforts were made possible by teams across Johnson’s Joint Extravehicular Activity and Human Surface Mobility Test Team.

Watch how astronauts, engineers, and scientists are preparing for the next giant leap on the lunar surface.

OSIRIS-REx Team Honored for Asteroid Sample Return

OSIRIS REx curation team attempting to remove the two stuck fasteners that are currently prohibiting the complete opening of the TAGSAM head.
NASA’s OSIRIS-REx team poses inside a cleanroom at Johnson Space Center after successfully freeing fasteners on the TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head, allowing access to samples collected from asteroid Bennu.
NASA/Robert Markowitz

NASA’s OSIRIS-REx curation team earned an Agency Group Achievement Award for their dedication to acquiring, preserving, and distributing asteroid samples from Bennu—the agency’s first asteroid sample return mission.

“The curation team ensured we were ready to receive and safeguard the samples, prepare and allocate them, and make them available to the broader scientific community,” said Jemma Davidson, Astromaterials curator and branch chief of the Astromaterials Acquisition and Curation Office.

After years of preparation, the team overcame unforeseen technical challenges to recover and preserve more than 120 grams of asteroid material—now accessible to scientists worldwide for research into the origins of our solar system.

These achievements were made possible by Johnson teams across the ARES Division and the Exploration Architecture, Integration, and Science Directorate.

Axiom Mission 4 Marks International Firsts in Space Station Mission 

The official crew portrait of the Axiom Mission-4 private astronaut mission to the International Space Station. From left are, Pilot Shubhanshu Shukla from India, Commander Peggy Whitson from the U.S., and Mission Specialists Sławosz Uzanański-Wiśniewksi from Poland and Tibor Kapu from Hungary.
Axiom Space

The Axiom Mission 4 crew successfully returned to Earth after an 18-day mission aboard the space station, conducting more than 60 experiments and educational outreach activities. Launched aboard a SpaceX Dragon spacecraft on June 25, the crew docked with the orbiting laboratory the following day to begin a packed schedule of science and outreach. 

The mission marked the first space station flight for India, Poland, and Hungary. Led by former NASA astronaut and Axiom Space director of human spaceflight Peggy Whitson, the crew included ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu. 

These achievements were made possible by Johnson’s dedicated teams across the International Space Station Program, Commercial Low Earth Orbit Development Program, and Flight Operations Directorate. 

Johnson-Built Mars Hardware on Display at the Smithsonian 

Perseverance Mars rover, with a circle indicating the location of the calibration target for the rov-er’s SHERLOC instrument
At left is NASA’s Perseverance Mars rover, with a circle indicating the location of the calibration target for the rover’s SHERLOC instrument. At right is a close-up of the calibration target. Along the bottom row are five swatches of spacesuit materials that scientists are studying as they de-grade.
NASA/Malin Space Science Systems
The SHERLOC calibration target displayed at a museum next to R2-D2.
Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) calibration target built at NASA’s Johnson Space Center is on display in the Smithsonian National Air and Space Museum’s Futures in Space gallery in Washington, D.C.
NASA/Smithsonian National Air and Space Museum

A piece of NASA Johnson Space Center’s Mars legacy has landed at the Smithsonian National Air and Space Museum in Washington, D.C. 

Nearly 10 years in the making, the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) calibration target—built by Johnson’s ARES Division with partners at NASA’s Jet Propulsion Laboratory and Amentum—now has a permanent place in the museum’s Futures in Space gallery.  

The palm-sized device is displayed beside an R2-D2 replica, connecting the wonder of space travel with the inspiration of seeing real flight hardware up close. 

The calibration target, still in use aboard NASA’s Perseverance rover after more than four years of operations in Jezero Crater, Mars, helps keep SHERLOC’s laser, cameras, and spectrometers precisely tuned as it searches for ancient signs of life on Mars. Mounted on the rover’s front, the target carries 10 known samples so engineers can check SHERLOC’s performance during routine operations. 

Trevor Graff, an ARES scientist who conceived the idea and led the team that designed and built SHERLOC’s calibration device, said the project highlights the unique role of geology in space exploration. “What excites me most is the practical application of geology—where science enables exploration and exploration enables science,” he said.  

SHERLOC itself sits on the rover’s seven-foot robotic arm and combines a laser, camera, and chemical analyzers to look for signs that water once altered the Martian surface, potentially revealing evidence of past microscopic life. Several calibration targets are made from spacesuit material samples, allowing Johnson scientists to study how fabrics endure the harsh Martian environment to protect future explorers. 

💾

The Joint Extravehicular Activity and Human Surface Mobility Test Team (JETT), led out of Johnson Space Center in Houston, Texas, is a specialized group that...

NASA’s Wideband Technology Demo Proves Space Missions are Free to Roam

4 Min Read

NASA’s Wideband Technology Demo Proves Space Missions are Free to Roam

An artist's concept of the Polylingual Experimental Terminal transmitting data in space.
Credits: NASA/Morgan Johnson

Just like your cellphone stays connected by roaming between networks, NASA’s Polylingual Experimental Terminal, or PExT, technology demonstration is proving space missions can do the same by switching seamlessly between government and commercial communications networks.

NASA missions rely on critical data to navigate, monitor spacecraft health, and transmit scientific information back to Earth, and this game-changing technology could provide multiple benefits to government and commercial missions by enabling more reliable communications with fewer data interruptions.

“This mission has reshaped what’s possible for NASA and the U.S. satellite communications industry,” said Kevin Coggins, deputy associate administrator for the agency’s SCaN (Space Communications and Navigation) Program at NASA Headquarters in Washington. “PExT demonstrated that interoperability between government and commercial networks is possible near-Earth, and we’re not stopping there. The success of our commercial space partnerships is clear, and we’ll continue to carry that momentum forward as we expand these capabilities to the Moon and Mars.”

This mission has reshaped what’s possible for NASA and the U.S. satellite communications industry.

Kevin Coggins

Kevin Coggins

Deputy Associate Administrator for SCaN

Wideband technology enables data exchange across a broad range of frequencies, helping bridge government and commercial networks as NASA advances commercialization of space communications. By providing interoperability between government and commercial assets, this technology unlocks new advantages not currently available to agency missions.

As commercial providers continue to advance their technology and add new capabilities to their networks, missions equipped with wideband terminals can integrate these enhancements even after launch and during active operations. The technology also supports NASA’s network integrity by allowing missions to seamlessly switch back and forth between providers if one network faces critical disruptions that would otherwise interfere with timely communications.

An artist’s concept of the BARD mission in space.
NASA/Dave Ryan

“Today, we take seamless cellphone roaming for granted, but in the early days of mobile phones, our devices only worked on one network,” said Greg Heckler, SCaN’s capability development lead at NASA Headquarters. “Our spaceflight missions faced similar limitations—until now. These revolutionary tests prove wideband terminals can connect spacecraft to multiple networks, a huge benefit for early adopter missions transitioning to commercial services in the 2030s.”

On July 23, the communications demo launched into low Earth orbit aboard the York Space Systems’ BARD mission. Designed by Johns Hopkins Applied Physics Laboratory, the compact wideband terminal communicates over a broad range of the Ka-band frequency, which is commonly used by NASA missions and commercial providers. After completing a series of tests that proved the BARD spacecraft and the demonstration payload were functioning as expected, testing kicked off with NASA’s TDRS (Tracking and Data Relay Satellite) fleet and commercial satellite networks operated by SES Space & Defense and Viasat.

During each demonstration, the terminal completed critical space communications and navigation operations, ranging from real-time spacecraft tracking and mission commands to high-rate data delivery. By showcasing end-to-end services between the BARD spacecraft, multiple commercial satellites, and mission control on Earth, the wideband terminal showed future NASA missions could become interoperable with government and commercial infrastructure.

An artist’s concept of the Polylingual Experimental Terminal transmitting data in space.
NASA/Morgan Johnson

Due to the flexibility of wideband technology and the innovative nature of this mission, NASA recently extended the Polylingual Experiment Terminal demonstration for an additional 12 months of testing. Extended mission operations will include new direct-to-Earth tests with the Swedish Space Corporation, scheduled to begin in early 2026.

This technology demonstration will continue testing spaceflight communications capabilities through April 2027. By 2031, NASA plans to purchase satellite relay services for science missions in low Earth orbit from one or more U.S. companies.

To learn more about this wideband technology demonstration visit:

PExT – NASA

The Polylingual Experimental Terminal technology demonstration is funded and managed by NASA’s SCaN Program within the Space Operations Mission Directorate at NASA Headquarters in Washington. York Space Systems provided the host spacecraft. Johns Hopkins Applied Physics Laboratory developed the demonstration payload. Commercial satellite relay demonstrations were conducted in partnership with SES Space & Defense and Viasat.

