Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

What we still don’t know about weight-loss drugs

28 November 2025 at 05:00

MIT Technology Review Explains: Let our writers untangle the complex, messy world of technology to help you understand what’s coming next. You can read more from the series here.

Weight-loss drugs have been back in the news this week. First, we heard that Eli Lilly, the company behind the drugs Mounjaro and Zepbound, became the first healthcare company in the world to achieve a trillion-dollar valuation.

Those two drugs, which are prescribed for diabetes and obesity respectively, are generating billions of dollars in revenue for the company. Other GLP-1 agonist drugs—a class that includes Mounjaro and Zepbound, which have the same active ingredient—have also been approved to reduce the risk of heart attack and stroke in overweight people. Many hope these apparent wonder drugs will also treat neurological disorders and potentially substance use disorders, too.

But this week we also learned that, disappointingly, GLP-1 drugs don’t seem to help people with Alzheimer’s disease. And that people who stop taking the drugs when they become pregnant can experience potentially dangerous levels of weight gain during their pregnancies. On top of that, some researchers worry that people are using the drugs postpartum to lose pregnancy weight without understanding potential risks.

All of this news should serve as a reminder that there’s a lot we still don’t know about these drugs. This week, let’s look at the enduring questions surrounding GLP-1 agonist drugs.

First a quick recap. Glucagon-like peptide-1 is a hormone made in the gut that helps regulate blood sugar levels. But we’ve learned that it also appears to have effects across the body. Receptors that GLP-1 can bind to have been found in multiple organs and throughout the brain, says Daniel Drucker, an endocrinologist at the University of Toronto who has been studying the hormone for decades.

GLP-1 agonist drugs essentially mimic the hormone’s action. Quite a few have been developed, including semaglutide, tirzepatide, liraglutide, and exenatide, which have brand names like Ozempic, Saxenda and Wegovy. Some of them are recommended for some people with diabetes.

But because these drugs also seem to suppress appetite, they have become hugely popular weight loss aids. And studies have found that many people who take them for diabetes or weight loss experience surprising side effects; that their mental health improves, for example, or that they feel less inclined to smoke or consume alcohol. Research has also found that the drugs seem to increase the growth of brain cells in lab animals.

So far, so promising. But there are a few outstanding gray areas.

Are they good for our brains?

Novo Nordisk, a competitor of Eli Lilly, manufactures GLP-1 drugs Wegovy and Saxenda. The company recently trialed an oral semaglutide in people with Alzheimer’s disease who had mild cognitive impairment or mild dementia. The placebo-controlled trial included 3808 volunteers.

Unfortunately, the company found that the drug did not appear to delay the progression of Alzheimer’s disease in the volunteers who took it.

The news came as a huge disappointment to the research community. “It was kind of crushing,” says Drucker. That’s despite the fact that, deep down, he wasn’t expecting a “clear win.” Alzheimer’s disease has proven notoriously difficult to treat, and by the time people get a diagnosis, a lot of damage has already taken place.

But he is one of many that isn’t giving up hope entirely. After all, research suggests that GLP-1 reduces inflammation in the brain and improves the health of neurons, and that it appears to improve the way brain regions communicate with each other. This all implies that GLP-1 drugs should benefit the brain, says Drucker. There’s still a chance that the drugs might help stave off Alzheimer’s in those who are still cognitively healthy.

Are they safe before, during or after pregnancy?

Other research published this week raises questions about the effects of GLP-1s taken around the time of pregnancy. At the moment, people are advised to plan to stop taking the medicines two months before they become pregnant. That’s partly because some animal studies suggest the drugs can harm the development of a fetus, but mainly because scientists haven’t studied the impact on pregnancy in humans.

Among the broader population, research suggests that many people who take GLP-1s for weight loss regain much of their lost weight once they stop taking those drugs. So perhaps it’s not surprising that a study published in JAMA earlier this week saw a similar effect in pregnant people.

The study found that people who had been taking those drugs gained around 3.3kg more than others who had not. And those who had been taking the drugs also appeared to have a slightly higher risk of gestational diabetes, blood pressure disorders and even preterm birth.

It sounds pretty worrying. But a different study published in August had the opposite finding—it noted a reduction in the risk of those outcomes among women who had taken the drugs before becoming pregnant.

If you’re wondering how to make sense of all this, you’re not the only one. No one really knows how these drugs should be used before pregnancy—or during it for that matter.

Another study out this week found that people (in Denmark) are increasingly taking GLP-1s postpartum to lose weight gained during pregnancy. Drucker tells me that, anecdotally, he gets asked about this potential use a lot.

But there’s a lot going on in a postpartum body. It’s a time of huge physical and hormonal change that can include bonding, breastfeeding and even a rewiring of the brain. We have no idea if, or how, GLP-1s might affect any of those.

Howand whencan people safely stop using them?

Yet another study out this week—you can tell GLP-1s are one of the hottest topics in medicine right now—looked at what happens when people stop taking tirzepatide (marketed as Zepbound) for their obesity.

The trial participants all took the drug for 36 weeks, at which point half continued with the drug, and half were switched to a placebo for another 52 weeks. During that first 36 weeks, the weight and heart health of the participants improved.

But by the end of the study, most of those that had switched to a placebo had regained more than 25% of the weight they had originally lost. One in four had regained more than 75% of that weight, and 9% ended up at a higher weight than when they’d started the study. Their heart health also worsened.

Does that mean that people need to take these drugs forever? Scientists don’t have the answer to that one, either. Or if taking the drugs indefinitely is safe. The answer might depend on the individual, their age or health status, or what they are using the drug for.

There are other gray areas. GLP-1s look promising for substance use disorders, but we don’t yet know how effective they might be. We don’t know the long-term effects these drugs have on children who take them. And we don’t know the long-term consequences these drugs might have for healthy-weight people who take them for weight loss.

Earlier this year, Drucker accepted a Breakthrough Prize in Life Sciences at a glitzy event in California. “All of these Hollywood celebrities were coming up to me and saying ‘thank you so much,’” he says. “A lot of these people don’t need to be on these medicines.”

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

We’re learning more about what vitamin D does to our bodies

21 November 2025 at 05:00

It has started to get really wintry here in London over the last few days. The mornings are frosty, the wind is biting, and it’s already dark by the time I pick my kids up from school. The darkness in particular has got me thinking about vitamin D, a.k.a. the sunshine vitamin.

