โŒ

Reading view

There are new articles available, click to refresh the page.

CIOs shift from โ€˜cloud-firstโ€™ to โ€˜cloud-smartโ€™

Common wisdom has long held that a cloud-first approach will gain CIOs benefits such as agility, scalability, and cost-efficiency for their applications and workloads. While cloud remains most IT leadersโ€™ preferred infrastructure platform, many are rethinking their cloud strategies, pivoting from cloud-first to โ€œcloud-smartโ€ by choosing the best approach for specific workloads rather than just moving everything off-premises and prioritizing cloud over other considerations for new initiatives.

Cloud cost optimization is one factor motivating this rethink, with organizations struggling to control escalating cloud expenses amid rapid growth. An estimated 21% of enterprise cloud infrastructure spend, equivalent to $44.5 billion in 2025, is wasted on underutilized resources โ€” with 31% of CIOs wasting half of their cloud spend, according to a recent survey from VMware.

The full rush to the cloud is over, says Ryan McElroy, vice president of technology at tech consultancy Hylaine. Cloud-smart organizations have a well-defined and proven process for determining which workloads are best suited for the cloud.

For example, โ€œsomething that must be delivered very quickly and support massive scale in the future should be built in the cloud,โ€ McElroy says. โ€œSolutions with legacy technology that must be hosted on virtual machines or have very predictable workloads that will last for years should be deployed to well-managed data centers.โ€

The cloud-smart trend is being influenced by better on-prem technology, longer hardware cycles, ultra-high margins with hyperscale cloud providers, and the typical hype cycles of the industry, according to McElroy. All favor hybrid infrastructure approaches.

However, โ€œAI has added another major wrinkle with siloed data and compute,โ€ he adds. โ€œMany organizations arenโ€™t interested in or able to build high-performance GPU datacenters, and need to use the cloud. But if theyโ€™ve been conservative or cost-averse, their data may be in the on-prem component of their hybrid infrastructure.โ€

These variables have led to complexity or unanticipated costs, either through migration or data egress charges, McElroy says.

He estimates that โ€œonly 10% of the industry has openly admitted theyโ€™re movingโ€ toward being cloud-smart. While that number may seem low, McElroy says it is significant.

โ€œThere are a lot of prerequisites to moderate on your cloud stance,โ€ he explains. โ€œFirst, you generally have to be a new CIO or CTO. Anyone who moved to the cloud is going to have a lot of trouble backtracking.โ€

Further, organizations need to have retained and upskilled the talent who manage the datacenter they own or at the co-location facility. They must also have infrastructure needs that outweigh the benefits the cloud provides in terms of raw agility and fractional compute, McElroy says.

Selecting and reassessing the right hyper-scaler

Procter & Gamble embraced a cloud-first strategy when it began migrating workloads aboutย eight years ago, says Paola Lucetti, CTO and senior vice president. At that time, the mandate was that all new applications would be deployed in the public cloud, and existing workloads would migrate from traditional hosting environments to hyperscalers, Lucetti says.

โ€œThis approach allowed us to modernize quickly, reduce dependency on legacy infrastructure, and tap into the scalability and resilience that cloud platforms offer,โ€ she says.

Today, nearly all P&Gโ€™s workloads run on cloud. โ€œWe chooseย to keep selected workloadsย outside of the public cloudย because of latency or performance needs that we regularly reassess,โ€ Lucetti says. โ€œThis foundation gave us speed and flexibility during a critical phase of digital transformation.โ€

As the companyโ€™s cloud ecosystem has matured, so have its business priorities. โ€œCost optimization, sustainability, and agility became front and center,โ€ she says. โ€œCloud-smart for P&G means selecting and regularly reassessing the right hyperscaler for the right workload, embedding FinOps practices for transparency and governance, and leveraging hybrid architectures to support specific use cases.โ€

This approach empowers developers through automation, AI, and agentic to drive value faster, Lucetti says. โ€œThis approach isnโ€™t just technical โ€” itโ€™s cultural. It reflects a mindset of strategic flexibility, where technology decisions align with business outcomes.โ€

AI is reshaping cloud decisions

AI represents a huge potential spend requirement and raises the stakes for infrastructure strategy, says McElroy.

โ€œRenting servers packed with expensive Nvidia GPUs all day every day for three years will be financially ruinous compared to buying them outright,โ€ he says, โ€œbut the flexibility to use next yearโ€™s models seamlessly may represent a strategic advantage.โ€

Cisco, for one, has become far more deliberate about what truly belongs in the public cloud, says Nik Kale, principal engineer and product architect. Cost is one factor, but the main driver is AI data governance.

โ€œBeing cloud-smart isnโ€™t about repatriation โ€” itโ€™s about aligning AIโ€™s data gravity with the right control plane,โ€ he says.

IT has parsed out what should be in a private cloud and what goes into a public cloud. โ€œTraining and fine-tuning large models requires strong control over customer and telemetry data,โ€ Kale explains. โ€œSo we increasingly favor hybrid architectures where inference and data processing happen within secure, private environments, while orchestration and non-sensitive services stay in the public cloud.โ€

Ciscoโ€™s cloud-smart strategy starts with data classification and workload profiling. Anything with customer-identifiable information, diagnostic traces, and model feedback loops are processed within regionally compliant private clouds, he says.

Then there are โ€œstateless services, content delivery, and telemetry aggregation that benefit from public-cloud elasticity for scale and efficiency,โ€ Kale says.

Ciscoโ€™s approach also involves โ€œpackaging previously cloud-resident capabilities for secure deployment within customer environments โ€” offering the same AI-driven insights and automation locally, without exposing data to shared infrastructure,โ€ he says. โ€œThis gives customers the flexibility to adopt AI capabilities without compromising on data residency, privacy, or cost.โ€

These practices have improved Ciscoโ€™s compliance posture, reduced inference latency, and yielded measurable double-digit reductions in cloud spend, Kale says.

One area where AI has fundamentally changed their approach to cloud is in large-scale threat detection. โ€œEarly versions of our models ran entirely in the public cloud, but once we began fine-tuning on customer-specific telemetry, the sensitivity and volume of that data made cloud egress both costly and difficult to govern,โ€ he says. โ€œMoving the training and feedback loops into regional private clouds gave us full auditability and significantly reduced transfer costs, while keeping inference hybrid so customers in regulated regions received sub-second response times.โ€

IT saw a similar issue with its generative AI support assistant. โ€œInitially, case transcripts and diagnostic logs were processed in public cloud LLMs,โ€ Kale says. โ€œAs customers in finance and healthcare raised legitimate concerns about data leaving their environments, we re-architected the capability to run directly within their [virtual private clouds] or on-prem clusters.โ€

The orchestration layer remains in the public cloud, but the sensitive data never leaves their control plane, Kale adds.

AI has also reshaped how telemetry analytics is handled across Ciscoโ€™s CX portfolio. IT collects petabyte-scale operational data from more than 140,000 customer environments.

โ€œWhen we transitioned to real-time predictive AI, the cost and latency of shipping raw time-series data to the cloud became a bottleneck,โ€ Kale says. โ€œBy shifting feature extraction and anomaly detection to the customerโ€™s local collector and sending only high-level risk signals to the cloud, we reduced egress dramatically while improving model fidelity.โ€

In all instances, โ€œAI made the architectural trade-offs clear: Specific workloads benefit from public-cloud elasticity, but the most sensitive, data-intensive, and latency-critical AI functions need to run closer to the data,โ€ Kale says. โ€œFor us, cloud-smart has become less about repatriation and more about aligning data gravity, privacy boundaries, and inference economics with the right control plane.โ€

A less expensive execution path

Like P&G, World Insurance Associates believes cloud-smart translates to implementing a FinOps framework. CIO Michael Corrigan says that means having an optimized, consistent build for virtual machines based on the business use case, and understanding how much storage and compute is required.

Those are the main drivers to determine costs, โ€œso we have a consistent set of standards of what will size our different environments based off of the use case,โ€ Corrigan says. This gives World Insurance what Corrigan says is an automated architecture.

โ€œThen we optimize the build to make sure we have things turned on like elasticity. So when services arenโ€™t used typically overnight, they shut down and they reduce the amount of storage to turn off the amount of computeโ€ so the company isnโ€™t paying for it, he says. โ€œIt starts with the foundation of optimization or standards.โ€

World Insurance works with its cloud providers on different levels of commitment. With Microsoft, for example, the insurance company has the option to use virtual machines, or what Corrigan says is a โ€œreserved instance.โ€ By telling the provider how many machines they plan to consume or how much they intend to spend, he can try to negotiate discounts.

โ€œThatโ€™s where the FinOps framework has to really be in place โ€ฆ because obviously, you donโ€™t want to commit to a level of spend that you wouldnโ€™t consume otherwise,โ€ Corrigan says. โ€œItโ€™s a good way for the consumer or us as the organization utilizing those cloud services, to get really significant discounts upfront.โ€

World Insurance is using AI for automation and alerts. AI tools are typically charged on a compute processing model, โ€œand what you can do is design your query so that if it is something thatโ€™s less complicated, itโ€™s going to hit a less expensive execution pathโ€ and go to a small language model (SLM), which doesnโ€™t use as much processing power, Corrigan says.

The user gets a satisfactory result, and โ€œthere is less of a cost because youโ€™re not consuming as much,โ€ he says.

Thatโ€™s the tactic the company is taking โ€” routing AI queries to the less expensive model. If there is a more complicated workflow or process, it will be routed to the SLM first โ€œand see if it checks the box,โ€ Corrigan says. If its needs are more complex, it is moved to the next stage, which is more expensive, and generally involves an LLM that requires going through more data to give the end user what theyโ€™re looking for.

โ€œSo we try to manage the costs that way as well so weโ€™re only consuming whatโ€™s really needed to be consumed based on the complexity of the process,โ€ he says.

Cloud is โ€˜a living frameworkโ€™

Hylaineโ€™s McElroy says CIOs and CTOs need to be more open to discussing the benefits of hybrid infrastructure setups, and how the state of the art has changed in the past few years.

โ€œMany organizations are wrestling with cloud costs they know instinctively are too high, but there are few incentives to take on the risky work of repatriation when a CFO doesnโ€™t know what savings theyโ€™re missing out on,โ€ he says.

Lucetti characterizes P&Gโ€™s cloud strategy as โ€œa living framework,โ€ and says that over the next few years, the company will continue to leverage the right cloud capabilities to enable AI and agentic for business value.

โ€œThe goal is simple: Keep technology aligned with business growth, while staying agile in a rapidly changing digital landscape,โ€ she says. โ€œCloud transformation isnโ€™t a destination โ€” itโ€™s a journey. At P&G, we know that success comes from aligning technology decisions with business outcomes and by embracing flexibility.โ€

Get data, and the data culture, ready for AI

When it comes to AI adoption, the gap between ambition and execution can be impossible to bridge. Companies are trying to weave the tech into products, workflows, and strategies, but good intentions often collapse under the weight of the day-to-day realities from messy data and lack of a clear plan.

โ€œThatโ€™s the challenge we see most often across the global manufacturers we work with,โ€ says Rob McAveney, CTO at software developer Aras. โ€œMany organizations assume they needAI, when the real starting point should be defining the decision you want AI to support, and making sure you have the right data behind it.โ€

Nearly two-thirds of leaders say their organizations have struggled to scale AI across the business, according to a recent McKinsey global survey. Often, they canโ€™t move beyond tests of pilot programs, a challenge thatโ€™s even more pronounced among smaller organizations. Often, pilots fail to mature, and investment decisions become harder to justify.

A typical issue is the data simply isnโ€™t ready for AI. Teams try to build sophisticated models on top of fragmented sources or messy data, hoping the technology will smooth over the cracks.

โ€œFrom our perspective, the biggest barriers to meaningful AI outcomes are data quality, data consistency, and data context,โ€ McAveney says. โ€œWhen data lives in silos or isnโ€™t governed with shared standards, AI will simply reflect those inconsistencies, leading to unreliable or misleading outcomes.โ€

Itโ€™s an issue that impacts almost every sector. Before organizations double down on new AI tools, they must first build stronger data governance, enforce quality standards, and clarify who actually owns the data meant to fuel these systems.

Making sure AI doesnโ€™t take the wheel

In the rush to adopt AI, many organizations forget to ask the fundamental questionofwhat problem actually needs to be solved. Without that clarity, itโ€™s difficult to achieve meaningful results.

Anurag Sharma, CTO of VyStar Credit Union believes AI is just another tool thatโ€™s available to help solve a given business problem, and says every initiative should begin with a clear, simple statement of the business outcome itโ€™s meant to deliver. He encourages his team to isolate issues AI could fix, and urges executives to understand what will change and who will be affected before anything moves forward.

โ€œCIOs and CTOs can keep initiatives grounded by insisting on this discipline, and by slowing down the conversation just long enough to separate the shiny from the strategic,โ€ Sharma says.

This distinction becomes much easier when an organization has an AI COE or a dedicated working group focused on identifying real opportunities. These teams help sift through ideas, set priorities, and ensure initiatives are grounded in business needs rather than buzz.

The group should also include the people whose work will be affected by AI, along with business leaders, legal and compliance specialists, and security teams. Together, they can define baseline requirements that AI initiatives must meet.

โ€œWhen those requirements are clear up front, teams can avoid pursuing AI projects that look exciting but lack a real business anchor,โ€ says Kayla Underkoffler, director of AI security and policy advocacy at security and governance platform Zenity.

She adds that someone in the COE should have a solid grasp of the current AI risk landscape. That person should be ready to answer critical questions, knowing what concerns need to be addressed before every initiative goes live.

โ€œA plan could have gaping cracks the team isnโ€™t even aware of,โ€ Underkoffler says. โ€œItโ€™s critical that security be included from the beginning to ensure the guardrails and risk assessment can be added from the beginning and not bolted on after the initiative is up and running.โ€

In addition, there should be clear, measurable business outcomes to make sure the effort is worthwhile. โ€œEvery proposal must define success metrics upfront,โ€ says Akash Agrawal, VP of DevOps and DevSecOps at cloud-based quality engineering platform LambdaTest, Inc. โ€œAI is never explored, itโ€™s applied.โ€

He recommends companies build in regular 30- or 45-day checkpoints to ensure the work continues to align with business objectives. And if the results donโ€™t meet expectations, organizations shouldnโ€™t hesitate to reassess and make honest decisions, he says. Even if that means walking away from the initiative altogether.

Yet even when the technology looks promising, humans still need to remain in the loop. โ€œIn an early pilot of our AI-based lead qualification, removing human review led to ineffective lead categorization,โ€ says Shridhar Karale, CIO at sustainable waste solutions company, Reworld. โ€œWe quickly retuned the model to include human feedback, so it continually refines and becomes more accurate over time.โ€

When decisions are made without human validation, organizations risk acting on faulty assumptions or misinterpreted patterns. The aim isnโ€™t to replace people, but to build a partnership in which humans and machines strengthen one other.

Data, a strategic asset

Ensuring data is managed effectively is an often overlooked prerequisite for making AI work as intended. Creating the right conditions means treating data as a strategic asset: organizing it, cleaning it, and having the right policies in place so it stays reliable over time.

โ€œCIOs should focus on data quality, integrity, and relevance,โ€ says Paul Smith, CIO at Amnesty International. His organization works with unstructured data every day, often coming from external sources. Given the nature of the work, the quality of that data can be variable. Analysts sift through documents, videos, images, and reports, each produced in different formats and conditions. Managing such a high volume of messy, inconsistent, and often incomplete information has taught them the importance of rigor.

โ€œThereโ€™s no such thing as unstructured data, only data that hasnโ€™t yet had structure applied to it,โ€ Smith says. He also urges organizations to start with the basics of strong, everyday data-governance habits. That means checking whether the data is relevant, and ensuring itโ€™s complete, accurate, and consistent, and outdated information can skew results.

Smith also emphasizes the importance of verifying data lineage. That includes establishing provenance โ€” knowing where the data came from and whether its use meets legal and ethical standards โ€” and reviewing any available documentation that details how it was collected or transformed.

In many organizations, messy data comes from legacy systems or manual entry workflows. โ€œWe strengthen reliability by standardizing schemas, enforcing data contracts, automating quality checks at ingestion, and consolidating observability across engineering,โ€ says Agrawal.

When teams trust the data, their AI outcomes improve. โ€œIf you canโ€™t clearly answer where the data came from and how trustworthy is it, then you arenโ€™t ready,โ€ Sharma adds. โ€œItโ€™s better to slow down upfront than chase insights that are directionally wrong or operationally harmful, especially in the financial industry where trust is our currency.โ€

Karale says that at Reworld, theyโ€™ve created a single source of truth data fabric, and assigned data stewards to each domain. They also maintain a living data dictionary that makes definitions and access policies easy to find with a simple search. โ€œEach entry includes lineage and ownership details so every team knows whoโ€™s responsible, and they can trust the data they use,โ€ Karale adds.

A hard look in the organizational mirror

AI has a way of amplifying whatever patterns it finds in the data โ€” the helpful ones, but also the old biases organizations would rather leave behind. Avoiding that trap starts with recognizing that bias is often a structural issue.

CIOs can do a couple of things to prevent problems from taking root. โ€œVet all data used for training or pilot runs and confirm foundational controls are in place before AI enters the workflow,โ€ says Underkoffler.

Also, try to understand in detail how agentic AI changes the risk model. โ€œThese systems introduce new forms of autonomy, dependency, and interaction,โ€ she says. โ€œControls must evolve accordingly.โ€

Underkoffler also adds that strong governance frameworks can guide organizations on monitoring, managing risks, and setting guardrails. These frameworks outline whoโ€™s responsible for overseeing AI systems, how decisions are documented, and when human judgment must step in, providing structure in an environment where the technology is evolving faster than most policies can keep up.

And Karale says that fairness metrics, such as disparate impact, play an important role in that oversight. These measures help teams understand whether an AI system is treating different groups equitably or unintentionally favoring one over another. These metrics could be incorporated into the model validation pipeline.

Domain experts can also play a key role in spotting and retraining models that produce biased or off-target outputs. They understand the context behind the data, so theyโ€™re often the first to notice when something doesnโ€™t look right. โ€œContinuous learning is just as important for machines as it is for people,โ€ says Karale.

Amnesty Internationalโ€™s Smith agrees, saying organizations need to train their people continuously to help them pick out potential biases. โ€œRaise awareness of risks and harms,โ€ he says. โ€œThe first line of defense or risk mitigation is human.โ€

SAS, 2026๋…„ AI ์‚ฐ์—…์„ ์ด๋Œ 8๊ฐ€์ง€ ์ „๋ง ๊ณต๊ฐœยทยทยท์ฑ…์ž„์„ฑยทROI ์ค‘์š”์„ฑ ์ปค์ ธ

SAS๋Š” 2025๋…„์„ ๋Œ์•„๋ณด๋ฉด์„œ AI ๊ธฐ์ˆ ์˜ ๋น ๋ฅธ ๋ฐœ์ „๊ณผ ๋‹ค์–‘ํ•œ ์„ฑ๊ณผ๋ฅผ ์ธ์ •ํ•˜๋ฉด์„œ๋„, ์ž ์žฌ์ ์ธ AI ๊ฑฐํ’ˆ, ์—๋„ˆ์ง€ ์‚ฌ์šฉ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ๋ถ€๋‹ด, ์ƒ์„ฑํ˜• AI ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ์˜ ๊ธฐ๋Œ€ ์ดํ•˜ ์„ฑ๊ณผ ๋“ฑ ์—ฌ๋Ÿฌ ์šฐ๋ ค ์š”์†Œ๊ฐ€ ์กด์žฌํ•œ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. SAS ์ „๋ฌธ๊ฐ€๋“ค์€ 2026๋…„์ด AI๋กœ๋ถ€ํ„ฐ ์‹ค์งˆ์ ์ธ ROI(ํˆฌ์ž์ˆ˜์ต๋ฅ )๋ฅผ ํ™•๋ณดํ•˜๊ณ , ์œค๋ฆฌ์ ยท๊ฒฝ์ œ์  ๊ณผ์ œ๋ฅผ ๋ณธ๊ฒฉ์ ์œผ๋กœ ํ•ด๊ฒฐํ•ด์•ผ ํ•˜๋Š” ์ค‘์š”ํ•œ ์‹œ๊ธฐ๊ฐ€ ๋  ๊ฒƒ์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์•ž์œผ๋กœ์˜ ์ „๋ง์—๋Š” ์šฐ๋ ค์™€ ํ•จ๊ป˜ ์‹ ์ค‘ํ•œ ๊ธฐ๋Œ€๊ฐ๋„ ๊ณต์กดํ•œ๋‹ค. SAS ์ฃผ์š” ๋ฆฌ๋”๋“ค์€ AI ๋ฐœ์ „์˜ ํ•ต์‹ฌ ์š”์ธ์œผ๋กœ โ€˜์ฑ…์ž„์„ฑโ€™์„ ๊ฐ•์กฐํ•˜๋ฉฐ, AI ๊ณต๊ธ‰์ž๋ฟ ์•„๋‹ˆ๋ผ ์ด๋ฅผ ํ™œ์šฉํ•˜๋Š” ์กฐ์ง ๋ชจ๋‘๊ฐ€ ์ฑ…์ž„ ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ธฐ์ˆ ์„ ์ ์šฉํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๋งํ–ˆ๋‹ค. ๋˜ํ•œ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ์˜ ๊ธฐ๋ณธ์„ ๊ฐ•ํ™”ํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” AI๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด ๊ธฐ์ˆ  ์„ฑ์ˆ™ ๋‹จ๊ณ„๋กœ ๋‚˜์•„๊ฐ€๊ณ  ์กฐ์ง์˜ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•˜๋ฉฐ ํ˜์‹  ์†๋„๋ฅผ ๋†’์ด๋Š” ๋ฐ ์ค‘์š”ํ•œ ๊ธฐ๋ฐ˜์ด ๋œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