An artist’s concept of the BARD mission in space.
NASA/Dave Ryan

Water Droplet Science

White streaks of motion swirl and swoop all over the image. At the middle of the image is a Teflon knitting needle.
NASA/Don Pettit

NASA astronaut Don Pettit demonstrates electrostatic forces using charged water droplets and a knitting needle made of Teflon. This series of overlapping frames from Feb. 19, 2025, displays the unique attraction-repulsion properties of Teflon and charged droplets, similar to how charged particles from the Sun behave when they come in contact with Earth’s magnetic field. Highly energetic particles from space that collide with atoms and molecules in the atmosphere create the aurora borealis.

Explore more of what Pettit has coined “science of opportunity.”

Image credit: NASA/Don Pettit

Metrics

By: NASA
2 Min Read

Metrics

NSSC Metrics Graphs

Services Catalog

Click here to view the FY25 Services Catalog

The catalogs provide service description, chargeback rate, unit of measure, and service level indicators for each NSSC service.

Service Level Agreement (SLA)

Click here to view the Service Level Agreement

The SLA provides information about roles, responsibilities, rates, and service level indicators for all NASA Centers. The SLA is negotiated on an annual basis in line with the fiscal year. A single SLA is shared by all NASA Centers and signed by the Associate Administrator, Chief Financial Officer, Chief Information Officer, and the Office of Inspector General. The SLA provides for the delivery of specific services from the NSSC to NASA Centers and Headquarters Operations in the areas of:

  • Financial Management
  • Procurement
  • Human Resources
  • Information Technology
  • Agency Business Services

NSSC Bill (Formerly know as Performance and Utilization Report (PUR))

*** On-Line Course Management and Training Purchases have been realigned to the OLC &Training Purchases section of the bill in accordance with the realignment of training funds. Center Special Projects have been consolidated into one Special Projects bill with the funding Center identified for each project.***

FY 2026 – Utilization Reports
October 2025
November 2025

FY 2025 – Utilization Reports

September 2025
August 2025
July 2025
June 2025
May 2025

April 2025
March 2025
February 2025
January 2025
December 2024
November 2024
October 2024

FY 2024 – Utilization Reports
September 2024
August 2024
July 2024
June 2024
May 2024
April 2024
March 2024
February 2024
January 2024
December 2023
November 2023
October 2023


 

Hubble Glimpses Galactic Gas Making a Getaway

2 min read

Hubble Glimpses Galactic Gas Making a Getaway

A nearly edge-on spiral galaxy. Its disk holds pink light from star-forming nebulae and blue light from clusters of hot stars. Thick dark clouds of dust block the strong white light from galaxy’s center. A faint, glowing halo of gas surrounds the disk, fading into the black background of space. A bluish plume of gas also extends from the galaxy’s core extending toward the lower-right corner of the image.
This NASA/ESA Hubble Space Telescope image features the galaxy NGC 4388, a member of the Virgo galaxy cluster.
ESA/Hubble & NASA, S. Veilleux, J. Wang, J. Greene

A sideways spiral galaxy shines in this NASA/ESA Hubble Space Telescope image. Located about 60 million light-years away in the constellation Virgo (the Maiden), NGC 4388 is a resident of the Virgo galaxy cluster. This enormous cluster of galaxies contains more than a thousand members and is the nearest large galaxy cluster to the Milky Way.

NGC 4388 appears to tilt at an extreme angle relative to our point of view, giving us a nearly edge-on prospect of the galaxy. This perspective reveals a curious feature that wasn’t visible in a previous Hubble image of this galaxy released in 2016: a plume of gas from the galaxy’s nucleus, here seen billowing out from the galaxy’s disk toward the lower-right corner of the image. But where did this outflow come from, and why does it glow?

The answer likely lies in the vast stretches of space that separate the galaxies of the Virgo cluster. Though the space between galaxies appears empty, this space is occupied by hot wisps of gas called the intracluster medium. As NGC 4388 moves within the Virgo cluster, it plunges through the intracluster medium. Pressure from hot intracluster gas whisks away gas from within NGC 4388’s disk, causing it to trail behind as NGC 4388 moves.

The source of the ionizing energy that causes this gas cloud to glow is more uncertain. Researchers suspect that some of the energy comes from the center of the galaxy, where a supermassive black hole spins gas around it into a superheated disk. The blazing radiation from this disk might ionize the gas closest to the galaxy, while shock waves might be responsible for ionizing filaments of gas farther out.

This image incorporates new data, including several additional wavelengths of light, that bring the ionized gas cloud into view. The image holds data from several observing programs that aim to illuminate galaxies with active black holes at their centers.

Facebook logo
Instagram logo

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Betelgeuse and the Crab Nebula: Stellar Death and Rebirth

3 Min Read

Betelgeuse and the Crab Nebula: Stellar Death and Rebirth

Crab Nebula in Multiple Wavelengths
This highly detailed image of the Crab Nebula was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: The Very Large Array (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple.
Credits:
NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI

What happens when a star dies? In 2019, Betelgeuse dimmed in brightness, sparking speculation that it may soon explode as a supernova. While it likely won’t explode quite yet, we can preview its fate by observing the nearby Crab Nebula.

A dark night-sky star map showing the constellations Orion and Taurus outlined with thin lines. Labeled stars include Betelgeuse and Rigel in Orion and Aldebaran in Taurus. The Crab Nebula is marked near the boundary between Taurus and Orion, with many faint background stars scattered across the image.
A view of the constellations Orion and Taurus, along with notable features: Betelgeuse in Orion, and Aldebaran and the Crab Nebula in Taurus.
Stellarium Web

Betelgeuse is easy to find as the red-hued shoulder star of Orion. A variable star, Betelgeuse, usually competes with the brilliant blue-white Rigel for the position of the brightest star in Orion. Betelgeuse is a young star, estimated to be a few million years old, but due to its giant size, it leads a fast and furious life. This massive star, known as a supergiant, exhausted the hydrogen fuel in its core and began to fuse helium instead, which caused the outer layers of the star to cool and swell dramatically in size. Betelgeuse is one of the few stars for which we have any detailed surface observations, due to its vast size – somewhere between the diameters of the orbits of Mars and Jupiter – and its relatively close distance of about 642 light-years. Betelgeuse is also a “runaway star,” with its remarkable speed possibly triggered by a merger with a smaller companion star. If that is the case, Betelgeuse may actually have millions of years left! So, Betelgeuse may not explode soon after all, or it might explode tomorrow! We have much more to learn about this intriguing star.  

This image of the Crab Nebula combines data from five different telescopes. It is know as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns.
This image of the Crab Nebula combines data from five different telescopes: The Very Large Array (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple. It is known as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns.
NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI

The Crab Nebula (M1) is relatively close to Betelgeuse in the sky, in the nearby constellation of Taurus. Its ghostly, spidery gas clouds result from a massive explosion; a supernova observed by astronomers in 1054! A backyard telescope allows you to see some details. Still, only advanced telescopes reveal the rapidly spinning neutron star found in its center: the last stellar remnant from that cataclysmic event. These gas clouds were created during the giant star’s violent demise and expand ever outward to enrich the universe with heavy elements like silicon, iron, and nickel. These element-rich clouds are like a cosmic fertilizer, making rocky planets like our own Earth possible. Supernovae also send out powerful shock waves that help trigger star formation. In fact, if it weren’t for a long-ago supernova, our solar system – along with all of us – wouldn’t exist! You can learn much more about the Crab Nebula in a video from NASA’s James Webb Space Telescope: bit.ly/CrabNebulaVisual

Want to know more about the life cycle of stars? Explore stellar evolution with “The Lives of Stars” activity and handout at bit.ly/starlifeanddeath, part of our SUPERNOVA! toolkit.

Originally posted by Dave Prosper: February 2020

Last Updated by Kat Troche: December 2025

Space Station Research Supports New FDA-Approved Cancer Therapy

European Space Agency astronaut Thomas Pesquet works inside the International Space Station, . He is holding two cylindrical black experiment containers to deactivate and stow the Protein Crystal Growth-5 hardware. The background is filled withIn the background, cables, silver knobs, instruments, and research equipment are visible.
European Space Agency (ESA) astronaut Thomas Pesquet removes the Protein Crystallization Facility hardware from an incubator aboard the International Space Station for the CASIS PCG-5 investigation, which crystallized a monoclonal antibody developed by Merck Research Labs.
NASA

NASA opens the International Space Station for scientists and researchers, inviting them to use the benefits of microgravity for private industry research, technology demonstrations, and more. Today, half of the crew’s time aboard station is devoted to these aims, including medical research that addresses complex health challenges on Earth and prepares astronauts for future deep space missions.

Supported by knowledge gained from space station experiments, researchers at Merck Research Labs received approval in September from the U.S. Food and Drug Administration for a new injectable version of a medication used to treat several types of early-stage cancers called pembrolizumab, also known by its brand name KEYTRUDA. The development of the injectable formula has been supported by research efforts aboard the space station through the ISS National Laboratory, resulting in reduced treatment times while maintaining its efficacy. 