At a checkup a few years ago, a doctor told me I was deficient in vitamin D. But he wouldn’t write me a prescription for supplements, simply because, as he put it, everyone in the UK is deficient. Putting the entire population on vitamin D supplements would be too expensive for the country’s national health service, he told me.

But supplementation—whether covered by a health-care provider or not—can be important. As those of us living in the Northern Hemisphere spend fewer of our waking hours in sunlight, let’s consider the importance of vitamin D.

Yes, it is important for bone health. But recent research is also uncovering surprising new insights into how the vitamin might influence other parts of our bodies, including our immune systems and heart health.

Vitamin D was discovered just over 100 years ago, when health professionals were looking for ways to treat what was then called “the English disease.” Today, we know that rickets, a weakening of bones in children, is caused by vitamin D deficiency. And vitamin D is best known for its importance in bone health.

That’s because it helps our bodies absorb calcium. Our bones are continually being broken down and rebuilt, and they need calcium for that rebuilding process. Without enough calcium, bones can become weak and brittle. (Depressingly, rickets is still a global health issue, which is why there is global consensus that infants should receive a vitamin D supplement at least until they are one year old.)

In the decades since then, scientists have learned that vitamin D has effects beyond our bones. There’s some evidence to suggest, for example, that being deficient in vitamin D puts people at risk of high blood pressure. Daily or weekly supplements can help those individuals lower their blood pressure.

A vitamin D deficiency has also been linked to a greater risk of “cardiovascular events” like heart attacks, although it’s not clear whether supplements can reduce this risk; the evidence is pretty mixed.

Vitamin D appears to influence our immune health, too. Studies have found a link between low vitamin D levels and incidence of the common cold, for example. And other research has shown that vitamin D supplements can influence the way our genes make proteins that play important roles in the way our immune systems work.

We don’t yet know exactly how these relationships work, however. And, unfortunately, a recent study that assessed the results of 37 clinical trials found that overall, vitamin D supplements aren’t likely to stop you from getting an “acute respiratory infection.”

Other studies have linked vitamin D levels to mental health, pregnancy outcomes, and even how long people survive after a cancer diagnosis. It’s tantalizing to imagine that a cheap supplement could benefit so many aspects of our health.

But, as you might have gathered if you’ve got this far, we’re not quite there yet. The evidence on the effects of vitamin D supplementation for those various conditions is mixed at best.

In fairness to researchers, it can be difficult to run a randomized clinical trial for vitamin D supplements. That’s because most of us get the bulk of our vitamin D from sunlight. Our skin converts UVB rays into a form of the vitamin that our bodies can use. We get it in our diets, too, but not much. (The main sources are oily fish, egg yolks, mushrooms, and some fortified cereals and milk alternatives.)

The standard way to measure a person’s vitamin D status is to look at blood levels of 25-hydroxycholecalciferol (25(OH)D), which is formed when the liver metabolizes vitamin D. But not everyone can agree on what the “ideal” level is.

Even if everyone did agree on a figure, it isn’t obvious how much vitamin D a person would need to consume to reach this target, or how much sunlight exposure it would take. One complicating factor is that people respond to UV rays in different ways—a lot of that can depend on how much melanin is in your skin. Similarly, if you’re sitting down to a meal of oily fish and mushrooms and washing it down with a glass of fortified milk, it’s hard to know how much more you might need.

There is more consensus on the definition of vitamin D deficiency, though. (It’s a blood level below 30 nanomoles per liter, in case you were wondering.) And until we know more about what vitamin D is doing in our bodies, our focus should be on avoiding that.

For me, that means topping up with a supplement. The UK government advises everyone in the country to take a 10-microgram vitamin D supplement over autumn and winter. That advice doesn’t factor in my age, my blood levels, or the amount of melanin in my skin. But it’s all I’ve got for now.

These technologies could help put a stop to animal testing

14 November 2025 at 05:00

Earlier this week, the UK’s science minister announced an ambitious plan: to phase out animal testing.

Testing potential skin irritants on animals will be stopped by the end of next year, according to a strategy released on Tuesday. By 2027, researchers are “expected to end” tests of the strength of Botox on mice. And drug tests in dogs and nonhuman primates will be reduced by 2030. 

The news follows similar moves by other countries. In April, the US Food and Drug Administration announced a plan to replace animal testing for monoclonal antibody therapies with “more effective, human-relevant models.” And, following a workshop in June 2024, the European Commission also began working on a “road map” to phase out animal testing for chemical safety assessments.

Animal welfare groups have been campaigning for commitments like these for decades. But a lack of alternatives has made it difficult to put a stop to animal testing. Advances in medical science and biotechnology are changing that.

Animals have been used in scientific research for thousands of years. Animal experimentation has led to many important discoveries about how the brains and bodies of animals work. And because regulators require drugs to be first tested in research animals, it has played an important role in the creation of medicines and devices for both humans and other animals.

Today, countries like the UK and the US regulate animal research and require scientists to hold multiple licenses and adhere to rules on animal housing and care. Still, millions of animals are used annually in research. Plenty of scientists don’t want to take part in animal testing. And some question whether animal research is justifiable—especially considering that around 95% of treatments that look promising in animals don’t make it to market.

In recent decades, we’ve seen dramatic advances in technologies that offer new ways to model the human body and test the effects of potential therapies, without experimenting on humans or other animals.

Take “organs on chips,” for example. Researchers have been creating miniature versions of human organs inside tiny plastic cases. These systems are designed to contain the same mix of cells you’d find in a full-grown organ and receive a supply of nutrients that keeps them alive.

Today, multiple teams have created models of livers, intestines, hearts, kidneys and even the brain. And they are already being used in research. Heart chips have been sent into space to observe how they respond to low gravity. The FDA used lung chips to assess covid-19 vaccines. Gut chips are being used to study the effects of radiation.

Some researchers are even working to connect multiple chips to create a “body on a chip”—although this has been in the works for over a decade and no one has quite managed it yet.

In the same vein, others have been working on creating model versions of organs—and even embryos—in the lab. By growing groups of cells into tiny 3D structures, scientists can study how organs develop and work, and even test drugs on them. They can even be personalized—if you take cells from someone, you should be able to model that person’s specific organs. Some researchers have even been able to create organoids of developing fetuses.

