Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Forensic journey: hunting evil within AmCache

1 October 2025 at 06:00

Introduction

When it comes to digital forensics, AmCache plays a vital role in identifying malicious activities in Windows systems. This artifact allows the identification of the execution of both benign and malicious software on a machine. It is managed by the operating system, and at the time of writing this article, there is no known way to modify or remove AmCache data. Thus, in an incident response scenario, it could be the key to identifying lost artifacts (e.g., ransomware that auto-deletes itself), allowing analysts to search for patterns left by the attacker, such as file names and paths. Furthermore, AmCache stores the SHA-1 hashes of executed files, which allows DFIR professionals to search public threat intelligence feeds — such as OpenTIP and VirusTotal — and generate rules for blocking this same file on other systems across the network.

This article presents a comprehensive analysis of the AmCache artifact, allowing readers to better understand its inner workings. In addition, we present a new tool named “AmCache-EvilHunter“, which can be used by any professional to easily parse the Amcache.hve file and extract IOCs. The tool is also able to query the aforementioned intelligence feeds to check for malicious file detections, this level of built-in automation reduces manual effort and speeds up threat detection, which is of significant value for analysts and responders.

The importance of evidence of execution

Evidence of execution is fundamentally important in digital forensics and incident response, since it helps investigators reconstruct how the system was used during an intrusion. Artifacts such as Prefetch, ShimCache, and UserAssist offer clues about what was executed. AmCache is also a robust artifact for evidencing execution, preserving metadata that indicates a file’s presence and execution, even if the file has been deleted or modified. An advantage of AmCache over other Windows artifacts is that unlike them, it stores the file hash, which is immensely useful for analysts, as it can be used to hunt malicious files across the network, increasing the likelihood of fully identifying, containing, and eradicating the threat.

Introduction to AmCache

Application Activity Cache (AmCache) was first introduced in Windows 7 and fully leveraged in Windows 8 and beyond. Its purpose is to replace the older RecentFileCache.bcf in newer systems. Unlike its predecessor, AmCache includes valuable forensic information about program execution, executed binaries and loaded drivers.

This artifact is stored as a registry hive file named Amcache.hve in the directory C:\Windows\AppCompat\Programs. The metadata stored in this file includes file paths, publisher data, compilation timestamps, file sizes, and SHA-1 hashes.

It is important to highlight that the AmCache format does not depend on the operating system version, but rather on the version of the libraries (DLLs) responsible for filling the cache. In this way, even Windows systems with different patch levels could have small differences in the structure of the AmCache files. The known libraries used for filling this cache are stored under %WinDir%\System32 with the following names:

  • aecache.dll
  • aeevts.dll
  • aeinv.dll
  • aelupsvc.dll
  • aepdu.dll
  • aepic.dll

It is worth noting that this artifact has its peculiarities and limitations. The AmCache computes the SHA-1 hash over only the first 31,457,280 bytes (≈31 MB) of each executable, so comparing its stored hash online can fail for files exceeding this size. Furthermore, Amcache.hve is not a true execution log: it records files in directories scanned by the Microsoft Compatibility Appraiser, executables and drivers copied during program execution, and GUI applications that required compatibility shimming. Only the last category reliably indicates actual execution. Items in the first two groups simply confirm file presence on the system, with no data on whether or when they ran.

In the same directory, we can find additional LOG files used to ensure Amcache.hve consistency and recovery operations:

  • C:\Windows\AppCompat\Programs\Amcache.hve.*LOG1
  • C:\Windows\AppCompat\Programs\Amcache.hve.*LOG2

The Amcache.hve file can be collected from a system for forensic analysis using tools like Aralez, Velociraptor, or Kape.

Amcache.hve structure

The Amcache.hve file is a Windows Registry hive in REGF format; it contains multiple subkeys that store distinct classes of data. A simple Python parser can be implemented to iterate through Amcache.hve and present its keys:

#!/usr/bin/env python3

import sys
from Registry.Registry import Registry

hive = Registry(str(sys.argv[1]))
root = hive.open("Root")

for rec in root.subkeys():
    print(rec.name())

The result of this parser when executed is:

AmCache keys

AmCache keys

From a DFIR perspective, the keys that are of the most interest to us are InventoryApplicationFile, InventoryApplication, InventoryDriverBinary, and InventoryApplicationShortcut, which are described in detail in the following subsections.