Originally, the treatment was delivered during an in-office visit via infusion therapy into the patient’s veins, a process that could take up to two hours. Initial delivery improvements reduced infusion times to less than 30 minutes every three weeks. The newly approved subcutaneous injectable form takes about one minute every three weeks, promising to reduce cost and significantly reduce treatment time for patients and healthcare providers.

Black-and-white UV images show white crystals against a black background, comparing crystal growth on Earth and in space. The ground sample on the left features large, coarse clusters with varying sizes and shapes, while the spaceflight sample on the right exhibits more uniform size distribution, characterized by fine, evenly spaced bright dots.
UV imaging of a ground control sample (left) and spaceflight sample (right) from Merck’s research shows the much more uniform size and distribution of crystals grown in microgravity. These results helped researchers to refine ground-based production of uniform crystalline suspensions required for an injectable version of KEYTRUDA.
Merck

Since 2014, Merck has flown crystal growth experiments to the space station to better understand how crystals form, including the monoclonal antibody used in this cancer treatment. Monoclonal antibodies are lab-made proteins that help the body fight diseases. This research focused on producing crystalline suspensions that dissolve easily in liquid, making it possible to deliver the medication by injection. In microgravity, the absence of gravity’s physical forces allows scientists to grow larger, more uniform, and higher-quality crystals than those grown in ground-based labs, advancing medication development and structural modeling.

Research aboard the space station has provided valuable insights into how gravity influences crystallization, helping to improve drug formulations. The work of NASA and its partners aboard the space station improves lives on Earth, grows a commercial economy in low Earth orbit, and prepares for human exploration of the Moon and Mars.

Curiosity Blog, Sols 4743-4749:  Polygons in the Hollow

3 min read

Curiosity Blog, Sols 4743-4749:  Polygons in the Hollow

A close-up view of tan-orange rocks on the Martian surface that are in a vaguely honeycomb array, with grooves separating the edges of polygonal chunks of surface material.
NASA’s Mars rover Curiosity acquired this close-up image of polygon-shaped features in the “Monte Grande” boxwork hollow. Similar polygonal patterns in various strata were seen previously, elsewhere in Gale Crater. Curiosity captured the image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on Dec. 11, 2025 — Sol 4745, or Martian day 4,745 of the Mars Science Laboratory mission — at 16:55:37 UTC.
NASA/JPL-Caltech/MSSS

Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center

Earth Planning Date: Friday, Dec. 12, 2025

The weekend drive starting from the “Nevado Sajama” drill site brought Curiosity back into the “Monte Grande” boxwork hollow. We’ve been in this hollow before for the “Valle de la Luna” drill campaign, but now that the team has seen the results from both the “Valle de la Luna” and “Nevado Sajama” drilled samples, we’ve decided that there’s more work to do here. 

Overall science goals here included analysis of the other well-exposed bedrock block in Monte Grande to improve our statistics on the composition of the bedrock in the hollows, and also high-resolution imaging and compositional analysis of portions of the walls of the hollow, other than those that had been covered during the Valle de la Luna campaign. These are part of a systematic mini-campaign to map a transect over the hollow-to-ridge structure from top to bottom at this site.

The post-drive imaging revealed a surprise — Valle de la Luna’s neighboring block was covered with polygons! As it turned out, the rover’s position during our previous visit for the Valle de la Luna drill campaign happened to have stood in the way of imaging of the polygonal features on this block so this was our first good look at them. We have seen broadly similar polygonal patterns in various strata in Gale Crater before — recently in the layered sulfate units (for instance, during Sols 4532-4533 and Sols 4370-4371) but we hadn’t seen them in the bottom of a boxwork hollow. Interestingly, this block looks more rubbly in texture than many of the previously observed polygon-covered blocks.

We’re interested in the relationship of the visibly protruding fracture-filling material here to fracture-filling materials seen in previous polygons, and also in the relationship of the polygonal surface on top to the more chaotic-appearing exposures lower on the block, and to the equivalent strata in the nearby wall of the hollow. We therefore planned a super-sized MAHLI mosaic that will support three-dimensional modeling of the upper and lower exposed surfaces of the polygon-bearing block. Several APXS and ChemCam LIBS observations targeted on the polygon centers and polygon ridges were also planned, to measure composition. Meanwhile, Mastcam has been busy planning stereo images of the nearby hollow wall in addition to the various blocks on the hollow floor.

The hollow also included freshly exposed light-toned material from where the rover had driven over and scuffed some bedrock, so another APXS measurement and a ChemCam LIBS went to the scuffed patch to measure the fresh surface.

We’ll be driving on Sol 4748. As we drive we’ll be taking a MARDI “sidewalk” observation, to image the ground beneath the rover as we approach the wall for a closer view, and hopefully some contact science in next week’s plans.

A rover sits on the hilly, orange Martian surface beneath a flat grey sky, surrounded by chunks of rock.
NASA’s Mars rover Curiosity at the base of Mount Sharp
NASA/JPL-Caltech/MSSS

Share

Details

Last Updated
Dec 18, 2025

Related Terms

Moon Mascot: NASA Artemis II ZGI Design Challenge

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A graphic for the Moon Mascot: NASA Artemis II ZGI Design Challenge.
Freelancer

Whose Moon Mascot design will join the Artemis II astronauts on their historic voyage around the Moon in early 2026?

Between March 7 and Jun. 16, 2025, NASA worked with crowdsourcing company Freelancer to seek design ideas from global creators for a zero gravity indicator that will fly aboard the agency’s Artemis II test flight.

Zero gravity indicators are small, plush items carried aboard spacecraft to provide a visual indication of when the spacecraft and its crew reach space.

For the first eight minutes after liftoff, the crew and their indicator nearby will still be pushed into their seats by gravity, and the force of the climb into space. When the main engines of the SLS (Space Launch System) rocket’s core stage cut off, gravity’s restraints are lifted, but the crew will still be strapped safely into their seats – their zero gravity indicator’s ability to float will provide proof that they’ve made it into space.

Artemis II marks the first time that the public has had a hand in creating a crew’s mascot.

The Mission

Over the course of about ten days, four astronauts will travel approximately 685,000 miles from Earth, venture around the Moon, and return home. The flight will—for the first time with astronauts—test NASA’s human deep space exploration capabilities, including the agency’s Exploration Ground Systems, SLS (Space Launch System) rocket, and Orion spacecraft. 

NASA has a long history of flying zero gravity indicators for human spaceflight missions. Many missions to the International Space Station include a plush item. A plush Snoopy rode inside Orion during NASA’s uncrewed Artemis I mission.

 NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is the first crewed flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.

The Contest

The Artemis II astronauts attended SXSW 2025 on March 7, 2025, and sat on a panel to discuss their upcoming mission around the Moon and answer questions from the audience. During the panel, commander Reid Wiseman showed the audience his zero gravity indicator from his Expedition 40 mission to the International Space Station. His zero gravity indicator was a toy giraffe named Giraffiti. Wiseman’s mother gifted Giraffiti to his oldest daughter when she was born. When Wiseman embarked on his first mission to space, his kids gave him Giraffiti to take with him to space.

“This little guy spent every day with me in my crew quarters,” said Wiseman. “It was a connection back home to my kids.”

June 4, 2014
NASA Astronaut Reid Wiseman photographed in front of the Cupola windows during his Expedition 40 mission with his zero gravity indicator, Giraffiti.
NASA
March 7, 2025
NASA astronaut Reid Wiseman shows the zero gravity indicator, “Giraffiti” used during his launch to the International Space Station as he and fellow Artemis II astronauts announce that NASA is seeking design ideas from global creators for a zero gravity indicator that will fly aboard the agency’s Artemis II test flight, Friday, March 7, 2025, at SXSW in Austin, Texas.
NASA/Bill Ingalls
March 7, 2025
NASA astronaut Reid Wiseman shows the zero gravity indicator, “Giraffiti” used during his launch to the International Space Station as he and fellow Artemis II astronauts announce that NASA is seeking design ideas from global creators for a zero gravity indicator that will fly aboard the agency’s Artemis II test flight, Friday, March 7, 2025, at SXSW in Austin, Texas.
NASA/Bill Ingalls

Then, Wiseman and the other crew members revealed that they were opening up the opportunities to people of all ages from all over the world to design the zero gravity indicator for the Artemis II mission around the Moon.

What better way to fly a mission around the Moon than to invite the public inside NASA’s Orion spacecraft with us and ask for help in designing our zero gravity indicator?

Reid Wiseman

Reid Wiseman

NASA Astronaut and Commander of the Artemis II Mission

The Moon Mascot contest was hosted by the freelancing and crowdsourcing company Freelancer on behalf of the agency through the NASA Tournament Lab. The contest lasted about three months and received thousands of submissions from over 50 countries. Over the course of the contest, the agency hosted a Twitch stream on NASA’s Twitch channel to discuss zero gravity indicators and practice creating a design with a live artist. Adobe also released an Adobe Express template to help participants with their designs.