The UK government strategy mentions the promise of artificial intelligence, too. Many scientists have been quick to adopt AI as a tool to help them make sense of vast databases, and to find connections between genes, proteins and disease, for example. Others are using AI to design all-new drugs.

Those new drugs could potentially be tested on virtual humans. Not flesh-and-blood people, but digital reconstructions that live in a computer. Biomedical engineers have already created digital twins of organs. In ongoing trials, digital hearts are being used to guide surgeons on how—and where—to operate on real hearts.

When I spoke to Natalia Trayanova, the biomedical engineering professor behind this trial, she told me that her model could recommend regions of heart tissue to be burned off as part of treatment for atrial fibrillation. Her tool would normally suggest two or three regions but occasionally would recommend many more. “They just have to trust us,” she told me.

It is unlikely that we’ll completely phase out animal testing by 2030. The UK government acknowledges that animal testing is still required by lots of regulators, including the FDA, the European Medicines Agency, and the World Health Organization. And while alternatives to animal testing have come a long way, none of them perfectly capture how a living body will respond to a treatment.

At least not yet. Given all the progress that has been made in recent years, it’s not too hard to imagine a future without animal testing.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Cloning isn’t just for celebrity pets like Tom Brady’s dog

7 November 2025 at 05:00

This week, we heard that Tom Brady had his dog cloned. The former quarterback revealed that his Junie is actually a clone of Lua, a pit bull mix that died in 2023.

Brady’s announcement follows those of celebrities like Paris Hilton and Barbra Streisand, who also famously cloned their pet dogs. But some believe there are better ways to make use of cloning technologies.

While the pampered pooches of the rich and famous may dominate this week’s headlines, cloning technologies are also being used to diversify the genetic pools of inbred species and potentially bring other animals back from the brink of extinction.

Cloning itself isn’t new. The first mammal cloned from an adult cell, Dolly the sheep, was born in the 1990s. The technology has been used in livestock breeding over the decades since.

Say you’ve got a particularly large bull, or a cow that has an especially high milk yield. Those animals are valuable. You could selectively breed for those kinds of characteristics. Or you could clone the original animals—essentially creating genetic twins.

Scientists can take some of the animals’ cells, freeze them, and store them in a biobank. That opens the option to clone them in the future. It’s possible to thaw those cells, remove the DNA-containing nuclei of the cells, and insert them into donor egg cells.

Those donor egg cells, which come from another animal of the same species, have their own nuclei removed. So it’s a case of swapping out the DNA. The resulting cell is stimulated and grown in the lab until it starts to look like an embryo. Then it is transferred to the uterus of a surrogate animal—which eventually gives birth to a clone.

There are a handful of companies offering to clone pets. Viagen, which claims to have “cloned more animals than anyone else on Earth,” will clone a dog or cat for $50,000. That’s the company that cloned Streisand’s pet dog Samantha, twice.

This week, Colossal Biosciences—the “de-extinction” company that claims to have resurrected the dire wolf and created a “woolly mouse” as a precursor to reviving the woolly mammoth—announced that it had acquired Viagen, but that Viagen will “continue to operate under its current leadership.”

Pet cloning is controversial, for a few reasons. The companies themselves point out that, while the cloned animal will be a genetic twin of the original animal, it won’t be identical. One issue is mitochondrial DNA—a tiny fraction of DNA that sits outside the nucleus and is inherited from the mother. The cloned animal may inherit some of this from the surrogate.

Mitochondrial DNA is unlikely to have much of an impact on the animal itself. More important are the many, many factors thought to shape an individual’s personality and temperament. “It’s the old nature-versus-nurture question,” says Samantha Wisely, a conservation geneticist at the University of Florida. After all, human identical twins are never carbon copies of each other. Anyone who clones a pet expecting a like-for-like reincarnation is likely to be disappointed.

And some animal welfare groups are opposed to the practice of pet cloning. People for the Ethical Treatment of Animals (PETA) described it as “a horror show,” and the UK’s Royal Society for the Prevention of Cruelty to Animals (RSPCA) says that “there is no justification for cloning animals for such trivial purposes.” 

But there are other uses for cloning technology that are arguably less trivial. Wisely has long been interested in diversifying the gene pool of the critically endangered black-footed ferret, for example.

Today, there are around 10,000 black-footed ferrets that have been captively bred from only seven individuals, says Wisely. That level of inbreeding isn’t good for any species—it tends to leave organisms at risk of poor health. They are less able to reproduce or adapt to changes in their environment.

Wisely and her colleagues had access to frozen tissue samples taken from two other ferrets. Along with colleagues at not-for-profit Revive and Restore, the team created clones of those two individuals. The first clone, Elizabeth Ann, was born in 2020. Since then, other clones have been born, and the team has started breeding the cloned animals with the descendants of the other seven ferrets, says Wisely.

The same approach has been used to clone the endangered Przewalski’s horse, using decades-old tissue samples stored by the San Diego Zoo. It’s too soon to predict the impact of these efforts. Researchers are still evaluating the cloned ferrets and their offspring to see if they behave like typical animals and could survive in the wild.

Even this practice is not without its critics. Some have pointed out that cloning alone will not save any species. After all, it doesn’t address the habitat loss or human-wildlife conflict that is responsible for the endangerment of these animals in the first place. And there will always be detractors who accuse people who clone animals of “playing God.” 

For all her involvement in cloning endangered ferrets, Wisely tells me she would not consider cloning her own pets. She currently has three rescue dogs, a rescue cat, and “geriatric chickens.” “I love them all dearly,” she says. “But there are a lot of rescue animals out there that need homes.”

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Here’s why we don’t have a cold vaccine. Yet.

31 October 2025 at 05:00

For those of us in the Northern Hemisphere, it’s the season of the sniffles. As the weather turns, we’re all spending more time indoors. The kids have been back at school for a couple of months. And cold germs are everywhere.

My youngest started school this year, and along with artwork and seedlings, she has also been bringing home lots of lovely bugs to share with the rest of her family. As she coughed directly into my face for what felt like the hundredth time, I started to wonder if there was anything I could do to stop this endless cycle of winter illnesses. We all got our flu jabs a month ago. Why couldn’t we get a vaccine to protect us against the common cold, too?

Scientists have been working on this for decades. It turns out that creating a cold vaccine is hard. Really hard.