InventoryApplicationFile

The InventoryApplicationFile key is essential for tracking every executable discovered on the system. Under this key, each executable is represented by its own uniquely named subkey, which stores the following main metadata:

  • ProgramId: a unique hash generated from the binary name, version, publisher, and language, with some zeroes appended to the beginning of the hash
  • FileID: the SHA-1 hash of the file, with four zeroes appended to the beginning of the hash
  • LowerCaseLongPath: the full lowercase path to the executable
  • Name: the file base name without the path information
  • OriginalFileName: the original filename as specified in the PE header’s version resource, indicating the name assigned by the developer at build time
  • Publisher: often used to verify if the source of the binary is legitimate. For malware, this subkey is usually empty
  • Version: the specific build or release version of the executable
  • BinaryType: indicates whether the executable is a 32-bit or 64-bit binary
  • ProductName: the ProductName field from the version resource, describing the broader software product or suite to which the executable belongs
  • LinkDate: the compilation timestamp extracted from the PE header
  • Size: the file size in bytes
  • IsOsComponent: a boolean flag that specifies whether the executable is a built-in OS component or a third-party application/library

With some tweaks to our original Python parser, we can read the information stored within this key:

#!/usr/bin/env python3

import sys
from Registry.Registry import Registry

hive = Registry(sys.argv[1])
root = hive.open("Root")

subs = {k.name(): k for k in root.subkeys()}
parent = subs.get("InventoryApplicationFile")

for rec in parent.subkeys():
   vals = {v.name(): v.value() for v in rec.values()}
   print("{}\n{}\n\n-----------\n".format(rec, vals))

InventoryApplicationFile subkeys

InventoryApplicationFile subkeys

We can also use tools like Registry Explorer to see the same data in a graphical way:

InventoryApplicationFile inspected through Registry Explorer

InventoryApplicationFile inspected through Registry Explorer

As mentioned before, AmCache computes the SHA-1 hash over only the first 31,457,280 bytes (≈31 MB). To prove this, we did a small experiment, during which we got a binary smaller than 31 MB (Aralez) and one larger than this value (a custom version of Velociraptor). For the first case, the SHA-1 hash of the entire binary was stored in AmCache.

First AmCache SHA-1 storage scenario

First AmCache SHA-1 storage scenario

For the second scenario, we used the dd utility to extract the first 31 MB of the Velociraptor binary:

Stripped binary

Stripped binary

When checking the Velociraptor entry on AmCache, we found that it indeed stored the SHA-1 hash calculated only for the first 31,457,280 bytes of the binary. Interestingly enough, the Size value represented the actual size of the original file. Thus, relying only on the file hash stored on AmCache for querying threat intelligence portals may be not enough when dealing with large files. So, we need to check if the file size in the record is bigger than 31,457,280 bytes before searching threat intelligence portals.

Second AmCache SHA-1 storage scenario

Second AmCache SHA-1 storage scenario

Additionally, attackers may take advantage of this characteristic to purposely generate large malicious binaries. In this way, even if investigators find that a malware was executed/present on a Windows system, the actual SHA-1 hash of the binary will still be unknown, making it difficult to track it across the network and gathering it from public databases like VirusTotal.

InventoryApplicationFile – use case example: finding a deleted tool that was used

Let’s suppose you are searching for a possible insider threat. The user denies having run any suspicious programs, and any suspicious software was securely erased from disk. But in the InventoryApplicationFile, you find a record of winscp.exe being present in the user’s Downloads folder. Even though the file is gone, this tells you the tool was on the machine and it was likely used to transfer files before being deleted. In our incident response practice, we have seen similar cases, where this key proved useful.

InventoryApplication

The InventoryApplication key records details about applications that were previously installed on the system. Unlike InventoryApplicationFile, which logs every executable encountered, InventoryApplication focuses on those with installation records. Each entry is named by its unique ProgramId, allowing straightforward linkage back to the corresponding InventoryApplicationFile key. Additionally, InventoryApplication has the following subkeys of interest:

  • InstallDate: a date‑time string indicating when the OS first recorded or recognized the application
  • MsiInstallDate: present only if installed via Windows Installer (MSI); shows the exact time the MSI package was applied, sourced directly from the MSI metadata
  • UninstallString: the exact command line used to remove the application
  • Language: numeric locale identifier set by the developer (LCID)
  • Publisher: the name of the software publisher or vendor
  • ManifestPath: the file path to the installation manifest used by UWP or AppX/MSIX apps

With a simple change to our parser, we can check the data contained in this key:

<...>
parent = subs.get("InventoryApplication")
<...>

InventoryApplication subkeys

InventoryApplication subkeys

When a ProgramId appears both here and under InventoryApplicationFile, it confirms that the executable is not merely present or executed, but was formally installed. This distinction helps us separate ad-hoc copies or transient executions from installed software. The following figure shows the ProgramId of the WinRAR software under InventoryApplicationFile.