An Adobe Express template for the Moon Mascot competition.
Adobe

The Finalists

On Aug. 22, NASA and Freelancer announced the 25 finalists of the contest. These designs – ideas spanning from Moon-related twists on Earthly creatures to creative visions of exploration and discovery – were selected from more than 2,600 submissions from over 50 countries, including from K-12 students. The finalists represent 10 countries including the United States, Canada, Colombia, Finland, France, Germany, Japan, Peru, Singapore, and Wales.

Lucas Ye | Mountain View, California
“Rise”
Kenan Ziyan | Canyon, Texas
“Zappy Zebra”
Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada
“Luna the Space Polar Bear”
Garden County Schools | Oshkosh, Nebraska
“Team GarCo”
Richellea Quinn Wijaya | Singapore
“Parsec – The Bird That Flew to the Moon”
Anzhelika Iudakova | Finland
“Big Steps of Little Octopus”
Congressional School | Falls Church, Virginia
“Astra-Jelly”
Congressional School | Falls Church, Virginia
“Harper, Chloe, and Mateo’s ZGI”
Alexa Pacholyk | Madison, Connecticut
“Artemis”
Leila Fleury | Rancho Palos Verdes, California
“Beeatrice”
Oakville Trafalgar School | Oakville, Ontario, Canada
“Lepus the Moon Rabbit”
Avon High School | Avon, Connecticut
“Sal the Salmon”
Daniela Colina | Lima, Peru
“Corey the Explorer”
Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada
“Flying Squirrel Ready for Its Take Off to Space!”
Giulia Bona | Berlin, Germany
“Art & the Giant”
Tabitha Ramsey | Frederick, Maryland
“Lunar Crust-acean”
Gabriela Hadas | Plano, Texas
“Celestial Griffin”
Savon Blanchard | Pearland, Texas
“Soluna Flier”
Ayako Moriyama | Kyoto, Japan
“MORU: A Cloud Aglow with Moonlight and Hope”
Johanna Beck | McPherson, Kansas
“Creation Mythos”
Guillaume Truong | Toulouse, France
“Space Mola-mola (aka Moon Fish) Plushie”
Arianna Robins | Rockledge, Florida
“Terra the Titanosaurus”
Sandy Moya | Madrid, Colombia
“MISI: Guardian of the Journey”
Bekah Crowmer | Mooresville, Indiana
“Mona the Moon Moth”
Courtney John | Llanelli, Wales
“Past, Present, Future”

The Winner

Once the crew has selected a final design, NASA’s Thermal Blanket Lab will fabricate it for flight. The indicator will be tethered inside the Orion spacecraft before launch.

The winner of the contest and the design that will accompany the astronauts on their historic mission will be unveiled closer to launch. Launch is currently targeted for early next year, with launch opportunities as soon as February 2026.

About the Author

Thalia K. Patrinos

Thalia K. Patrinos

Share

Details

Last Updated
Dec 18, 2025

Related Terms

Keep Exploring

Discover More Topics From NASA

💾

Have you ever wanted to design something that could fly around the Moon? This is your opportunity. The Artemis II astronauts will use a zero gravity indicato...

NASA Announces 2025 International Space Apps Challenge Global Winners

NASA Space Apps announced Thursday 10 winners of the 2025 NASA Space Apps Challenge. During this two-day hackathon, participants gathered at 551 local events across 167 countries and territories to showcase their STEM skills and proposed ways to transform NASA’s open data into actionable tools.

crowd of people in a large room
Participants work on their projects at the NASA Space Apps Challenge in Austin, Texas, at one of more than 50 local events held in the United States.
NASA Space Apps

More than 114,000 participants came together to address challenges created by NASA subject matter experts. These challenges ranged in complexity and topic, tasking participants with everything from leveraging artificial intelligence, to improving access to NASA research, and developing tools to evaluate air quality.

“The Space Apps Challenge puts NASA’s free and open data into the hands of explorers around the world,” said Karen St. Germain, director, NASA Earth Science Division at NASA Headquarters in Washington. “With participants as varied as NASA enthusiasts, future scientists, regional decision-makers and members of the public, this challenge demonstrates the excitement of discovery and the real-world applications of agency data. Space apps also fosters a global community of creative and innovative ideas.”

The winners were determined from more than 11,500 project submissions and judged by subject matter experts from NASA and agency partners:

Best Use of Science Award: SpaceGenes+
Team Members: Saloni T.
Challenge: Build a Space Biology Knowledge Engine
Country/Territory: Germany

Team SpaceGenes+ created an interactive dashboard designed to help researchers uncover how radiation and microgravity together impact astronaut health at the molecular level. It gives researchers and mission planners an easy way to identify important molecular changes, supporting more effective protection strategies for long-duration spaceflight.
Learn more about SpaceGenes+’ project

Best Use of Data Award: Resonant Exoplanets
Team Members: Adhvaidh S., Gabriel S., Jack A., Sahil S.
Challenge: A World Away: Hunting for Exoplanets with AI
Country/Territory: United States 
 
Team Resonant Exoplanets developed an AI-powered system that ingests large sets of telescope and satellite data, including spectra from missions like the James Webb Space Telescope. This tool automatically analyzes data for exoplanets and detects possible biosignatures, rather than identifying them manually.
Learn more about Resonant Exoplanets’ project

Best Use of Technology Award: Twisters
Team Members: Fernando A., Marcelo T., Mariana D., Regina R., Regina F.
Challenge: Will It Rain on My Parade?
Country/Territory: Mexico
 
Team Twisters developed SkySense, a web-app platform that uses NASA Earth observation data and AI analysis to provide ultra-local, personalized weather predictions and to analyze weather variables such as rain, wind, temperature, humidity, and visibility, generating real-time risk assessments and suggesting the safest time windows for activities.
Learn more about Twisters’ project

Galactic Impact Award: Astro Sweepers: We Catch What Space Leaves Behind
Team Members: Harshiv T., Pragathy S., Pratik J., Sherlin D., Yousra H., Zienab E.
Challenge: Commercializing Low Earth Orbit (LEO)
Country/Territory: Universal Event
 
Team Astro Sweepers developed an end-to-end orbital debris compliance and risk intelligence platform that automatically ingests public orbital data to generate Debris Assessment Software reports and compute the Astro Sweepers Risk Index  for every resident space object. This project considers the operational, regulatory, and environmental challenges of commercialized space travel.
Learn more about Astro Sweepers’ project

Best Mission Concept Award: PureFlow
Team Members: Esthefany M., João F., Laiza L., Lara D., Pedro H., Thayane D. 
Challenge: Your Home in Space: The Habitat Layout Creator
Country/Territory: Brazil
 
PureFlow developed an interactive systems engineering platform that allows users to design, model in 3D, and validate space habitats, and then test the design against real space-weather threats, such as solar storms. This system considers the critical functions required for living in space, including waste management, power, life support, communications, and more.
Learn more about PureFlows’ project

Most Inspirational Award: Photonics Odyssey
Team Members: Manish D., Deeraj K., Prasanth G., Rajalingam N., Rashi M., Sakthi R.
Challenge: Commercializing Low Earth Orbit (LEO)
Country/Territory: India
 
Photonics Odyssey reimagined satellite internet as a sovereign national infrastructure rather than a private service, proposing a phased-array antenna approach that reduces ground dependency and expands broadband access to remote regions of India. The concept aims to help connect more than 700 million people who lack access to broadband internet.
Learn more about Photonics Odysseys’ project

Best Use of Storytelling Award: HerCode Space
Team Members: Alice R., Joselyn R., Paula C., Pierina J.
Challenge: Stellar Stories: Space Weather Through the Eyes of Earthlings
Country/Territory: Universal Event
 
HerCode Space combined NASA data and heliophysics concepts with powerful storytelling and vibrant illustrations to teach kids how space weather affects daily life and why it matters. HerCode Science hopes their story, “A Solar Tale,” can bridge science and imagination, and bring heliophysics to life in classrooms, libraries, and outreach programs.
Learn more about HerCode Spaces’ project

Global Connection Award: Gaia+LEO
Team Members: Adam H., Katia L., Prajwal S., Upendra K. 
Challenge: Commercializing Low Earth Orbit (LEO)
Country/Territory: United States
 
Team Gaia+LEO developed a mixed-integer optimization framework that co-designs orbital and terrestrial data-center networks to support large-scale AI training and climate modeling in orbit. Their goal is to reduce the power, and water demands of Earth-based systems and help accelerate the shift toward space-based, green computing within the emerging orbital economy.
Learn more about Gaia+LEOs’ project

Art & Technology Award: Zumorroda-X
Team Members: Alaa A., Esraa A., Malak S., Mennatulla E.
Challenge: NASA Farm Navigators: Using NASA Data Exploration in Agriculture
Country/Territory: Egypt
 
Team Zumorroda-X created mini games that allow players to step into the shoes of a farmer who sets off on an epic journey around the world. Through this game, players can learn how farmers globally adapt to heat waves, flooding, and other environmental challenges. 
Learn more about Zumorroda-Xs’ project

Local Impact Award: QUEÑARIS
Team Members: Borax Q., Carlos Y., Marcelo S., Máximo S., Oscar M., Pamela P.
Challenge: BloomWatch: An Earth Observation Application for Global Flowering Phenology
Country/Territory: Peru
 
Team QUEÑARIS’ project addresses critical water scarcity in Peru’s second-largest city, Arequipa, caused by the degradation of queñua forests, which are vital for water retention. Their platform combines native microorganisms, NASA satellite data, drones, and artificial intelligence to accelerate tree growth, identify the best areas for reforestation, and monitor ecosystem health.
Learn more about QUEÑARIS’ project

Stay up to date with #SpaceApps by following these accounts:
X: @SpaceApps 
Instagram: @nasa_spaceapps 
Facebook: @spaceappschallenge 
YouTube: @NASASpaceAppsChallenge


NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.