But not impossible. There’s still hope. Let me explain.

Technically, colds are infections that affect your nose and throat, causing symptoms like sneezing, coughing, and generally feeling like garbage. Unlike some other infections,—covid-19, for example—they aren’t defined by the specific virus that causes them.

That’s because there are a lot of viruses that cause colds, including rhinoviruses, adenoviruses, and even seasonal coronaviruses (they don’t all cause covid!). Within those virus families, there are many different variants.

Take rhinoviruses, for example. These viruses are thought to be behind most colds. They’re human viruses—over the course of evolution, they have become perfectly adapted to infecting us, rapidly multiplying in our noses and airways to make us sick. There are around 180 rhinovirus variants, says Gary McLean, a molecular immunologist at Imperial College London in the UK.

Once you factor in the other cold-causing viruses, there are around 280 variants all told. That’s 280 suspects behind the cough that my daughter sprayed into my face. It’s going to be really hard to make a vaccine that will offer protection against all of them.

The second challenge lies in the prevalence of those variants.

Scientists tailor flu and covid vaccines to whatever strain happens to be circulating. Months before flu season starts, the World Health Organization advises countries on which strains their vaccines should protect against. Early recommendations for the Northern Hemisphere can be based on which strains seem to be dominant in the Southern Hemisphere, and vice versa.

That approach wouldn’t work for the common cold, because all those hundreds of variants are circulating all the time, says McLean.

That’s not to say that people haven’t tried to make a cold vaccine. There was a flurry of interest in the 1960s and ’70s, when scientists made valiant efforts to develop vaccines for the common cold. Sadly, they all failed. And we haven’t made much progress since then.

In 2022, a team of researchers reviewed all the research that had been published up to that year. They only identified one clinical trial—and it was conducted back in 1965.

Interest has certainly died down since then, too. Some question whether a cold vaccine is even worth the effort. After all, most colds don’t require much in the way of treatment and don’t last more than a week or two. There are many, many more dangerous viruses out there we could be focusing on.

And while cold viruses do mutate and evolve, no one really expects them to cause the next pandemic, says McLean. They’ve evolved to cause mild disease in humans—something they’ve been doing successfully for a long, long time. Flu viruses—which can cause serious illness, disability, or even death—pose a much bigger risk, so they probably deserve more attention.

But colds are still irritating, disruptive, and potentially harmful. Rhinoviruses are considered to be the leading cause of human infectious disease. They can cause pneumonia in children and older adults. And once you add up doctor visits, medication, and missed work, the economic cost of colds is pretty hefty: a 2003 study put it at $40 billion per year for the US alone.

So it’s reassuring that we needn’t abandon all hope: Some scientists are making progress! McLean and his colleagues are working on ways to prepare the immune systems of people with asthma and lung diseases to potentially protect them from cold viruses. And a team at Emory University has developed a vaccine that appears to protect monkeys from around a third of rhinoviruses.

There’s still a long way to go. Don’t expect a cold vaccine to materialize in the next five years, at least. “We’re not quite there yet,” says Michael Boeckh, an infectious-disease researcher at Fred Hutch Cancer Center in Seattle, Washington. “But will it at some point happen? Possibly.”

At the end of our Zoom call, perhaps after reading the disappointed expression on my sniffling, cold-riddled face (yes, I did end up catching my daughter’s cold), McLean told me he hoped he was “positive enough.” He admitted that he used to be more optimistic about a cold vaccine. But he hasn’t given up hope. He’s even running a trial of a potential new vaccine in people, although he wouldn’t reveal the details.

“It could be done,” he said.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

An AI app to measure pain is here

24 October 2025 at 05:00

How are you feeling?

I’m genuinely interested in the well-being of all my treasured Checkup readers, of course. But this week I’ve also been wondering how science and technology can help answer that question—especially when it comes to pain. 
In the latest issue of MIT Technology Review magazine, Deena Mousa describes how an AI-powered smartphone app is being used to assess how much pain a person is in.

The app, and other tools like it, could help doctors and caregivers. They could be especially useful in the care of people who aren’t able to tell others how they are feeling.

But they are far from perfect. And they open up all kinds of thorny questions about how we experience, communicate, and even treat pain.

Pain can be notoriously difficult to describe, as almost everyone who has ever been asked to will know. At a recent medical visit, my doctor asked me to rank my pain on a scale from 1 to 10. I found it incredibly difficult to do. A 10, she said, meant “the worst pain imaginable,” which brought back unpleasant memories of having appendicitis.

A short while before the problem that brought me in, I’d broken my toe in two places, which had hurt like a mother—but less than appendicitis. If appendicitis was a 10, breaking a toe was an 8, I figured. If that was the case, maybe my current pain was a 6. As a pain score, it didn’t sound as bad as I actually felt. I couldn’t help wondering if I might have given a higher score if my appendix were still intact. I wondered, too, how someone else with my medical issue might score their pain.

In truth, we all experience pain in our own unique ways. Pain is subjective, and it is influenced by our past experiences, our moods, and our expectations. The way people describe their pain can vary tremendously, too.

We’ve known this for ages. In the 1940s, the anesthesiologist Henry Beecher noted that wounded soldiers were much less likely to ask for pain relief than similarly injured people in civilian hospitals. Perhaps they were putting on a brave face, or maybe they just felt lucky to be alive, given their circumstances. We have no way of knowing how much pain they were really feeling.

Given this messy picture, I can see the appeal of a simple test that can score pain and help medical professionals understand how best to treat their patients. That’s what is being offered by PainChek, the smartphone app Deena wrote about. The app works by assessing small facial movements, such as lip raises or brow pinches. A user is then required to fill a separate checklist to identify other signs of pain the patient might be displaying. It seems to work well, and it is already being used in hospitals and care settings.

But the app is judged against subjective reports of pain. It might be useful for assessing the pain of people who can’t describe it themselves—perhaps because they have dementia, for example—but it won’t add much to assessments from people who can already communicate their pain levels.

There are other complications. Say a test could spot that a person was experiencing pain. What can a doctor do with that information? Perhaps prescribe pain relief—but most of the pain-relieving drugs we have were designed to treat acute, short-term pain. If a person is grimacing from a chronic pain condition, the treatment options are more limited, says Stuart Derbyshire, a pain neuroscientist at the National University of Singapore.