SAS์˜ ๋ฐ์ดํ„ฐ ๋ฐ AI ๋ฆฌ๋”๋“ค์ด ์ œ์‹œํ•˜๋Š” 2026๋…„ ์ฃผ์š” ์ „๋ง์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  1. AI ์‹œ์žฅ์˜ ์‹ฌํŒ: ์ฑ…์ž„ ์žˆ๋Š” ํ˜์‹ ์— ๋Œ€ํ•œ ์š”๊ตฌ
    2026๋…„์€ AI ์‹œ์žฅ์˜ ์‹ฌํŒ์ด ์‹œ์ž‘๋˜๋Š” ํ•ด๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค. AI์— ๋Œ€ํ•œ ๊ณผ๋„ํ•œ ๊ธฐ๋Œ€๊ฐ€ ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ์ถฉ๋Œํ•˜๊ณ , ์ฑ…์ž„ ์žˆ๋Š” ํ˜์‹ ๋งŒ์ด ์‚ด์•„๋‚จ๋Š” ์‹œ์ ์ด๋‹ค. ์ผ๊ด€๋œ ROI์™€ ํˆฌ๋ช…ํ•œ ๊ฐ๋…์— ๋Œ€ํ•œ ์š”๊ตฌ๋Š” ์ฆ๊ฐ€ํ•˜๊ณ  ๊ฒ€์ฆ๋˜์ง€ ์•Š์€ ํ—ˆํ™ฉ๋œ ํ”„๋กœ์ ํŠธ๋Š” ํ๊ธฐ๋  ๊ฒƒ์ด๋‹ค. ๊ธฐ๋ณธ์ด ๋˜๋Š” ๋ฐ์ดํ„ฐ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜, ๊ฒฌ๊ณ ํ•œ ๋ชจ๋ธ๋ง, ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ํˆฌ์ž๋ฅผ ์žฌ์ง‘์ค‘์‹œํ‚ฌ ๊ฒƒ์ด๋‹ค. ๊ณผ๋Œ€ํ‰๊ฐ€๋œ ๊ธฐ์ˆ ์€ ์‚ฌ๋ผ์ง€๊ณ , ์ธก์ • ๊ฐ€๋Šฅํ•œ ํšจ๊ณผ์™€ ์šด์˜์˜ ์—„๊ฒฉํ•จ์„ ๊ฐ–์ถ˜ ์ฑ…์ž„ ์žˆ๋Š” AI๊ฐ€ ๊ทธ ์ž๋ฆฌ๋ฅผ ์ฐจ์ง€ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์ด ๊ณผ์ •์ด ์–ผ๋งˆ๋‚˜ ๊ฐ•๋„ ๋†’๊ฒŒ ์ง„ํ–‰๋  ๊ฒƒ์ธ์ง€์™€ AI์˜ ์ง„์ •ํ•œ ๋ฅด๋„ค์ƒ์Šค๊ฐ€ ์–ธ์ œ ์‹œ์ž‘๋  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ์˜๋ฌธ์€ ๊ณ„์†๋  ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค.
  1. AI ์ง€์ถœ์˜ ๋Œ€๊ฒฉ๋ณ€
    ์ฑ—GPT ๋ž˜ํผ(wrapper)์™€ ๊ฐ™์€ ๊ธฐ์ˆ ์— ์ˆ˜์‹ญ์–ต ๋‹ฌ๋Ÿฌ๊ฐ€ ํˆฌ์ž…๋œ ํ›„, CFO๋“ค์€ ์ด์ œ ์‹ค์งˆ์ ์ธ ROI๋ฅผ ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€๋ถ€๋ถ„์˜ ์ƒ์„ฑํ˜• AI ํ”„๋กœ์ ํŠธ์—์„œ ROI ๋‹ฌ์„ฑ์€ ์–ด๋ ค์šธ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. โ€˜AI ํ˜์‹ โ€™์ด๋ผ๋Š” ๋ช…๋ชฉ์œผ๋กœ ์˜ˆ์‚ฐ ์ง‘ํ–‰์ด ์ •๋‹นํ™”๋˜๋˜ ์‹œ๊ธฐ๋Š” ์ง€๋‚ฌ๋‹ค. ์ด์ œย ์ฟผ๋ฆฌ๋‹น ๋น„์šฉ, ์ •ํ™•๋„, ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ์— ๋Œ€ํ•œ ํ™•์ธ๊ณผ ๋ถ„์„์ด ํ•„์ˆ˜๋‹ค. 6~12๊ฐœ์›” ๋‚ด์—ย ๊ตฌ์ฒด์ ์ธ ๋น„์šฉ ์ ˆ๊ฐ, ๋งค์ถœ ์„ฑ์žฅ ๋˜๋Š” ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์„ ์ž…์ฆํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ธฐ์—…์€ AI ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ ์ค‘๋‹จ๋˜๊ฑฐ๋‚˜ ๊ณต๊ธ‰์—…์ฒด๋ฅผ ๊ต์ฒดํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  2. ์—์ด์ „ํ‹ฑ(Agentic) AI๊ฐ€ ์†์ต์— ๋Œ€ํ•œ ์ฑ…์ž„์„ ๊ฐ–๊ฒŒ ๋  ๊ฒƒ
    ํฌ์ถ˜ 500๋Œ€ ๊ธฐ์—…๋“ค์€ 2026๋…„ ๋ง๊นŒ์ง€ ๊ณ ๊ฐ ์ƒํ˜ธ์ž‘์šฉ์˜ 4๋ถ„์˜ 1 ์ด์ƒ์„ ์—์ด์ „ํ‹ฑ ์‹œ์Šคํ…œ์ด ์ž์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ–ˆ๋‹ค. ์ด ์—์ด์ „ํŠธ๋“ค์€ ๋‹จ์ˆœ ์ƒ๋‹ด์„ ๋„˜์–ด ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋งค์ถœ ํšจ๊ณผ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ฌ ๊ฒƒ์ด๋‹ค. ๊ทธ ๊ฒฐ๊ณผ โ€˜์ตœ๊ณ  ์—์ด์ „ํŠธ ์ฑ…์ž„์ž(Chief Agent Officer)โ€™์™€ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์—ญํ• ์ด ์ƒ๊ฒจ๋‚  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๋ฐ˜๋ฉด, ์ž์œจ ์‹œ์Šคํ…œ์ด ๋งค์ถœ์„ ์ฃผ๋„ํ•˜๊ฒŒ ๋˜๋ฉด ๋Œ€๊ทœ๋ชจ โ€˜์—์ด์ „ํŠธ ์žฅ์• โ€™ ๋ฐœ์ƒ ์‹œ ๋ง‰๋Œ€ํ•œ ์—ฌํŒŒ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•œ ๋‹ค์šดํƒ€์ž„์€ ๊ธฐ์—… ๋งค์ถœ์— ์ง์ ‘์ ์ธ ํƒ€๊ฒฉ์„ ์ฃผ๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  3. ์ƒˆ๋กœ์šด ๋™๋ฃŒ, ์—์ด์ „ํ‹ฑ AI
    2026๋…„, ๊ธฐ์—…์€ AI ์—์ด์ „ํŠธ๊ฐ€ ๋” ์ด์ƒ ๋„๊ตฌ๊ฐ€ ์•„๋‹Œ ํŒ€์›์ด ๋˜๋Š” ์ƒˆ๋กœ์šด ์ƒํƒœ๊ณ„๋กœ ์ง„์ž…ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์‚ฌ๋žŒ๊ณผ AI๊ฐ€ ํ˜ผํ•ฉ๋œ ํŒ€์œผ๋กœ ์šด์˜๋˜๋ฉฐ, ์—์ด์ „ํŠธ๋Š” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ํ˜‘๋ ฅ์ž๋กœ์„œ ์—…๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ , ์—…๋ฌด ๋งฅ๋ฝ์„ ๊ณต์œ ํ•˜๋ฉฐ ์‚ฌ๋žŒ๋“ค๊ณผ ํ•จ๊ป˜ ์ง€์†์ ์œผ๋กœ ํ•™์Šตํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  1. AI ๋Œ€์ฒด๋ก ๋ณด๋‹ค AI ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋ก 
    AI๋ฅผ ์‚ฌ์šฉํ•ด ์ผ์ž๋ฆฌ๋ฅผ ์—†์•จ ๊ฒƒ์ธ๊ฐ€, ์•„๋‹ˆ๋ฉด AI๋กœ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ํž˜์„ ์‹ค์–ด ๊ฒฝ์Ÿ ์šฐ์œ„๋ฅผ ์ฐฝ์ถœํ•  ๊ฒƒ์ธ๊ฐ€? 2026๋…„ ๋ฆฌ๋”๋“ค์€ ์ด ๋‘ ๊ฐ€์ง€ ์„ ํƒ์ง€ ์‚ฌ์ด์—์„œ ๊ณ ๋ฏผํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์ ์  ๋” ๋ช…ํ™•ํ•ด์ง€๋Š” ์‚ฌ์‹ค์€ AI๋Š” ์‚ฌ๋žŒ์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์‚ฌ๋žŒ์˜ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๊ธฐ์—…์€ ์ง€์†์ ์ธ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ์ธ๋ ฅ์— ํˆฌ์žํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€๋‹ดํ•˜๊ณ  ์ฃผ๋„์ ์ธ ๋ฆฌ๋”๋ฅผ ํ•„์š”๋กœ ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.
  2. ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๊ฐ€ AI ํŒจ๊ถŒ์˜ ์ƒˆ๋กœ์šด ์ „์žฅ์ด ๋  ๊ฒƒ
    ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋Š” ๋‹จ์ˆœํ•œ ์ž„์‹œ๋ฐฉํŽธ์ด ์•„๋‹ˆ๋ผ, ๋ฐ์ดํ„ฐ ๋ถ€์กฑ, ํ”„๋ผ์ด๋ฒ„์‹œ ์ œํ•œ, ์ปดํ”Œ๋ผ์ด์–ธ์Šค ๋ณ‘๋ชฉ์— ๋งž์„œ๋Š” ์ „๋žต์  ๋ฌด๊ธฐ๋‹ค. 2026๋…„์—๋Š” ๋ฐ์ดํ„ฐ ๊ตฐ๋น„ ๊ฒฝ์Ÿ์ด ๋ฒŒ์–ด์งˆ ๊ฒƒ์ด๋ฉฐ, ๊ธฐ์—…๋“ค์€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ˜„์‹ค ๋ฐ์ดํ„ฐ๋ฟ ์•„๋‹ˆ๋ผ ์–ผ๋งˆ๋‚˜ ํ™•์‹  ์žˆ๊ฒŒ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๋†“๊ณ  ๊ฒฝ์Ÿํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์‹ค์ œ์™€ ๊ฐ™์€ ์ •๊ตํ•จ์„ ๊ฐ–์ถ”๊ณ , ์‹คํ—˜์  ๊ธฐ๋Šฅ์—์„œ ๋ฒ—์–ด๋‚˜ ๋น„์ฆˆ๋‹ˆ์Šค ์šฐ์œ„๋ฅผ ์ฐฝ์ถœํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ์ „ํ™˜์— ์„ฑ๊ณตํ•˜๋Š” ๊ธฐ์—…์ด ์Šน์ž๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.
  3. CIO? ์ด์ œ๋Š” โ€˜์ตœ๊ณ  ํ†ตํ•ฉ ์ฑ…์ž„์ž(Chief Integration Officer)โ€™์˜ ์‹œ๋Œ€
    2026๋…„ CIO๋“ค์ด ์—์ด์ „ํ‹ฑ AI์˜ ๋ฏธ๋ž˜๋ฅผ ์ค€๋น„ํ•˜๋Š” ์ฃผ์—ญ์ด ๋˜๋ฉด์„œ, ๊ธฐ์กด์˜ ๊ธฐ์ˆ  ์ œ๊ณต์ž์—์„œ ์—์ด์ „ํ‹ฑ AI๋ฅผ ์œ„ํ•œ โ€˜ํ†ตํ•ฉ์žโ€™๋กœ ์—ญํ• ์ด ๋‹ฌ๋ผ์งˆ ๊ฒƒ์ด๋‹ค. ์ฆ‰, โ€˜์ตœ๊ณ  ํ†ตํ•ฉ ์ฑ…์ž„์ž(Chief Integration Officer)โ€™๋กœ์˜ ์ „ํ™˜์„ ์˜๋ฏธํ•œ๋‹ค. ์—์ด์ „ํŠธ๊ฐ€ ์ฃผ๋„ํ•˜๋Š” ์„ธ์ƒ์—์„œ IT ์•„ํ‚คํ…์ฒ˜์˜ ๋ฏธ๋ž˜๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด, AI ๊ฑฐ๋ฒ„๋„Œ์Šค, ํ†ตํ•ฉ, ๊ทธ๋ฆฌ๊ณ  ๋ถ€์„œ ๊ฐ„ ๋ฆฌ๋”์‹ญ์ด CIO๋“ค์˜ ์ผ์ƒ ์—…๋ฌด๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค. ย 
  1. ์–‘์ž(Quantum)์— ๊ฑฐ๋Š” ๊ธฐ๋Œ€
    2026๋…„ ์–‘์ž ์‹œ์žฅ์€ ๊ด€๋ จ ๊ธฐ์ˆ ์ด 2030๋…„๊นŒ์ง€ ์ดˆ๊ธฐ ๋‹จ๊ณ„์˜ ๊ฐ€์น˜๋ฅผ ์‹คํ˜„ํ•  ๊ฒƒ์ด๋ผ๋Š” ๊ธฐ๋Œ€๊ฐ๊ณผ ํ•จ๊ป˜ ๋”์šฑ ๋œจ๊ฑฐ์›Œ์งˆ ๊ฒƒ์ด๋‹ค. ํˆฌ์ž์ž๋“ค์€ ํ•˜๋“œ์›จ์–ด์™€ ํฌ์ŠคํŠธ-์–‘์ž ์•”ํ˜ธํ™”์—์„œ ๋ฒ—์–ด๋‚˜ ์†Œํ”„ํŠธ์›จ์–ด์™€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋” ํฐ ๋น„์ค‘์„ ๋‘๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ํ•œํŽธ, ์‹ค์ œ ์–‘์ž ๊ฐ€์น˜๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์†Œํ”„ํŠธ์›จ์–ด ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ณ„์ธต์„ ํฌํ•จํ•ด ์ „์ฒด ์Šคํƒ์„ ํฌ๊ด„ํ•˜๋Š” โ€˜์–‘์ž ์•„ํ‚คํ…์ฒ˜(Quantum Architecture)โ€™๋ผ๋Š” ์šฉ์–ด์— ์ฃผ๋ชฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฏธ๋ž˜์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ์ „๋ฌธ ์ธ๋ ฅ ์ฑ„์šฉ์ด ๊ธ‰์ฆํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.

์ด์ค‘ํ˜ SAS์ฝ”๋ฆฌ์•„ ๋Œ€ํ‘œ์ด์‚ฌ๋Š” โ€œ์ „ ์„ธ๊ณ„์ ์œผ๋กœ AI ํˆฌ์ž์— ๋Œ€ํ•œ ROI์™€ ์‹ ๋ขฐ์„ฑ ํ™•๋ณด ์š”๊ตฌ๊ฐ€ ๋†’์•„์ง€๋Š” ๊ฐ€์šด๋ฐ, ๊ตญ๋‚ด ๊ธฐ์—…๋“ค๋„ AI ๋„์ž…์— ๋Œ€ํ•ด ๋‹จ๊ธฐ์ ยท์‹คํ—˜์  ์ ‘๊ทผ์—์„œ ์ค‘์žฅ๊ธฐ์ ยท์ „๋žต์  ๊ด€์ ์œผ๋กœ ์ „ํ™˜ํ•˜๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๋˜ํ•œ โ€œ๋‹จ์ˆœ ์—…๋ฌด์— ์ ์šฉ๋˜๋˜ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM, Large Language Models) ๊ธฐ๋ฐ˜ ์ƒ์„ฑํ˜• AI์˜ ๋น„์ฆˆ๋‹ˆ์Šค ์ˆ˜์ต ๊ฐœ์„  ํšจ๊ณผ์— ์˜๋ฌธ์„ ์ œ๊ธฐํ•˜๋Š” ์กฐ์ง์ด ๋Š˜์–ด๋‚˜๋ฉด์„œ, ๋Œ€์•ˆ์œผ๋กœ ์—์ด์ „ํ‹ฑ AI๋ฅผ ๊ณ ๋ คํ•˜๋Š” ์›€์ง์ž„์ด ํ™•์‚ฐ๋˜๊ณ  ์žˆ๋‹คโ€๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ทธ๋Š” 2026๋…„ ๊ตญ๋‚ด ์‹œ์žฅ ์ „๋ง์— ๋Œ€ํ•ด โ€œ๊ธˆ์œต๊ถŒ์—์„œ๋Š” ๋ฆฌ์Šคํฌ ๊ด€๋ฆฌ, ๋‚ด๋ถ€ํ†ต์ œ, ALM(์ž์‚ฐยท๋ถ€์ฑ„ ์ข…ํ•ฉ๊ด€๋ฆฌ) ๋“ฑ ์ „๋ฌธ ์˜์—ญ์—์„œ AI ์ ์šฉ์„ ํ™•๋Œ€ํ•ด ์‹ค์งˆ์  ROI๋ฅผ ํ™•๋ณดํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋”์šฑ ํ™œ๋ฐœํ•ด์งˆ ๊ฒƒ์ด๋ฉฐ, ๊ณต๊ณต ๋ถ„์•ผ๋Š” ๋””์ง€ํ„ธํ”Œ๋žซํผ์ •๋ถ€ 2.0์„ ์ค‘์‹ฌ์œผ๋กœ AIยทํด๋ผ์šฐ๋“œยท๋ณด์•ˆ ํˆฌ์ž๊ฐ€ ๊ฐ•ํ™”๋˜๋Š” ๋™์‹œ์—, ์—์ด์ „ํ‹ฑ AI ๊ธฐ๋ฐ˜ ์—…๋ฌด ํšจ์œจํ™”์™€ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์˜ ํ™œ์šฉ์ด AI ํˆฌ์ž์˜ ํ•ต์‹ฌ์ด ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์ด์ค‘ํ˜ ๋Œ€ํ‘œ์ด์‚ฌ๋Š” ๋‚ด๋…„๋„ ์‚ฌ์—…์— ๋Œ€ํ•ด โ€œ๊ธ€๋กœ๋ฒŒ ์„ฑ๊ณต ์‚ฌ๋ก€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตญ๋‚ด ๊ณ ๊ฐ๋“ค์ด AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ํ™•๋ณดํ•˜๊ณ  ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜๋ฅผ ์ฐฝ์ถœํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ธˆ์œตยท๊ณต๊ณต ๋ถ€๋ฌธ ์†”๋ฃจ์…˜๊ณผ ์ „๋ฌธ ์„œ๋น„์Šค๋ฅผ ํ†ตํ•ด ์ ๊ทน ์ง€์›ํ•˜๊ฒ ๋‹คโ€๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

์ฑ„์šฉ๋งŒ์œผ๋ก  ๋ถ€์กฑํ•˜๋‹คยทยทยทCIO์˜ ๋ฆฌ๋”์‹ญ์ด ์ธ์žฌ ์œ ์ง€์— ์ค‘์š”ํ•œ ์ด์œ 

๊ธฐ์ˆ  ์ง์›, ํŠนํžˆ ์ „๋ฌธ ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์ธ์žฌ๋Š” ์—ฌ์ „ํžˆ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ต๋‹ค. Gi๊ทธ๋ฃน์˜ ์ตœ๊ทผ ๊ธ€๋กœ๋ฒŒ IT HR ํŠธ๋ Œ๋“œ ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, ๊ธฐ์—…์˜ 47%๊ฐ€ ์ ํ•ฉํ•œ ์ธ์žฌ๋ฅผ ์ฐพ๊ณ  ์œ ์ง€ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์ง๋ฅ  ์—ญ์‹œ ์—ฌ์ „ํžˆ ๋†’์€ ์ˆ˜์ค€์„ ์œ ์ง€ํ•˜๊ณ  ์žˆ๋‹ค.

๊ธ€๋กœ๋ฒŒ ์กฐ์‚ฌ ์—…์ฒด ์„ธ๊ณ ์Šค(Cegos)๊ฐ€ ์ดํƒˆ๋ฆฌ์•„์˜ ์ •๋ณด์‹œ์Šคํ…œ ์ฑ…์ž„์ž 200๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰ํ•œ ์กฐ์‚ฌ์—์„œ, ์‘๋‹ต์ž์˜ 53%๋Š” IT ์ธ์žฌ ํ™•๋ณด์™€ ์œ ์ง€๊ฐ€ โ€˜๋งค์ผ ์ง๋ฉดํ•˜๋Š” ๋ฌธ์ œโ€™๋ผ๊ณ  ๋‹ตํ–ˆ๋‹ค. IT ๋ถ€์„œ์˜ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๊ณผ์ œ๋กœ๋Š” ์‚ฌ์ด๋ฒ„๋ณด์•ˆ์ด ๊ผฝํ˜”์ง€๋งŒ, ์ด ๋ฌธ์ œ๋Š” ๋‹ค์ˆ˜์˜ CIO๊ฐ€ ์ผ์ • ์ˆ˜์ค€ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋А๋ผ๋Š” ์˜์—ญ์ด์—ˆ๋‹ค. ๋ฐ˜๋ฉด IT ์ธ์žฌ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ž์‹ ํ•œ ๋น„์œจ์€ 8%์— ๋ถˆ๊ณผํ–ˆ๋‹ค. ์ดํƒˆ๋ฆฌ์•„ CIO๋Š” ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ๋‹ค์Œ์œผ๋กœ IT ํŒ€์˜ ์—ญ๋Ÿ‰ ๊ฐœ๋ฐœ๊ณผ ์ธ์žฌ ์œ ์ง€๋ฅผ ์ค‘๋Œ€ํ•œ ๊ณผ์ œ๋กœ ๊ผฝ์•˜์œผ๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ณธ ๋น„์œจ๋„ ๊ฐ๊ฐ 24%์™€ 9%์— ๊ทธ์ณค๋‹ค.

์ดํƒˆ๋ฆฌ์•„ ํ†ต๊ณ„์ฒญ ์ด์Šคํƒ€ํŠธ(Istat)์˜ CIO์ธ ์ฒด์น ๋ฆฌ์•„ ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ์ธ์žฌ๊ฐ€ ์—†์–ด์„œ๊ฐ€ ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ธ์žฌ๋Š” ๋ถ„๋ช…ํžˆ ์žˆ์ง€๋งŒ ์ œ๋Œ€๋กœ ํ‰๊ฐ€๋ฐ›์ง€ ๋ชปํ•œ๋‹ค. ๊ทธ๋ž˜์„œ ๋งŽ์€ ์ด๋“ค์ด ํ•ด์™ธ๋กœ ๋‚˜๊ฐ€๋Š” ๊ธธ์„ ํƒํ•œ๋‹ค. ์ธ์žฌ๋ž€ โ€˜์ ์žฌ์ ์†Œ์— ๋†“์ธ ์‚ฌ๋žŒโ€™์„ ์˜๋ฏธํ•œ๋‹ค. CIO๋ฅผ ํฌํ•จํ•œ ๋ฆฌ๋”๋ผ๋ฉด ์ธ์žฌ๋ฅผ ์•Œ์•„๋ณด๊ณ , ๊ทธ๋“ค์ด ์ธ์ •๋ฐ›๊ณ  ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋А๋ผ๊ฒŒ ํ•˜๋ฉฐ, ์ ์ ˆํ•œ ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•ด ์„ฑ์žฅ์‹œํ‚ฌ ์—ญ๋Ÿ‰์„ ๊ฐ–์ถฐ์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ธ์žฌ ๊ด€๋ฆฌ์˜ ์ฃผ์ฒด๊ฐ€ ๋œ CIO

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๊ฒฐ์†๋ ฅ ์žˆ๊ณ  ๋™๊ธฐ ๋ถ€์—ฌ๋œ ์กฐ์ง์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ ์ธ์žฌ ๊ด€๋ฆฌ ๋ฐฉ๋ฒ•์„ ๋ช…ํ™•ํžˆ ์ œ์‹œํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œCIO๋กœ์„œ ์Šค์Šค๋กœ ์„ค์ •ํ•œ ๋ชฉํ‘œ๋Š” ๋‚ด๋ถ€์™€ ์™ธ๋ถ€์˜ ์„œ๋น„์Šค ์ด์šฉ์ž์—๊ฒŒ ๋” ๋†’์€ ํ’ˆ์งˆ์˜ ๊ฒฐ๊ณผ๋ฌผ์„ ๊ณ„์† ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด์—ˆ๋‹คโ€๋ผ๋ฉฐ, โ€œIT ๋ถ€์„œ๋Š” ์—…๋ฌด ์šด์˜์— ํ•ต์‹ฌ์ ์ธ ๋™๋ ฅ์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹œ์ž‘ํ•œ ํ”„๋กœ์ ํŠธ๋ฅผ ํ™•์‹คํžˆ ๋งˆ๋ฌด๋ฆฌํ•˜๊ณ , ๊ธฐ๊ด€์ด ์ง€์†์ ์œผ๋กœ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์ฒด์ ์ธ ์„ฑ๊ณผ๋ฅผ ๋‚ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋‚˜๋Š” IT ๊ธฐ๋Šฅ ์ž์ฒด๋ฅผ ๊ณ ๋„ํ™”ํ•˜๊ณ , ์ œ๊ณต๋˜๋Š” ์„œ๋น„์Šค์˜ ํ’ˆ์งˆ์„ ๋†’์ด๋ฉฐ, ์กฐ์ง ์šด์˜์˜ ์ ํ•ฉ์„ฑ์„ ํ™•๋ณดํ•˜๊ณ , ๊ตฌ์„ฑ์›์˜ ๋ณต์ง€๋ฅผ ํ–ฅ์ƒํ•˜๋Š” ์—ญํ• ์„ ๋งก๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ด์Šคํƒ€ํŠธ์˜ IT ๋ถ€์„œ๋Š” ํ˜„์žฌ 195๋ช… ๊ทœ๋ชจ๋กœ, ๊ธฐ๊ด€ ์ „์ฒด ์ธ๋ ฅ์˜ ์•ฝ 10%๋ฅผ ์ฐจ์ง€ํ•œ๋‹ค. ์ฝœ๋ผ์‚ฐํ‹ฐ๊ฐ€ 2023๋…„ 10์›” CIO๋กœ ์ž„๋ช…๋œ ์งํ›„ ๊ฐ€์žฅ ๋จผ์ € ํ•œ ์ผ์€, ๊ด€๋ฆฌ ์กฐ์ง์— ๋ฐฐ์น˜๋œ ๋ชจ๋“  ์ธ๋ ฅ์„ ์ง์ ‘ ๋งŒ๋‚˜ ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„๋Š” ์ผ์ด์—ˆ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ2001๋…„๋ถ€ํ„ฐ ์ด์Šคํƒ€ํŠธ์—์„œ ์ผํ•ด์™”๊ณ , ์„œ๋กœ ๋Œ€๋ถ€๋ถ„ ์•Œ๊ณ  ์ง€๋‚ด๋Š” ์‚ฌ์ดโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œIT ๋ถ€์„œ์—์„œ ์—ฌ๋Ÿฌ ์—ญํ• ์„ ๋งก์•„์™”์œผ๋ฉฐ, CIO๊ฐ€ ๋œ ๋’ค์—๋Š” ๋ชจ๋‘์˜ ์˜๊ฒฌ์„ ๊ฒฝ์ฒญํ•˜๋Š” ๋ฐ ์ง‘์ค‘ํ•œ๋‹ค. ์„œ๋กœ ์ž˜ ์•„๋Š” ๋งŒํผ ๋™๋ฃŒ๋“ค์ด ํ˜‘์—…์— ํฐ ๊ธฐ๋Œ€๋ฅผ ๊ฑธ๊ณ  ์žˆ๋‹ค๊ณ  ๋А๋‚€๋‹ค. ๊ทธ๋ž˜์„œ ์†”์งํ•œ ๋Œ€ํ™”๋ฅผ ์ถ”๊ตฌํ•˜๊ณ  ๋ชจํ˜ธํ•จ์„ ํ”ผํ•˜๋ ค๊ณ  ํ•œ๋‹ค. ๋‹ค๋งŒ, ๊ฒฝ์ฒญํ•œ๋‹ค๋Š” ๊ฒŒ ์ฑ…์ž„์„ ๋„˜๊ธด๋‹ค๋Š” ๋œป์€ ์•„๋‹ˆ๋‹ค. ์–ด๋–ค ์ œ์•ˆ์€ ๋ฐ›์•„๋“ค์ด๊ณ  ์–ด๋–ค ์ œ์•ˆ์€ ๊ฑฐ์ ˆํ•˜๋ฉฐ, ์„ ํƒ์—๋Š” ๋‚˜๋ฆ„์˜ ์ด์œ ๋ฅผ ์„ค๋ช…ํ•˜๋ ค๊ณ  ํ•œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๋˜ ๋‹ค๋ฅธ ์กฐ์น˜๋กœ ์˜ค๋ž˜์ „ ์ด์Šคํƒ€ํŠธ์—์„œ ์ง„ํ–‰๋๋˜ โ€˜๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ, ๋‘ ๊ฐ€์ง€ ํ•ด๊ฒฐ์ฑ…โ€™ ํ”„๋กœ๊ทธ๋žจ์„ ๋‹ค์‹œ ๋„์ž…ํ–ˆ๋‹ค. ์ด๋Š” ์ง์›๋“ค์—๊ฒŒ ์ž๋ฐœ์ ์œผ๋กœ ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ  ๋‘ ๊ฐ€์ง€ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์•ˆํ•ด ๋‹ฌ๋ผ๊ณ  ์š”์ฒญํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Š” ์ˆ˜์ง‘๋œ ๋‚ด์šฉ์„ ์ง์ ‘ ๊ฒ€ํ† ํ•ด, ๋Œ€๋ฉด ๋ฏธํŒ…์—์„œ ์˜๊ฒฌ์„ ๊ณต์œ ํ•˜๊ณ  ์ œ์•ˆ์˜ ํƒ€๋‹น์„ฑ์„ ๋…ผ์˜ํ•˜๋ฉฐ ํ›„์† ์กฐ์น˜๊ฐ€ ํ•„์š”ํ•œ ์‚ฌํ•ญ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ๋Š” ์ด ํ”„๋กœ๊ทธ๋žจ์ด ๋™๋ฃŒ๋“ค๊ณผ์˜ ์‹ ๋ขฐ๋ฅผ ๋‹ค์ง€๋Š” ๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ด์—ˆ๋‹ค๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์ผ๋ถ€ ์˜๊ฒฌ์€ ๊ฒฝ๋ ฅ ๊ฐœ๋ฐœ ๊ธฐํšŒ๋‚˜ ๊ธฐ์ˆ ์  ๋ฌธ์ œ์— ๊ด€ํ•œ ๊ฒƒ์ด์—ˆ์ง€๋งŒ, ๊ฐ€์žฅ ๋งŽ์ด ์ œ๊ธฐ๋œ ๋ถˆ๋งŒ์€ ๋‚ด๋ถ€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฌธ์ œ์™€ ์ธ๋ ฅ ๋ถ€์กฑ์ด์—ˆ๋‹ค. ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๋ชจ๋“  ์‚ฌ๋žŒ๊ณผ ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„๋ฉฐ, ์ž์‹ ์ด ๊ฐœ์ž…ํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„๊ณผ ๊ทธ๋ ‡์ง€ ๋ชปํ•œ ๋ถ€๋ถ„์„ ๋ช…ํ™•ํžˆ ์„ค๋ช…ํ–ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๊ณต๊ณต ๋ถ€๋ฌธ์˜ ๊ฒฝ๋ ฅ ์ฒด๊ณ„๋‚˜ ์ฑ„์šฉ์€ ์—„๊ฒฉํ•œ ์ ˆ์ฐจ์— ๋”ฐ๋ผ ์ง„ํ–‰๋˜๊ธฐ ๋•Œ๋ฌธ์— CIO๊ฐ€ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์—ฌ์ง€๊ฐ€ ๊ฑฐ์˜ ์—†๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ๋ชจ๋“  ์ด์Šˆ๋ฅผ ๋Šฅ๋™์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ–ˆ๋‹ค. ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ œ๋ผ๊ธฐ๋ณด๋‹ค ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋ง‰์—ฐํ•œ ์ €ํ•ญ์ฒ˜๋Ÿผ ๋А๊ปด์ง€๋Š” ๋ถ€๋ถ„์— ๋Œ€ํ•ด์„œ๋Š” ๊ตฌ์„ฑ์›์˜ ๋‚ด์  ๋™๊ธฐ์™€ ์ฑ…์ž„๊ฐ์„ ๋Œ์–ด๋‚ด๋Š” ๋ฐ ์ง‘์ค‘ํ–ˆ๋‹ค. ๊ธฐ๊ด€์˜ ์ „๋žต์ด ๋ฌด์—‡์ด๋ฉฐ, ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ์ž๊ฐ€ ์–ด๋–ค ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•˜๋Š” ๊ณผ์ •์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ๊ฒฐ๊ตญ ์‚ฌ๋žŒ๋“ค์€ ์ž์‹ ์ด ์–ด๋–ค ํ™˜๊ฒฝ์—์„œ ์ผํ•˜๊ณ  ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์ž์‹ ์˜ ์ผ์ด ์ „์ฒด ๊ทธ๋ฆผ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์•Œ ๊ถŒ๋ฆฌ๊ฐ€ ์žˆ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์กฐ์ง์˜ ์ฐธ์—ฌ์™€ ๋ชฐ์ž…์€ ํ•˜๋ฃจ์•„์นจ์— ๋งŒ๋“ค์–ด์ง€์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ๋ถ€์„œ์žฅ๊ณผ ์„œ๋น„์Šค ๋งค๋‹ˆ์ €๋ฅผ ํฌํ•จํ•œ ์ง์›๋“ค๊ณผ ์ •๊ธฐ์ ์œผ๋กœ ๋งŒ๋‚˜๋ฉฐ ์†Œํ†ต์„ ์ด์–ด๊ฐ€๊ณ  ์žˆ๋‹ค.