To learn more about what inspired these winning projects, visit:

https://www.spaceappschallenge.org

Share

Details

Last Updated
Dec 19, 2025

NASA Lab Completes Engine Checks on New Aircraft

One white man with a long beard and tattoos on his arms holds a silver and gray controller, while another white man leans over to hold a small aircraft in place. The two men are both wearing hearing protection, which look like headphones. The aircraft looks to be only a few feet tall.
NASA/Christopher LC Clark

Justin Hall, left, controls a subscale aircraft as Justin Link holds the aircraft in place during preliminary engine tests on Friday, Sept. 12, 2025, at NASA’s Armstong Flight Research Center in Edwards, California.

Hall, chief pilot at the center’s Dale Reed Subscale Flight Research Laboratory, and Link, a pilot for small uncrewed aircraft systems, are building the large subscale aircraft to support increasingly complex flight research, offering a more flexible and cost-effective alternative to crewed missions. Once ready, the aircraft will help evaluate new concepts, technologies, and flight controls to support NASA missions on Earth and beyond.

Image Credit: NASA/Christopher LC Clark

NASA’s Hubble Sees Asteroids Colliding at Nearby Star for First Time

5 Min Read

NASA’s Hubble Sees Asteroids Colliding at Nearby Star for First Time

A grainy orange oval ring tilts slightly from upper right to lower left.

Like a game of cosmic bumper cars, scientists think the early days of our solar system were a time of violent turmoil, with planetesimals, asteroids, and comets smashing together and pelting the Earth, Moon, and the other inner planets with debris. Now, in a historical milestone, NASA’s Hubble Space Telescope has directly imaged similar catastrophic collisions in a nearby planetary system around another star, Fomalhaut.

“This is certainly the first time I’ve ever seen a point of light appear out of nowhere in an exoplanetary system,” said principal investigator Paul Kalas of the University of California, Berkeley. “It’s absent in all of our previous Hubble images, which means that we just witnessed a violent collision between two massive objects and a huge debris cloud unlike anything in our own solar system today. Amazing!”

Just 25 light-years from Earth, Fomalhaut is one of the brightest stars in the night sky. Located in the constellation Piscis Austrinus, also known as the Southern Fish, it is more massive and brighter than the Sun and is encircled by several belts of dusty debris.

Image labeled Fomalhaut system, Hubble Space Telescope. A grainy orange oval ring tilts slightly from upper right to lower left. At two o'clock, a white box outlines the ring's edge and white lines extend to a larger pullout box at lower right. Two spots inside the larger box are marked with dashed white circles and labeled cs1 2012 and cs2 2023. Inside the ring is a black circle with a white star symbol in the middle.
This composite Hubble Space Telescope image shows the debris ring and dust clouds cs1 and cs2 around the star Fomalhaut. Fomalhaut itself is masked out to allow the fainter features to be seen. Its location is marked by the white star.
Image: NASA, ESA, Paul Kalas (UC Berkeley); Image Processing: Joseph DePasquale (STScI)

In 2008, scientists used Hubble to discover a candidate planet around Fomalhaut, making it the first stellar system with a possible planet found using visible light. That object, called Fomalhaut b, now appears to be a dust cloud masquerading as a planet—the result of colliding planetesimals. While searching for Fomalhaut b in recent Hubble observations, scientists were surprised to find a second point of light at a similar location around the star. They call this object “circumstellar source 2” or “cs2” while the first object is now known as “cs1.”

Tackling Mysteries of Colliding Planetesimals

Why astronomers are seeing both of these debris clouds so physically close to each other is a mystery. If the collisions between asteroids and planetesimals were random, cs1 and cs2 should appear by chance at unrelated locations. Yet, they are positioned intriguingly near each other along the inner portion of Fomalhaut’s outer debris disk.

Another mystery is why scientists have witnessed these two events within such a short timeframe. “Previous theory suggested that there should be one collision every 100,000 years, or longer. Here, in 20 years, we’ve seen two,” explained Kalas. “If you had a movie of the last 3,000 years, and it was sped up so that every year was a fraction of a second, imagine how many flashes you’d see over that time. Fomalhaut’s planetary system would be sparkling with these collisions.”

Collisions are fundamental to the evolution of planetary systems, but they are rare and difficult to study.

Illustration is labeled Artist’s Concept in the bottom left corner. This four-panel image shows the sequence of events leading up to, during, and following the collision of two objects in orbit around a star. Please refer to the Extended Description for more details.
This artist’s concept shows the sequence of events leading up to the creation of dust cloud cs2 around the star Fomalhaut. In Panel 1, the star Fomalhaut appears in the top left corner. Two white dots, located in the bottom right corner, represent the two massive objects in orbit around Fomalhaut. In Panel 2, the objects approach each other. Panel 3 shows the violent collision of these two objects. In Panel 4, the resulting dust cloud cs2 becomes visible and starlight pushes the dust grains away from the star.
Artwork: NASA, ESA, STScI, Ralf Crawford (STScI)

“The exciting aspect of this observation is that it allows researchers to estimate both the size of the colliding bodies and how many of them there are in the disk, information which is almost impossible to get by any other means,” said co-author Mark Wyatt at the University of Cambridge in England. “Our estimates put the planetesimals that were destroyed to create cs1 and cs2 at just 37 miles or 60 kilometers across, and we infer that there are 300 million such objects orbiting in the Fomalhaut system.”

“The system is a natural laboratory to probe how planetesimals behave when undergoing collisions, which in turn tells us about what they are made of and how they formed,” explained Wyatt.

Cautionary Tale

The transient nature of Fomalhaut cs1 and cs2 poses challenges for future space missions aiming to directly image exoplanets. Such telescopes may mistake dust clouds like cs1 and cs2 for actual planets.

“Fomalhaut cs2 looks exactly like an extrasolar planet reflecting starlight,” said Kalas. “What we learned from studying cs1 is that a large dust cloud can masquerade as a planet for many years. This is a cautionary note for future missions that aim to detect extrasolar planets in reflected light.”

Looking to Future

Kalas and his team have been granted Hubble time to monitor cs2 over the next three years. They want to see how it evolves—does it fade, or does it get brighter? Being closer to the dust belt than cs1, the expanding cs2 cloud is more likely to start encountering other material in the belt. This could lead to a sudden avalanche of more dust in the system, which could cause the whole surrounding area to get brighter.

Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris

“We will be tracing cs2 for any changes in its shape, brightness, and orbit over time,” said Kalas, “It’s possible that cs2 will start becoming more oval or cometary in shape as the dust grains are pushed outward by the pressure of starlight.”

The team also will use the NIRCam (Near-Infrared Camera) instrument on NASA’s James Webb Space Telescope to observe cs2. Webb’s NIRCam has the ability to provide color information that can reveal the size of the cloud’s dust grains and their composition. It can even determine if the cloud contains water ice. 

Hubble and Webb are the only observatories capable of this kind of imaging. While Hubble primarily sees in visible wavelengths, Webb could view cs2 in the infrared. These different, complementary wavelengths are needed to provide a broad multi-spectral investigation and a more complete picture of the mysterious Fomalhaut system and its rapid evolution.

This research appears in the December 18 issue of Science.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Facebook logo
Instagram logo

Related Images, Videos, & Resources

Image labeled Fomalhaut system, Hubble Space Telescope. A grainy orange oval ring tilts slightly from upper right to lower left. At two o'clock, a white box outlines the ring's edge and white lines extend to a larger pullout box at lower right. Two spots inside the larger box are marked with dashed white circles and labeled cs1 2012 and cs2 2023. Inside the ring is a black circle with a white star symbol in the middle.

Fomalhaut cs2

This composite Hubble Space Telescope image shows the debris ring and dust clouds cs1 and cs2 around the star Fomalhaut. Fomalhaut itself is masked out to allow the fainter features to be seen. Its location is marked by the white star.