The last time I spoke to Derbyshire was back in 2010, when I covered work by researchers in London who were using brain scans to measure pain. That was 15 years ago. But pain-measuring brain scanners are yet to become a routine part of clinical care.

That scoring system was also built on subjective pain reports. Those reports are, as Derbyshire puts it, “baked into the system.” It’s not ideal, but when it comes down to it, we must rely on these wobbly, malleable, and sometimes incoherent self-descriptions of pain. It’s the best we have.

Derbyshire says he doesn’t think we’ll ever have a “pain-o-meter” that can tell you what a person is truly experiencing. “Subjective report is the gold standard, and I think it always will be,” he says.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Take our quiz: How much do you know about antimicrobial resistance?

16 October 2025 at 11:31

This week we had some terrifying news from the World Health Organization: Antibiotics are failing us. A growing number of bacterial infections aren’t responding to these medicines—including common ones that affect the blood, gut, and urinary tract. Get infected with one of these bugs, and there’s a fair chance antibiotics won’t help. 

The scary truth is that a growing number of harmful bacteria and fungi are becoming resistant to drugs. Just a few weeks ago, the US Centers for Disease Control and Prevention published a report finding a sharp rise in infections caused by a dangerous type of bacteria that are resistant to some of the strongest antibiotics. Now, the WHO report shows that the problem is surging around the world.

In this week’s Checkup, we’re trying something a bit different—a little quiz. You’ve probably heard about antimicrobial resistance (AMR) before, but how much do you know about microbes, antibiotics, and the scale of the problem? Here’s our attempt to put the “fun” in “fundamental threat to modern medicine.” Test your knowledge below!

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

How aging clocks can help us understand why we age—and if we can reverse it

14 October 2025 at 06:00

Be honest: Have you ever looked up someone from your childhood on social media with the sole intention of seeing how they’ve aged? 

One of my colleagues, who shall remain nameless, certainly has. He recently shared a photo of a former classmate. “Can you believe we’re the same age?” he asked, with a hint of glee in his voice. A relative also delights in this pastime. “Wow, she looks like an old woman,” she’ll say when looking at a picture of someone she has known since childhood. The years certainly are kinder to some of us than others.

But wrinkles and gray hairs aside, it can be difficult to know how well—or poorly—someone’s body is truly aging, under the hood. A person who develops age-related diseases earlier in life, or has other biological changes associated with aging (such as elevated cholesterol or markers of inflammation), might be considered “biologically older” than a similar-age person who doesn’t have those changes. Some 80-year-olds will be weak and frail, while others are fit and active. 

Doctors have long used functional tests that measure their patients’ strength or the distance they can walk, for example, or simply “eyeball” them to guess whether they look fit enough to survive some treatment regimen, says Tamir Chandra, who studies aging at the Mayo Clinic. 

But over the past decade, scientists have been uncovering new methods of looking at the hidden ways our bodies are aging. What they’ve found is changing our understanding of aging itself. 

“Aging clocks” are new scientific tools that can measure how our organs are wearing out, giving us insight into our mortality and health. They hint at our biological age. While chronological age is simply how many birthdays we’ve had, biological age is meant to reflect something deeper. It measures how our bodies are handling the passing of time and—perhaps—lets us know how much more of it we have left. And while you can’t change your chronological age, you just might be able to influence your biological age.

It’s not just scientists who are using these clocks. Longevity influencers like Bryan Johnson often use them to make the case that they are aging backwards. “My telomeres say I’m 10 years old,” Johnson posted on X in April. The Kardashians have tried them too (Khloé was told on TV that her biological age was 12 years below her chronological age). Even my local health-food store offers biological age testing. Some are pushing the use of clocks even further, using them to sell unproven “anti-aging” supplements.

The science is still new, and few experts in the field—some of whom affectionately refer to it as “clock world”—would argue that an aging clock can definitively reveal an individual’s biological age. 

But their work is revealing that aging clocks can offer so much more than an insta-brag, a snake-oil pitch—or even just an eye-catching number. In fact, they are helping scientists unravel some of the deepest mysteries in biology: Why do we age? How do we age? When does aging begin? What does it even mean to age?

Ultimately, and most importantly, they might soon tell us whether we can reverse the whole process.

Clocks kick off

The way your genes work can change. Molecules called methyl groups can attach to DNA, controlling the way genes make proteins. This process is called methylation, and it can potentially occur at millions of points along the genome. These epigenetic markers, as they are known, can switch genes on or off, or increase or decrease how much protein they make. They’re not part of our DNA, but they influence how it works.

In 2011, Steve Horvath, then a biostatistician at the University of California, Los Angeles, took part in a study that was looking for links between sexual orientation and these epigenetic markers. Steve is straight; he says his twin brother, Markus, who also volunteered, is gay.

That study didn’t find a link between DNA methyl­ation and sexual orientation. But when Horvath looked at the data, he noticed a different trend—a very strong link between age and methylation at around 88 points on the genome. He once told me he fell off his chair when he saw it

Many of the affected genes had already been linked to age-related brain and cardiovascular diseases, but it wasn’t clear how methylation might be related to those diseases. 

If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all.

In 2013, Horvath collected methylation data from 8,000 tissue and cell samples to create what he called the Horvath clock—essentially a mathematical model that could estimate age on the basis of DNA methylation at 353 points on the genome. From a tissue sample, it was able to detect a person’s age within a range of 2.9 years.

That clock changed everything. Its publication in 2013 marked the birth of “clock world.” To some, the possibilities were almost endless. If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all.

The epigenetic clock was a success story in “a field that, frankly, doesn’t have a lot of success stories,” says João Pedro de Magalhães, who researches aging at the University of Birmingham, UK.

It took a few years, but as more aging researchers heard about the clock, they began incorporating it into their research and even developing their own clocks. Horvath became a bit of a celebrity. Scientists started asking for selfies with him at conferences, he says. Some researchers even made T-shirts bearing the front page of his 2013 paper.

Some of the many other aging clocks developed since have become notable in their own right. Examples include the PhenoAge clock, which incorporates health data such as blood cell counts and signs of inflammation along with methyl­ation, and the Dunedin Pace of Aging clock, which tells you how quickly or slowly a person is aging rather than pointing to a specific age. Many of the clocks measure methylation, but some look at other variables, such as proteins in blood or certain carbohydrate molecules that attach to such proteins.