๊ณ ๋ฏผ์ด ๋” ํฐ ์ค‘์†Œ๊ธฐ์—…

์ด์Šคํƒ€ํŠธ์˜ ๊ฒฝ์šฐ IT ๋ถ€์„œ ๊ทœ๋ชจ๊ฐ€ ํฐ ํŽธ์— ์†ํ•˜์ง€๋งŒ, ์ค‘์†Œ๊ธฐ์—…์—์„œ๋Š” CIO๋ฅผ ํฌํ•จํ•ด ๋ช‡ ๋ช… ์•ˆ ๋˜๋Š” ๊ตฌ์„ฑ์›๋งŒ์œผ๋กœ IT ๋ถ€์„œ๋ฅผ ์šด์˜ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ƒ๋‹น ๋ถ€๋ถ„์€ ์™ธ๋ถ€ ์ปจ์„คํ„ดํŠธ๋‚˜ ๋ฒค๋”๊ฐ€ ๋งก์•„ ์ผ์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฐ ๊ตฌ์กฐ์—์„œ๋Š” ์—ฌ๋Ÿฌ ํ”„๋กœ์ ํŠธ์— ๊ฑธ์ณ ์ž์›์„ ์กฐ์œจํ•˜๋Š” ์—…๋ฌด์™€ ์‹ค์ œ IT ์šด์˜ ์—…๋ฌด๋ฅผ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๋ถ€๋‹ด์ด ํฌ๋‹ค. ํด๋ผ์šฐ๋“œ ์•„์›ƒ์†Œ์‹ฑ์€ ํ•˜๋‚˜์˜ ๋ฐฉ๋ฒ•์ด ๋  ์ˆ˜ ์žˆ์ง€๋งŒ, ๋งŽ์€ CIO๊ฐ€ ๋ฒค๋” ์ข…์†์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋‚ด๋ถ€ ์—ญ๋Ÿ‰์„ ๋” ํ™•๋ณดํ•˜๊ธธ ์›ํ•œ๋‹ค.

IT ์ธ๋ ฅ์ด 3๋ช…๋ฟ์ธ ํ•œ ์ค‘์†Œ ์˜๋ฃŒ๊ธฐ์—… CIO๋Š” โ€œ์ธ์žฌ๋ฅผ ๋Œ์–ด์˜ค๋Š” ๊ฒƒ๋„, ๋ถ™์žก์•„๋‘๋Š” ๊ฒƒ๋„ ์–ด๋ ค์›Œ ๊ฒฐ๊ตญ ์•„์›ƒ์†Œ์‹ฑ์„ ํ•  ์ˆ˜๋ฐ–์— ์—†๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์—…๋ฌด๋ฅผ ์™ธ๋ถ€๋กœ ๋„˜๊ฒจ ๋‚ด๋ถ€ ์ž์›์„ ํ™•๋ณดํ•˜๋ ค๋ฉด ํšŒ์‚ฌ์˜ ๋…ธํ•˜์šฐ๊ฐ€ ๋น ์ ธ๋‚˜๊ฐˆ ์œ„ํ—˜๋„ ๊ฐ์ˆ˜ํ•ด์•ผ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ง€๊ธˆ์œผ๋กœ์„  ๋‹ค๋ฅธ ์„ ํƒ์ง€๊ฐ€ ์—†๋‹ค. ๋Œ€๊ธฐ์—… ์ˆ˜์ค€์˜ ์—ฐ๋ด‰์„ ์ œ์‹œํ•  ์ˆ˜ ์—†๊ณ , ์ด์ง์ด ์žฆ์€ IT ์ธ์žฌ์—๊ฒŒ ๊พธ์ค€ํžˆ ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ์‚ฌ๋žŒ์„ ๋ฝ‘์•„ ๊ต์œกํ•˜๊ณ , ์กฐ๊ธˆ์”ฉ ์„ฑ์žฅํ•˜๋Š” ๋ชจ์Šต์„ ์ง€์ผœ๋ณด๋‹ค๊ฐ€ ๊ฒฐ๊ตญ ๋– ๋‚˜๋Š” ์ƒํ™ฉ์ด ๋ฐ˜๋ณต๋˜๊ณ  ์žˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์˜๋ฃŒ ์‚ฐ์—…์€ ์ „๋ฌธ์„ฑ์ด ๋งค์šฐ ๋†’์•„ ํ•„์š”ํ•œ ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์‚ฌ๋žŒ์ด ๋“œ๋ฌผ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ธฐ์ˆ  ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ˜ ์ธ์žฌ์—๊ฒŒ ์‹œ์žฅ์€ ์–ธ์ œ๋‚˜ ๋งค๋ ฅ์ ์ธ ์กฐ๊ฑด์„ ๋‚ด์„ธ์šด๋‹ค. ํŠนํžˆ ๋ฏผ๊ฐ„ ๊ธฐ์—…์€ ์ฑ„์šฉ์˜ ์œ ์—ฐ์„ฑ๊ณผ ๋‹ค์–‘ํ•œ ๊ฒฝ๋ ฅ ๊ฒฝ๋กœ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด ๊ณต๊ณต ๊ธฐ๊ด€๋ณด๋‹ค ์ธ์žฌ ์œ ์น˜๊ฐ€ ํ›จ์”ฌ ์‰ฝ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ๊ณต๊ณต ๋ถ€๋ฌธ์€ ๋ฏผ๊ฐ„ ๊ธฐ์—…์ด ์ˆ˜์ต์„ฑ์ด ๋‚ฎ๋‹ค๊ณ  ํŒ๋‹จํ•ด ํˆฌ์žํ•˜์ง€ ์•Š๋Š” ์ฃผ์ œ๋ฅผ ์—ฐ๊ตฌํ•˜๊ณ , ํƒ๊ตฌํ•˜๊ณ , ๊นŠ์ด ํŒŒ๊ณ ๋“ค ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ณต๊ณต ๊ธฐ๊ด€์€ ๊ณต๋™์ฒด์˜ ์ด์ต์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ , ์žฅ๊ธฐ์ ์ธ ํˆฌ์ž๋ฅผ ๊ฐ๋‹นํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ–๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

์ธ์žฌ ์œ ์ง€์˜ ํ•ต์‹ฌ์ธ โ€˜๊ต์œกโ€™

์„ธ๊ณ ์Šค์˜ ๊ธ€๋กœ๋ฒŒ ์ง€ํ‘œ์— ๋”ฐ๋ฅด๋ฉด, CIO๋Š” IT ์ˆ˜์š”๋ฅผ ์ถฉ์กฑํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ธ์žฌ ์ฑ„์šฉ๊ณผ ๊ธฐ์กด ํŒ€์˜ ๊ต์œก์„ ์šฐ์„ ์ˆœ์œ„๋กœ ๋‘๊ณ  ์žˆ๋‹ค. ์ด๋•Œ ์žฌ๊ต์œก๊ณผ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋Š” ์ธ์žฌ ํ™•๋ณด์™€ ์œ ์ง€ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ฌ๋Ÿฌ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ๋‹ค.

์„ธ๊ณ ์Šค ์ดํƒˆ๋ฆฌ์•„์˜ ๋น„์ฆˆ๋‹ˆ์Šค ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜ ๋ฐ ์‹คํ–‰ ์ฑ…์ž„์ž ์—๋งˆ๋ˆ„์—˜๋ผ ํ”ผ๋ƒํƒ€๋กœ๋Š” โ€œ์‹œ์žฅ์ด ๋งค์šฐ ๊ฒฝ์Ÿ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ์ธ์žฌ๋ฅผ ์œ ์ง€ํ•˜๋ ค๋ฉด ์ด์ง์„ ๋ง‰์„ ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ๊ธฐ์—…์ด ์ถฉ๋ถ„ํ•œ ๋ณด์ƒ๊ณผ ํ•จ๊ป˜ ์ž๊ทน์ ์ด๊ณ  ๋ณด๋žŒ ์žˆ๋Š” ํ™˜๊ฒฝ์„ ์กฐ์„ฑํ•˜๋ฉด, ๊ตฌ์„ฑ์› ์—ญ์‹œ ๋‹ค๋ฅธ ๊ธฐํšŒ๋ฅผ ์ฐพ๋Š” ๋Œ€์‹  ํ˜„์žฌ ์—…๋ฌด์— ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งŽ์€ ์ง์›์ด ๊ฐ๋‹นํ•˜๊ธฐ ์–ด๋ ค์šด ์—…๋ฌด๋ฅผ ๊ณผ๋„ํ•˜๊ฒŒ ๋– ์•ˆ๊ณ  ์žˆ๋‹ค๊ณ  ๋А๋ผ๋Š”๋ฐ, ์ด๋“ค์ด ํŠนํžˆ ๊ฐ€์น˜๊ฐ€ ๋†’์€๋ฐ๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ง€์›์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ํšŒ์‚ฌ๊ฐ€ ์ด๋“ค์„ ์ง€์›ํ•  ์‹ ๊ทœ ์ธ๋ ฅ์„ ์ฑ„์šฉํ•˜๊ฑฐ๋‚˜ ๊ต์œก์— ํˆฌ์žํ•˜๋ฉด ์‹ฌ๋ฆฌ์  ์•ˆ์ •๊ฐ์„ ์กฐ์„ฑํ•˜๊ณ  ์ถฉ์„ฑ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋‹คโ€๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

์‹ค์ œ๋กœ ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” ์กฐ์ง์˜ ๊ท ํ˜• ์žˆ๋Š” ์šด์˜๊ณผ ๊ด€๋ฆฌ ์—ญ๋Ÿ‰์„ ๋’ท๋ฐ›์นจํ•˜๋Š” โ€˜์ง€์†์  ํ•™์Šตโ€™์„ ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธด๋‹ค. IT ๊ต์œก ์˜ˆ์‚ฐ์€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์ง€๋งŒ, ๊ตฌ์„ฑ์›์ด ์ œ๊ธฐํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•  ํ˜„์‹ค์  ๋Œ€์•ˆ์€ ์ผ๋ถ€ ๋งˆ๋ จ๋ผ ์žˆ๋‹ค.

๋‹ค๋งŒ ์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ์ด๋Ÿฐ ๊ฒฝ์šฐ์—๋Š” ํ™•๊ณ ํ•œ ์˜์ง€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ธฐ๊ด€์ด ํˆฌ์ž…ํ•œ ๋น„์šฉ์ด ์žˆ๋Š” ๋งŒํผ ๊ต์œก์€ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด์•ผ ํ•œ๋‹ค. ์‚ฌ์ด๋ฒ„๋ณด์•ˆ์ฒ˜๋Ÿผ ๋ณ€ํ™”๊ฐ€ ๋น ๋ฅธ ์˜์—ญ์€ ๋” ํฐ ํˆฌ์ž๋„ ์š”๊ตฌ๋œ๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๋ฆฌ๋”์‹ญ์˜ ํ•„์š”์„ฑ

CIO๋Š” ๊ตฌ์„ฑ์›์„ ์ œ๋Œ€๋กœ ์ง€์›ํ•˜๊ณ , ๊ถŒํ•œ์„ ๋ถ€์—ฌํ•˜๋ฉฐ, ๋™๊ธฐ๋ฅผ ๋†’์ด๋Š” ์—…๋ฌด๋ฅผ ๋ช…ํ™•ํžˆ ๋ถ€์—ฌํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์„ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๋ณต์ง€ ์ œ๋„๋ฅผ ๋งˆ๋ จํ•˜๊ธฐ ์œ„ํ•ด HR ๋ถ€์„œ์™€ ๊ธด๋ฐ€ํžˆ ํ˜‘๋ ฅํ•˜๋Š” ๊ฒƒ๋„ ํ•„์ˆ˜ ์š”์†Œ๋กœ ๊ผฝํžŒ๋‹ค.

Gi๊ทธ๋ฃน ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, ์ดํƒˆ๋ฆฌ์•„ IT ๊ตฌ์ง์ž๊ฐ€ ์ฑ„์šฉ ๊ธฐ์—…์„ ์„ ํƒํ•  ๋•Œ ์šฐ์„ ์ˆœ์œ„๋กœ ๊ณ ๋ คํ•˜๋Š” ์š”์†Œ๋Š” ๊ธ‰์—ฌ, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ทผ๋ฌด ํ˜•ํƒœ, ์ผ๊ณผ ์ƒํ™œ์˜ ๊ท ํ˜•, ๊ณผ๋„ํ•œ ์ŠคํŠธ๋ ˆ์Šค๊ฐ€ ์—†๋Š” ์ง๋ฌด, ๊ฒฝ๋ ฅ ๊ฐœ๋ฐœ ๋ฐ ์„ฑ์žฅ ๊ธฐํšŒ ์ˆœ์ด์—ˆ๋‹ค.

๋‹ค๋งŒ ์ธ์žฌ ๊ด€๋ฆฌ๋ผ๋Š” ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋˜ ๋‹ค๋ฅธ ์š”์†Œ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. CIO ์Šค์Šค๋กœ ์ž์‹ ์˜ ๋ฆฌ๋”์‹ญ ์—ญํ• ์„ ๋” ๋ช…ํ™•ํžˆ ์ž๊ฐํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํ˜„์žฌ ์ดํƒˆ๋ฆฌ์•„ IT ์ฑ…์ž„์ž๋“ค์€ ๋ฆฌ๋”์‹ญ ๊ด€๋ จ ์š”์†Œ๋ฅผ ํ•ต์‹ฌ ์—ญ๋Ÿ‰ ์ค‘ ๊ฐ€์žฅ ๋‚ฎ์€ ์ˆœ์œ„์— ๋‘๊ณ  ์žˆ๋‹ค. ์„ธ๊ณ ์Šค ์กฐ์‚ฌ์—์„œ๋Š” ๊ธฐ์ˆ  ์ „๋ฌธ์„ฑ, ์ „๋žต์  ๋น„์ „, ํ˜์‹  ์—ญ๋Ÿ‰์ด ์ตœ์šฐ์„ ์œผ๋กœ ๊ผฝํžŒ ๋ฐ˜๋ฉด, ๋ฆฌ๋”์‹ญ์€ ํ•œ์ฐธ ๋’ค๋กœ ๋ฐ€๋ ธ๋‹ค. ํ•˜์ง€๋งŒ CIO์˜ ๋ฆฌ๋”์‹ญ์€ ์กฐ์ง ์šด์˜์˜ ๊ทผ๊ฐ„์ด์–ด์•ผ ํ•œ๋‹ค. ์ด๋Š” ํŠน์ • ๊ฒฐ์ •์— ์˜๊ฒฌ ์ฐจ์ด๊ฐ€ ์žˆ์„ ๋•Œ์—๋„ ๋ณ€ํ•จ์—†์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค.

์ฝœ๋ผ์‚ฐํ‹ฐ๋Š” โ€œ๋ฆฌ๋”๋กœ์„œ ์—…๋ฌด ๊ณต๊ฐ„์—์„œ์˜ ์กด์žฌ๊ฐ์„ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•œ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋Š” โ€œ์ด์Šคํƒ€ํŠธ๋Š” ์˜ค๋ž˜์ „๋ถ€ํ„ฐ ์žฌํƒ ๊ทผ๋ฌด์™€ ์Šค๋งˆํŠธ ์—…๋ฌด๋ฅผ ์ œ๋„ํ™”ํ•ด ๋ˆ„๊ตฌ๋‚˜ ํ•„์š”ํ•˜๋ฉด ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ์ธ์ ์œผ๋กœ๋Š” ์‚ฌ๋ฌด์‹ค์—์„œ ์ผํ•˜๋Š” ๊ฒƒ์„ ์„ ํ˜ธํ•˜์ง€๋งŒ, ์‚ฌ์ƒํ™œ๊ณผ ์—…๋ฌด์˜ ๋ฐธ๋Ÿฐ์Šค๋ฅผ ์กด์ค‘ํ•˜๋ฉฐ ์œ ์—ฐ ๊ทผ๋ฌด์— ๋ฐ˜๋Œ€ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋‹ค๋งŒ ๋‚˜๋Š” ๋งค์ผ ํ˜„์žฅ์— ๋‚˜์˜จ๋‹ค. ๋™๋ฃŒ๋“ค๋„ ๋‚ด๊ฐ€ ์ด๊ณณ์— ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ๊ณ  ์žˆ๋‹คโ€๋ผ๊ณ  ์ „ํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

ํ•œ๊ตญ-Arm, ๋ฐ˜๋„์ฒดยทAI ์ธ์žฌ 1,400๋ช… ์–‘์„ฑ MOU ์ฒด๊ฒฐ

์ด๋ฒˆ MOU๋Š” ๊ฐ™์€ ๋‚  ์ด์žฌ๋ช… ๋Œ€ํ†ต๋ น์ด ์†Œํ”„ํŠธ๋ฑ…ํฌ ์†์ •์˜ ํšŒ์žฅ, Arm์˜ ๋ฅด๋„ค ํ•˜์Šค CEO์™€ ๋ฉด๋‹ดํ•œ ๊ฒƒ์„ ๊ณ„๊ธฐ๋กœ ์ถ”์ง„๋œ ๊ฒƒ์œผ๋กœ, ํ•œ๊ตญ๊ณผ ์†Œํ”„ํŠธ๋ฑ…ํฌยทArm ๊ฐ„ ํ˜‘๋ ฅ ํ™•๋Œ€ ๊ฐ€๋Šฅ์„ฑ์„ ๋…ผ์˜ํ•œ ๋ฐ ๋”ฐ๋ฅธ ๊ฒƒ์ด๋‹ค.

ํ˜‘์•ฝ์—๋Š” โ–ฒ์‚ฐ์—… ๋งž์ถคํ˜• ์ธ์žฌ 1,400๋ช… ์–‘์„ฑ โ–ฒ๊ธฐ์ˆ  ๊ต๋ฅ˜ ๋ฐ ์ƒํƒœ๊ณ„ ๊ฐ•ํ™” โ–ฒ๋Œ€ํ•™ ๊ฐ„ ์—ฐ๊ณ„ ํ™•๋Œ€ โ–ฒR&D ํ˜‘๋ ฅ ๋“ฑ์ด ํฌํ•จ๋๋‹ค. ์‚ฐ์—…๋ถ€์™€ Arm์€ ํ›„์† ๋…ผ์˜๋ฅผ ์œ„ํ•œ ์‹ค๋ฌดํ˜‘์˜์ฒด๋ฅผ ๊ตฌ์„ฑํ•ด ์„ธ๋ถ€ ์ถ”์ง„ ๋ฐฉ์•ˆ์„ ๋งˆ๋ จํ•  ๊ณ„ํš์ด๋‹ค.

ํŠนํžˆ ์‚ฐ์—…๋ถ€๋Š” Arm๊ณผ ํ•จ๊ป˜ โ€˜Arm ์Šค์ฟจ(Arm School, ๊ฐ€์นญ)โ€™์„ ์„ค๋ฆฝํ•ด 2026๋…„๋ถ€ํ„ฐ 2030๋…„๊นŒ์ง€ ์•ฝ 1,400๋ช…์˜ IP ์„ค๊ณ„ ์ „๋ฌธ ์ธ๋ ฅ์„ ์–‘์„ฑํ•œ๋‹ค๋Š” ๊ตฌ์ƒ์ด๋‹ค. Arm์€ ์• ํ”Œยท๊ตฌ๊ธ€ยทMS ๋“ฑ ๊ธ€๋กœ๋ฒŒ ๋น…ํ…Œํฌ ๋ฐ ์‚ผ์„ฑยท์—”๋น„๋””์•„ยทํ€„์ปด ๋“ฑ ์ฃผ์š” ๋ฐ˜๋„์ฒด ๊ธฐ์—…์ด ํ™œ์šฉํ•˜๋Š” ํ•ต์‹ฌ ์„ค๊ณ„ ํ”Œ๋žซํผ์œผ๋กœ, ์ •๋ถ€๋Š” ์ด๋ฒˆ ํ˜‘๋ ฅ์ด ๊ตญ๋‚ด ์‹œ์Šคํ…œ ๋ฐ˜๋„์ฒด ๊ฒฝ์Ÿ๋ ฅ ๊ฐ•ํ™”์— ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค.

๊ณต์‹ ์ž…์žฅ๋ฌธ์— ๋”ฐ๋ฅด๋ฉด ์‚ฐ์—…๋ถ€๋Š” ๋ฐ˜๋„์ฒด ํŠน์„ฑํ™” ๋Œ€ํ•™์› ์ง€์ •์„ ํฌํ•จํ•œ ๊ด€๋ จ ์ ˆ์ฐจ๋ฅผ ์ฐจ์งˆ ์—†์ด ์ถ”์ง„ํ•  ๊ณ„ํš์ด๋ฉฐ, ๊ด‘์ฃผ๊ณผํ•™๊ธฐ์ˆ ์›์„ ์šฐ์„  ๊ฒ€ํ†  ๋Œ€์ƒ์— ๋‘๊ณ  ์žˆ๋‹ค.

๊น€์ •๊ด€ ์‚ฐ์—…๋ถ€ ์žฅ๊ด€์€ โ€œ์ด๋ฒˆ ์–‘ํ•ด๊ฐ์„œ๋ฅผ ํ†ตํ•ด AI ๋ฐ˜๋„์ฒด ์‚ฐ์—…์„ ์ด๋Œ ํ•ต์‹ฌ ์ธ๋ ฅ ์–‘์„ฑ ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ–ˆ๋‹คโ€๋ฉฐ โ€œAI ์‹œ๋Œ€์— ๋Œ€๋น„ํ•ด ๊ธ€๋กœ๋ฒŒ ๊ธฐ์—…๋“ค๊ณผ์˜ ํ˜‘๋ ฅ์„ ์ง€์† ํ™•๋Œ€ํ•˜๊ฒ ๋‹คโ€๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

ํ•œํŽธ, Arm์˜ ์ง€๋ถ„ ์•ฝ 90%๋ฅผ ๋ณด์œ ํ•œ ์ผ๋ณธ ์†Œํ”„ํŠธ๋ฑ…ํฌ์˜ ์†์ •์˜ ํšŒ์žฅ์€ ์ด๋ฒˆ ํ˜‘์•ฝ์„ ์œ„ํ•œ ์ ‘๊ฒฌ์—์„œ โ€œ์•ž์œผ๋กœ ๋ชจ๋“  ๊ตญ๊ฐ€์™€ ๊ธฐ์—…๋“ค์€ ASI ์‹œ๋Œ€๋ฅผ ์ค€๋น„ํ•˜์—ฌ์•ผ ํ•˜๊ณ , ๊ตญ๋ฏผ๋“ค์—๊ฒŒ ๋ณดํŽธ์  ์ ‘๊ทผ๊ถŒ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ์—ญ๋Ÿ‰์„ ์ง‘์ค‘ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๋ฉฐ โ€œASI๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—๋„ˆ์ง€, ๋ฐ˜๋„์ฒด, ๋ฐ์ดํ„ฐ, ๊ต์œก์˜ ๋„ค ๊ฐ€์ง€ ์ž์›์ด ํ•„์ˆ˜์ โ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์† ํšŒ์žฅ์€ ๋˜ํ•œ ํ•œ๊ตญ์˜ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•  ๋•Œ, ASI ๊ตฌ์ถ•์„ ์œ„ํ•ด์„œ๋Š” ๋ฐ์ดํ„ฐ์„ผํ„ฐ์˜ ๋Œ€ํญ์ ์ธ ์ฆ์„ค์ด ํ•„์š”ํ•˜๋ฉฐ, ์ด๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ๋’ท๋ฐ›์นจํ•  ์ˆ˜ ์žˆ๋Š” ์—๋„ˆ์ง€ ํ™•๋ณด์— ๋”์šฑ ํž˜์จ์•ผ ํ•œ๋‹ค๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.
jihyun.lee@foundryco.com

์ผ๋ฌธ์ผ๋‹ต | ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ CIO๊ฐ€ ๋งํ•˜๋Š” โ€˜CIO์˜ ์—ญํ• ๊ณผ ๋งค๋ ฅโ€™

Q: ์—”์ง€๋‹ˆ์–ด๋กœ์„œ์˜ ๊ฒฝ๋ ฅ์„ ์‹œ์ž‘ํ•œ ์ดˆ๊ธฐ ์‹œ์ ˆ๊ณผ, ์ดํ›„ ์ปค๋ฆฌ์–ด์˜ ๋ฐฉํ–ฅ์„ ๋ฐ”๊พธ๊ฒŒ ๋œ ๊ณ„๊ธฐ๋Š” ๋ฌด์—‡์ธ๊ฐ€?
A: 1989๋…„ ๋‚˜๋Š” ๋ฏธ์“ฐ๋น„์‹œ๊ฐ€์„ธ์ด(ํ˜„ ๋ฏธ์“ฐ๋น„์‹œ์ผ€๋ฏธ์ปฌ)์— ์ƒ์‚ฐ๊ธฐ์ˆ  ์—”์ง€๋‹ˆ์–ด๋กœ ์‹ ์ž… ์ž…์‚ฌํ–ˆ๋‹ค. ๋ฐฐ์น˜๋œ ๊ณณ์€ ์˜ค์นด์•ผ๋งˆํ˜„ ๊ตฌ๋ผ์‹œํ‚ค์‹œ์˜ ๋ฏธ์ฆˆ์‹œ๋งˆ ์‚ฌ์—…์†Œ๋กœ, ๋Œ€๊ทœ๋ชจ ์„์œ ยทํ™”ํ•™ ์‚ฐ์—…๋‹จ์ง€์—์„œ ํ•„๋“œ ์—”์ง€๋‹ˆ์–ด๋ง ์—…๋ฌด๋ฅผ ๋งก์œผ๋ฉฐ ์ปค๋ฆฌ์–ด์˜ ์ฒซ๊ฑธ์Œ์„ ๋‚ด๋””๋Ž ๋‹ค.

์ „ํ™˜์ ์€ 1996๋…„์— ์ฐพ์•„์™”๋‹ค. ๋ฏธ๊ตญ ๋™๋ถ€์˜ ๋ณด์Šคํ„ด๊ณผ ์„œ๋ถ€ ์ƒŒํ”„๋ž€์‹œ์Šค์ฝ”์— ์‹ ๊ทœ ๊ฑฐ์ ์„ ์„ค๋ฆฝํ•œ๋‹ค๋Š” ๊ณ„ํš์ด ์ถ”์ง„๋˜๋ฉด์„œ, ๋ฏธ ์„œ๋ถ€ ๊ฑฐ์ ์˜ ์ดˆ๊ธฐ ๋ฉค๋ฒ„๋กœ ์„ ๋ฐœ๋ผ ์‹ค๋ฆฌ์ฝ˜๋ฐธ๋ฆฌ์— ์ฃผ์žฌํ•˜๊ฒŒ ๋๋‹ค. ๋‹น์‹œ์—๋Š” ์œˆ๋„์šฐ 95์˜ ๋“ฑ์žฅ, ์ธํ„ฐ๋„ท์˜ ๋Œ€์ค‘ํ™”, e๋น„์ฆˆ๋‹ˆ์Šค๊ฐ€ ๋ง‰ ํƒœ๋™ํ•˜๋˜ ์‹œ๊ธฐ์˜€๋‹ค. ๋ฏธ๊ตญ ์ „์ฒด ํˆฌ์ž๊ธˆ์˜ ์•ฝ 3๋ถ„์˜ 1์ด ๋ชจ์ธ๋‹ค๋Š”, ์„ธ๊ณ„ ์ตœ์ „์„ ์˜ ๊ธฐ์ˆ ๊ณผ ์ž๋ณธ์ด ์ง‘๊ฒฐํ•œ ํ˜„์žฅ์— ๋ชธ์„ ๋‘๊ฒŒ ๋œ ๊ฒƒ์ด๋‹ค.

3๋…„๊ฐ„์˜ ์ฃผ์žฌ๋ฅผ ๋งˆ์น˜๊ณ  ๋ฏธ์ฆˆ์‹œ๋งˆ๋กœ ๋ณต๊ท€ํ•ด ๋‹ค์‹œ ์ƒ์‚ฐ๊ธฐ์ˆ  ์—…๋ฌด๋ฅผ ๋งก์•˜์ง€๋งŒ, ๋งˆ์Œ ์†์—๋Š” โ€˜๋Œ์•„๊ฐ€๊ธฐ ์–ด๋ ค์šด ์„ธ๊ณ„๋ฅผ ๋ณด์•„๋ฒ„๋ ธ๋‹คโ€™๋Š” ๊ฐ๊ฐ์ด ์ž๋ฆฌ ์žก์•˜๋‹ค. ์‹ค๋ฆฌ์ฝ˜๋ฐธ๋ฆฌ์—์„œ ๊ฒฝํ—˜ํ•œ ์†๋„๊ฐ, ํ˜์‹ , ๋ฏธ๋ž˜๋ฅผ ํ–ฅํ•œ ๋„์ „์ •์‹ ์„ ์•Œ๊ณ  ๋‚œ ๋’ค์—๋Š” ์ด์ „์˜ ์ผ์ƒ์œผ๋กœ ๋ณต๊ท€ํ•  ์ˆ˜ ์—†์—ˆ๋‹ค.