Illustration is labeled Artistu2019s Concept in the bottom, left corner. Slightly off-center against a black background, an explosive and fiery-looking orange object appears. Orange streamers, filaments, and particles radiate from the objectu2019s center. Within it, but slightly off-center to the right, is a mottled, yellow, amorphous blob. This blob is outlined on three sides in white, and on the fourth, right side in dark orange and red. White particles emanate from this blob, particularly on the right side.

Fomalhaut cs2 Illustration

This artist’s concept shows the sequence of events leading up to the creation of dust cloud cs2 around the star Fomalhaut.

At the top left corner, a fuzzy white star appears. Traversing the top of the image and cutting across the top of the star is a ghostly white streak. At the bottom right corner is an explosive and fiery-looking orange object. Orange streamers, filaments, and particles radiate from the objectu2019s center. Within it, but slightly off-center to the right, is a mottled, yellow, amorphous blob. This blob is outlined on three sides in white, and on the fourth, right side in dark orange and red. White particles emanate from this blob, particularly on the right side.

Fomalhaut cs2 Video

Hubble captured the violent collision of two massive objects around the star Fomalhaut. This extraordinary event is unlike anything in our own present-day solar system. The video shows the sequence of events leading up to the creation of dust cloud cs2 around the star Fomalhaut. …

A grainy orange oval ring tilts slightly from upper right to lower left.

Hubble Captures Destruction of Worlds Video

NASA’s Hubble Space Telescope captured a rare and violent event unfolding around the nearby star Fomalhaut. This discovery sheds light on the chaotic processes that may have shaped our own solar system billions of years ago. With support from both Hubble and the James Webb Space Telescope, astronomers are now closely monitoring the aftermath.

Model of Fomalhaut b Dust Cloud

From 2020:
Exoplanet Apparently Disappears in Latest Hubble Observations

What astronomers thought was a planet beyond our solar system has now seemingly vanished from sight. 

Rogue Planetary Orbit for Fomalhaut b

From 2013:
Hubble Reveals Rogue Planetary Orbit for Fomalhaut b

Newly released Hubble Space Telescope images of a vast debris disk encircling the nearby star Fomalhaut, and of a mysterious planet circling it, may provide forensic evidence of a titanic planetary disruption in the system.

HST Image of Fomalhaut and Fomalhaut b

From 2008:
Hubble Directly Observes Planet Orbiting Fomalhaut

NASA’s Hubble Space Telescope has taken the first visible-light snapshot of a planet circling another star.

Fomalhaut Debris Ring (Annotated)

From 2005:
Elusive Planet Reshapes a Ring Around Neighboring Star

NASA Hubble Space Telescope’s most detailed visible-light image ever taken of a narrow, dusty ring around the nearby star Fomalhaut (HD 216956), offers the strongest evidence yet that an unruly and unseen planet may be gravitationally tugging on the ring.

Share

Details

Last Updated
Dec 19, 2025
Editor
Andrea Gianopoulos
Contact
Media

Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov

Ann Jenkins, Christine Pulliam
Space Telescope Science Institute
Baltimore, Maryland

NASA, Boeing Test How to Improve Performance of Longer, Narrower Aircraft Wings 

By: Jim Banke

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A scale model of possible future commercial jet airplane sits inside a NASA wind tunnel where the aircraft wing was tested.
The Integrated Adaptive Wing Technology Maturation wind-tunnel model installed in the Transonic Dynamics Tunnel at NASA Langley Research Center in Hampton, Virginia.
NASA / Mark Knopp

The airliner you board in the future could look a lot different from today’s, with longer, thinner wings that provide a smoother ride while saving fuel.

Those wings would be a revolutionary design for commercial aircraft, but like any breakthrough technology, they come with their own development challenges – which experts from NASA and Boeing are now working to solve. 

When creating lift, longer, thinner wings can reduce drag, making them efficient. However, they can become very flexible in flight.

Through their Integrated Adaptive Wing Technology Maturation collaboration, NASA and Boeing recently completed wind tunnel tests of a “higher aspect ratio wing model” looking for ways to get the efficiency gains without the potential issues these kinds of wings can experience. 

“When you have a very flexible wing, you’re getting into greater motions,” said Jennifer Pinkerton, a NASA aerospace engineer at NASA Langley Research Center in Hampton, Virginia. “Things like gust loads and maneuver loads can cause even more of an excitation than with a smaller aspect ratio wing. Higher aspect ratio wings also tend to be more fuel efficient, so we’re trying to take advantage of that while simultaneously controlling the aeroelastic response.”  

 

Take a minute to watch this video about the testing NASA and Boeing are doing on longer, narrower aircraft wings.

Without the right engineering, long, thin wings could potentially bend or experience a condition known as wing flutter, causing aircraft to vibrate and shake in gusting winds.  

“Flutter is a very violent interaction,” Pinkerton said. “When the flow over a wing interacts with the aircraft structure and the natural frequencies of the wing are excited, wing oscillations are amplified and can grow exponentially, leading to potentially catastrophic failure. Part of the testing we do is to characterize aeroelastic instabilities like flutter for aircraft concepts so that in actual flight, those instabilities can be safely avoided.” 

To help demonstrate and understand this, researchers from NASA and Boeing sought to soften the impacts of wind gusts on the aircraft, lessen the wing loads from aircraft turns and movements, and suppress wing flutter.

Reducing or controlling those factors can have a significant impact on an aircraft’s performance, fuel efficiency, and passenger comfort. 

Testing for this in a controlled environment is impossible with a full-sized commercial airliner, as no wind tunnel could accommodate one.

However, NASA Langley’s Transonic Dynamics Tunnel, which has been contributing to the design of U.S. commercial transports, military aircraft, launch vehicles, and spacecraft for over 60 years, features a test section 16 feet high by 16 feet wide, big enough for large-scale models. 

 To shrink a full-size plane down to scale, NASA and Boeing worked with NextGen Aeronautics, which designed and fabricated a complex model resembling an aircraft divided down the middle, with one 13-foot wing.

Mounted to the wall of the wind tunnel, the model was outfitted with 10 control surfaces – moveable panels – along the wing’s rear edge. Researchers adjusted those control surfaces to control airflow and reduce the forces that were causing the wing to vibrate.

Instruments and sensors mounted inside the model measured the forces acting on the model, as well as the vehicle’s responses.

A scale model of possible future commercial jet airplane sits inside a NASA wind tunnel where the aircraft wing was tested.
Another view of the Integrated Adaptive Wing Technology Maturation wind-tunnel model installed in the Transonic Dynamics Tunnel at NASA Langley Research Center in Hampton, Virginia.
NASA / Mark Knopp

The model wing represented a leap in sophistication from a smaller one developed during a previous NASA-Boeing collaboration called the Subsonic Ultra Green Aircraft Research (SUGAR).

“The SUGAR model had two active control surfaces,” said Patrick S. Heaney, principal investigator at NASA for the Integrated Adaptive Wing Technology Maturation collaboration. “And now on this particular model we have ten. We’re increasing the complexity as well as expanding what our control objectives are.”  

A first set of tests, conducted in 2024, gave experts baseline readings that they compared to NASA computational simulations, allowing them to refine their models. A second set of tests in 2025 used the additional control surfaces in new configurations.

The most visible benefits of these new capabilities appeared during testing to alleviate the forces from gusting winds, when researchers saw the wing’s shaking greatly reduced.

With testing completed, NASA and Boeing experts are analyzing data and preparing to share their results with the aviation community. Airlines and original equipment manufacturers can learn and benefit from the lessons learned, deciding which to apply to the next generation of aircraft.  

“Initial data analyses have shown that controllers developed by NASA and Boeing and used during the test demonstrated large performance improvements,” Heaney said. “We’re excited to continue analyzing the data and sharing results in the months to come.” 

NASA’s Advanced Air Transport Technology project works to advance aircraft design and technology under the agency’s Advanced Air Vehicles program, which studies, evaluates, and develops technologies and capabilities for new aircraft systems. The project and program fall within NASA’s Aeronautics Research Mission Directorate. 

Facebook logo
Instagram logo
Linkedin logo
Keep Exploring

Discover More Topics From NASA

💾

What can we do to help aircraft wings perform better in flight, creating a smoother, more fuel efficient, and safer experience for travelers? This is a quest...

NASA’s SPHEREx Observatory Completes First Cosmic Map Like No Other

By: scarney1

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

This panoramic view of SPHEREx’s first all-sky map shows how the sky looks to the telescope. It transitions between observations of colors emitted by hot hydrogen gas (blue) and cosmic dust (red), and those primarily emitted by stars.
Credit: NASA/JPL-Caltech

Launched in March, NASA’s SPHEREx space telescope has completed its first infrared map of the entire sky in 102 colors. While not visible to the human eye, these 102 infrared wavelengths of light are prevalent in the cosmos, and observing the entire sky this way enables scientists to answer big questions, including how a dramatic event that occurred in the first billionth of a trillionth of a trillionth of a second after the big bang influenced the 3D distribution of hundreds of millions of galaxies in our universe. In addition, scientists will use the data to study how galaxies have changed over the universe’s nearly 14 billion-year history and learn about the distribution of key ingredients for life in our own galaxy.  