Today, there are hundreds or even thousands of clocks out there, says Chiara Herzog, who researches aging at King’s College London and is a member of the Biomarkers of Aging Consortium. Everyone has a favorite. Horvath himself favors his GrimAge clock, which was named after the Grim Reaper because it is designed to predict time to death.

That clock was trained on data collected from people who were monitored for decades, many of whom died in that period. Horvath won’t use it to tell people when they might die of old age, he stresses, saying that it wouldn’t be ethical. Instead, it can be used to deliver a biological age that hints at how long a person might expect to live. Someone who is 50 but has a GrimAge of 60 can assume that, compared with the average 50-year-old, they might be a bit closer to the end.

GrimAge is not perfect. While it can strongly predict time to death given the health trajectory someone is on, no aging clock can predict if someone will start smoking or get a divorce (which generally speeds aging) or suddenly take up running (which can generally slow it). “People are complicated,” Horvath tells MIT Technology Review. “There’s a huge error bar.”

On the whole, the clocks are pretty good at making predictions about health and lifespan. They’ve been able to predict that people over the age of 105 have lower biological ages, which tracks given how rare it is for people to make it past that age. A higher epigenetic age has been linked to declining cognitive function and signs of Alzheimer’s disease, while better physical and cognitive fitness has been linked to a lower epigenetic age.

Black-box clocks

But accuracy is a challenge for all aging clocks. Part of the problem lies in how they were designed. Most of the clocks were trained to link age with methylation. The best clocks will deliver an estimate that reflects how far a person’s biology deviates from the average. Aging clocks are still judged on how well they can predict a person’s chronological age, but you don’t want them to be too close, says Lucas Paulo de Lima Camillo, head of machine learning at Shift Bioscience, who was awarded $10,000 by the Biomarkers of Aging Consortium for developing a clock that could estimate age within a range of 2.55 years.

a cartoon alarm clock shrugging
None of the clocks are precise enough to predict the biological age of a single person. Putting the same biological sample through five different clocks will give you five wildly different results.
LEON EDLER

“There’s this paradox,” says Camillo. If a clock is really good at predicting chronological age, that’s all it will tell you—and it probably won’t reveal much about your biological age. No one needs an aging clock to tell them how many birthdays they’ve had. Camillo says he’s noticed that when the clocks get too close to “perfect” age prediction, they actually become less accurate at predicting mortality.

Therein lies the other central issue for scientists who develop and use aging clocks: What is the thing they are really measuring? It is a difficult question for a field whose members notoriously fail to agree on the basics. (Everything from the definition of aging to how it occurs and why is up for debate among the experts.)

They do agree that aging is incredibly complex. A methylation-based aging clock might tell you about how that collection of chemical markers compares across individuals, but at best, it’s only giving you an idea of their “epigenetic age,” says Chandra. There are probably plenty of other biological markers that might reveal other aspects of aging, he says: “None of the clocks measure everything.” 

We don’t know why some methyl groups appear or disappear with age, either. Are these changes causing damage? Or are they a by-product of it? Are the epigenetic patterns seen in a 90-year-old a sign of deterioration? Or have they been responsible for keeping that person alive into very old age?

To make matters even more complicated, two different clocks can give similar answers by measuring methylation at entirely different regions of the genome. No one knows why, or which regions might be the best ones to focus on.

“The biomarkers have this black-box quality,” says Jesse Poganik at Brigham and Women’s Hospital in Boston. “Some of them are probably causal, some of them may be adaptive … and some of them may just be neutral”: either “there’s no reason for them not to happen” or “they just happen by random chance.”

What we know is that, as things stand, none of the clocks are precise enough to predict the biological age of a single person (sorry, Khloé). Putting the same biological sample through five different clocks will give you five wildly different results.

Even the same clock can give you different answers if you put a sample through it more than once. “They’re not yet individually predictive,” says Herzog. “We don’t know what [a clock result] means for a person, [or if] they’re more or less likely to develop disease.”

And it’s why plenty of aging researchers—even those who regularly use the clocks in their work—haven’t bothered to measure their own epigenetic age. “Let’s say I do a clock and it says that my biological age … is five years older than it should be,” says Magalhães. “So what?” He shrugs. “I don’t see much point in it.”

You might think this lack of clarity would make aging clocks pretty useless in a clinical setting. But plenty of clinics are offering them anyway. Some longevity clinics are more careful, and will regularly test their patients with a range of clocks, noting their results and tracking them over time. Others will simply offer an estimate of biological age as part of a longevity treatment package.

And then there are the people who use aging clocks to sell supplements. While no drug or supplement has been definitively shown to make people live longer, that hasn’t stopped the lightly regulated wellness industry from pushing a range of “treatments” that range from lotions to herbal pills all the way through to stem-cell injections.

Some of these people come to aging meetings. I was in the audience at an event when one CEO took to the stage to claim he had reversed his own biological age by 18 years—thanks to the supplement he was selling. Tom Weldon of Ponce de Leon Health told us his gray hair was turning brown. His biological age was supposedly reversing so rapidly that he had reached “longevity escape velocity.”

But if the people who buy his supplements expect some kind of Benjamin Button effect, they might be disappointed. His company hasn’t yet conducted a randomized controlled trial to demonstrate any anti-aging effects of that supplement, called Rejuvant. Weldon says that such a trial would take years and cost millions of dollars, and that he’d “have to increase the price of our product more than four times” to pay for one. (The company has so far tested the active ingredient in mice and carried out a provisional trial in people.)

More generally, Horvath says he “gets a bad taste in [his] mouth” when people use the clocks to sell products and “make a quick buck.” But he thinks that most of those sellers have genuine faith in both the clocks and their products. “People truly believe their own nonsense,” he says. “They are so passionate about what they discovered, they fall into this trap of believing [their] own prejudices.” 

The accuracy of the clocks is at a level that makes them useful for research, but not for individual predictions. Even if a clock did tell someone they were five years younger than their chronological age, that wouldn’t necessarily mean the person could expect to live five years longer, says Magalhães. “The field of aging has long been a rich ground for snake-oil salesmen and hype,” he says. “It comes with the territory.” (Weldon, for his part, says Rejuvant is the only product that has “clinically meaningful” claims.) 

In any case, Magalhães adds that he thinks any publicity is better than no publicity.