๊ฒฐ๊ตญ ์ €๋Š” ์Šค์Šค๋กœ ์ง€์›ํ•ด ์ •๋ณด์‹œ์Šคํ…œ ๋ถ€๋ฌธ์œผ๋กœ ๋ถ€์„œ๋ฅผ ์˜ฎ๊ธฐ๊ธฐ๋กœ ํ–ˆ๋‹ค. ์ดํ›„ DX๋ฅผ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ํ”„๋กœ์ ํŠธ๋ฅผ ๋‹ด๋‹นํ•˜๋ฉฐ ๊ธฐ์ˆ ๊ณผ ๊ฒฝ์˜์„ ์ž‡๋Š” ์—ญํ• ์„ ํ•˜๊ฒŒ ๋๋‹ค. ๊ทธ๋ฆฌ๊ณ  2021๋…„, ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์˜ CIO๋กœ ์ž๋ฆฌ๋ฅผ ์˜ฎ๊ฒผ๊ณ , ์ง€๊ธˆ์€ ๊ธฐ์—…์˜ ๋””์ง€ํ„ธ ์ „๋žต์„ ์ด๋„๋Š” ์œ„์น˜์—์„œ ๋ฏธ๋ž˜๋ฅผ ํ–ฅํ•œ ๋„์ „์„ ์ด์–ด๊ฐ€๊ณ  ์žˆ๋‹ค.

Q: ERP ํ”„๋กœ์ ํŠธ๋ฅผ ์„ธ ๋ฒˆ์ด๋‚˜ ์ถ”์ง„ํ–ˆ๋‹ค๊ณ  ๋“ค์—ˆ๋‹ค. ์–ด๋–ค ์ ์ด ๊ฐ€์žฅ ์–ด๋ ค์› ๋‚˜?
A: ๋‚˜์˜ ๊ฒฝ๋ ฅ์—์„œ ๊ฐ€์žฅ ํฐ ๋„์ „์€ ๋‹จ์—ฐ ERP ๋„์ž… ํ”„๋กœ์ ํŠธ์˜€๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ์ด ์„ธ ๋ฒˆ, ์ค‘๋‹จ ์œ„๊ธฐ์— ๋น ์ง„ ERP ํ”„๋กœ์ ํŠธ๋ฅผ ๋‹ค์‹œ ์‚ด๋ ค๋‚ธ ๊ฒฝํ—˜์ด ์žˆ๋‹ค. ๊ฐ๊ฐ์˜ ํ”„๋กœ์ ํŠธ๋Š” ์ „์ž„์ž๊ฐ€ ๋‚œํ•ญ์— ๋น ์ ธ ์‚ฌ์‹ค์ƒ ๋ฉˆ์ถฐ์„  ์ƒํƒœ์—์„œ ์ œ๊ฐ€ ํˆฌ์ž…๋ผ, ์ „์ฒด ๊ตฌ์กฐ๋ฅผ ์ •๋น„ํ•˜๊ณ  ๋‹ค์‹œ ๊ถค๋„์— ์˜ฌ๋ ค ์™„์„ฑ๊นŒ์ง€ ์ด๋Œ์–ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด์—ˆ๋‹ค. ๊ธˆ์•ก๋„ ๊ทœ๋ชจ๋„ ๋ฐฉ๋Œ€ํ•ด, CIO๋กœ์„œ์˜ ์‚ฌ๊ณ ๋ฐฉ์‹๊ณผ ํ–‰๋™ ์›์น™์„ ํ˜•์„ฑํ•œ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ฒฝํ—˜์ด์—ˆ๋‹ค.

๋‚ด ๊ฒฝ๋ ฅ์—์„œ ๋…ํŠนํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด, ์ƒ์‚ฐ๊ธฐ์ˆ ์—์„œ IT๋กœ ์ปค๋ฆฌ์–ด๋ฅผ ์ „ํ™˜ํ•œ ์ , ๊ทธ๋ฆฌ๊ณ  ์‹ค๋ฆฌ์ฝ˜๋ฐธ๋ฆฌ ํ•œ๊ฐ€์šด๋ฐ์„œ ์ผํ•œ ๊ฒฝํ—˜์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ•œ๋‹ค. ๊ท€๊ตญ ํ›„์—๋Š” ๊ธฐ์—… ๋‚ด๋ถ€ ์—…๋ฌด์— ๊ทธ์น˜์ง€ ์•Š๊ณ  ๋‹ค์–‘ํ•œ ์—…๊ณ„์—์„œ ๊ฒฝํ—˜์„ ์Œ“์•˜๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์„์œ ํ™”ํ•™๊ณต์—…ํ˜‘ํšŒ์—์„œ์˜ IT ๊ด€๋ จ ํ™œ๋™, ๊ธฐ์—… ๊ฐ„ ๊ฑฐ๋ž˜์˜ ์ „์žํ™”(EDI) ์ถ”์ง„, ๊ตญ๋‚ด์™ธ ๋Œ€ํ˜• ๋™์ข… ๊ธฐ์—… 22๊ฐœ์‚ฌ๊ฐ€ ์ฐธ์—ฌํ•œ ๊ธ€๋กœ๋ฒŒ ํ™”ํ•™์ œํ’ˆ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ ๊ตฌ์ถ• ๋“ฑ ์—…๊ณ„ ์ „์ฒด๋ฅผ ์•„์šฐ๋ฅด๋Š” ํ”„๋กœ์ ํŠธ์—๋„ ๊ด€์—ฌํ–ˆ๋‹ค.

โ€˜ํ˜„์žฅ๊ณผ ๋ณธ์‚ฌโ€™, โ€˜๊ตญ๋‚ด์™€ ํ•ด์™ธโ€™, โ€˜์—…๋ฌด์™€ ITโ€™ ๊ฐ™์ด ๊ฒฝ๊ณ„๋ฅผ ๋„˜๋‚˜๋“ค๋ฉฐ ์ผํ•ด์˜จ ๊ฒฝํ—˜์€ ํ˜„์žฌ CIO๋กœ์„œ์˜ ์‹œ์•ผ์™€ ํŒ๋‹จ๋ ฅ์œผ๋กœ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค.

์ œ๊ฐ€ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ๊ฒƒ์€ โ€˜๋ˆˆ์•ž์˜ ์ผ์— ์ง‘์ค‘ํ•ด ์ตœ์„ ์„ ๋‹คํ•˜๋Š” ๊ฒƒโ€™์ด๋‹ค. ์ง€๋‚˜์น˜๊ฒŒ ๊ตฌ์ฒด์ ์ธ ๋ชฉํ‘œ๋ฅผ ์„ธ์šฐ๋ฉด ์˜คํžˆ๋ ค ์žฅ๊ธฐ์  ๊ฐ€๋Šฅ์„ฑ์„ ์ขํžŒ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์˜๋„์ ์œผ๋กœ ๋ช…ํ™•ํ•œ ๋ชฉํ‘œ๋ฅผ ์ •ํ•ด๋‘์ง€ ์•Š๊ณ  ์ง€๊ธˆ ์ด ์ˆœ๊ฐ„์— ๋ชฐ์ž…ํ•˜๋Š” ํƒœ๋„๋ฅผ ์œ ์ง€ํ•˜๊ณ  ์žˆ๋‹ค.

ERP์ฒ˜๋Ÿผ ๋Œ€๊ทœ๋ชจ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๋ฌธ์ œ์™€ ๋‚œ๊ด€์ด ๋Š์ž„์—†์ด ๋ฐœ์ƒํ•œ๋‹ค. ๊ทธ ์†์—์„œ๋„ โ€˜๋„๋ง์น˜์ง€ ์•Š๋Š”๋‹คโ€™, โ€˜๋๊นŒ์ง€ ์ฑ…์ž„์„ ๋‹คํ•œ๋‹คโ€™๋Š” ์ž์„ธ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์ง€์ผœ์™”๋‹ค. ๊ฒฝํ—˜์„ ์Œ“๊ณ , ์Šค์Šค๋กœ ์‚ฌ๊ณ ํ•˜๊ณ , ์ž์‹ ์˜ ๊ธฐ์ค€์„ ๋ฐ”ํƒ•์œผ๋กœ ์ „๋žต์„ ์„ธ์šฐ๋Š” ๊ฒƒ. ์ด ๋ถ€๋ถ„์ด ๋‚˜์˜ ๋ฆฌ๋”์‹ญ์˜ ๊ทผ๊ฐ„์ด๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•œ ๊นจ๋‹ฌ์Œ์€ ์ด๊ฒƒ์ด๋‹ค. โ€˜ํ•ด์™ธ๋ฅผ ์•Œ์•„์•ผ ์ผ๋ณธ์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๊ณ , ํƒ€์‚ฌ๋ฅผ ์•Œ์•„์•ผ ์ž์‚ฌ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฌ๋žŒ์„ ์ดํ•ดํ•ด์•ผ ๋น„๋กœ์†Œ ์ž์‹ ์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค.โ€™ ์ด ํ†ต์ฐฐ์ด ์ œ๊ฒŒ๋Š” ๊ฐ€์žฅ ํฐ ์ž์‚ฐ์ด๋ฉฐ, CIO๋กœ์„œ ์•ž์œผ๋กœ ๋‚˜์•„๊ฐ€๋Š” ์›๋™๋ ฅ์ด ๋˜๊ณ  ์žˆ๋‹ค.

Q: ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์—์„œ CIO๋กœ ์ผํ•˜๋ฉด์„œ ๋А๋‚€ ๊นจ๋‹ฌ์Œ์€ ๋ฌด์—‡์ด์—ˆ๋‚˜?
57์„ธ์— ์„ ํƒํ•œ ์ด์ง์€ ๊ฒฐ์ฝ” ๋น ๋ฅธ ๊ฒฐ์ •์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ง‰์ƒ ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์— ๋“ค์–ด์„œ๊ณ  ๋ณด๋‹ˆ, ๊ทธ์ „๊นŒ์ง€ ๋ณด์ด์ง€ ์•Š์•˜๋˜ ๊ฒƒ๋“ค์ด ์„ ๋ช…ํ•˜๊ฒŒ ๋ณด์ด๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ๊ทธ์ค‘์—์„œ๋„ ํŠนํžˆ ๊ฐ•ํ•˜๊ฒŒ ๋‚จ์€ ๊ฒƒ์€ IT ์ „๋žต์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ด ๋˜๋Š” ๋‘ ๊ฐ€์ง€ ํ‚ค์›Œ๋“œ, โ€˜๊ฑฐ๋ฒ„๋„Œ์Šคโ€™์™€ โ€˜์‹œ๋„ˆ์ง€โ€™์˜€๋‹ค.

์ด์ „ ์ง์žฅ์—์„œ๋Š” ์—ฌ๋Ÿฌ ์ƒ์žฅ ์žํšŒ์‚ฌ๋ฅผ ํฌํ•จํ•œ ๋Œ€๊ทœ๋ชจ ๊ทธ๋ฃน ์ „์ฒด์˜ ์ •๋ณด์‹œ์Šคํ…œ์„ ํ†ตํ•ฉ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๋Š” ๋ฏธ์…˜์„ ๋งก์•˜๋‹ค. ๋…๋ฆฝ์„ฑ์ด ๊ฐ•ํ•œ ๊ฐ ํšŒ์‚ฌ๋ฅผ ํ•œ ๋ฐฉํ–ฅ ์•„๋ž˜ ๋ชจ์œผ๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹จ์ˆœํžˆ ๊ทœ์ •์„ ๊ฐ•์š”ํ•˜๊ฑฐ๋‚˜ ์ง€์นจ์„ ๋‚ด๋ ค๋ณด๋‚ด๋Š” ๋ฐฉ์‹๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ฐ ์ •์ฑ…์ด๋‚˜ ๋ฐฉ์นจ์ด ํ˜„์žฅ์— ์–ด๋–ค ์ด์ต์„ ์ฃผ๋Š”์ง€, ์™œ ํ•„์š”ํ•œ์ง€ ์„ค๋“๋ ฅ ์žˆ๊ฒŒ ์„ค๋ช…ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ–ˆ๋‹ค.

๊ฑฐ๋ฒ„๋„Œ์Šค์˜ ๊ธฐ๋ฐ˜ ์œ„์—์„œ ์‹œ๋„ˆ์ง€๊ฐ€ ์ƒ๊ธฐ๊ณ , ๊ตฌ์„ฑ์› ํ•œ ์‚ฌ๋žŒ ํ•œ ์‚ฌ๋žŒ์ด ๋‚ฉ๋“ํ•ด ์Šค์Šค๋กœ ์›€์ง์ด๊ธฐ ์‹œ์ž‘ํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ. ์ €๋Š” ๊ทธ ๊ตฌ์กฐ ์„ค๊ณ„์•ผ๋ง๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ IT ์ „๋žต์˜ ๋ณธ์งˆ์ด๋ผ๋Š” ์ ์„ ์ƒˆ๋กญ๊ฒŒ ๊นจ๋‹ฌ์•˜๋‹ค.

DX๋ฅผ ์ถ”์ง„ํ•˜๋Š” ๊ณผ์ •์—์„œ๋„ ๊ฐ™์€ ๊ตํ›ˆ์„ ์–ป์—ˆ๋‹ค. ํ†ฑ๋‹ค์šด ๋ฐฉ์‹์€ ์ „์‚ฌ์  ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ฐ•ํ•œ ์ถ”์ง„๋ ฅ์ด ์žˆ์ง€๋งŒ, ๋ฐ”ํ…€์—…์€ ํ˜„์žฅ์˜ ์ Š์€ ์ธ์žฌ๊ฐ€ ๊ณผ์ œ๋ฅผ ์Šค์Šค๋กœ์˜ ์ผ๋กœ ๋ฐ›์•„๋“ค์ด๊ณ  ๋„์ „ํ•˜๋ฉด์„œ ์„ฑ์žฅ์˜ ๊ธฐํšŒ๋ฅผ ๋งŒ๋“ค์–ด๋‚ธ๋‹ค. ์ด ๋‘ ์ถ•์ด ์„œ๋กœ ๋งž๋ฌผ๋ฆด ๋•Œ, DX๋Š” ๋น„๋กœ์†Œ ์กฐ์ง ์ „์ฒด๋กœ ํ™•์‚ฐ๋˜๊ณ  ์‹ค์งˆ์ ์ธ ๋ณ€ํ™”๋กœ ์ด์–ด์ง„๋‹ค.

Q: ๋ฆฌ๋”์‹ญ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋‹ค๊ณ  ๋А๋ผ๋Š” ์š”์†Œ๋Š” ๋ฌด์—‡์ธ๊ฐ€?
37๋…„์— ๊ฑธ์นœ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฒฝ๋ ฅ ์†์—์„œ ์ œ๊ฐ€ ๊ฐ€์žฅ ๊นŠ์ด ๋А๋‚€ ๊ฒƒ์€ โ€˜์‚ฌ๋žŒ์„ ์–ด๋–ป๊ฒŒ ์›€์ง์ด๊ฒŒ ํ•  ๊ฒƒ์ธ๊ฐ€โ€™๋ผ๋Š” ๊ณผ์ œ์˜ ์ค‘์š”์„ฑ์ด๋‹ค. ํ”„๋กœ์ ํŠธ, ๋ถ€ํ•˜ ์ง์›, ๋™๋ฃŒ, ์ดํ•ด๊ด€๊ณ„์ž, ๊ทธ๋ฆฌ๊ณ  ์ƒ์‚ฌ๊นŒ์ง€ ๋ชจ๋“  ๊ด€๊ณ„ ์†์—์„œ ๊ฐ€์žฅ ์–ด๋ ต๊ณ  ๋™์‹œ์— ๊ฐ€์žฅ ํฐ ๊ฐ€์น˜๋ฅผ ๊ฐ€์ง„ ๋„์ „์€ ๊ฒฐ๊ตญ โ€˜๊ฒฝ์˜์„ ์–ด๋–ป๊ฒŒ ์›€์ง์ผ ๊ฒƒ์ธ๊ฐ€โ€™๋ผ๋Š” ์ ์ด์—ˆ๋‹ค.

์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋จผ์ €, ์ž์‹ ์ด ๋ฌด์—‡์„ ํ•˜๊ณ  ์‹ถ์€์ง€, ๋ฌด์—‡์„ ์ „๋‹ฌํ•˜๊ณ  ์‹ถ์€์ง€์— ๋Œ€ํ•œ ํ™•๊ณ ํ•œ ์ถ•์„ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค. ๊ทธ ์ถ•์ด ํ”๋“ค๋ฆฌ๋ฉด ์‚ฌ๋žŒ๋“ค์€ ๋”ฐ๋ผ์˜ค์ง€ ์•Š๋Š”๋‹ค. ๋”๋ถˆ์–ด ๊ทธ ์ถ•์„ ๋ช…ํ™•ํ•œ ์–ธ์–ด๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ๋„ ํ•„์š”ํ•˜๋‹ค. ๋ง๋กœ ํ˜•ํƒœ๋ฅผ ๊ฐ–์ถ”์ง€ ์•Š์œผ๋ฉด ์ƒ๊ฐ๊ณผ ์˜์ง€๋Š” ๊ฒฐ์ฝ” ์ „๋‹ฌ๋˜์ง€ ์•Š๋Š”๋‹ค.

๋ง์ด ์ „๋‹ฌ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹ ๋ขฐ๊ฐ€ ์ „์ œ๋˜์–ด์•ผ ํ•œ๋‹ค. ์‹ ๋ขฐ๊ฐ€ ํ˜•์„ฑ๋˜๋ฉด ์ƒ๋Œ€๋Š” ๊ณต๊ฐํ•˜๊ณ , ๊ณต๊ฐ์€ ํ–‰๋™์˜ ๋ณ€ํ™”๋ฅผ ์ด๋ˆ๋‹ค. ์ด ์ผ๋ จ์˜ ๊ณผ์ • ์ฆ‰ ์ถ•์„ ์„ธ์šฐ๊ณ , ์–ธ์–ด๋กœ ์ •๋ฆฌํ•˜๊ณ , ์‹ ๋ขฐ๋ฅผ ์Œ“๊ณ , ๊ณต๊ฐ์„ ์–ป์–ด, ํ–‰๋™์„ ์œ ๋„ํ•˜๋Š” ๊ณผ์ •์„ ์–ผ๋งˆ๋‚˜ ์•„๋ฆ„๋‹ต๊ฒŒ ์ˆœํ™˜์‹œํ‚ค๋А๋ƒ๊ฐ€ ๋ฆฌ๋”์—๊ฒŒ ์ฃผ์–ด์ง„ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ๋ผ๊ณ  ๋А๋ผ๊ณ  ์žˆ๋‹ค.

๊ทธ ๊ธฐ๋ฐ˜์—๋Š” โ€˜์ž๊ธฐ๋ฅผ ์•„๋Š” ๊ฒƒโ€™์ด ์žˆ๋‹ค. ๋ฌผ๋ก  ์ž์‹ ์„ ์•ˆ๋‹ค๋Š” ๊ฒƒ์€ ์ฒ ํ•™์ ์ด๋ฉฐ ๊ฒฐ์ฝ” ์‰ฌ์šด ์ผ์ด ์•„๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ โ€˜ํ•ด์™ธ๋ฅผ ์•Œ๋ฉด ์ผ๋ณธ์ด ๋ณด์ด๊ณ , ์ผ๋ณธ์„ ์•Œ๋ฉด ์ž์‚ฌ๊ฐ€ ๋ณด์ด๋ฉฐ, ์ž์‚ฌ๋ฅผ ์•Œ๋ฉด ์ž์‹ ์ด ๋ณด์ธ๋‹คโ€™๋Š” ์ˆœํ™˜์  ๊นจ๋‹ฌ์Œ์ด ๋ฆฌ๋”๋กœ์„œ์˜ ์‹œ์•ผ๋ฅผ ํ•œ์ธต ๋„“ํ˜€์ค€๋‹ค.

Q: CIO๊ฐ€ ๊ฒฝ์˜์ž๊ฐ€ ๋  ์ˆ˜ ์žˆ์„๊นŒ?
์ง€๊ธˆ CIO๋กœ์„œ์˜ ์—ญํ• ์„ ๋Œ์•„๋ณด๋ฉด, ๋‘ ๊ฐ€์ง€ ์œ ํ˜•์ด ์žˆ๋‹ค๊ณ  ๋А๋‚€๋‹ค. ํ•˜๋‚˜๋Š” โ€˜์ •๋ณด์‹œ์Šคํ…œ์„ ์ด๊ด„ํ•˜๋Š” CIOโ€™, ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” โ€˜๊ฒฝ์˜์˜ ํ•œ ์ถ•์„ ๋‹ด๋‹นํ•˜๋Š” CIOโ€™๋‹ค.

๋‚˜๋Š” ์ง€๊ธˆ๊นŒ์ง€ ํ›„์ž๋ฅผ ๋ชฉํ‘œ๋กœ ํ•ด ์™”๋‹ค. IT ์ „๋ฌธ์„ฑ์—๋งŒ ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ , ๋ฐ”๊นฅ์„ธ์ƒ์„ ์ดํ•ดํ•˜๊ณ , ์—…๊ณ„๋ฅผ ๋„˜๋‚˜๋“ค๋ฉฐ, ํ˜„์žฅ๊ณผ ๊ฒฝ์˜์„ ์ž‡๋Š” ์‹œ๊ฐ์ด CIO์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋„“ํ˜€ ์ค€๋‹ค๊ณ  ๋ฏฟ๊ณ  ์žˆ๋‹ค.

๊ทธ๋ž˜์„œ ๋‚ด๊ฐ€ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋กœ ์ธ๋ฌธํ•™ ์ฆ‰ ์ธ๋ฅ˜๊ฐ€ ์ถ•์ ํ•ด ์˜จ ์ง€ํ˜œ๋‹ค.

์ƒˆ๋กœ์šด ๊ฒƒ์€ ๋ฌด(็„ก)์—์„œ ๊ฐ‘์ž๊ธฐ ์ƒ๊ฒจ๋‚˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, ์—ฌ๋Ÿฌ ์ง€ํ˜œ๊ฐ€ ๊ฒฐํ•ฉ๋˜๋ฉฐ ์ฐฝ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ƒ์„ฑํ˜• AI๊ฐ€ ๋“ฑ์žฅํ•˜๋ฉด์„œ, ์šฐ๋ฆฌ๋Š” ๊ทธ ์–ด๋А ๋•Œ๋ณด๋‹ค ์ฐฝ์กฐ์ ์ธ ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ๊ธฐํšŒ๋ฅผ ๊ฐ–๊ฒŒ ๋๋‹ค.

์ •๋ณด์‹œ์Šคํ…œ ๋ถ€์„œ ์—ฌ๋Ÿฌ๋ถ„๋„ ์ด๋Ÿฐ ๊ด€์ ์„ ๊ผญ ๊ฐ€์ ธ ๋ณด๊ธธ ๋ฐ”๋ž€๋‹ค. ๋•Œ๋กœ๋Š” ์ „๋ฌธ ์˜์—ญ์„ ๋„˜์–ด์„œ ๋‹ค๋ฅธ ๋ถ„์•ผ๋กœ ๊ฑด๋„ˆ๊ฐ€ ๋ณด๊ณ , ํ˜„์žฅ์— ๋‹ค๊ฐ€๊ฐ€๊ณ , ๊ฒฝ์˜๊ณผ ๋Œ€ํ™”ํ•ด ๋ณด๋Š” ๊ฒฝํ—˜๋“ค์ด ์Œ“์ผ ๋•Œ, CIO๋กœ์„œ์˜ ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ฆด ๊ฑฐ๋ผ๊ณ  ํ™•์‹ ํ•œ๋‹ค.

๋˜ํ•œ ์ผ๋ณธ IT ์‚ฐ์—…์—๋Š” ๊ตฌ์กฐ์  ํŠน์ง•์ด ์žˆ๋‹ค. ์‹œ์Šคํ…œ ์—”์ง€๋‹ˆ์–ด์˜ ์•ฝ 70%๊ฐ€ ์™ธ๋ถ€ ํŒŒํŠธ๋„ˆ ์†Œ์†์ด๋ผ๋Š” ํ˜„์‹ค์ด๋‹ค. ๋‚ด์žฌํ™”์˜ ํ•„์š”์„ฑ์ด ๊ฐ•์กฐ๋˜์ง€๋งŒ ํ•œ๊ณ„๋„ ๋šœ๋ ทํ•˜๋‹ค. ๊ทธ๋ž˜์„œ ๋ฒค๋”๋‚˜ ์ปจ์„คํ„ดํŠธ๋ฅผ ๋‹จ์ˆœํ•œ ๊ณต๊ธ‰์ž๊ฐ€ ์•„๋‹ˆ๋ผ ํ•จ๊ป˜ ์‹ธ์šฐ๋Š” โ€˜์ „์šฐโ€™๋กœ ์ธ์‹ํ•˜๊ณ  ํ˜‘๋ ฅ ๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

๊ณ ๊ฐ์‚ฌ๊ฐ€ ์ผ๋ฐฉ์ ์œผ๋กœ ์ง€์‹œํ•˜๋Š” ๊ด€๊ณ„๋ฅผ ๋„˜์–ด์„œ, ์„œ๋กœ ๋ฐฐ์šฐ๊ณ  ์ง€ํ˜œ๋ฅผ ๋ชจ์œผ๋Š” ํŒŒํŠธ๋„ˆ์‹ญ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ. ์ด๋Ÿฌํ•œ ๊ด€๊ณ„๊ฐ€ ์•ž์œผ๋กœ์˜ ITยทDX ๋ถ„์•ผ์—์„œ ์ง„์ •ํ•œ ๊ฐ€์น˜ ์ฐฝ์ถœ์„ ์ด๋Œ ํ•ต์‹ฌ์ด๋ผ๊ณ  ๋ฏฟ๊ณ  ์žˆ๋‹ค.

Q: CIO๋กœ์„œ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ์ฒ ํ•™์ด๋‚˜ ๊ฐ€์น˜๊ด€์€ ๋ฌด์—‡์ธ๊ฐ€?
๊ฐœ์ธ์ ์œผ๋กœ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ๋‘ ๊ฐ€์ง€ ํ‚ค์›Œ๋“œ๊ฐ€ ์žˆ๋‹ค. 21์„ธ๊ธฐ๋ฅผ ์‚ด์•„๊ฐ€๋Š” ์ธ๋ฅ˜๊ฐ€ ๋ฐ˜๋“œ์‹œ ์†Œ์ค‘ํžˆ ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ๊ฐ€์น˜, ๋ฐ”๋กœ โ€˜์–ด์›จ์–ด๋‹ˆ์Šค(๊นจ๋‹ฌ์Œยท์˜์‹)โ€™์™€ โ€˜์ปดํŒจ์…˜(์ดํƒ€์„ฑยท๋ฐฐ๋ ค)โ€™์ด๋‹ค. ์ด ๋‘ ๊ฐ€์ง€๋Š” ์ œ๊ฐ€ ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์˜ CIO๋กœ ๋ถ€์ž„ํ–ˆ์„ ๋•Œ๋ถ€ํ„ฐ, ํšŒ์‚ฌ๊ฐ€ ๊ธฐ๋Œ€ํ•˜๋Š” ์—ญํ• ๊ณผ ์ผ๋ณธ ์ œ์กฐ์—… ์ „์ฒด๋ฅผ ๋” ๊ฐ•ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ ์ž ํ•˜๋Š” ์ œ ๊ฐœ์ธ์  ์†Œ๋ง ๋ชจ๋‘์—์„œ ์ค‘์‹ฌ์ถ•์ด ๋˜์–ด์™”๋‹ค.

๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์€ โ€˜๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ ๊ทธ๋ฃน IT Wayโ€™๋ผ๋Š” ์›์น™์„ ์ˆ˜๋ฆฝํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ IT ์ „๋žต์„ ์ถ”์ง„ํ•˜๊ณ  ์žˆ๋‹ค. ์ง€๊ธˆ ์ƒ์„ฑํ˜• AI๋Š” ํ”ผํ•  ์ˆ˜ ์—†๋Š” ํ•ต์‹ฌ ์ฃผ์ œ๋กœ ๋– ์˜ฌ๋ž๊ณ , ์ค‘์š”ํ•œ ๊ฒƒ์€ AI๊ฐ€ ๋ฌด์—‡์„ ๋งŒ๋“œ๋Š”๊ฐ€๊ฐ€ ์•„๋‹ˆ๋ผ โ€˜์‚ฌ๋žŒ์ด ์ƒ์„ฑํ˜• AI๋ฅผ ํ™œ์šฉํ•ด ์–ด๋–ค ๊ฐ€์น˜๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š”๊ฐ€โ€™์— ์žˆ๋‹ค. ์ƒ์„ฑํ˜• AI๋Š” ์–ด๋””๊นŒ์ง€๋‚˜ IT ๋„๊ตฌ์˜ ํ•˜๋‚˜์ด๊ณ , ์ฃผ์ฒด๋Š” ์ธ๊ฐ„์ด๋‹ค. ๊ทธ๋ž˜์„œ ์ €๋Š” ์–ธ์ œ๋‚˜ โ€˜์‚ฌ๋žŒ ์ค‘์‹ฌโ€™์ด๋ผ๋Š” ์‚ฌ๊ณ ๋ฐฉ์‹์„ ์•ˆํŒŽ์œผ๋กœ ๊พธ์ค€ํžˆ ๊ฐ•์กฐํ•ด ์™”๊ณ , ์ด ์ฒ ํ•™์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์—ฌ๋Ÿฌ ์ •์ฑ…์„ ํŽผ์ณ์™”๋‹ค.

์ผ๋ณธ ์ œ์กฐ์—…์ด ๊ฐ•ํ•ด์ง€๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธฐ์—… ๊ฐ„์˜ ๊ฒฝ๊ณ„๋ฅผ ๋„˜์–ด์„œ๋Š” ์—ฐ๋Œ€์™€ ๋Œ€ํ™”๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ์ €๋Š” ์ด์ง ์ „์„ ํฌํ•จํ•œ ์•ฝ 5๋…„ ๋™์•ˆ 70์—ฌ ๊ฐœ ๊ธฐ์—…, 6,000๋ช… ์ด์ƒ์˜ ๊ด€๊ณ„์ž๋“ค๊ณผ ์Šคํ„ฐ๋””, ๊ฐ•์—ฐ ๋“ฑ์„ ํ†ตํ•ด ์ง€์†์ ์œผ๋กœ ์˜๊ฒฌ์„ ๋‚˜๋ˆ„์–ด ์™”๋‹ค. ๊ทธ ๊ณผ์ •์—์„œ ์ œ ์ƒ๊ฐ์— ๊ณต๊ฐํ•ด์ฃผ๋Š” ์‚ฌ๋žŒ๋“ค์„ ๋งŽ์ด ๋งŒ๋‚ฌ๊ณ , ๊ทธ๋ถ„๋“ค๊ณผ์˜ ๊ต๋ฅ˜ ์†์—์„œ ์ € ์ž์‹ ๋„ ์„ฑ์žฅํ•˜๊ณ  ์žˆ์Œ์„ ์‹ค๊ฐํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ง€์  ์ถ•์ ์ด ์ƒˆ๋กœ์šด ์ •์ฑ…๊ณผ ์‹œ๋„๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ์ค‘์š”ํ•œ ์›๋™๋ ฅ์ด ๋œ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค.

๋‚ด๊ฐ€ ๋ฌด์—‡๋ณด๋‹ค๋„ ์ „๋‹ฌํ•˜๊ณ  ์‹ถ์€ ๋ฉ”์‹œ์ง€๋Š” ๋‹จ์ˆœํ•˜๋‹ค. ๋ฐ”๋กœ โ€˜๋ชจ๋“  ๊ธฐ์ˆ ์€ ์‚ฌ๋žŒ์„ ํ–‰๋ณตํ•˜๊ฒŒ ํ•˜๋Š” ๋ฐฉํ–ฅ์„ ์ง€ํ–ฅํ•ด์•ผ ํ•œ๋‹คโ€™์ด๋‹ค. 100๋…„, 200๋…„ ํ›„ ์šฐ๋ฆฌ์˜ ํ›„์†์ด ๋Œ์•„๋ดค์„ ๋•Œ, โ€˜๊ทธ ์‹œ๋Œ€๋ฅผ ๊ธฐ์ ์œผ๋กœ ๋ฌด์–ธ๊ฐ€๊ฐ€ ๋ฐ”๋€Œ์—ˆ๋‹คโ€™๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๊ทธ๊ฒƒ์€ ์ธํ„ฐ๋„ท๊ณผ ๊ฐ™์€ ์ปค๋‹ค๋ž€ ํ˜์‹ ์ผ ๊ฒƒ์ด๋ฉฐ, ์ง€๊ธˆ ์ง„ํ–‰ ์ค‘์ธ ์ƒ์„ฑํ˜• AI ์—ญ์‹œ ๊ทธ ๋ณ€๊ณก์  ์ค‘ ํ•˜๋‚˜๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ ๋ฐ˜๋“œ์‹œ ๋„์ „ํ•ด์•ผ ํ•  ๋˜ ํ•˜๋‚˜์˜ ๊ณผ์ œ๋Š” ๋ฏธ๋ž˜ ์„ธ๋Œ€๊ฐ€ โ€œ์ง€๊ตฌ ํ™˜๊ฒฝ์„ ์ง€ํ‚ค๋ฉด์„œ๋„ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹คโ€๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ๋Œ€๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋‹ค. ๋ฏธ์“ฐ๋น„์‹œ ๋จธํ‹ฐ๋ฆฌ์–ผ์€ ์ž์›์ˆœํ™˜์„ ํ•ต์‹ฌ์œผ๋กœ ์‚ผ๋Š” ๊ธฐ์—…์œผ๋กœ, ์ด๋Ÿฌํ•œ ๋ฏธ๋ž˜์ƒ์„ ์‹คํ˜„ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋งก๊ณ  ์žˆ๋‹ค. ๋น„์ฆˆ๋‹ˆ์Šค ์„ธ๊ณ„์—์„œ๋Š” ์ข…์ข… โ€˜๋‹ฌ์ฝคํ•œ ์ด์•ผ๊ธฐ๋งŒ ํ•ด์„œ๋Š” ์•ˆ ๋œ๋‹คโ€™๊ณ  ํ•˜์ง€๋งŒ, ์ง€๊ตฌ ํ™˜๊ฒฝ์„ ์ง€ํ‚ค๋Š” ๋ฌธ์ œ์—์„œ๋Š” ์ดํƒ€์„ฑ๊ณผ ๋ฐฐ๋ ค๊ฐ€ ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค. ์ด๋Š” ์ธ๋ฅ˜ ์ „์ฒด๊ฐ€ ๋” ๊นŠ์ด ์ธ์‹ํ•ด์•ผ ํ•  ๊ฐ€์น˜๋‹ค.

CIO๋Š” ๋Œ€๊ฐœ ํŠน์ • ์ „๋ฌธ ๋ถ„์•ผ์— ๊ฐ•์ ์„ ์ง€๋‹Œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๊ณ , ๊ฒฝ์˜์ง„๊ณผ ๋™๋“ฑํ•œ ์ˆ˜์ค€์—์„œ ๋…ผ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์š”๊ตฌ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ IT๋งŒ ์•Œ๊ณ  ์žˆ์–ด์„œ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค. ํ•ด์™ธ์˜ ์‹œ๊ฐ, ์—…๊ณ„์˜ ํ๋ฆ„, ๊ทธ๋ฆฌ๊ณ  ์ธ๋ฌธํ•™ ๋ฆฌ๊ฐ™์€ ๋น„(้ž) IT ์˜์—ญ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•˜๋‹ค. ๊ธฐ์—…๊ณผ ์‚ฐ์—…๋งˆ๋‹ค ๊ณผ์ œ๋Š” ๋‹ค๋ฅด์ง€๋งŒ, IT๋งŒ ์ƒ๊ฐํ•ด์„œ๋Š” ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋„๋‹ฌํ•  ์ˆ˜ ์—†๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ์ž์˜ ์ „๋ฌธ์„ฑ์„ ์‚ด๋ฆฌ๋ฉด์„œ๋„ ๋ณตํ•ฉ์  ์‹œ๊ฐ์œผ๋กœ ์ ‘๊ทผํ•˜๋Š” ํƒœ๋„๊ฐ€ ์•ž์œผ๋กœ์˜ CIO์—๊ฒŒ ์š”๊ตฌ๋˜๋Š” ์ž์„ธ๋ผ๊ณ  ๋ฏฟ๊ณ  ์žˆ๋‹ค.

*์ด ๊ธฐ์‚ฌ๋Š” CIO ์žฌํŒฌ์—์„œ ์ง„ํ–‰๋œ โ€˜๋ฆฌ๋”์‹ญ ๋ผ์ด๋ธŒ ์žฌํŒฌโ€™์˜ ๋‚ด์šฉ์„ ๋ฐ”ํƒ•์œผ๋กœ ์ผ๋ถ€ ๊ฐ์ƒ‰ํ•˜์—ฌ ๊ตฌ์„ฑํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
dl-ciokorea@foundryco.com

MS, M365 ๊ตฌ๋… ์š”๊ธˆ ์ธ์ƒ ์˜ˆ๊ณ ยทยทยท๋ถ„์„๊ฐ€๋“ค โ€œ๋Œ€์•ˆ ๋ชจ์ƒ‰ ๋ฐ ์žฌํ˜‘์ƒ ํ•„์š”โ€

M365 ๊ณ ๊ฐ์€ 2026๋…„ 7์›” 1์ผ๋ถ€ํ„ฐ ๋” ๋†’์€ ๊ตฌ๋… ์š”๊ธˆ์„ ๋ถ€๋‹ดํ•˜๊ฒŒ ๋  ์ „๋ง์ด๋‹ค. ๋น„์ฆˆ๋‹ˆ์Šค์šฉ์„ ๋น„๋กฏํ•ด E3ยทE5, ํ”„๋ก ํŠธ๋ผ์ธ, ์ •๋ถ€์šฉ ๊ตฌ๋… ๋“ฑ ๋Œ€๋ถ€๋ถ„์˜ ์š”๊ธˆ์ œ๊ฐ€ ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค.

MS๋Š” ์ง€๋‚œ 4์ผ ๋ธ”๋กœ๊ทธ๋ฅผ ํ†ตํ•ด ์—ฌ๋Ÿฌ ์š”๊ธˆ์ œ์— ์ƒˆ ๊ธฐ๋Šฅ์ด ์ถ”๊ฐ€๋˜๋ฉด์„œ ์ธ์ƒ์ด ์ด๋ค„์กŒ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ์—ฌ๊ธฐ์—๋Š” ํ™•์žฅ๋œ ์ฝ”ํŒŒ์ผ๋Ÿฟ ์ฑ— ๊ธฐ๋Šฅ๊ณผ E3์— ํฌํ•จ๋˜๋Š” MS ๋””ํŽœ๋” ํฌ ์˜คํ”ผ์Šค(Microsoft Defender for Office), E5์— ์ ์šฉ๋˜๋Š” ์‹œํ๋ฆฌํ‹ฐ ์ฝ”ํŒŒ์ผ๋Ÿฟ, ๊ทธ๋ฆฌ๊ณ  E3ยทE5๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์ธํŠ (Intune)์˜ ์›๊ฒฉ ์ง€์› ๋ฐ ๊ณ ๊ธ‰ ๋ถ„์„ ๊ธฐ๋Šฅ ๋“ฑ์ด ์žˆ๋‹ค.

์ƒˆ๋กœ์šด ๊ตฌ๋… ์š”๊ธˆ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • M365 ๋น„์ฆˆ๋‹ˆ์Šค ๋ฒ ์ด์ง์€ ์›” ์‚ฌ์šฉ์ž๋‹น 1๋‹ฌ๋Ÿฌ ์˜ฌ๋ผ 7๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 ๋น„์ฆˆ๋‹ˆ์Šค ์Šคํƒ ๋‹ค๋“œ๋Š” 1.5๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ ์›” 14๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • ์˜คํ”ผ์Šค 365 E3๋Š” ์›” 3๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ 26๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 E3๋Š” 3๋‹ฌ๋Ÿฌ ์˜ฌ๋ผ 39๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 E5๋Š” 3๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ ์›” 60๋‹ฌ๋Ÿฌ๋กœ ์กฐ์ •๋œ๋‹ค.
  • M365 F1์€ 0.75๋‹ฌ๋Ÿฌ ์˜ฌ๋ผ 3๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.
  • M365 F3๋Š” 2๋‹ฌ๋Ÿฌ ์ธ์ƒ๋ผ ์›” 10๋‹ฌ๋Ÿฌ๊ฐ€ ๋œ๋‹ค.

์ด ๊ฐ€์šด๋ฐ M365 ๋น„์ฆˆ๋‹ˆ์Šค ํ”„๋ฆฌ๋ฏธ์—„์€ ์›” ์‚ฌ์šฉ์ž๋‹น 22๋‹ฌ๋Ÿฌ, ์˜คํ”ผ์Šค 365 E1์€ 10๋‹ฌ๋Ÿฌ๋กœ ๊ธฐ์กด ๊ฐ€๊ฒฉ์„ ์œ ์ง€ํ•œ๋‹ค. ์ •๋ถ€์šฉ M365 ์š”๊ธˆ์ œ๋Š” ํ”Œ๋žœ์— ๋”ฐ๋ผ 5%์—์„œ 10% ์ˆ˜์ค€์˜ ์ธ์ƒ์ด ์ ์šฉ๋œ๋‹ค. ๋ชจ๋“  ์š”๊ธˆ์—๋Š” ํ˜‘์—… ์•ฑ์ธ ํŒ€์ฆˆ(Teams)๊ฐ€ ํฌํ•จ๋ผ ์žˆ์œผ๋ฉฐ, ํŒ€์ฆˆ๋ฅผ ์ œ์™ธํ•  ๊ฒฝ์šฐ ๋” ๋‚ฎ์€ ์š”๊ธˆ์ด ์ฑ…์ •๋œ๋‹ค.

๊ฐ€ํŠธ๋„ˆ ์• ๋„๋ฆฌ์ŠคํŠธ ์žญ ๋„ค์ด๊ธ€๊ณผ ์Šคํ‹ฐ๋ธ ํ™”์ดํŠธ๋Š” ์ด๋ฒˆ ์กฐ์น˜์— ๋Œ€ํ•ด โ€œ์ตœ๊ทผ ์ด์–ด์ง€๋Š” ๊ฐ€๊ฒฉ ์ •์ฑ… ๋ณ€ํ™”๋Š” ๊ณ ๊ฐ์˜ ์šฐ๋ ค์™€ ํ”ผ๋กœ๊ฐ์„ ๋”์šฑ ์‹ฌํ™”์‹œํ‚ฌ ๊ฒƒโ€์ด๋ผ๊ณ  ์ง€์ ํ–ˆ๋‹ค.

MS๋Š” 2022๋…„์—๋„ M365 ๊ฐ€๊ฒฉ์„ 9%์—์„œ 25% ๋ฒ”์œ„๋กœ ์ธ์ƒํ•œ ๋ฐ” ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” M365 ๋“ฑ ์ฃผ์š” ์ œํ’ˆ์˜ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ณ„์•ฝ(EA) ์กฐ๊ฑด์„ ๋ณ€๊ฒฝํ•ด, ๋Œ€๊ทœ๋ชจ ๊ณ ๊ฐ์—๊ฒŒ ์ œ๊ณต๋˜๋˜ ์‚ฌ์šฉ์ž ์ˆ˜ ๊ธฐ๋ฐ˜ ํ• ์ธ ์ •์ฑ…์„ ๋‹จ๊ณ„์ ์œผ๋กœ ํ์ง€ํ–ˆ๋‹ค.

๊ฐ€ํŠธ๋„ˆ ์• ๋„๋ฆฌ์ŠคํŠธ๋“ค์€ ๊ธฐ์—…์ด ์ด๋ฒˆ ์ธ์ƒ์— ๋”ฐ๋ฅธ ์žฌ๋ฌด์  ๋ถ€๋‹ด์„ ์ค„์ด๋ ค๋ฉด โ€œํ˜‘์ƒ ์ „๋žต์„ ์ ๊ทน ํ™œ์šฉํ•˜๊ณ , ๋Œ€์•ˆ์„ ๊ฒ€ํ† ํ•˜๋ฉฐ, ๋ผ์ด์„ ์Šค ํ• ๋‹น์„ ์ตœ์ ํ™”ํ•ด์•ผ ํ•œ๋‹คโ€๋ผ๊ณ  ์กฐ์–ธํ–ˆ๋‹ค.

๋˜ํ•œ ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด 7์›” 1์ผ ๊ฐ€๊ฒฉ ๋ณ€๊ฒฝ ์ด์ „์— ๊ณ„์•ฝ์„ ์กฐ๊ธฐ ๊ฐฑ์‹ ํ•˜๋Š” ๋ฐฉ์•ˆ์„ ๊ณ ๋ คํ•  ๊ฒƒ์„ ์ œ์•ˆํ–ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์š”๊ธˆ ์ธ์ƒ์„ ๋‹ค์Œ ๊ฐฑ์‹  ์‹œ์ ๊นŒ์ง€ ๋Šฆ์ถœ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๊ฐ€ํŠธ๋„ˆ๊ฐ€ ์ตœ๊ทผ IT ๋ฆฌ๋” 215๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰ํ•œ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด, M365 ๊ณ ๊ฐ์˜ 17%๋Š” ๋Œ€์•ˆ ์†”๋ฃจ์…˜์„ ๊ฒ€ํ†  ์ค‘์ด๋ฉฐ, ๊ตฌ๋… ๋น„์šฉ์— ์ถฉ๋ถ„ํ•œ ๊ฐ€์น˜๋ฅผ ๋А๋‚€๋‹ค๊ณ  ๋‹ตํ•œ ๋น„์œจ์€ 5%์— ๋ถˆ๊ณผํ–ˆ๋‹ค.

MS๋Š” ์˜ฌํ•ด ์ดˆ ์‹ค์  ๋ฐœํ‘œ์—์„œ ์ „ ์„ธ๊ณ„ ์ƒ์—…์šฉ M365 ์‚ฌ์šฉ์ž๊ฐ€ 4์–ต 3์ฒœ๋งŒ ๋ช…์„ ๋„˜์–ด์„ฐ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค.

J. ๊ณจ๋“œ ์–ด์†Œ์‹œ์—์ด์ธ ์˜ ์• ๋„๋ฆฌ์ŠคํŠธ ์žญ ๊ณจ๋“œ๋Š” MS๊ฐ€ ์ด์ „๋ถ€ํ„ฐ ์ฃผ๊ธฐ์ ์œผ๋กœ ๊ฐ€๊ฒฉ์„ ์ธ์ƒํ•ด ์™”๋‹ค๊ณ  ์–ธ๊ธ‰ํ•˜๋ฉฐ, โ€œAI ๊ธฐ๋Šฅ์„ ์šด์˜ํ•˜๊ธฐ ์œ„ํ•ด ์ƒ๋‹นํ•œ ์ถ”๊ฐ€ ์—ฐ์‚ฐ์ด ํ•„์š”ํ•ด์ง„ ๋งŒํผ, ์ด๋ฅผ ์ง€์›ํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ํด๋ผ์šฐ๋“œ ์ธํ”„๋ผ ์šด์˜ ๋น„์šฉ์„ ํšŒ์ˆ˜ํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ์ดํ•ดํ•  ๋งŒํ•˜๋‹คโ€๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ณจ๋“œ๋Š” ์ด๋ฒˆ ๊ฐ€๊ฒฉ ์ธ์ƒ์ด ๊ณ ๊ฐ ์ˆ˜์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€๋Š” ์•Š์„ ๊ฒƒ์œผ๋กœ ๋‚ด๋‹ค๋ดค๋‹ค. ๊ทธ๋Š” โ€œ๋Œ€๋ถ€๋ถ„์˜ ๊ณ ๊ฐ์ด ์ด๋ฏธ MS ์ƒํƒœ๊ณ„์— ๊นŠ์ด ๋ฌถ์—ฌ ์žˆ์–ด ๊ฒฐ๊ตญ ์ด๋ฒˆ ์กฐ์ •๋„ ๋ฐ›์•„๋“ค์ด๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œ์š”์ฆ˜ ๊ตฌ๊ธ€๊ณผ์˜ ๊ฐ€๊ฒฉ ๊ฒฝ์Ÿ์ด ์น˜์—ดํ•˜๊ธด ํ•˜์ง€๋งŒ, ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ์‹œ์žฅ์—์„œ MS์—์„œ ๊ตฌ๊ธ€ ์˜คํ”ผ์Šค๋กœ ๋Œ€๊ฑฐ ์ด๋™ํ•˜๋Š” ํ๋ฆ„์€ ๋ณด์ด์ง€ ์•Š๋Š”๋‹ค. ๋‹ค๋งŒ ์ค‘์†Œ๊ธฐ์—… ๋ฐ ์ค‘๊ธฐ์—…์—์„œ๋Š” ๊ตฌ๊ธ€์˜ ์„ฑ์žฅ์„ธ๊ฐ€ ๋šœ๋ ทํ•˜๋‹คโ€๋ผ๊ณ  ์ง„๋‹จํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

Proactive IT Support: How Real-Time Monitoring Reduces Downtime and Drives Business Growth

How much does IT downtime really cost your organization?

Most executives think it's just an annoying blip on the radar. But if you've ever been on the receiving end of a 3 AM call because the production server went down, you know better. Studies put the number at over $5,000 per minute for large organizations. Per minute. That's the cost of your CEO unable to access email, sales teams locked out of CRM systems, and customers abandoning shopping carts.

Strengthening Fraud Prevention with Real-Time Mobile Identity Signals

Fraud is rising quickly in digital channels, making it harder for businesses to stay secure without adding customer friction. Deterministic, mobile-based identity signals provide the real-time, authoritative verification that outdated probabilistic tools canโ€™t, enabling stronger fraud prevention with smoother onboarding.

The post Strengthening Fraud Prevention with Real-Time Mobile Identity Signals appeared first on TechRepublic.

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ, ์•ˆ๋“œ๋กœ์ด๋“œ ๊ธฐ๋ฐ˜ POS ๊ฐœ๋ฐœยทยทยทํŽธ์˜์ ์— ์ฒซ ๋„์ž…

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ๋Š” ๊ธฐ์กด ๊ตญ๋‚ด ํŽธ์˜์ ์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ์œˆ๋„์šฐ ๊ธฐ๋ฐ˜ ๋Œ€์‹  ์•ˆ๋“œ๋กœ์ด๋“œ ์šด์˜์ฒด์ œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํŒ๋งค์‹œ์  ์ •๋ณด๊ด€๋ฆฌ ๊ธฐ๊ธฐ(POS)๋ฅผ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ์Šค๋งˆํŠธํฐ์ด๋‚˜ ํƒœ๋ธ”๋ฆฟ PC๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์นœ์ˆ™ํ•˜๊ณ  ํŽธ๋ฆฌํ•œ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•ด ๊ฒฝ์˜์ฃผ๋“ค์˜ ์ ‘๊ทผ์„ฑ์„ ๊ฐ•ํ™”ํ–ˆ๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค. ๋˜ํ•œ ์•ˆ๋“œ๋กœ์ด๋“œ ์šด์˜์ฒด์ œ์˜ ๊ฐœ๋ฐฉ์„ฑ์„ ํ™œ์šฉํ•ด POS ๊ธฐ๋Šฅ ์™ธ์—๋„ ๋‹ค์–‘ํ•œ ์—…๋ฌด์šฉ ์•ฑ์„ ์†์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋ผ ์ ํฌ ์šด์˜์˜ ์œ ์—ฐ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ๋†’์˜€๋‹ค.

ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜์œผ๋กœ ์šด์˜๋˜๋Š” ์•ˆ๋“œ๋กœ์ด๋“œ POS ์‹œ์Šคํ…œ์€ ๋ฐ์ดํ„ฐ ๋ณด์•ˆ์„ฑ์ด ๋›ฐ์–ด๋‚˜๊ณ  ์‹œ์Šคํ…œ ์—…๋ฐ์ดํŠธ์™€ ์œ ์ง€๋ณด์ˆ˜๋„ ์šฉ์ดํ•˜๋‹ค. ๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ๋Š” ๊ฒฝ์˜์ฃผ๋“ค์˜ ์‹ค์ œ ์‚ฌ์šฉ ๊ฒฝํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ์„ค๊ณ„๋ผ ๋งค์žฅ ์šด์˜์— ์‹ค์งˆ์ ์ธ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ํ•ด๋‹น ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ๋ฌด๊ฑฐ์šด POS์™€ ๋น„๊ตํ•ด ํƒœ๋ธ”๋ฆฟ PCํ˜•ํƒœ๋กœ ๋”์šฑ ๊ฐ€๋ณ๊ณ  ์ด๋™์ด ์ž์œ ๋กœ์›Œ์กŒ์œผ๋ฉฐ, ์ž์ฃผ ์‚ฌ์šฉํ•˜๋Š” ๋ฉ”๋‰ด๋ฅผ ์ง์ ‘ ์„ค์ •ํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋‚˜๋งŒ์˜ ๋ฉ”๋‰ดโ€™, ์•ผ๊ฐ„์— ๋ˆˆ์˜ ํ”ผ๋กœ๋ฅผ ์ค„์—ฌ์ฃผ๋Š” โ€˜๋‹คํฌ ๋ชจ๋“œโ€™๋“ฑ ์‚ฌ์šฉ์ž๋ฅผ ๋ฐฐ๋ คํ•œ ๊ธฐ๋Šฅ๋„ ์ ์šฉ๋๋‹ค.

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ๋Š” ์˜ฌํ•ด๋ถ€ํ„ฐ ์„ธ๋ธ์ผ๋ ˆ๋ธ๊ณผ ํ˜‘๋ ฅํ•˜์—ฌ ์‹ ๊ทœ ์ ํฌ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์•ˆ๋“œ๋กœ์ด๋“œ ๊ธฐ๋ฐ˜ ํด๋ผ์šฐ๋“œ POS๋ฅผ ๋„์ž…ํ•˜๊ณ , ํ–ฅํ›„ ์ „๊ตญ ๋ชจ๋“  ์„ธ๋ธ์ผ๋ ˆ๋ธ ์ ํฌ๋กœ ํ™•๋Œ€ ์ ์šฉํ•  ๊ณ„ํš์ด๋‹ค.