“It’s incredible how much information SPHEREx has collected in just six months — information that will be especially valuable when used alongside our other missions’ data to better understand our universe,” said Shawn Domagal-Goldman, director of the Astrophysics Division at NASA Headquarters in Washington. “We essentially have 102 new maps of the entire sky, each one in a different wavelength and containing unique information about the objects it sees. I think every astronomer is going to find something of value here, as NASA’s missions enable the world to answer fundamental questions about how the universe got its start, and how it changed to eventually create a home for us in it.” 

Circling Earth about 14½ times a day, SPHEREx (which stands for Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) travels from north to south, passing over the poles. Each day it takes about 3,600 images along one circular strip of the sky, and as the days pass and the planet moves around the Sun, SPHEREx’s field of view shifts as well. After six months, the observatory has looked out into space in every direction, capturing the entire sky in 360 degrees. 

Managed by NASA’s Jet Propulsion Laboratory in Southern California, the mission began mapping the sky in May and completed its first all-sky mosaic in December. It will complete three additional all-sky scans during its two-year primary mission, and merging those maps together will increase the sensitivity of the measurements. The entire dataset is freely available to scientists and the public.  

“SPHEREx is a mid-sized astrophysics mission delivering big science,” said JPL Director Dave Gallagher. “It’s a phenomenal example of how we turn bold ideas into reality, and in doing so, unlock enormous potential for discovery.”  

NASA’s SPHEREx has mapped the entire sky in 102 infrared colors, which are invisible to the human eye but can be used to reveal different features of the cosmos. This image features a selection of colors emitted primarily by stars (blue, green, and white), hot hydrogen gas (blue), and cosmic dust (red).
NASA/JPL-Caltech
This SPHEREx image shows a selection of the infrared colors primarily emitted by stars and galaxies. The space telescope is observing hundreds of millions of distant galaxies across the sky. Its multiwavelength view will help astronomers measure the distance to those galaxies.
NASA/JPL-Caltech
The infrared colors emitted primarily by dust (red) and hot gas (blue), key ingredients for forming new stars and planets, are seen in this SPHEREx image. Though these clouds of material cover a massive portion of the sky, they are invisible in most wavelengths of light, including those the human eye can detect.
NASA/JPL-Caltech

Superpowered telescope 

Each of the 102 colors detected by SPHEREx represents a wavelength of infrared light, and each wavelength provides unique information about the galaxies, stars, planet-forming regions, and other cosmic features therein. For example, dense clouds of dust in our galaxy where stars and planets form radiate brightly in certain wavelengths but emit no light (and are therefore totally invisible) in others. The process of separating the light from a source into its component wavelengths is called spectroscopy.  

And while a handful of previous missions has also mapped the entire sky, such as NASA’s Wide-field Infrared Survey Explorer, none have done so in nearly as many colors as SPHEREx. By contrast, NASA’s James Webb Space Telescope can do spectroscopy with significantly more wavelengths of light than SPHEREx, but with a field of view thousands of times smaller. The combination of colors and such a wide field of view is why SPHEREx is so powerful. 

“The superpower of SPHEREx is that it captures the whole sky in 102 colors about every six months. That’s an amazing amount of information to gather in a short amount of time,” said Beth Fabinsky, the SPHEREx project manager at JPL. “I think this makes us the mantis shrimp of telescopes, because we have an amazing multicolor visual detection system and we can also see a very wide swath of our surroundings.” 

To accomplish this feat, SPHEREx uses six detectors, each paired with a specially designed filter that contains a gradient of 17 colors. That means every image taken with those six detectors contains 102 colors (six times 17). It also means that every all-sky map that SPHEREx produces is really 102 maps, each in a different color.  

The observatory will use those colors to measure the distance to hundreds of millions of galaxies. Though the positions of most of those galaxies have already been mapped in two dimensions by other observatories, SPHEREx’s map will be in 3D, enabling scientists to measure subtle variations in the way galaxies are clustered and distributed across the universe.  

Each frame of this movie shows the entire sky in a different infrared wavelength, indicated by the color bar in the top right corner. Taken by NASA’s SPHEREx observatory, the maps illustrate how viewing the universe in different wavelengths of light can reveal unique cosmic features.
Credit: NASA/JPL-Caltech

Those measurements will offer insights into an event that took place in the first billionth of a trillionth of a trillionth of a second after the big bang. In this moment, called inflation, the universe expanded by a trillion-trillionfold. Nothing like it has occurred in the universe since, and scientists want to understand it better. The SPHEREx mission’s approach is one way to help in that effort. 

More about SPHEREx 

The SPHEREx mission is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. The telescope and the spacecraft bus were built by BAE Systems. The science analysis of the SPHEREx data is being conducted by a team of scientists at 10 institutions across the U.S., and in South Korea and Taiwan. Data is processed and archived at IPAC at Caltech in Pasadena, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset is publicly available. 

For more information about the SPHEREx mission visit: 

https://science.nasa.gov/mission/spherex/

News Media Contacts

Calla Cofield 
Jet Propulsion Laboratory, Pasadena, Calif. 
626-808-2469 
calla.e.cofield@jpl.nasa.gov 

2025-144

💾

Each frame of this movie shows the entire sky in a different infrared wavelength, indicated by the widget in the top right corner. Taken by NASA’s SPHEREx ob...

NASA Welcomes 15th Administrator Jared Isaacman

Four people, including NASA Administrator Jared Isaacman, stand in an office with an American flag in the background, as Isaacman is sworn in, with his right hand raised.
U.S. District Judge Timothy Kelly, left, swears in Jared Isaacman, right, as the 15th administrator of NASA, as Isaacman’s parents, Donald and Sandra Marie, join on Dec. 18, 2025, at the Eisenhower Executive Office Building in Washington.
Credit: NASA/Bill Ingalls

Jared Isaacman was sworn in Thursday as NASA’s 15th administrator by District Judge Timothy J. Kelly. The oath was taken during a ceremony held at the Eisenhower Executive Office Building in Washington. 

As NASA administrator, Isaacman will lead the agency in bold pursuit of exploration, innovation, and scientific discovery. 

“I am deeply honored to be sworn in as NASA administrator,” said Isaacman. “NASA’s mission is as imperative and urgent as ever — to push the boundaries of human exploration, ignite the orbital economy, drive scientific discovery, and innovate for the benefit of all of humanity. I look forward to serving under President Trump’s leadership and restoring a mission-first culture at NASA — focused on achieving ambitious goals, to return American astronauts to the Moon, establish an enduring presence on the lunar surface, and laying the groundwork to deliver on President Trump’s vision of planting the Stars and Stripes on Mars.” 

Isaacman, nominated by President Donald J. Trump on Nov. 4th, was confirmed to serve as NASA administrator by the U.S. Senate on Dec. 17. Isaacman is expected to address the workforce this week. 

Jared “Rook” Isaacman is the 15th administrator of NASA, a pilot, astronaut, seasoned entrepreneur, philanthropist, and pioneer in commercial spaceflight. Read Isaacman’s official biography online. 

Official portrait of NASA Administrator Jared Isaacman
Credit: NASA/Bill Ingalls

For more about NASA’s mission, visit: 

https://www.nasa.gov

-end-

Bethany Stevens / George Alderman
Headquarters, Washington
(771) 216-2606
bethany.c.stevens@nasa.gov / george.a.alderman@nasa.gov

Share

Details

Last Updated
Dec 18, 2025
Editor
Jessica Taveau

A Look Back at NASA Stennis in 2025

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

In 2025, NASA’s Stennis Space Center near Bay St. Louis, Mississippi, marked a year of progress by supporting NASA’s Artemis campaign, celebrating historic milestones, and continuing its role as a trusted propulsion test partner at America’s largest rocket propulsion test site.

“For more than six decades, NASA Stennis has proudly represented the Gulf Coast region and America in advancing our nation’s space exploration goals,” said NASA Stennis Director John Bailey. “This year, we continued our progress forward as we near the launch of Artemis II, while honoring milestones that have brought our center to this point.”

Supporting Artemis

As NASA prepares for the launch of Artemis II in early 2026, with the first crewed mission to the Moon in over 50 years, NASA Stennis continues its frontline work.

Every RS-25 engine used to help launch NASA’s SLS (Space Launch System) rocket to the Moon is tested in south Mississippi.

NASA Stennis teams provided data to lead engines contractor L3Harris Technologies by successfully testing two new production RS-25 flight engines.