And there’s the rub. Most people in the longevity field seem to have mixed feelings about the trendiness of aging clocks and how they are being used. They’ll agree that the clocks aren’t ready for consumer prime time, but they tend to appreciate the attention. Longevity research is expensive, after all. With a surge in funding and an explosion in the number of biotech companies working on longevity, aging scientists are hopeful that innovation and progress will follow. 

So they want to be sure that the reputation of aging clocks doesn’t end up being tarnished by association. Because while influencers and supplement sellers are using their “biological ages” to garner attention, scientists are now using these clocks to make some remarkable discoveries. Discoveries that are changing the way we think about aging.

How to be young again

Two little mice lie side by side, anesthetized and unconscious, as Jim White prepares his scalpel. The animals are of the same breed but look decidedly different. One is a youthful three-month-old, its fur thick, black, and glossy. By comparison, the second mouse, a 20-month-old, looks a little the worse for wear. Its fur is graying and patchy. Its whiskers are short, and it generally looks kind of frail.

But the two mice are about to have a lot more in common. White, with some help from a colleague, makes incisions along the side of each mouse’s body and into the upper part of an arm and leg on the same side. He then carefully stitches the two animals together—membranes, fascia, and skin. 

The procedure takes around an hour, and the mice are then roused from their anesthesia. At first, the two still-groggy animals pull away from each other. But within a few days, they seem to have accepted that they now share their bodies. Soon their circulatory systems will fuse, and the animals will share a blood flow too.

cartoon man in profile with a stick of a wrist watch around a lit stick of dynamite in his mouth
“People are complicated. There’s a huge error bar.” — Steve Horvath, former biostatistician at the University of California, Los Angeles
LEON EDLER

White, who studies aging at Duke University, has been stitching mice together for years; he has performed this strange procedure, known as heterochronic parabiosis, more than a hundred times. And he’s seen a curious phenomenon occur. The older mice appear to benefit from the arrangement. They seem to get younger.

Experiments with heterochronic parabiosis have been performed for decades, but typically scientists keep the mice attached to each other for only a few weeks, says White. In their experiment, he and his colleagues left the mice attached for three months—equivalent to around 10 human years. The team then carefully separated the animals to assess how each of them had fared. “You’d think that they’d want to separate immediately,” says White. “But when you detach them … they kind of follow each other around.”

The most striking result of that experiment was that the older mice who had been attached to a younger mouse ended up living longer than other mice of a similar age. “[They lived] around 10% longer, but [they] also maintained a lot of [their] function,” says White. They were more active and maintained their strength for longer, he adds.

When his colleagues, including Poganik, applied aging clocks to the mice, they found that their epigenetic ages were lower than expected. “The young circulation slowed aging in the old mice,” says White. The effect seemed to last, too—at least for a little while. “It preserved that youthful state for longer than we expected,” he says.

The young mice went the other way and appeared biologically older, both while they were attached to the old mice and shortly after they were detached. But in their case, the effect seemed to be short-lived, says White: “The young mice went back to being young again.” 

To White, this suggests that something about the “youthful state” might be programmed in some way. That perhaps it is written into our DNA. Maybe we don’t have to go through the biological process of aging. 

This gets at a central debate in the aging field: What is aging, and why does it happen? Some believe it’s simply a result of accumulated damage. Some believe that the aging process is programmed; just as we grow limbs, develop a brain, reach puberty, and experience menopause, we are destined to deteriorate. Others think programs that play an important role in our early development just turn out to be harmful later in life by chance. And there are some scientists who agree with all of the above.

White’s theory is that being old is just “a loss of youth,” he says. If that’s the case, there’s a silver lining: Knowing how youth is lost might point toward a way to somehow regain it, perhaps by restoring those youthful programs in some way. 

Dogs and dolphins

Horvath’s eponymous clock was developed by measuring methylation in DNA samples taken from tissues around the body. It seems to represent aging in all these tissues, which is why Horvath calls it a pan-tissue clock. Given that our organs are thought to age differently, it was remarkable that a single clock could measure aging in so many of them.

But Horvath had ambitious plans for an even more universal clock: a pan-species model that could measure aging in all mammals. He started out, in 2017, with an email campaign that involved asking hundreds of scientists around the world to share samples of tissues from animals they had worked with. He tried zoos, too.   

The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it.

“I learned that people had spent careers collecting [animal] tissues,” he says. “They had freezers full of [them].” Amenable scientists would ship those frozen tissues, or just DNA, to Horvath’s lab in California, where he would use them to train a new model.

Horvath says he initially set out to profile 30 different species. But he ended up receiving around 15,000 samples from 200 scientists, representing 348 species—including everything from dogs to dolphins. Could a single clock really predict age in all of them?

“I truly felt it would fail,” says Horvath. “But it turned out that I was completely wrong.” He and his colleagues developed a clock that assessed methylation at 36,000 locations on the genome. The result, which was published in 2023 as the pan-mammalian clock, can estimate the age of any mammal and even the maximum lifespan of the species. The data set is open to anyone who wants to download it, he adds: “I hope people will mine the data to find the secret of how to extend a healthy lifespan.”

The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it.

Comparisons between mammals also support the idea that the slower methylation changes occur, the longer the lifespan of the animal, says Nelly Olova, an epigeneticist who researches aging at the University of Edinburgh in the UK. “DNA methylation slowly erodes with age,” she says. “We still have the instructions in place, but they become a little messier.” The research in different mammals suggests that cells can take only so much change before they stop functioning.

“There’s a finite amount of change that the cell can tolerate,” she says. “If the instructions become too messy and noisy … it cannot support life.”

Olova has been investigating exactly when aging clocks first begin to tick—in other words, the point at which aging starts. Clocks can be trained on data from volunteers, and by matching the patterns of methylation on their DNA to their chronological age. The trained clocks are then typically used to estimate the biological age of adults. But they can also be used on samples from children. Or babies. They can be used to work out the biological age of cells that make up embryos. 

In her research, Olova used adult skin cells, which—thanks to Nobel Prize–winning research in the 2000s—can be “reprogrammed” back to a state resembling that of the pluripotent stem cells found in embryos. When Olova and her colleagues used a “partial reprogramming” approach to take cells close to that state, they found that the closer they got to the entirely reprogrammed state, the “younger” the cells were. 