๋กฏ๋ฐ์ด๋…ธ๋ฒ ์ดํŠธ ๊ด€๊ณ„์ž๋Š” โ€œ์ด๋ฒˆ ์•ˆ๋“œ๋กœ์ด๋“œ ํด๋ผ์šฐ๋“œ POS ๊ฐœ๋ฐœ์€ ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ ๋„์ž…์„ ๋„˜์–ด, ํŽธ์˜์  ์—…๊ณ„์— ์Šค๋งˆํŠธ ์šด์˜์˜ ์ƒˆ๋กœ์šด ํ‘œ์ค€์„ ์ œ์‹œํ•˜๋Š” ์ด์ •ํ‘œ๊ฐ€ ๋  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œ์•ž์œผ๋กœ AI ๊ธฐ๋ฐ˜ ๊ณ ๊ฐ ๋งž์ถคํ˜• ๊ด‘๊ณ  ๋“ฑ ์ง€์†์ ์ธ ๊ธฐ์ˆ  ํ˜์‹ ์„ ํ†ตํ•ด ๊ฒฝ์˜์ฃผ์™€ ๊ณ ๊ฐ ๋ชจ๋‘์—๊ฒŒ ๋” ๋‚˜์€ ํŽธ์˜์  ๊ฒฝํ—˜์„ ์ œ๊ณตํ•˜๊ณ , ํšจ์œจ์ ์ธ ๋งค์žฅ ์šด์˜์„ ์ง€์›ํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.
dl-ciokorea@foundryco.com

โ€œPMO์—์„œ BTO๋กœโ€ AI๊ฐ€ ์—ฌ๋Š” ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ์˜ ๋Œ€์ „ํ™˜

CIO ์ž…์žฅ์—์„œ AI๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ๋…ผ์˜๋Š” ํ˜์‹ ์—์„œ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ๋‹จ๊ณ„๋กœ ๋ฐœ์ „ํ–ˆ๋‹ค. ์˜ค๋žซ๋™์•ˆ ์ธ๊ฐ„์˜ ์กฐ์œจ๊ณผ ํ†ต์ œ ์˜์—ญ์ด์—ˆ๋˜ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ์ง€๋Šฅํ˜• ์‹œ์Šคํ…œ์ด ํ”„๋กœ์ ํŠธ ์ง„ํ–‰ ๋ฐ ์„ฑ๊ณผ๋ฅผ ์–ด๋–ป๊ฒŒ ์žฌํŽธํ•˜๊ณ  ๋ณ€ํ˜์„ ๊ฐ€์†ํ•˜๋Š”์ง€ ์‹œํ—˜ํ•˜๋Š” ๋ฌด๋Œ€๋กœ ๋น ๋ฅด๊ฒŒ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค.

์‚ฐ์—…๊ตฐ์„ ๋ง‰๋ก ํ•˜๊ณ  ๋ชจ๋“  ๊ธฐ์—… CIO๋Š” AI์˜ ์•ฝ์†์„ ์šด์˜ ์ธก๋ฉด์—์„œ ์ˆ˜์น˜ํ™”ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ณผ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹ค. ํ”„๋กœ์ ํŠธ ๊ธฐ๊ฐ„ ๋‹จ์ถ•, ๊ฐ„์ ‘๋น„ ๊ฐ์†Œ, ํฌํŠธํด๋ฆฌ์˜ค ํˆฌ๋ช…์„ฑ ์ œ๊ณ  ๊ฐ™์€ ์ง€ํ‘œ๋กœ ์–ด๋–ป๊ฒŒ ์„ค๋ช…ํ•  ๊ฒƒ์ธ๊ฐ€ ํ•˜๋Š” ๋ฌธ์ œ๋‹ค. ์กฐ์ง€์•„ ๊ณต๊ณผ๋Œ€ํ•™๊ต๊ฐ€ 2025๋…„์— ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ์ „๋ฌธ๊ฐ€์™€ C ๋ ˆ๋ฒจ ๊ธฐ์ˆ  ๋ฆฌ๋” 217๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰ํ•œ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด, ์กฐ์‚ฌ ๋Œ€์ƒ ๊ธฐ์—…์˜ 73%๊ฐ€ ์–ด๋–ค ํ˜•ํƒœ๋กœ๋“  ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ์˜์—ญ์— AI๋ฅผ ๋„์ž…ํ–ˆ๋‹ค๊ณ  ์‘๋‹ตํ–ˆ๋‹ค.

ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์—ด๊ธฐ ์†์—์„œ๋„ AI๊ฐ€ ํ”„๋กœ์ ํŠธ ๋งค๋‹ˆ์ €(PM)์˜ ์—ญํ• ์„ ์–ด๋–ป๊ฒŒ ์žฌ์ •์˜ํ•  ๊ฒƒ์ธ์ง€, ํ–ฅํ›„ ๋น„์ฆˆ๋‹ˆ์Šค ํ˜์‹  ํ”„๋กœ๊ทธ๋žจ์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๊ทœ์ •ํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ์งˆ๋ฌธ์€ ์—ฌ์ „ํžˆ ๋‚จ์•„ ์žˆ๋‹ค.

์—ญํ• ์€ ๋ฐ”๋€Œ์ง€๋งŒ PM์˜ ์ค‘์š”์„ฑ์€ ๊ทธ๋Œ€๋กœ

์ด๋ฏธ ์—ฌ๋Ÿฌ ์‚ฐ์—…์—์„œ ํ”„๋กœ์ ํŠธ ์ „๋ฌธ๊ฐ€๋Š” ๋ณ€ํ™”๋ฅผ ์ฒด๊ฐํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ฒˆ ์กฐ์‚ฌ์—์„œ AI๋ฅผ ์ผ์ฐ ๋„์ž…ํ•œ ๊ธฐ์—…์€ ํ”„๋กœ์ ํŠธ ํšจ์œจ์„ฑ์ด ์ตœ๋Œ€ 30%๊นŒ์ง€ ํ–ฅ์ƒ๋๋‹ค๊ณ  ๋ณด๊ณ ํ–ˆ์ง€๋งŒ, ์„ฑ๊ณต ์—ฌ๋ถ€๋Š” ๊ธฐ์ˆ  ์ž์ฒด๋ณด๋‹ค ๋ฆฌ๋”์‹ญ์ด AI ํ™œ์šฉ์„ ์–ด๋–ป๊ฒŒ ํ†ต์ œํ•˜๋А๋ƒ์— ๋” ํฌ๊ฒŒ ์ขŒ์šฐ๋๋‹ค. ์‘๋‹ต์ž์˜ ์••๋„์  ๋‹ค์ˆ˜๋Š” AI๊ฐ€ ํšจ์œจ์„ฑ, ์˜ˆ์ธก ๊ธฐ๋ฐ˜ ๊ณ„ํš, ์˜์‚ฌ๊ฒฐ์ • ๊ฐœ์„ ์— ๋งค์šฐ ํšจ๊ณผ์ ์ด์—ˆ๋‹ค๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ํ”„๋กœ์ ํŠธ๋ฅผ ์‹ค์ œ๋กœ ์šด์˜ํ•˜๋Š” ์‹ค๋ฌด์ž์—๊ฒŒ ์ด ๋ณ€ํ™”๋Š” ๋ฌด์—‡์„ ์˜๋ฏธํ• ๊นŒ?

์‘๋‹ต์ž์˜ ์•ฝ 1/3์€ AI ๋•๋ถ„์— PM์ด ์ผ์ƒ์ ์ธ ์ผ์ •ยท์—…๋ฌด ์กฐ์ •์—์„œ ๋ฒ—์–ด๋‚˜ ์žฅ๊ธฐ์ ์ธ ์„ฑ๊ณผ๋ฅผ ์ด๋„๋Š” ์ „๋žต์  ์ด๊ด„ ์—ญํ• ์— ๋” ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ์˜ˆ์ƒํ–ˆ๋‹ค. ๋˜ ๋‹ค๋ฅธ 1/3์€ PM์ด ํŒ€ ์ „๋ฐ˜์—์„œ AI ์ธ์‚ฌ์ดํŠธ๋ฅผ ํ•ด์„ํ•ด ํ†ตํ•ฉํ•˜๋Š” ์ด‰์ง„์ž ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ํ˜‘์—…์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ™”ํ•  ๊ฒƒ์ด๋ผ๊ณ  ๋‚ด๋‹ค๋ดค๋‹ค. ๋‚˜๋จธ์ง€ ์‘๋‹ต์ž๋Š” PM์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์œค๋ฆฌ์„ฑ, ์ •ํ™•๋„, ๋น„์ฆˆ๋‹ˆ์Šค ๋ชฉํ‘œ ์ •๋ ฌ ์—ฌ๋ถ€๋ฅผ ๊ด€๋ฆฌยท๊ฐ๋…ํ•˜๋Š” AI ์‹œ์Šคํ…œ ๊ฐ๋…์ž๋กœ ๋ณ€๋ชจํ•  ๊ฒƒ์ด๋ผ๊ณ  ์ „๋งํ–ˆ๋‹ค.

์ด๋Ÿฐ ์‹œ๊ฐ์€ ํ•˜๋‚˜์˜ ๊ฒฐ๋ก ์œผ๋กœ ๋ชจ์ธ๋‹ค. AI๊ฐ€ PM์„ ๋Œ€์ฒดํ•˜์ง€๋Š” ์•Š์ง€๋งŒ, PM์˜ ๊ฐ€์น˜๋ฅผ ์žฌ์ •์˜ํ•  ๊ฒƒ์ด๋ผ๋Š” ์ ์ด๋‹ค. ์•ž์œผ๋กœ ๋“ฑ์žฅํ•  PM์€ ์—…๋ฌด ๋ชฉ๋ก๋งŒ ๊ด€๋ฆฌํ•˜๋Š” ์‚ฌ๋žŒ์ด ์•„๋‹ˆ๋ผ ์ง€๋Šฅ์„ ๊ด€๋ฆฌํ•˜๊ณ , AI ๊ธฐ๋ฐ˜ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณผ๋กœ ๋ฒˆ์—ญํ•˜๋Š” ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.

PMO๊ฐ€ ์„œ๋‘˜๋Ÿฌ์•ผ ํ•˜๋Š” ์ด์œ 

PMO(Project Management Office)์—๊ฒŒ ๊ณผ์ œ๋Š” ๋” ์ด์ƒ AI๋ฅผ ๋„์ž…ํ• ์ง€ ์—ฌ๋ถ€๊ฐ€ ์•„๋‹ˆ๋ผ ์–ด๋–ป๊ฒŒ ๋„์ž…ํ• ์ง€์ด๋‹ค. ๋Œ€๊ธฐ์—…์ด๋ผ๋ฉด ๋Œ€๋ถ€๋ถ„ ์ผ์ • ์˜ˆ์ธก, ์ž๋™ ๋ฆฌ์Šคํฌ ๋ณด๊ณ , ๋ฌธ์„œ ์ž‘์„ฑ์„ ์œ„ํ•œ ์ƒ์„ฑํ˜• AI ๋“ฑ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ ์ด๋ฏธ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ์–ด AI ์ฑ„ํƒ ์†๋„๋Š” ๋นจ๋ผ์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ ํ†ตํ•ฉ ์ˆ˜์ค€์€ ๊ธฐ์—…๋งˆ๋‹ค ๋“ค์ญ‰๋‚ ์ญ‰ํ•˜๋‹ค.

์—ฌ์ „ํžˆ ๋งŽ์€ PMO๊ฐ€ AI๋ฅผ ์ „๋žต ์—ญ๋Ÿ‰์ด ์•„๋‹Œ ๋„๊ตฌ ๋ชจ์Œ ์ˆ˜์ค€์˜ ๋ถ€๊ฐ€ ๊ธฐ๋Šฅ ์ •๋„๋กœ ์ทจ๊ธ‰ํ•œ๋‹ค. ํ•˜์ง€๋งŒ AI์˜ ํ•ต์‹ฌ์€ ํŒ๋‹จ ์ฆ๊ฐ•๊ณผ ์ž๋™ํ™”์— ์žˆ๋‹ค. ์ง„์ •ํ•œ ๊ฒฝ์Ÿ์šฐ์œ„๋ฅผ ํ™•๋ณดํ•˜๋Š” ๊ธฐ์—…์€ AI๋ฅผ ํ”„๋กœ์ ํŠธ ๋ฐฉ๋ฒ•๋ก , ๊ฑฐ๋ฒ„๋„Œ์Šค ํ”„๋ ˆ์ž„์›Œํฌ, ์„ฑ๊ณผ ์ง€ํ‘œ์— ๊นŠ์ด ๋‚ด์žฌํ™”ํ•˜๊ณ , ๋‹ค์Œ ๋‹ค์„ฏ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์—ผ๋‘์— ๋‘๊ณ  ์›€์ง์ธ๋‹ค.

1. ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋ผ

์ž‘๊ฒŒ ์‹œ์ž‘ํ•ด ๋น ๋ฅด๊ฒŒ ํ™•์žฅํ•˜๋ผ. ๊ฐ€์žฅ ์„ฑ๊ณต์ ์ธ AI ํ†ตํ•ฉ์€ ํ”„๋กœ์ ํŠธ ์ƒํƒœ ๋ณด๊ณ  ์ž๋™ํ™”, ์ผ์ • ์ง€์—ฐ ์˜ˆ์ธก, ์ž์› ๋ณ‘๋ชฉ ์‹๋ณ„ ๊ฐ™์€ ๋ช…ํ™•ํ•œ ์‚ฌ์šฉ๋ก€๋ฅผ ๊ฒจ๋ƒฅํ•œ ์†Œ๊ทœ๋ชจ ์‹œ๋ฒ” ์ ์šฉ์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ์ด๋Ÿฐ ํŒŒ์ผ๋Ÿฟ ํ”„๋กœ์ ํŠธ๋Š” ๋ˆˆ์— ๋ณด์ด๋Š” ์„ฑ๊ณผ๋ฅผ ๋งŒ๋“ค๊ณ  ์กฐ์ง ๋‚ด ๊ธฐ๋Œ€๊ฐ์„ ๋†’์ด๋ฉฐ, ํ†ตํ•ฉ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ธฐ์ˆ ๊ณผ ํ”„๋กœ์„ธ์Šค ๋ฌธ์ œ๋ฅผ ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ๋“œ๋Ÿฌ๋‚ด ์ค€๋‹ค.

2. ํ™œ๋™๋Ÿ‰์ด ์•„๋‹ˆ๋ผ ๊ฐ€์น˜๋ฅผ ์ธก์ •ํ•˜๋ผ

AI๋ฅผ ๋„์ž…ํ•˜๋ฉด์„œ๋„ ๋ช…ํ™•ํ•œ ์„ฑ๊ณผ ์ง€ํ‘œ ์—†์ด ์ถ”์ง„ํ•˜๋Š” ์‹ค์ˆ˜๊ฐ€ ์ž์ฃผ ๋ฐœ์ƒํ•œ๋‹ค. PMO๋Š” ์ˆ˜๋™ ๋ณด๊ณ  ์‹œ๊ฐ„ ๊ฐ์†Œ, ๋ฆฌ์Šคํฌ ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ, ํ”„๋กœ์ ํŠธ ์‚ฌ์ดํด ๋‹จ์ถ•, ์ดํ•ด๊ด€๊ณ„์ž ๋งŒ์กฑ๋„ ์ œ๊ณ  ๊ฐ™์€ ๊ตฌ์ฒด์ ์ธ KPI๋ฅผ ์„ค์ •ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ๊ฒฐ๊ณผ๋ฅผ ์กฐ์ง ์ „์ฒด์— ๊ณต์œ ํ•˜๋Š” ์ผ๋„ ์„ฑ๊ณผ ๋ชป์ง€์•Š๊ฒŒ ์ค‘์š”ํ•˜๋‹ค. ์„ฑ๊ณต ์‚ฌ๋ก€๋ฅผ ์ ๊ทน์ ์œผ๋กœ ์•Œ๋ฆฌ๋ฉด ๋ชจ๋ฉ˜ํ…€์„ ํ‚ค์šฐ๊ณ  ๋™์˜๋ฅผ ์ด๋Œ์–ด ๋‚ด๊ณ , AI์— ํšŒ์˜์ ์ธ ํŒ€์˜ ์ธ์‹์„ ๋ฐ”๊พธ๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค.

3. PM ์—ญ๋Ÿ‰์„ ์—…๊ทธ๋ ˆ์ด๋“œํ•˜๋ผ

AI์˜ ๊ฐ€์น˜๋Š” ๊ฒฐ๊ตญ ๊ทธ๊ฒƒ์„ ํ™œ์šฉํ•˜๋Š” ์‚ฌ๋žŒ์˜ ์—ญ๋Ÿ‰์— ๋‹ฌ๋ ค ์žˆ๋‹ค. ์„ค๋ฌธ์— ์‘๋‹ตํ•œ ์ „๋ฌธ๊ฐ€์˜ ๊ฑฐ์˜ ์ ˆ๋ฐ˜์€ ์ˆ™๋ จ ์ธ๋ ฅ ๋ถ€์กฑ์„ AI ํ†ตํ•ฉ์˜ ์ฃผ์š” ์žฅ๋ฒฝ์œผ๋กœ ๊ผฝ์•˜๋‹ค. ํ”„๋กœ์ ํŠธ ๋งค๋‹ˆ์ €๊ฐ€ ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๊ฐ€ ๋  ํ•„์š”๋Š” ์—†์ง€๋งŒ, AI์˜ ๊ธฐ๋ณธ ๊ฐœ๋…, ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ž‘๋™ํ•˜๋Š” ๋ฐฉ์‹, ํŽธํ–ฅ์ด ๋ฐœ์ƒํ•˜๋Š” ์ง€์ , ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์˜ ์˜๋ฏธ ์ •๋„๋Š” ์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค. ์•ž์œผ๋กœ ๊ฐ€์žฅ ์˜ํ–ฅ๋ ฅ์ด ํฐ PM์€ ๋ฐ์ดํ„ฐ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ์™€ ํ•จ๊ป˜ ๋น„ํŒ์  ์‚ฌ๊ณ , ๊ฐ์ • ์ง€๋Šฅ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๊ฐ™์€ ์ธ๊ฐ„ ์ค‘์‹ฌ ๋ฆฌ๋”์‹ญ์„ ๊ฒธ๋น„ํ•œ ์ธ์žฌ๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.

4. ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ์œค๋ฆฌ๋ฅผ ๊ฐ•ํ™”ํ•˜๋ผ

AI ํ™œ์šฉ์ด ๋Š˜์–ด๋‚ ์ˆ˜๋ก ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํ”„๋กœ์ ํŠธ ์˜์‚ฌ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๋•Œ ์œค๋ฆฌ์  ๋ฌธ์ œ๊ฐ€ ๋Œ€๋‘๋œ๋‹ค. PMO๋Š” ํˆฌ๋ช…์„ฑ, ๊ณต์ •์„ฑ, ์ธ๊ฐ„์˜ ์ตœ์ข… ๊ฐ๋…์„ ๊ฐ•์กฐํ•˜๋Š” AI ๊ฑฐ๋ฒ„๋„Œ์Šค ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ˆ˜๋ฆฝํ•˜๋Š” ๋ฐ ์•ž์žฅ์„œ์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ์›์น™์„ PMO์˜ ํ—Œ์žฅ๊ณผ ํ”„๋กœ์„ธ์Šค์— ๋…น์—ฌ๋‘๋ฉด ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ด๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ  ํ”„๋กœ์ ํŠธ ์ดํ•ด๊ด€๊ณ„์ž ์‚ฌ์ด์— ์‹ ๋ขฐ๋ฅผ ์Œ“๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•  ์ˆ˜ ์žˆ๋‹ค.

5. PMO์—์„œ BTO๋กœ ์ง„ํ™”ํ•˜๋ผ

์ „ํ†ต์ ์ธ PMO๋Š” ๋ฒ”์œ„, ์ผ์ •, ๋น„์šฉ ๊ด€์ ์—์„œ ํ”„๋กœ์ ํŠธ ์‹คํ–‰์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ํ•˜์ง€๋งŒ AI๋ฅผ ์ ๊ทน ํ™œ์šฉํ•˜๋Š” ๊ธฐ์—…์€ ํ”„๋กœ์ ํŠธ๋ฅผ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜ ์ฐฝ์ถœ๊ณผ ์ง์ ‘ ์—ฐ๊ฒฐํ•˜๋Š” BTO(Business Transformation Office)๋กœ ์ง„ํ™”ํ•˜๋Š” ์ถ”์„ธ๋‹ค. PMO๊ฐ€ ํ”„๋กœ์ ํŠธ๋ฅผ โ€˜์ œ๋Œ€๋กœโ€™ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘”๋‹ค๋ฉด, BTO๋Š” โ€˜์˜ฌ๋ฐ”๋ฅธโ€™ ํ”„๋กœ์ ํŠธ๋ฅผ ์„ ํƒํ•ด ์„ฑ๊ณผ๋ฅผ ๋‚ด๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘”๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ ์š”์†Œ๋Š” ์›Œํ„ฐํด ๋ฐฉ์‹์—์„œ ์• ์ž์ผ ๋งˆ์ธ๋“œ์…‹์œผ๋กœ์˜ ์ „ํ™˜์ด๋‹ค. ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ๊ฒฝ์ง๋œ ๊ณ„ํš ์ค‘์‹ฌ์—์„œ ๋ฐ˜๋ณต์ ์ด๊ณ  ๊ณ ๊ฐ ์ค‘์‹ฌ์ด๋ฉฐ ํ˜‘์—…์ ์ธ ๋ฐฉ์‹์œผ๋กœ ์ด๋™ํ–ˆ๊ณ , ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ฐฉ๋ฒ•๋ก ์ด ์ ์  ์ผ๋ฐ˜์ ์ธ ์„ ํƒ์ด ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ์• ์ž์ผ ์ ‘๊ทผ๋ฒ•์€ AI์™€ ๋””์ง€ํ„ธ ํ˜์‹ ์ด ์ด‰๋ฐœํ•˜๋Š” ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋ฅผ ๋”ฐ๋ผ๊ฐ€๊ธฐ ์œ„ํ•ด ํ•„์ˆ˜์ ์ธ ์กฐ๊ฑด์ด๋‹ค.

ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ์ž๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ฒฝ๋ ฅ ๊ฐœ๋ฐœ

2030๋…„ ๋ฌด๋ ต์ด ๋˜๋ฉด ์ƒํƒœ ์—…๋ฐ์ดํŠธ, ์ผ์ • ์ˆ˜๋ฆฝ, ๋ฆฌ์Šคํฌ ๊ฒฝ๊ณ ์ฒ˜๋Ÿผ ๋ฐ˜๋ณต์ ์ธ ํ”„๋กœ์ ํŠธ ์—…๋ฌด ์ƒ๋‹น ๋ถ€๋ถ„์„ AI๊ฐ€ ์ฒ˜๋ฆฌํ•˜๊ณ , ์ธ๊ฐ„ ์ฑ…์ž„์ž๋Š” ๋น„์ „, ํ˜‘์—…, ์œค๋ฆฌ์— ์ง‘์ค‘ํ•˜๋Š” ๊ทธ๋ฆผ์ด ํ˜„์‹ค์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฐ ๋ณ€ํ™”๋Š” ์• ์ž์ผ ํ™•์‚ฐ๊ณผ ๋””์ง€ํ„ธ ํŠธ๋žœ์Šคํฌ๋ฉ”์ด์…˜์ฒ˜๋Ÿผ ๊ณผ๊ฑฐ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ํ˜์‹  ํ๋ฆ„์„ ๋‹ฎ์•˜์ง€๋งŒ, ์ „๊ฐœ ์†๋„๋Š” ํ›จ์”ฌ ๋น ๋ฅด๋‹ค.

ํ•˜์ง€๋งŒ ๊ธฐ์—…์ด ์ ์  ๋” ๋งŽ์€ AI๋ฅผ ๋„์ž…ํ•˜๋ฉด ํ• ์ˆ˜๋ก ์ธ๊ฐ„์  ์š”์†Œ๋ฅผ ์žƒ์„ ์œ„ํ—˜๋„ ์ปค์ง„๋‹ค. ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ์–ธ์ œ๋‚˜ ์‚ฌ๋žŒ์— ๊ด€ํ•œ ์ผ์ด๊ณ , ์ดํ•ด๊ด€๊ณ„๋ฅผ ๋งž์ถ”๊ณ  ๊ฐˆ๋“ฑ์„ ํ•ด๊ฒฐํ•˜๋ฉฐ ํŒ€์— ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. AI๋Š” ์ผ์ • ์ง€์—ฐ์„ ์˜ˆ์ธกํ•  ์ˆ˜๋Š” ์žˆ์ง€๋งŒ, ์ง€์—ฐ์„ ๋งŒํšŒํ•˜๋„๋ก ํŒ€์„ ๊ฒฉ๋ คํ•  ์ˆ˜๋Š” ์—†๋‹ค. ๋‰˜์•™์Šค๋ฅผ ํ•ด์„ํ•˜๊ณ  ์‹ ๋ขฐ๋ฅผ ๊ตฌ์ถ•ํ•˜๋ฉฐ, ํ˜‘์—…์„ ์ด‰์ง„ํ•˜๋Š” PM์˜ ์ธ๊ฐ„์  ๋Šฅ๋ ฅ์€ ์—ฌ์ „ํžˆ ๋Œ€์ฒด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค.

์ด์ œ ํ–‰๋™์— ์ฐฉ์ˆ˜ํ•ด์•ผ ํ•  ์‹œ๊ฐ„

AI๋Š” ๊ธฐ์—… ํ”„๋กœ์ ํŠธ ์ง„ํ–‰ ๋ฐ ์„ฑ๊ณผ์˜ ์ฒจ๋ณ‘์ด ๋  ๊ฒƒ์ด๋‹ค. ์•ž์œผ๋กœ 10๋…„์€ PMO์™€ ๊ฒฝ์˜์ง„, ์ •์ฑ… ์ž…์•ˆ์ž๊ฐ€ ์ด๋Ÿฐ ์ง„ํ™”๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ๊ด€๋ฆฌํ•˜๋Š”์ง€ ์‹œํ—˜ํ•˜๋Š” ์‹œ๊ฐ„์ด ๋  ๊ฒƒ์ด๋‹ค. ์„ฑ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์—…์€ ํ”Œ๋žซํผ๋งŒํผ ์‚ฌ๋žŒ์— ํˆฌ์žํ•˜๊ณ , ์œค๋ฆฌ์ ์ด๊ณ  ํˆฌ๋ช…ํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ์ฑ„ํƒํ•˜๋ฉฐ, ์ง€์†์ ์ธ ํ•™์Šต๊ณผ ์‹คํ—˜ ๋ฌธํ™”๋ฅผ ์กฐ์„ฑํ•˜๊ณ , ๊ณผ๋Œ€๊ด‘๊ณ ๊ฐ€ ์•„๋‹Œ ์‹ค์ œ ์„ฑ๊ณผ๋กœ ์„ฑ๊ณต ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•ด์•ผ ํ•œ๋‹ค.

CIO์—๊ฒŒ๋Š” ์ด๋ฏธ ๋ถ„๋ช…ํ•œ ๊ณผ์ œ๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค. ๋น„์ „์œผ๋กœ ์ด๋Œ๊ณ  ๋†’์€ ์œค๋ฆฌ ๊ธฐ์ค€์œผ๋กœ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ง€๋Šฅํ˜• ๋„๊ตฌ๋กœ ํŒ€์— ํž˜์„ ์‹ค์–ด์ค˜์•ผ ํ•œ๋‹ค. AI๋Š” ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ ์ง๋ฌด๋ฅผ ์œ„ํ˜‘ํ•˜๋Š” ์กด์žฌ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ทธ ์—ญํ• ์„ ์žฌํƒ„์ƒ์‹œํ‚ค๋Š” ์ด‰๋งค์ œ๋‹ค. ์ฑ…์ž„ ์žˆ๊ฒŒ ์‹คํ–‰ํ•  ๊ฒฝ์šฐ AI ๊ธฐ๋ฐ˜ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ๋Š” ์šด์˜ ํšจ์œจ์„ ๋†’์ด๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ๋ณ€ํ™”์— ๋ฏผ์ฒฉํ•˜๊ฒŒ ๋Œ€์‘ํ•˜๋ฉด์„œ๋„ ์‚ฌ๋žŒ ์ค‘์‹ฌ ๊ฐ€์น˜๋ฅผ ์œ ์ง€ํ•˜๋Š” ๊ธฐ์—…์„ ๋งŒ๋“œ๋Š” ๊ธฐ๋ฐ˜์ด ๋œ๋‹ค. ์ด๋Ÿฐ ๋ณ€ํ™”๋ฅผ ์‹ ์ค‘ํ•˜๊ฒŒ ์ˆ˜์šฉํ•˜๋ฉด PM์€ ๋‹จ์ˆœํ•œ ๊ด€๋ฆฌ์ž๋ฅผ ๋„˜์–ด ๋ณ€ํ™”์˜ ์„ค๊ณ„์ž๋กœ ๋„์•ฝํ•  ์ˆ˜ ์žˆ๋‹ค.
dl-ciokorea@foundryco.com

โ€œ๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ, ๋ณด์•ˆ ๋ชจ๋ธ์˜ ์ƒˆ๋กœ์šด ํ•ต์‹ฌ ์ถ•โ€ ํฌํ‹ฐ๋„ท, 2026 ์‚ฌ์ด๋ฒ„ ์œ„ํ˜‘ ์ „๋ง ๋ณด๊ณ ์„œ

ํฌํ‹ฐ๋„ท์ด ์ž์‚ฌ ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค ์กฐ์ง์ธ ํฌํ‹ฐ๊ฐ€๋“œ ๋žฉ์Šค(FortiGuard Labs)๋ฅผ ํ†ตํ•ด โ€˜2026 ์‚ฌ์ด๋ฒ„ ์œ„ํ˜‘ ์ „๋ง ๋ณด๊ณ ์„œ(Fortinet Cyberthreat Predictions Report for 2026)โ€™๋ฅผ ๊ณต๊ฐœํ–ˆ๋‹ค. ๋ณด๊ณ ์„œ๋Š” ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„๊ฐ€ AI์™€ ์ž๋™ํ™”, ์ „๋ฌธํ™”๋œ ๊ณต๊ธ‰๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋น ๋ฅด๊ฒŒ ์‚ฐ์—…ํ™”ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, 2026๋…„์—๋Š” ํ˜์‹  ์ž์ฒด๋ณด๋‹ค ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค๋ฅผ ์–ผ๋งˆ๋‚˜ ๋น ๋ฅด๊ฒŒ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š”์ง€, ์ฆ‰ ์ฒ˜๋ฆฌ ์†๋„๊ฐ€ ๊ณต๊ฒฉ๊ณผ ๋ฐฉ์–ด์˜ ์„ฑํŒจ๋ฅผ ์ขŒ์šฐํ•˜๋Š” ํ•ต์‹ฌ ๊ธฐ์ค€์ด ๋  ๊ฒƒ์œผ๋กœ ๋ถ„์„ํ–ˆ๋‹ค.