NASA tested RS-25 engine No. 20001 at the Fred Haise Test Stand in June, and RS-25 engine No. 20002 in November. Each engine fired for 500 seconds, reaching 111% of its rated power, while simulating launch conditions.

crew installing the first new production RS-25 engine on the Fred Haise Test Stand
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18, 2025.
NASA/Danny Nowlin
crew installing the first new production RS-25 engine on the Fred Haise Test Stand
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18, 2025.
NASA/Danny Nowlin
crew installing the first new production RS-25 engine on the Fred Haise Test Stand
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18, 2025.
NASA/Danny Nowlin
crew installing the first new production RS-25 engine on the Fred Haise Test Stand
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18, 2025.
NASA/Danny Nowlin
crew installing the first new production RS-25 engine on the Fred Haise Test Stand
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18, 2025.
NASA/Danny Nowlin
crew installing the first new production RS-25 engine on the Fred Haise Test Stand
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18, 2025.
NASA/Danny Nowlin
A row of bushes frame the photo as vapor clouds seen in the distance erupt towards the sky during an engine test on the Fred Haise Test Stand at NASA Stennis
NASA tests RS-25 engine No. 20001 on June 20, 2025, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi.
NASA/Danny Nowlin

Supporting Commercial Propulsion

The commercial aerospace industry is growing, and NASA Stennis is a secure location providing support for it. Companies that have conducted work at NASA Stennis include Blue Origin, Boeing, Evolution Space; Launcher, a Vast company; Relativity Space and Rolls-Royce.

Three companies – Relativity Space, Rocket Lab, and Evolution Space – have established, or continue progress to establish, production and/or test operations at NASA Stennis.

Infrastructure upgrades and planning efforts across the test complex are laying the foundation for future propulsion test projects as well.

“As the commercial space industry continues to accelerate their development, NASA Stennis is adapting to meet their propulsion testing needs,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We are proud that our proven experience makes us a trusted partner.”

Honoring the Past

The first space shuttle main engine is installed on test stand
In 2025, NASA Stennis honored a defining era of space shuttle main engine testing. An image shows the first space shuttle main engine installed on May 8, 1975, at the Fred Haise Test Stand (formerly A-1).
NASA

While NASA Stennis operates as the nation’s largest rocket propulsion test site, the NASA Stennis Federal City also is home to more than 50 federal, state, academic, and commercial tenants.

This year marked the birth of the federal city concept 55 years ago. The unique operating approach serves as a model of government efficiency and a powerful economic engine for the Gulf Coast region.

Meanwhile, the 50th anniversary of space shuttle main engine testing honored a defining era for NASA Stennis.

From May 1975 to July 2009, NASA Stennis tested space shuttle main engines that enabled 135 shuttle missions and notable space milestones, like deployment of the Hubble Space Telescope and construction of the International Space Station.

Both the federal city model and the decades of propulsion excellence continue to inform work at NASA Stennis.

Engineering the Future

Innovation extended beyond the test stands. The versatile testing environment at NASA Stennis is uniquely positioned to support unmanned systems testing across air, land, and water. With restricted airspace, a closed canal system, and vast protected terrain, the site offers a safe, flexible environment for range operations.

In addition to physical infrastructure, NASA Stennis progressed in digital innovation with the release of its first open-source software tool to streamline propulsion test data collection and collaboration across NASA and industry. The peer review tool is designed to facilitate more efficient and collaborative creation of systems applications, such as those used in frontline government and propulsion test work.

a drone flying low over a body of water
U.S. Naval Research Laboratory personnel conduct a field experiment involving an unmanned aerial system at NASA Stennis in March 2024.
NASA/Danny Nowlin
unmanned aerial system
U.S. Naval Research laboratory personnel conduct tests on The Blue Boat made by Blue Robotics, an unmanned surface vessel, at NOAA’s National Data Buoy Center basin at NASA Stennis on Dec. 19, 2024.
NASA/Danny Nowlin
NASA software engineer Brandon Carver is seated at a desk
NASA software engineer Brandon Carver updates how the main data acquisition software processes information on March 5, 2025, at NASA’s Stennis Space Center, where he has contributed to the creation of the center’s first-ever open-source software.
NASA/Danny Nowlin
Syncom Space Services software engineer Shane Cravens stands at a workstation
Syncom Space Services software engineer Shane Cravens, the chief architect behind the first-ever open-source software at NASA’s Stennis Space Center, verifies operation of the site’s data acquisition hardware.
NASA/Danny Nowlin

Community and Inspiration

NASA Stennis connected with communities in creative ways in 2025.

During Super Bowl week, NASA Stennis representatives inspired future explorers by bringing Artemis mission displays and hands-on activities to families at the Audubon Aquarium in New Orleans.

In March, NASA Stennis supported the third annual FIRST Robotics Magnolia Regional as a lead sponsor with employees and interns volunteering at the event. The competition in Laurel, Mississippi, brought together 37 teams from eight U.S. states (Alabama, California, Florida, Louisiana, Minnesota, Mississippi, Missouri, and Tennessee) and Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.

That same spirit of hands-on learning continues at INFINITY Science Center, the official visitor center of NASA Stennis. A new interactive exhibit has provided visitors a chance to become a test conductor and simulate RS-25 engine tests for the engines that will help power NASA’s Artemis missions.

A pair of young visitors to INFINITY Science Center
A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19, 2024. The engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.
NASA/Danny Nowlin
young event-goers participate in activity provided by NASA Stennis at the Audubon Aquarium
NASA Stennis representatives inspire the Artemis Generation at the Audubon Aquarium in New Orleans on Feb. 7-8, 2025, with activities and displays highlighting space exploration, including NASA’s Artemis missions to the Moon.
NASA/Danny Nowlin
small crowd gathers to watch experiment by NASA Stennis representatives
NASA Stennis representatives inspire the Artemis Generation at the Audubon Aquarium in New Orleans on Feb. 7-8, 2025, with activities and displays highlighting space exploration, including NASA’s Artemis missions to the Moon.
NASA/Danny Nowlin
NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14.
NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14, 2025. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.
NASA/Danny Nowlin
a team of FIRST Robotics competitors with Michele Beisler
NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14, 2025. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.
NASA/Danny Nowlin

A Winter Wonderland

Hancock County, where NASA Stennis is located, received five to seven inches of snow on Jan. 21, 2025, according to the National Weather Service. It marked the most snow Hancock County, Mississippi, has received in 61 years. The Dec. 31, 1963, snowfall holds the record at 10 inches of snow for Bay St. Louis, Mississippi.

view of security gate at Stennis Space Center as snow covered the area
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
Building 1100 at Stennis Space Center is shown covered in snow
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
cars covered in snow at Stennis Space Center
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
The Little Red Schoolhouse is covered in snow at Stennis Space Center
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
a tug boat is seen in the distance covered in snow at Stennis Space Center
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
the top of Fred Haise Test Stand covered in snow
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
a test stand is shown in the background across a field of fresh snow
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
view of gate entrance to Stennis Space Center with freshly fallen snow
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis
a test stand at Stennis Space Center lightly covered in snow
A series of cell phone and stationary camera images record snowfall at NASA’s Stennis Space Center on Jan. 21, 2025.
NASA/Stennis

Looking Ahead

All in all, the year closes with members of the NASA Stennis team focused on what is to come.

“As we close out 2025, NASA Stennis looks forward to the next chapter of our center as NASA sends astronauts to the Moon to prepare for future human exploration of Mars through the agency’s Artemis campaign,” said NASA Stennis Deputy Director Christine Powell. “We are ready for what’s next.”

2025 Science Activation Opportunity

2 min read

2025 Science Activation Opportunity

NASA Science encourages all people to actively participate in science through activities and resources developed by a collaborative network of project teams drawing on NASA SMD assets (science content, experts, data, etc.). Your team can apply to be part of this program.

Opportunity

NASA SMD seeks a portfolio of projects that together :

  • Cover the full breadth of NASA science disciplines 
  • Operate across all 50 states plus U.S. territories 
  • Reach people of all ages and backgrounds
  • Work in both formal and informal learning contexts
  • Engage community partners to deepen and extend the reach and impact of NASA science

Projects

NASA seeks a balance of projects that (1) seek to broadly share resources and opportunities that leverage NASA assets, and (2) seek to meet specific community (both geographically- and interest-based) needs through NASA assets .

Eligibility

Participation is open to all categories of U.S. institutions, except media organizations since broadcast communication is not a focus.

Non-U.S. participation in teaming arrangements or leveraging relationships on proposals submitted by U.S. institutions may only be proposed at no cost to NASA.

Important Dates

January 9, 2 pm Eastern: Pre-proposal Webinar (see opportunity for access details)

Notice of Intent requested by 1/26/2026

Proposals due 3/31/2026

More details

Full details on the Science Activation opportunity can be found here.

Keep Exploring

Discover More Topics From NASA

Payroll

By: NASA
1 Min Read

Payroll

The NASA Shared Services Center (NSSC) Payroll Office (NPO) reviews, validates, and delivers time and attendance data to the Department of the Interior (DOI) Interior Business Center (IBC) for NASA Centers.  NPO acts as liaison between Centers, employees and IBC for other payroll related activities such as supplemental payments, prior pay period adjustments  (PPPA) and settlement agreements.

❌