It was around 20 days after the cells had been reprogrammed into stem cells that they reached the biological age of zero according to the clock used, says Olova. “It was a bit surreal,” she says. “The pluripotent cells measure as minus 0.5; they’re slightly below zero.”

Vadim Gladyshev, a prominent aging researcher at Harvard University, has since proposed that the same negative level of aging might apply to embryos. After all, some kind of rejuvenation happens during the early stages of embryo formation—an aged egg cell and an aged sperm cell somehow create a brand-new cell. The slate is wiped clean.

Gladyshev calls this point “ground zero.” He posits that it’s reached sometime during the “mid-embryonic state.” At this point, aging begins. And so does “organismal life,” he argues. “It’s interesting how this coincides with philosophical questions about when life starts,” says Olova. 

Some have argued that life begins when sperm meets egg, while others have suggested that the point when embryonic cells start to form some kind of unified structure is what counts. The ground zero point is when the body plan is set out and cells begin to organize accordingly, she says. “Before that, it’s just a bunch of cells.”

This doesn’t mean that life begins at the embryonic state, but it does suggest that this is when aging begins—perhaps as the result of “a generational clearance of damage,” says Poganik.

It is early days—no pun intended—for this research, and the science is far from settled. But knowing when aging begins could help inform attempts to rewind the clock. If scientists can pinpoint an ideal biological age for cells, perhaps they can find ways to get old cells back to that state. There might be a way to slow aging once cells reach a certain biological age, too. 

“Presumably, there may be opportunities for targeting aging before … you’re full of gray hair,” says Poganik. “It could mean that there is an ideal window for intervention which is much earlier than our current geriatrics-based approach.”

When young meets old

When White first started stitching mice together, he would sit and watch them for hours. “I was like, look at them go! They’re together, and they don’t even care!” he says. Since then, he’s learned a few tricks. He tends to work with female mice, for instance—the males tend to bicker and nip at each other, he says. The females, on the other hand, seem to get on well. 

The effect their partnership appears to have on their biological ages, if only temporarily, is among the ways aging clocks are helping us understand that biological age is plastic to some degree. White and his colleagues have also found, for instance, that stress seems to increase biological age, but that the effect can be reversed once the stress stops. Both pregnancy and covid-19 infections have a similar reversible effect.

Poganik wonders if this finding might have applications for human organ transplants. Perhaps there’s a way to measure the biological age of an organ before it is transplanted and somehow rejuvenate organs before surgery. 

But new data from aging clocks suggests that this might be more complicated than it sounds. Poganik and his colleagues have been using methylation clocks to measure the biological age of samples taken from recently transplanted hearts in living people. 

If being old is simply a case of losing our youthfulness, then that might give us a clue to how we can somehow regain it.

Young hearts do well in older bodies, but the biological age of these organs eventually creeps up to match that of their recipient. The same is true for older hearts in younger bodies, says Poganik, who has not yet published his findings. “After a few months, the tissue may assimilate the biological age of the organism,” he says. 

If that’s the case, the benefits of young organs might be short-lived. It also suggests that scientists working on ways to rejuvenate individual organs may need to focus their anti-aging efforts on more systemic means of rejuvenation—for example, stem cells that repopulate the blood. Reprogramming these cells to a youthful state, perhaps one a little closer to “ground zero,” might be the way to go.

Whole-body rejuvenation might be some way off, but scientists are still hopeful that aging clocks might help them find a way to reverse aging in people.

“We have the machinery to reset our epigenetic clock to a more youthful state,” says White. “That means we have the ability to turn the clock backwards.” 

This test could reveal the health of your immune system

10 October 2025 at 05:00

Attentive readers might have noticed my absence over the last couple of weeks. I’ve been trying to recover from a bout of illness.

It got me thinking about the immune system, and how little I know about my own immune health. The vast array of cells, proteins, and biomolecules that works to defend us from disease is mind-bogglingly complicated. Immunologists are still getting to grips with how it all works.

Those of us who aren’t immunologists are even more in the dark. I had my flu jab last week and have no idea how my immune system responded. Will it protect me from the flu virus this winter? Is it “stressed” from whatever other bugs it has encountered in the last few months? And since my husband had his shot at the same time, I can’t help wondering how our responses will compare. 

So I was intrigued to hear about a new test that is being developed to measure immune health. One that even gives you a score.

Writer David Ewing Duncan hoped that the test would reveal more about his health than any other he’d ever taken. He described the experience in a piece published jointly by MIT Technology Review and Aventine.

The test David took was developed by John Tsang at Yale University and his colleagues. The team wanted to work out a way of measuring how healthy a person’s immune system might be.

It’s a difficult thing to do, for several reasons. First, there’s the definition of “healthy.” I find it’s a loose concept that becomes more complicated the more you think about it. Yes, we all have a general sense of what it means to be in good health. But is it just the absence of disease? Is it about resilience? Does it have something to do with withstanding the impact of aging?

Tsang and his colleagues wanted to measure “deviation from health.” They looked at blood samples from 228 people who had immune diseases that were caused by single-gene mutations, as well as 42 other people who were free from disease. All those individuals could be considered along a health spectrum.

Another major challenge lies in trying to capture the complexity of the immune system, which involves hundreds of proteins and cells interacting in various ways. (Side note: Last year, MIT Technology Review recognized Ang Cui at Harvard University as one of our Innovators under 35 for her attempts to make sense of it all using machine learning. She created the Immune Dictionary to describe how hundreds of proteins affect immune cells—something she likens to a “periodic table” for the immune system.)

Tsang and his colleagues tackled this by running a series of tests on those blood samples. The vast scope of these tests is what sets them apart from the blood tests you might get during a visit to the doctor. The team looked at how genes were expressed by cells in the blood. They measured a range of immune cells and more than 1,300 proteins.

The team members used machine learning to find correlations between these measurements and health, allowing them to create an immune health score for each of the volunteers. They call it the immune health metric, or IHM.

When they used this approach to find the immune scores of people who had already volunteered in other studies, they found that the IHM seemed to align with other measures of health, such as how people respond to diseases, treatments, and vaccines. The study was published in the journal Nature Medicine last year.

The researchers behind it hope that a test like this could one day help identify people who are at risk of cancer and other diseases, or explain why some people respond differently to treatments or immunizations.

But the test isn’t ready for clinical use. If, like me, you’re finding yourself curious to know your own IHM, you’ll just have to wait.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

❌
❌