๋ณด๊ณ ์„œ๋Š” ์นจํ•ด ๊ณผ์ •์ด AI์™€ ์ž๋™ํ™” ๋„๊ตฌ๋กœ ์ธํ•ด ํฌ๊ฒŒ ๋‹จ์ถ•๋˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ๊ณต๊ฒฉ์ž๋“ค์€ ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ๋งŒ๋“ค๊ธฐ๋ณด๋‹ค ์ด๋ฏธ ํšจ๊ณผ๊ฐ€ ์ž…์ฆ๋œ ๊ณต๊ฒฉ ๊ธฐ๋ฒ•์„ ์ž๋™ํ™”ยท๊ณ ๋„ํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํšจ์œจ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. AI ์‹œ์Šคํ…œ์€ ์ •์ฐฐ, ์นจํˆฌ ๊ฐ€์†, ๋ฐ์ดํ„ฐ ๋ถ„์„, ํ˜‘์ƒ ๋ฉ”์‹œ์ง€ ์ƒ์„ฑ๊นŒ์ง€ ๊ณต๊ฒฉ ๊ณผ์ • ์ „๋ฐ˜์„ ์ž๋™ํ™”ํ•˜๋ฉฐ, ๋‹คํฌ์›น์—๋Š” ์ตœ์†Œ ๊ฐœ์ž…๋งŒ์œผ๋กœ ์ผ๋ จ์˜ ๊ณต๊ฒฉ ์ ˆ์ฐจ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž์œจํ˜• ๋ฒ”์ฃ„ ์—์ด์ „ํŠธ๊นŒ์ง€ ๋“ฑ์žฅํ•˜๊ณ  ์žˆ๋‹ค.

์ด๋กœ ์ธํ•ด ๊ณต๊ฒฉ ์ฒ˜๋ฆฌ๋Ÿ‰์€ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ์–‘์ƒ์„ ๋ณด์ธ๋‹ค. ๊ณผ๊ฑฐ ๋ช‡ ๊ฑด์˜ ๋žœ์„ฌ์›จ์–ด๋งŒ ์šด์˜ํ•˜๋˜ ๋ฒ”์ฃ„์ž๊ฐ€ ์ด์ œ๋Š” ์ˆ˜์‹ญ ๊ฑด์˜ ๋ณ‘๋ ฌ ๊ณต๊ฒฉ์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋์œผ๋ฉฐ, ์นจํ•ด ๋ฐœ์ƒ๋ถ€ํ„ฐ ์‹ค์ œ ํ”ผํ•ด๊นŒ์ง€ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„๋„ ๋ฉฐ์น ์—์„œ ๋ช‡ ๋ถ„ ๋‹จ์œ„๋กœ ์ถ•์†Œ๋˜๊ณ  ์žˆ๋‹ค. ๋ณด๊ณ ์„œ๋Š” ์ด ๊ฐ™์€ ๊ณต๊ฒฉ ์†๋„ ๊ทธ ์ž์ฒด๊ฐ€ 2026๋…„ ๊ธฐ์—…์ด ์ง๋ฉดํ•  ๊ฐ€์žฅ ํฐ ์œ„ํ—˜ ์š”์†Œ๊ฐ€ ๋  ๊ฒƒ์ด๋ผ๊ณ  ๋ถ„์„ํ–ˆ๋‹ค.

๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด, ์ž๊ฒฉ ์ฆ๋ช… ํƒˆ์ทจ, ํšก์  ์ด๋™, ๋ฐ์ดํ„ฐ ์ˆ˜์ตํ™” ๋“ฑ ๊ณต๊ฒฉ ์ฒด์ธ์˜ ํ•ต์‹ฌ ๋‹จ๊ณ„๋ฅผ ์ž๋™ํ™”ํ•˜๋Š” ์ „๋ฌธ AI ์—์ด์ „ํŠธ๋„ ๋‘๋“œ๋Ÿฌ์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ์‹œ์Šคํ…œ์€ ํƒˆ์ทจํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๊ณ , ํ”ผํ•ด์ž ์šฐ์„ ์ˆœ์œ„๋ฅผ ์‚ฐ์ •ํ•˜๋ฉฐ, ๊ฐœ์ธํ™”๋œ ํ˜‘๋ฐ• ๋ฉ”์‹œ์ง€๋ฅผ ์ƒ์„ฑํ•ด ๋ฐ์ดํ„ฐ๊ฐ€ ๋””์ง€ํ„ธ ์ž์‚ฐ์ฒ˜๋Ÿผ ๋น ๋ฅด๊ฒŒ ๊ธˆ์ „ํ™”๋˜๋Š” ํ™˜๊ฒฝ์„ ๋งŒ๋“ค์–ด๋‚ธ๋‹ค.

์ง€ํ•˜ ๋ฒ”์ฃ„ ์‹œ์žฅ ์—ญ์‹œ ๋”์šฑ ๊ตฌ์กฐํ™”๋˜๋Š” ํ๋ฆ„์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์‚ฐ์—…ยท์ง€์—ญยท์‹œ์Šคํ…œ ํ™˜๊ฒฝ์— ๋งž์ถ˜ ๋งž์ถคํ˜• ์ ‘๊ทผ ๊ถŒํ•œ ํŒจํ‚ค์ง€๊ฐ€ ์œ ํ†ต๋˜๊ณ  ๋ฐ์ดํ„ฐ ๋ณด๊ฐ•๊ณผ ์ž๋™ํ™”๋ฅผ ํ†ตํ•ด ๊ฑฐ๋ž˜ ์ •๊ตํ™”๊ฐ€ ์ด๋ค„์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณ ๊ฐ์ง€์›ยทํ‰ํŒ ์ ์ˆ˜ยท์ž๋™ ์—์Šคํฌ๋กœ ๋“ฑ ํ•ฉ๋ฒ• ์‚ฐ์—…์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋Š” ์š”์†Œ๊ฐ€ ๋„์ž…๋˜๋ฉด์„œ ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„์˜ ์‚ฐ์—…ํ™”๊ฐ€ ํ•œ์ธต ๊ฐ€์†ํ™”๋˜๊ณ  ์žˆ๋‹ค.

์ด ๊ฐ™์€ ๊ณต๊ฒฉ ๊ณ ๋„ํ™” ์†์—์„œ ํฌํ‹ฐ๋„ท์€ ๊ธฐ์—…์ด โ€˜๋จธ์‹  ์†๋„ ๋ฐฉ์–ด(machine-speed defense)โ€™ ์ฒด๊ณ„๋ฅผ ๊ฐ–์ถ”๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋จธ์‹  ์†๋„ ๋ฐฉ์–ด๋Š” ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค ์ˆ˜์ง‘ยท๊ฒ€์ฆยท๊ฒฉ๋ฆฌ ๊ณผ์ •์„ ์—ฐ์†์ ์œผ๋กœ ์ž๋™ํ™”ํ•ด ํƒ์ง€์™€ ๋Œ€์‘ ์‹œ๊ฐ„์„ ์‹œ๊ฐ„ ๋‹จ์œ„์—์„œ ๋ถ„ ๋‹จ์œ„๋กœ ์••์ถ•ํ•˜๋Š” ์šด์˜ ๋ชจ๋ธ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด CTEM(์ง€์†์  ์œ„ํ˜‘ ๋…ธ์ถœ ๊ด€๋ฆฌ), MITRE ATT&CK ํ”„๋ ˆ์ž„์›Œํฌ ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ๋งคํ•‘, ์‹ค์‹œ๊ฐ„ ๋ณต๊ตฌ ์šฐ์„ ์ˆœ์œ„ํ™” ๋“ฑ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์—ฐ์† ์šด์˜ ์ฒด๊ณ„๊ฐ€ ์š”๊ตฌ๋œ๋‹ค.

๋˜ํ•œ ์กฐ์ง ๋‚ด๋ถ€์—์„œ AI ์‹œ์Šคํ…œยท์ž๋™ํ™” ์—์ด์ „ํŠธยท๋จธ์‹  ๊ฐ„ ํ†ต์‹ ์ด ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ โ€˜๋น„์ธ๊ฐ„ ์•„์ด๋ดํ‹ฐํ‹ฐ(Non-Human Identity)โ€™ ๊ด€๋ฆฌ๊ฐ€ ๋ณด์•ˆ ์šด์˜์˜ ์ƒˆ๋กœ์šด ํ•ต์‹ฌ ์ถ•์œผ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค. ์‚ฌ๋žŒ๋ฟ ์•„๋‹ˆ๋ผ ์ž๋™ํ™”๋œ ํ”„๋กœ์„ธ์Šค์™€ ๊ธฐ๊ณ„ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ๊นŒ์ง€ ์ธ์ฆยทํ†ต์ œํ•ด์•ผ ๋Œ€๊ทœ๋ชจ ๊ถŒํ•œ ์ƒ์Šน ๋ฐ ๋ฐ์ดํ„ฐ ๋…ธ์ถœ์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์˜๋ฏธ๋‹ค.

ํฌํ‹ฐ๋„ท์€ ๊ตญ์ œ ๊ณต์กฐ ์—ญ์‹œ ํ•„์ˆ˜ ์š”์†Œ๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. ์ธํ„ฐํด์˜ ์„ธ๋ ๊ฒŒํ‹ฐ 2.0(Operation Serengeti 2.0)๊ณผ ํฌํ‹ฐ๋„ทโ€“ํฌ๋ผ์ž„์Šคํ†ฑํผ์Šค(Fortinetโ€“Crime Stoppers) ๊ตญ์ œ ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„ ํ˜„์ƒ๊ธˆ ํ”„๋กœ๊ทธ๋žจ์€ ๋ฒ”์ฃ„ ์ธํ”„๋ผ๋ฅผ ์‹ค์ œ๋กœ ๋ฌด๋ ฅํ™”ํ•˜๊ณ  ์œ„ํ˜‘ ์‹ ๊ณ  ์ฒด๊ณ„๋ฅผ ๊ฐ•ํ™”ํ•œ ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ฒญ์†Œ๋…„ยท์ทจ์•ฝ ๊ณ„์ธต์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๊ต์œกยท์˜ˆ๋ฐฉ ํ™œ๋™ ํ™•๋Œ€๋„ ์žฅ๊ธฐ์  ๊ด€์ ์—์„œ ์ค‘์š”ํ•˜๋‹ค.

์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„ ๊ทœ๋ชจ๋Š” 2027๋…„์ด๋ฉด ํ•ฉ๋ฒ• ์‚ฐ์—…์— ๋ฒ„๊ธˆ๊ฐˆ ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค. ๊ณต๊ฒฉ์ž๋Š” ๋‹ค์ˆ˜์˜ AI ์—์ด์ „ํŠธ๊ฐ€ ๊ตฐ์ง‘์ฒ˜๋Ÿผ ํ˜‘๋ ฅํ•˜๋Š” ์Šค์›œ(swarm) ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๋ฅผ ํ™œ์šฉํ•ด ๋ฐฉ์–ด์ž ํ–‰๋™์— ์ ์‘ํ•˜๋ฉฐ ๊ณต๊ฒฉ์„ ์ „๊ฐœํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ, AIยท์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์„ ๊ฒจ๋ƒฅํ•œ ๊ณต๊ธ‰๋ง ๊ณต๊ฒฉ๋„ ๋”์šฑ ์ •๊ตํ•ด์งˆ ์ „๋ง์ด๋‹ค. ์ด์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐฉ์–ด์ž๋Š” ์˜ˆ์ธก ์ธํ…”๋ฆฌ์ „์Šคยท์ž๋™ํ™”ยท๋…ธ์ถœ ๊ด€๋ฆฌ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•ด ๊ณต๊ฒฉ์ž์˜ ์›€์ง์ž„์„ ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ํŒŒ์•…ํ•˜๊ณ  ์กฐ๊ธฐ ์ฐจ๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ์ฒด๊ณ„๋กœ ์ง„ํ™”ํ•ด์•ผ ํ•œ๋‹ค.

๋ณด๊ณ ์„œ ์ง‘ํ•„ํŒ€์€ โ€œ์†๋„์™€ ๊ทœ๋ชจ๊ฐ€ ์•ž์œผ๋กœ์˜ 10๋…„์„ ๊ทœ์ •ํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ•˜๋ฉฐ, ์ธํ…”๋ฆฌ์ „์Šค์™€ ์ž๋™ํ™”, ๋ณด์•ˆ ์ธ๋ ฅ์˜ ์—ญ๋Ÿ‰์„ ํ•˜๋‚˜์˜ ๋ฐ˜์‘ํ˜• ์ฒด๊ณ„๋กœ ํ†ตํ•ฉํ•œ ๊ธฐ์—…๋งŒ์ด ๋ฏธ๋ž˜ ์œ„ํ˜‘ ํ™˜๊ฒฝ์—์„œ ์ฃผ๋„๊ถŒ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฒฐ๋ก ์ง€์—ˆ๋‹ค.

ํฌํ‹ฐ๋„ท์€ ์˜ค๋Š” 16์ผ ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„ ์ƒํƒœ๊ณ„์™€ ์•ž์œผ๋กœ ๋‹ค๊ฐ€์˜ฌ ํŠธ๋ Œ๋“œ์— ๋Œ€ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๊ณต์œ ํ•˜๋Š” ์›จ๋น„๋‚˜๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. ํฌํ‹ฐ๊ฐ€๋“œ ๋žฉ์˜ ๋””๋ ‰ํ„ฐ์ธ ์š”๋‚˜์Šค ์›Œ์ปค๊ฐ€ ์—ฐ์‚ฌ๋กœ ์ฐธ์—ฌํ•œ๋‹ค.
dl-ciokorea@foundryco.com

Privacy Framework โ€” A Modern, Data-Centric Approach for 2025

Privacy Framework โ€” A Modern, Data-Centric Approach for 2025
PF

Privacy Framework โ€” A Modern, Data-Centric Approach for 2025

Data-centric privacy readiness, ISMS alignment, regulatory coverage, consent, DPIA/PIA, incident response โ€” with real-world governance lessons.

Introduction

In 2025, privacy is no longer just a compliance obligationโ€”it has become a strategic differentiator, a board-level priority, and a resilience factor that impacts trust, brand value, and long-term sustainability. With expanding digital ecosystems, multi-jurisdictional regulations, AI-powered decision systems, and unprecedented levels of data movement across borders, enterprises today face a privacy landscape that is more complex and fast-shifting than ever before.

Action:

Start a privacy inventory project this quarter โ€” list your top 3 data sources and assign owners for each.

A Privacy Framework offers structured guidance, governance, methodologies, and operational mechanisms to ensure that personal information is collected, used, stored, processed, and shared in ways that are lawful, ethical, secure, and aligned with customer expectations. In recent years, global eventsโ€”including the major flight disruption at IndiGo in December 2025โ€”have demonstrated how operational failures, weak governance, unclear communication, and gaps in risk planning can severely impact trust. Even though the IndiGo incident was not a data breach, it highlighted how misalignment between regulation, internal capability, and operational readiness can trigger nationwide chaos. A strong privacy and governance framework would mitigate similar chaos in environments where personal data is involved.

Action:

Map one major operational process to privacy impact โ€” e.g., customer refunds, cancellations โ€” and identify data points used.

Why Organizations Need a Privacy Framework in 2025

Digital transformation, cloud technologies, AI-driven analytics, mobile adoption, and outsourcing have created a massive influx of structured and unstructured personal data. Business expansion across countries brings multi-jurisdictional privacy obligations. Meanwhile, customers are increasingly conscious about how their data is used, monitored, shared, monetized, or profiled. Market perception is now directly tied to privacy posture.

Action:

Run a rapid stakeholder survey (customers, partners) to capture top 3 privacy concerns within 30 days.

A Privacy Framework helps organizations operationalize data protection principles, embed privacy in business processes, implement technical and organizational safeguards, and ensure accountability through structured roles, auditability, and governance. It ensures that privacy is not a one-time project but a living, evolving capability.

Action:

Document a privacy governance RACI: who is Responsible, Accountable, Consulted, and Informed for your top 5 data flows.

Key Service Areas

Below table converts the main service activities into a quick-reference tabular layout.

Action:

Choose one service area to pilot with a small cross-functional team for 60 days.

Service Area Key Activities Regulations Coverage Product Partners
Privacy Readiness
  • Privacy-by-Design
  • Privacy Maturity Assessment
  • Procedure Blueprinting
  • PIA / DPIA
  • Breach Response & Management
GDPR, CCPA, LGPD, PDPA, PIPEDA, APP OneTrust BigID
PI Modelling & Mapping
  • Data Inventory
  • Data Flow Mapping
  • Data Modelling & Relationship
GDPR, Sectoral Laws BigID
Data Subject Rights
  • DSAR Portal
  • Identity Validation
  • Individual Request Fulfilment
  • Records & Reporting
GDPR, CCPA, PDPA, PIPEDA OneTrust
Consent & Cookie
  • Consent Categorisation
  • Consent Tracking & Revocation
  • Cookie Assessment & Scanning
GDPR, CCPA, ePrivacy (where applicable) CookieScan
Platform Solutions
  • Platform Architecture & Blueprinting
  • Implementation & Integration
  • Monitoring Dashboards
  • AI Regulatory Analysis
Depends on deployment region OneTrust Custom

Data-Centric View & Risk Landscape

Modern privacy management begins by understanding the data journeyโ€”collection, transformation, usage, storage, and archiving. This requires knowing data sources, processing activities, recipients, retention, and deletion flows.

Action:

Create a simple data-flow diagram for a single customer-facing process and keep it under 3 layers.

Typical data sources include CRM, customer services, retail systems, partner ecosystems, employee systems, and outsourcing providers. Each source adds complexity, and each requires controls mapped to legal and business obligations.

Action:

List top 5 external data partners and capture the legal basis or contract clause for data sharing with each.

Threats

Key ThreatsImpact
External & Internal AttacksData breach, reputational loss
Identity theftLegal, financial liabilities
RansomwareOperational paralysis

Drivers

DriverKey Factor
Regulatory ComplexityMulti-jurisdictional obligations
Market DemandPrivacy as competitive advantage
TechnologyAI, Cloud, IoT

SVG Infographic โ€” Data-Centric Privacy

Data Sources Controls & Safeguards Governance Process โ€ข Policy โ€ข People Consumers Partners
Action:

Export this infographic as a PNG for stakeholder review and include it in your privacy charter deck.

Governance, Compliance & Case Study

A Privacy Framework must ensure governance, roles, monitoring, and auditability. It should include documented policies, periodic reviews, vendor oversight, and operational playbooks. Regulatory compliance alone is insufficient without implementation and continuous improvement.

Action:

Create a policy review calendar for the next 12 months and assign owners.

Real-world disruptions, like the IndiGo outage in December 2025, teach that failure modes are broader than cyberattacks. Operational or regulatory changes, poor communication, and lack of contingency planning can rapidly erode trust. The privacy parallel: a poorly handled data incidentโ€”slow notifications, confusing remediation, or no clear ownershipโ€”can cause similar reputational damage and regulatory exposure.

Action:

Draft a short incident communication template: what to say, whom to notify, and timelines for initial acknowledgement.

Issues & Challenges

Enterprises face practical hurdles that slow down privacy adoption. The table below summarises the most common challenges and suggested mitigation approaches.

Action:

Pick one challenge from the table and identify a low-cost pilot to address it within 45 days.

IssueWhy it mattersMitigation
Low awarenessEmployees and customers unaware of rights/risksTargeted training; short micro-modules
Growth vs PrivacyRevenue goals may override privacy controlsPrivacy risk scoring in product roadmap
Forced consentLegal & reputational riskDesign clear, granular consent flows
Data complexityHigh volumes, multiple formatsAutomated discovery & classification
Budget constraintsLimits tool adoption & peoplePhased tooling; focus on high-risk areas

The Way Forward

Adopt a data-centric and risk-based privacy strategy that combines strong governance, automated privacy operations, AI-enhanced compliance management, integrated incident response, transparent customer communication, comprehensive vendor oversight, scalable platform adoption, and continuous education.

Action:

Build a 90-day roadmap with milestones for governance, inventory, DSAR readiness, and one pilot automation.

The Privacy Framework must evolve with technology, regulation, and threats. It should be continuously measured, reviewed, and improved, and must be considered a strategic asset that enables business trust and sustainable growth.

Action:

Set up a monthly privacy KPI dashboard โ€” include metrics like DSAR turnaround, PIA completion rate, and third-party control score.

Frequently Asked Questions (20)

Quick answers and guidance for executive and operational teams. The grid uses a 10x2 layout for clarity.

Action:

Select 5 FAQs relevant to your org and prepare short internal answers for stakeholder review.

1. What is a Privacy Framework?

A structured set of policies, processes, and controls to protect personal information across its lifecycle.

2. How does Privacy differ from Security?

Privacy focuses on lawful & ethical use of personal data; security provides the technical and operational safeguards.

3. What is PIA / DPIA?

Privacy Impact Assessment (PIA) or Data Protection Impact Assessment (DPIA) identifies privacy risks for projects/processes.

4. Which laws should global companies watch?

GDPR, CCPA, LGPD, PDPA, PIPEDA, APP and sectoral laws like HIPAA or GLBA.

5. What is Privacy-by-Design?

Embedding privacy into systems and processes from inception rather than as an afterthought.

6. How to handle DSARs efficiently?

Use portals, automation, identity validation, and standardized fulfilment workflows.

7. When is consent required?

Consent is required when processing lacks another valid legal basis or where explicit opt-in is mandated by law.

8. How often to review privacy policies?

At least annually, and whenever there is a significant product, legal, or operational change.

9. What role does AI play in privacy?

AI amplifies data processing risks and requires additional governance, explainability, and model monitoring.

10. How to prioritise privacy risks?

Use impact-likelihood scoring and focus on high-impact, high-likelihood scenarios first.

11. Is compliance enough?

No โ€” compliance is a baseline. Operational readiness and culture are required for real protection.

12. How to manage third-party risk?

Contractual clauses, regular audits, data flow mapping, and continuous monitoring are essential.

13. What metrics track privacy health?

DSAR turnaround, PIA completion rate, incidents resolved, third-party control score, and training completion.

14. How to respond to a breach?

Follow your incident response plan: contain, assess, notify regulators & data subjects as required, remediate, and learn.

15. What is Data Minimization?

Collect only what is necessary and retain it no longer than required for the purpose.

16. How to handle cross-border transfers?

Use approved transfer mechanisms, SCCs, or ensure adequacy decisions where applicable.

17. Which tools help scale privacy?

OneTrust, BigID, Consent Management Platforms, DLP, and specialized DSAR tools.

18. How to integrate privacy in product dev?

Use privacy checklists, threat modelling, and mandatory PIAs for high-risk features.

19. How to train employees on privacy?

Micro-learning, role-based training, simulated DSAR exercises, and phishing/incident drills.

20. What is the ROI of privacy?

Reduced incident cost, improved customer trust, brand differentiation, and regulatory fines avoidance.

Built for: Privacy Framework review โ€ข Last updated: Dec 2025 โ€ข Designed by Hermit Crab

Keeping Security & GRC at the Forefront: Practical Guide

Keeping Security & GRC at the Forefront: Practical Guide

Keeping Security & GRC at the Forefront: Practical Guide

In todayโ€™s dynamic threat landscape โ€” where cloud adoption, remote work, AI-driven attacks and stringent regulations are the norm โ€” organisations must embed Security and GRC (Governance-Risk-Compliance) into every layer of business operations. This guide offers a comprehensive yet practical roadmap to help you design, deploy and sustain a resilient security posture combining rigorous governance, risk-based controls, and audit readiness.

Governance Risk Management Compliance Security Controls Monitoring & IR Culture & Awareness Integrated GRC + Security Framework

1. Governance as the Foundation

Governance defines the strategic framework for security and compliance โ€” ensuring that every initiative aligns with business objectives, regulatory commitments, and corporate policy. It sets the tone from leadership downward, determining how risk is accepted, mitigated, or transferred, what standards apply, and who owns what. Without robust governance, even the best security tools and audit processes remain fragmented and ineffective.

A well-structured governance model codifies responsibilities for risk owners, compliance owners, control owners, and audit managers. This clarity ensures accountability, standardizes decision-making, and enables measurable control performance across the organization.

2. Risk Management โ€” Proactive & Dynamic

Risk management helps organisations anticipate and prioritize threats rather than react to incidents after they happen. Modern risk management frameworks consider evolving factors โ€” cloud adoption, supply-chain dependencies, third-party vendors, and the rapid rise of AI-powered threats โ€” to evaluate what could go wrong, how likely it is, and how severe the impact would be.

Risk Management Life Cycle

StageDescription
Risk IdentificationSpot possible threats: cyber attacks, data leaks, vendor failures, regulatory fines.
Risk AnalysisAssess likelihood + impact (qualitative or quantitative).
Risk EvaluationCompare risks against organisational tolerance or risk appetite.
Risk TreatmentMitigate, transfer, accept, or avoid the risk via controls or process changes.
Continuous MonitoringTrack Key Risk Indicators (KRIs), re-evaluate after major changes (cloud, AI, vendor changes).

Embedding risk management into everyday operations โ€” from project planning to technology adoption โ€” helps organisations stay resilient. As new threats emerge (like AI-driven ransomware or supply-chain risks), a living risk register becomes the strategic asset.

3. Compliance That Builds Trust & Enables Growth

Compliance used to be viewed as a checkbox for audits, but in modern businesses itโ€™s a competitive differentiator. Achieving and maintaining standards such as ISO 27001, GDPR/DPDP, PCI-DSS or SOC 2 enhances customer trust and unlocks new markets โ€” especially when dealing with global clients.

A compliance program acts as a documented guarantee: employees follow defined processes, controls are regularly tested, and evidence is available for internal and external audits. This ensures organisations stay audit-ready, avoid penalties, and maintain credibility with partners and regulators.

Core Benefits of a Strong Compliance Program

BenefitWhy It Matters
Customer & Partner TrustClients share sensitive data only if compliance standards are demonstrable.
Operational DisciplineStandardized controls reduce human error and enforce consistent practices.
Regulatory ReadinessHelps adapt quickly to changing laws and cross-border regulations.
Market AdvantageCertifications strengthen proposals during tenders and vendor evaluations.

4. Security Controls โ€” The Active Defense Layer

Security controls are the real-world mechanisms that protect data, infrastructure, and users โ€” from on-prem servers to cloud workloads and remote endpoints. They form the active defense layer that complements risk assessments and compliance policies.

Categories of Security Controls

TypeDescriptionExamples
PreventiveStop threats before they happen.Firewalls, MFA, patch management, least privilege access
DetectiveDetect suspicious or malicious events in real-time.SIEM, IDS/IPS, log monitoring, anomaly detection
Corrective / RecoverRespond and recover from incidents or control failures.Backups, disaster recovery, incident response plans

In 2025 and beyond, many organizations are integrating **AI-driven security tools**, behavioral analytics, and automated detection โ€” combining human oversight with machine speed to defend against advanced threats. :contentReference[oaicite:0]{index=0}

5. Continuous Monitoring & Incident Response โ€” Always On

Threats evolve rapidly. Cloud misconfigurations, AI-powered malware, supply-chain compromises โ€“ these donโ€™t wait for quarterly audits. Continuous monitoring ensures that you have real-time visibility into system health, deviations, or suspicious activities, enabling quick response and mitigation.

A well-defined Incident Response Plan (IRP) ensures clear roles, escalation paths, communication protocols and recovery procedures. Post-incident reviews feed back into risk management, compliance updates, and controls refinement โ€” creating a feedback loop that improves cyber resilience over time.

6. People, Culture & Awareness โ€” The Human Firewall

Even the most advanced tools and controls fail if users are unaware, untrained, or complacent. A strong security culture transforms security from a top-down mandate into a shared team responsibility.

Awareness programs, phishing simulations, regular training, and embedding security in everyday workflows makes compliance and risk-based controls part of the organizational DNA. This reduces human error, insider risks, and strengthens overall resilience.


Conclusion

Building a comprehensive GRC and security program isnโ€™t just about ticking boxes โ€” itโ€™s about embedding resilience into your organizationโ€™s DNA. By combining strong governance, dynamic risk management, compliance, security controls, continuous monitoring, and a security-first culture, you build robust cyber resilience. In a world where cloud, remote operations, AI-driven threats, and evolving regulations define the landscape, this integrated approach becomes the backbone of sustainable business growth.

Start today: map your critical assets, classify risk levels, assign control owners, and define basic security & compliance processes. Even small steps taken consistently are better than large efforts done occasionally.

Frequently Asked Questions โ€“ Security & GRC
1. What does โ€œKeeping Security & GRC at the forefrontโ€ actually mean? It means designing every business process with security and governance controls embedded from Day 1 to reduce risks, improve compliance, and strengthen decision-making.
2. Why is GRC important for modern organizations? GRC ensures consistent governance, reduces compliance violations, aligns risk with business goals, and protects the brand reputation.
3. What is the role of continuous monitoring in GRC? It provides real-time visibility into threats, control failures, policy deviations, and compliance gaps for faster decisions.
4. How does automation help in GRC? Automation reduces manual audits, eliminates data entry errors, accelerates risk assessments, and improves control reporting accuracy.
5. What frameworks support strong GRC programs? ISO/IEC 27001, ISO/IEC 42001, NIST CSF, SOC 2, COBIT, and GDPR form the backbone of most corporate governance structures.
6. How does GRC support cyber-resilience? GRC integrates risk management, incident response, disaster recovery and ensures organizations remain operational during cyber events.
7. What is the difference between Governance and Compliance? Governance defines โ€˜how decisions are madeโ€™; compliance ensures those decisions follow internal policies and external laws.
8. Why is risk assessment so important? Risk assessment identifies vulnerabilities, attack surfaces, and business impacts, enabling prioritization of controls and budget.
9. How does AI enhance GRC? AI improves anomaly detection, accelerates audits, automates documentation, and predicts risks using behavioural analytics.
10. What is the significance of internal audits? Internal audits validate control effectiveness, ensure policy adherence, and prepare organizations for external certification audits.
11. Why should security posture be continuously updated? Threats evolve daily, so updating controls, patching systems, and reviewing risks ensures organizations stay protected.
12. What final steps ensure long-term GRC maturity? Regular audits, policy refresh cycles, leadership reporting, business continuity planning, and culture training maintain maturity.

LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจไบบ้–“ใฎๅ”่ชฟ่จญ่จˆโ”€โ”€ใฉใ“ใพใงไปปใ›ใ€ใฉใ“ใงไป‹ๅ…ฅใ™ในใใ‹

ไบบ้–“ใฎๅฝนๅ‰ฒใ‚’ๅ‰ๆใซใ—ใŸใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ่จญ่จˆ

ใพใšๅคงๅ‰ๆใจใ—ใฆใ€LLMใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฏไบบ้–“ใฎไปฃใ‚ใ‚Šใงใฏใชใใ€ใ‚ใใพใงๅ”ๅƒใƒ‘ใƒผใƒˆใƒŠใƒผใจใ—ใฆ่จญ่จˆใ•ใ‚Œใ‚‹ในใใงใ™ใ€‚ไบบ้–“ใฎๅผทใฟใฏใ€ไพกๅ€คๅˆคๆ–ญใ‚„่ฒฌไปปใฎ่ฒ ๆ‹…ใ€็ต„็น”ใ‚„ๅ€‹ไบบใฎๆ–‡่„ˆใ‚’่ธใพใˆใŸๆ„ๆ€ๆฑบๅฎšใซใ‚ใ‚Šใพใ™ใ€‚้€†ใซใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅผทใฟใฏใ€ๆƒ…ๅ ฑใฎๆŽข็ดขใจๆ•ด็†ใ€็นฐใ‚Š่ฟ”ใ—ไฝœๆฅญใฎ้ซ˜้€Ÿๅ‡ฆ็†ใ€ๅคšๆ•ฐใฎ้ธๆŠž่‚ขใฎๆคœ่จŽใจใ„ใฃใŸ้ƒจๅˆ†ใงใ™ใ€‚ใฉใกใ‚‰ใ‹ไธ€ๆ–นใซๅ…จ้ข็š„ใซๅฏ„ใ›ใ‚‹ใฎใงใฏใชใใ€้•ทๆ‰€ใฎ็ต„ใฟๅˆใ‚ใ›ใ‚’ๆ„่ญ˜ใ™ใ‚‹ใ“ใจใŒ้‡่ฆใงใ™ใ€‚

ใใฎใŸใ‚ใซใฏใ€ใพใšๅฏพ่ฑกใจใชใ‚‹ๆฅญๅ‹™ใ‚’ๅˆ†่งฃใ—ใ€ใ€Œๅˆคๆ–ญใŒ้‡ใ„ใ‚นใƒ†ใƒƒใƒ—ใ€ใจใ€Œไบ‹ๅ‹™็š„ใชใ‚นใƒ†ใƒƒใƒ—ใ€ใ‚’่ฆ‹ๆฅตใ‚ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ใŸใจใˆใฐใ€้กงๅฎขใ‚ฏใƒฌใƒผใƒ ใธใฎๅฏพๅฟœใงใ‚ใ‚Œใฐใ€ไบ‹ๅฎŸ้–ขไฟ‚ใฎๆ•ด็†ใ‚„้ŽๅŽปใ‚ฑใƒผใ‚นใฎๆคœ็ดขใ€ๆ–‡้ขใฎใƒ‰ใƒฉใƒ•ใƒˆไฝœๆˆใชใฉใฏใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใ‚„ใ™ใ„้ ˜ๅŸŸใงใ™ใ€‚ไธ€ๆ–นใงใ€็„กๅ„Ÿๅฏพๅฟœใฎ็ฏ„ๅ›ฒใ‚’ใฉใ“ใพใง่ชใ‚ใ‚‹ใ‹ใ€ไปŠๅพŒใฎ้–ขไฟ‚ๆ€งใธใฎๅฝฑ้Ÿฟใ‚’ใฉใ†่€ƒใˆใ‚‹ใ‹ใจใ„ใฃใŸๅˆคๆ–ญใฏใ€ไบบ้–“ใซๆฎ‹ใ™ในใ้ ˜ๅŸŸใซใชใ‚Šใพใ™ใ€‚

ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆ่จญ่จˆใงใฏใ€ใ“ใ†ใ—ใŸๆฅญๅ‹™ๅˆ†่งฃใฎ็ตๆžœใ‚’่ธใพใˆใ€ใ€Œใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒ่‡ชๅพ‹็š„ใซๅฎŒ็ตใ—ใฆใ‚ˆใ„็ฏ„ๅ›ฒใ€ใ€Œๅฟ…ใšไบบ้–“ใฎๆ‰ฟ่ชใ‚’่ฆใ™ใ‚‹็ฏ„ๅ›ฒใ€ใ€Œไบบ้–“ใฎๅˆคๆ–ญใฎใŸใ‚ใซๆƒ…ๅ ฑๆ•ด็†ใ ใ‘่กŒใ†็ฏ„ๅ›ฒใ€ใจใ„ใ†ไธ‰ใคใฎใ‚พใƒผใƒณใ‚’ๆ˜Ž็ขบใซๅฎš็พฉใ—ใพใ™ใ€‚ใใฎใ†ใˆใงใ€ๅ„ใ‚พใƒผใƒณใ”ใจใซใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆจฉ้™ใจใ‚คใƒณใ‚ฟใƒผใƒ•ใ‚งใƒผใ‚นใ‚’่ชฟๆ•ดใ™ใ‚‹ใ“ใจใงใ€ๅ”่ชฟใฎๅ‰ๆใŒๆ•ดใฃใฆใ„ใใพใ™ใ€‚

ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใ€Œใƒใƒณใƒ‰ใƒซใ€ใฎใƒ‡ใ‚ถใ‚คใƒณ

ไบบ้–“ใจใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ”่ชฟใ‚’ใ†ใพใๆฉŸ่ƒฝใ•ใ›ใ‚‹ใซใฏใ€ไบบ้–“ๅดใ‹ใ‚‰่ฆ‹ใฆใ€Œใ„ใคใงใ‚‚ไป‹ๅ…ฅใงใใ‚‹ใ€ใจใ„ใ†ๆ„Ÿ่ฆšใŒ้‡่ฆใงใ™ใ€‚ไธ€ๅบฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไป•ไบ‹ใ‚’ๆธกใ—ใŸใ‚‰ๆœ€ๅพŒใ€ๅ†…้ƒจใงไฝ•ใŒ่ตทใใฆใ„ใ‚‹ใ‹ๅˆ†ใ‹ใ‚‰ใšใ€่ชคใฃใŸ็ตๆžœใ ใ‘ใŒ็ช็„ถ่ฟ”ใฃใฆใใ‚‹ใจใ„ใ†็Šถๆ…‹ใงใฏใ€ใƒฆใƒผใ‚ถใƒผใฏๅฎ‰ๅฟƒใ—ใฆไปปใ›ใ‚‹ใ“ใจใŒใงใใพใ›ใ‚“ใ€‚

ใใ“ใง้ตใซใชใ‚‹ใฎใŒใ€ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใƒใƒณใƒ‰ใƒซใฎใƒ‡ใ‚ถใ‚คใƒณใงใ™ใ€‚ไป‹ๅ…ฅใƒใ‚คใƒณใƒˆใจใฏใ€ใƒฏใƒผใ‚ฏใƒ•ใƒญใƒผใฎไธญใงไบบ้–“ใŒๅฟ…ใš็ขบ่ชใ‚„ๆ‰ฟ่ชใ‚’่กŒใ†ใ‚นใƒ†ใƒƒใƒ—ใฎใ“ใจใงใ‚ใ‚Šใ€ใƒใƒณใƒ‰ใƒซใจใฏไบบ้–“ใŒใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆŒฏใ‚‹่ˆžใ„ใ‚’่ชฟๆ•ดใ™ใ‚‹ใŸใ‚ใฎๆ“ไฝœๆ‰‹ๆฎตใงใ™ใ€‚ๅ…ทไฝ“็š„ใซใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒๆๆกˆใ—ใŸใƒ—ใƒฉใƒณใ‚’ไธ€่ฆงใง่กจ็คบใ—ใ€ใƒฆใƒผใ‚ถใƒผใซใ€ŒๆŽก็”จใ€ใ€Œไฟฎๆญฃใ€ใ€Œๅดไธ‹ใ€ใ‚’้ธใฐใ›ใ‚‹็”ป้ขใ‚„ใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒไฝœๆˆใ—ใŸใƒ‰ใƒฉใƒ•ใƒˆใ‚’็ทจ้›†ใ™ใ‚‹ใ‚จใƒ‡ใ‚ฃใ‚ฟใ€ๅ‡ฆ็†ใ‚’้€”ไธญใงๆญขใ‚ใ‚‹ๅœๆญขใƒœใ‚ฟใƒณใชใฉใŒ่ฉฒๅฝ“ใ—ใพใ™ใ€‚

ใ•ใ‚‰ใซใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใŒใฉใฎใ‚ˆใ†ใซ่€ƒใˆใฆ่กŒๅ‹•ใ—ใŸใฎใ‹ใ‚’ใ€ใƒฆใƒผใ‚ถใƒผใซๅˆ†ใ‹ใ‚Šใ‚„ใ™ใๆ็คบใ™ใ‚‹ใ“ใจใ‚‚้‡่ฆใงใ™ใ€‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ†…้ƒจใง่ตทใใฆใ„ใ‚‹ๆŽจ่ซ–ใƒ—ใƒญใ‚ปใ‚นใ‚’ๅฎŒๅ…จใซๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ใ“ใจใฏ้›ฃใ—ใ„ใซใ—ใฆใ‚‚ใ€ใ€Œใพใš้ŽๅŽปไธ‰ใƒถๆœˆใฎใƒ‡ใƒผใ‚ฟใ‚’้›†่จˆใ—ใ€ใใฎ็ตๆžœใ‚’ใ‚‚ใจใซไบŒใคใฎๆกˆใ‚’ๆฏ”่ผƒใ—ใŸใ€ใจใ„ใฃใŸ็ฐกๆฝ”ใช่ชฌๆ˜Žใ‚’ๆทปใˆใ‚‹ใ ใ‘ใงใ€ใƒฆใƒผใ‚ถใƒผใฎๅฎ‰ๅฟƒๆ„Ÿใฏๅคงใใๅค‰ใ‚ใ‚Šใพใ™ใ€‚ใ“ใฎใ‚ˆใ†ใชใ€Œๆ€่€ƒ้Ž็จ‹ใฎๅค–ๅœจๅŒ–ใ€ใฏใ€ไบบ้–“ใฎๅŒๅƒšใŒๅ ฑๅ‘Šใ™ใ‚‹ใจใใฎไฝœๆณ•ใซ่ฟ‘ใใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ใƒใƒผใƒ ใฎไธ€ๅ“กใจใ—ใฆๆ‰ฑใ†ๆ„Ÿ่ฆšใ‚’่‚ฒใฆใพใ™ใ€‚

ไฟก้ ผใ‚’่‚ฒใฆใ‚‹ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใจใ€Œๆ‰‹ๆ”พใ—้‹่ปขใ€ใฎ็ฏ„ๅ›ฒ

ๅ”่ชฟ่จญ่จˆใฎใ‚ดใƒผใƒซใฏใ€ใƒฆใƒผใ‚ถใƒผใŒใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ‚’ๅพใ€…ใซไฟก้ ผใ—ใ€้ฉๅˆ‡ใช็ฏ„ๅ›ฒใงใ€Œๆ‰‹ๆ”พใ—้‹่ปขใ€ใ‚’่จฑๅฎนใงใใ‚‹็Šถๆ…‹ใ‚’ไฝœใ‚‹ใ“ใจใงใ™ใ€‚ใ“ใ“ใง้‡่ฆใชใฎใฏใ€ๆœ€ๅˆใ‹ใ‚‰้ซ˜ใ„่‡ชๅพ‹ๆ€งใ‚’ไธŽใˆใ‚‹ใฎใงใฏใชใใ€ๆฎต้šŽ็š„ใซไฟก้ ผใ‚’็ฉใฟ้‡ใญใ‚‹ใ“ใจใงใ™ใ€‚

ๅˆๆœŸๆฎต้šŽใงใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซใ€Œๆๆกˆใ€ใ‚„ใ€Œใƒ‰ใƒฉใƒ•ใƒˆใ€ใ ใ‘ใ‚’ไปปใ›ใ€ๆœ€็ต‚ๆฑบๅฎšใฏๅฟ…ใšไบบ้–“ใŒ่กŒใ†ๅฝขใŒๆœ›ใพใ—ใ„ใงใ—ใ‚‡ใ†ใ€‚ใ“ใฎใƒ•ใ‚งใƒผใ‚บใงใฏใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๆๆกˆใŒใฉใ‚Œใ ใ‘ๆœ‰็”จใ‹ใ€ใฉใฎ็จ‹ๅบฆใฎ้ ปๅบฆใงไฟฎๆญฃใŒๅฟ…่ฆใ‹ใ‚’่ฆณๅฏŸใ—ใ€ใƒฆใƒผใ‚ถใƒผ่‡ช่บซใ‚‚ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใจใฎไป˜ใๅˆใ„ๆ–นใ‚’ๅญฆใ‚“ใงใ„ใใพใ™ใ€‚ใ“ใฎ้Ž็จ‹ใงใ€ใ€Œใ“ใฎ็จฎ้กžใฎไป•ไบ‹ใชใ‚‰ใฐใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใฆใ‚‚ๅคงไธˆๅคซใใ†ใ ใ€ใจใ„ใ†ๆ„Ÿ่ฆšใŒๅฐ‘ใ—ใšใค่‚ฒใฃใฆใ„ใใพใ™ใ€‚

ๆฌกใฎๆฎต้šŽใงใฏใ€ใƒชใ‚นใ‚ฏใฎไฝŽใ„้ ˜ๅŸŸใ‹ใ‚‰่‡ชๅ‹•ๅฎŸ่กŒใฎ็ฏ„ๅ›ฒใ‚’ๅบƒใ’ใฆใ„ใใพใ™ใ€‚ใŸใจใˆใฐใ€ๅ†…้ƒจๅ‘ใ‘ใฎ้€ฑๆฌกใƒฌใƒใƒผใƒˆใฎๆ›ดๆ–ฐใ‚„ใ€ๅฎšๅž‹็š„ใชใƒชใƒžใ‚คใƒณใƒ‰ใƒกใƒผใƒซใฎ้€ไฟกใชใฉใฏใ€่‡ชๅ‹•ๅŒ–ใ—ใ‚„ใ™ใ„้ ˜ๅŸŸใงใ™ใ€‚ไธ€ๆ–นใงใ€ๅฏพๅค–็š„ใชใ‚ณใƒŸใƒฅใƒ‹ใ‚ฑใƒผใ‚ทใƒงใƒณใ‚„ๅฅ‘็ด„้–ข้€ฃใฎๅ‡ฆ็†ใชใฉใฏใ€้•ทใไบบ้–“ใฎใƒฌใƒ“ใƒฅใƒผใŒๅฟ…่ฆใช้ ˜ๅŸŸใจใ—ใฆๆฎ‹ใ‚‹ใ‹ใ‚‚ใ—ใ‚Œใพใ›ใ‚“ใ€‚็ต„็น”ใจใ—ใฆใ€Œใฉใฎใƒฌใƒ™ใƒซใฎใƒชใ‚นใ‚ฏใชใ‚‰ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไปปใ›ใฆใ‚ˆใ„ใ‹ใ€ใจใ„ใ†ๆ–น้‡ใ‚’ๅ…ฑๆœ‰ใ—ใ€ใใ‚Œใซๆฒฟใฃใฆๆจฉ้™่จญๅฎšใ‚’่กŒใ†ใ“ใจใŒใ€ๅฅๅ…จใชไฟก้ ผ้–ขไฟ‚ใฎๅ‰ๆใซใชใ‚Šใพใ™ใ€‚

ๆœ€็ต‚็š„ใซใฏใ€ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใใฎใ‚‚ใฎใŒใ€ใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใธใฎไฟก้ ผใซๅคงใใชๅฝฑ้Ÿฟใ‚’ไธŽใˆใพใ™ใ€‚่ชคใ‚ŠใŒ่ตทใใŸใจใใซใ€ใฉใ‚Œใ ใ‘็ด ๆ—ฉใๅŽŸๅ› ใ‚’็‰นๅฎšใ—ใ€ไฟฎๆญฃใงใใ‚‹ใ‹ใ€‚ใƒฆใƒผใ‚ถใƒผใŒใ€Œใ“ใฎ็ตๆžœใฏใŠใ‹ใ—ใ„ใ€ใจๆ„Ÿใ˜ใŸใจใใ€ใƒฏใƒณใ‚ฏใƒชใƒƒใ‚ฏใงไบบ้–“ใฎๆ‹…ๅฝ“่€…ใซๅˆ‡ใ‚Šๆ›ฟใˆใ‚‰ใ‚Œใ‚‹ใ‹ใ€‚ใใ†ใ—ใŸใ€Œๅคฑๆ•—ใธใฎๅ‚™ใˆใ€ใŒๆ•ดใฃใฆใ„ใ‚‹ใปใฉใ€ใƒฆใƒผใ‚ถใƒผใฏๅฎ‰ๅฟƒใ—ใฆใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใซไป•ไบ‹ใ‚’ไปปใ›ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ไบบ้–“ใจใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใฎๅ”่ชฟ่จญ่จˆใจใฏใ€ๅ˜ใซๅฝนๅ‰ฒๅˆ†ๆ‹…ใ‚’ๆฑบใ‚ใ‚‹ใ ใ‘ใงใฏใชใใ€ไฟก้ ผใŒๅพใ€…ใซ้†ธๆˆใ•ใ‚Œใ‚‹ใƒฆใƒผใ‚ถใƒผไฝ“้จ“ใฎๆตใ‚Œๅ…จไฝ“ใ‚’ใƒ‡ใ‚ถใ‚คใƒณใ™ใ‚‹ๅ–ถใฟใงใ‚‚ใ‚ใ‚Šใพใ™ใ€‚

Data Privacy Services Powered by Privacy Ops: Achieving Global Compliance

Data Privacy Services Powered by Privacy Ops: Achieving Global Compliance

Data Privacy Services Powered by Privacy Ops

Achieving Global Compliance Through Automation and AI

Title & Introduction

The modern digital ecosystem demands more than mere compliance; it requires operationalized data privacy. The shift from ad-hoc responses to a systematic **Privacy Operations (Privacy Ops)** framework is essential for organizations dealing with vast amounts of personal information (PI). Privacy Ops integrates people, processes, and technology to manage privacy risks continuously and automatically, transforming the burden of compliance into a strategic asset. With the proliferation of regulations like GDPR, CCPA, and LGPD, manual systems are obsolete, making AI-driven, platform-enabled services the only sustainable path forward.

This article explores a comprehensive Privacy Ops solution, detailing its features, service offerings, and its ability to seamlessly manage global regulatory coverage through automation and integrated data management.

Core Service Features: The Power of Automation

A successful Privacy Ops framework is defined by its ability to reduce human error and scale quickly. The core features leverage technology to automate complex, high-volume tasks, significantly lowering **low people dependency**.

AI-Powered Regulatory Analysis

An **AI powered bot for regulatory obligations analysis** instantly scans changes in global laws. By partnering with **UCF (Unified Compliance Framework) for authority sources**, the platform ensures that compliance requirements are current and accurate, eliminating the manual effort required to track evolving privacy standards.

Unified Data Integration

Handling diverse data environments is crucial. The platform supports **50+ data stores integrated through API**, ensuring a holistic view of all personal information assets. This unified approach facilitates accurate Data Inventory and **Data flow mapping** for comprehensive PI Modelling.

Monitoring & Reporting

The system provides **Automated track and monitor status**, displayed via **Interactive and dynamic dashboards**. These dashboards offer real-time insights into compliance metrics, risk levels, and the status of **Data Subject Rights Management (DSRM)** requests, allowing for proactive intervention.

Beyond these, the offering includes **Customised templates**, website **scan**, full **consent management & reporting**, making the entire compliance lifecycle platform enabled and highly streamlined.

Holistic Service Offerings and Global Coverage

The service architecture addresses the entire privacy spectrum, from proactive readiness to reactive breach management, covering major global laws.

1. Privacy Readiness & Impact Assessment

This is the proactive phase. Services include establishing a culture of **Privacy by Design**, performing **Privacy Maturity Assessment & Procedure blueprinting**. Crucially, it manages **Data Protection Impact Assessment (DPIA)** and **Privacy Impact Assessment (PIA)** processes, which are mandatory under regulations like GDPR. Finally, a robust **Breach Response & Management** protocol is established for rapid and compliant incident handling.

2. Data Subject Rights Management (DSRM)

Managing the rights of data subjects (like access, erasure, and portability) is a major operational challenge under regulations like CCPA and GDPR. The solution provides a dedicated **Data Subject Access rights portal for intake**, implements **Data subject identity validation**, ensures **Individual Request Fulfillment**, and maintains necessary **Records & Reporting** for audit purposes.

3. Consent & Cookie Compliance

Modern compliance requires granular control over user consent. This service handles **Consent categorization and status**, along with **Consent tracking and fulfilment**. It includes **Cookies Assessment & Implementation** and continuous **Consent & Website Scanning** to ensure ongoing legal adherence to cookie policies globally.

4. Global Regulatory Coverage

The complexity of compliance is minimized by covering a wide range of mandates, including:

  • EU-General Data Protection Regulation (**GDPR**)
  • California Consumer Privacy Act (**CCPA**), US
  • Lei Geral de Proteรงรฃo de Dados (**LGPD**), Brazil
  • Australian Privacy Principles (**APP**)
  • Personal Information Protection and Electronic Documents Act (**PIPEDA**), Canada
  • Personal Data Protection Act (**PDPA**), Singapore

This wide coverage, supported by product partners like **OneTrust** and **BigID**, ensures a single, harmonized approach to multiple regulatory challenges.

Visual Diagram: Privacy Ops Flow

The successful implementation of Privacy Ops follows a continuous loop, driven by data ingestion and AI analysis, leading to automated controls and feedback.

Data Ingestion AI Regulatory Analysis & PI Mapping Automated DSRM & Consent Dashboards & Continuous Monitoring

Exam-Oriented Tips

For certification exams in privacy and data protection, focus on the operational aspects and key regulatory instruments:

Mastering Acronyms and Scope

  • **DPIA vs. PIA:** Understand the specific triggers for a Data Protection Impact Assessment (GDPR) and the broader Privacy Impact Assessment (general best practice).
  • **DSRM (Data Subject Rights Management):** Focus on the 7-step processโ€”from intake via portal to final fulfillment and record-keeping.
  • **Key Global Laws:** Memorize the scope and core rights provided by **GDPR, CCPA, and LGPD**, as they are frequently compared in scenario-based questions.
  • **Privacy by Design:** Know the 7 foundational principles, especially the proactive and preventative nature of the approach.

Practice questions involving data flow mapping and determining compliance requirements when data crosses international boundaries (e.g., EU data processed in Singapore).

FAQ (Markdown)

**Q1: What is the primary role of the AI-powered bot?**

A1: The AI bot analyzes regulatory updates and obligations from sources like UCF to ensure real-time compliance tracking.

**Q2: How does the platform handle global regulations?**

A2: It provides harmonized controls covering major laws including GDPR, CCPA, LGPD, PIPEDA, and PDPA, allowing for central management.

**Q3: What are the key steps in Data Subject Rights Management?**

A3: Intake via a dedicated portal, identity validation, fulfillment of the request (e.g., erasure), and maintaining audit records and reporting.

**Q4: What is the purpose of Data Flow Mapping?**

A4: To identify where personal data is collected, stored, processed, and shared (data inventory and relationship) across the 50+ integrated data stores.

**Q5: What is 'Privacy by Design'?**

A5: A proactive approach ensuring privacy and security are built into the system architecture and business processes from the start, not added later.
    

FAQ: Visual Summary

Q1: Primary role of the AI-powered bot? A1: Analyzes regulatory updates from UCF for real-time tracking. Q2: How does the platform handle global regulations? A2: Harmonized controls covering GDPR, CCPA, LGPD, PIPEDA, and PDPA. Q3: Key steps in Data Subject Rights Management? A3: Intake via portal, identity validation, request fulfillment, and audit records. Q4: Purpose of Data Flow Mapping? A4: To identify where PI is collected, stored, processed, and shared (Data Inventory). Q5: What is 'Privacy by Design'? A5: Proactive approach: privacy and security are built into the architecture from the start.

ยฉ 2025 TheControlCheck. All rights reserved.

โŒ