When searching for the ProgramId, we find an exact match under InventoryApplication. This confirms that WinRAR was indeed installed on the system.

Another interesting detail about InventoryApplication is that it contains a subkey named LastScanTime, which is stored separately from ProgramIds and holds a value representing the last time the Microsoft Compatibility Appraiser ran. This is a scheduled task that launches the compattelrunner.exe binary, and the information in this key should only be updated when that task executes. As a result, software installed since the last run of the Appraiser may not appear here. The LastScanTime value is stored in Windows FileTime format.

InventoryApplication LastScanTime information

InventoryApplication LastScanTime information

InventoryApplication – use case example: spotting remote access software

Suppose that during an incident response engagement, you find an entry for AnyDesk in the InventoryApplication key (although the application is not installed anymore). This means that the attacker likely used it for remote access and then removed it to cover their tracks. Even if wiped from disk, this key proves it was present. We have seen this scenario in real-world cases more than once.

InventoryDriverBinary

The InventoryDriverBinary key records every kernel-mode driver that the system has loaded, providing the essential metadata needed to spot suspicious or malicious drivers. Under this key, each driver is captured in its own uniquely named subkey and includes:

  • FileID: the SHA-1 hash of the driver binary, with four zeroes appended to the beginning of the hash
  • LowerCaseLongPath: the full lowercase file path to the driver on disk
  • DigitalSignature: the code-signing certificate details. A valid, trusted signature helps confirm the driver’s authenticity
  • LastModified: the file’s last modification timestamp from the filesystem metadata, revealing when the driver binary was most recently altered on disk

Because Windows drivers run at the highest privilege level, they are frequently exploited by malware. For example, a previous study conducted by Kaspersky shows that attackers are exploiting vulnerable drivers for killing EDR processes. When dealing with a cybersecurity incident, investigators correlate each driver’s cryptographic hash, file path, signature status, and modification timestamp. That can help in verifying if the binary matches a known, signed version, detecting any tampering by spotting unexpected modification dates, and flagging unsigned or anomalously named drivers for deeper analysis. Projects like LOLDrivers help identify vulnerable drivers in use by attackers in the wild.

InventoryDriverBinary inspection

InventoryDriverBinary inspection

In addition to the InventoryDriverBinary, AmCache also provides the InventoryApplicationDriver key, which keeps track of all drivers that have been installed by specific applications. It includes two entries:

  • DriverServiceName, which identifies the name of the service linked to the installed driver; and
  • ProgramIds, which lists the program identifiers (corresponding to the key names under InventoryApplication) that were responsible for installing the driver.

As shown in the figure below, the ProgramIds key can be used to track the associated program that uses this driver:

Checking program information by ProgramIds

Checking program information by ProgramIds

InventoryDriverBinary – use case example: catching a bad driver

If the system was compromised through the abuse of a known vulnerable or malicious driver, you can use the InventoryDriverBinary registry key to confirm its presence. Even if the driver has been removed or hidden, remnants in this key can reveal that it was once loaded, which helps identify kernel-level compromises and supporting timeline reconstruction during the investigation. This is exactly how the AV Killer malware was discovered.

InventoryApplicationShortcut

This key contains entries for .lnk (shortcut) files that were present in folders like each user’s Start Menu or Desktop. Within each shortcut key, the ShortcutPath provides the absolute path to the LNK file at the moment of discovery. The ShortcutTargetPath shows where the shortcut pointed. We can also search for the ProgramId entry within the InventoryApplication key using the ShortcutProgramId (similar to what we did for drivers).

InventoryApplicationShortcut key

InventoryApplicationShortcut key

InventoryApplicationShortcut – use case example: confirming use of a removed app

You find that a suspicious program was deleted from the computer, but the user claims they never ran it. The InventoryApplicationShortcut key shows a shortcut to that program was on their desktop and was accessed recently. With supplementary evidence, such as that from Prefetch analysis, you can confirm the execution of the software.

AmCache key comparison

The table below summarizes the information presented in the previous subsections, highlighting the main information about each AmCache key.

Key Contains Indicates execution?
InventoryApplicationFile Metadata for all executables seen on the system. Possibly (presence = likely executed)
InventoryApplication Metadata about formally installed software. No (indicates installation, not necessarily execution)
InventoryDriverBinary Metadata about loaded kernel-mode drivers. Yes (driver was loaded into memory)
InventoryApplicationShortcut Information about .lnk files. Possibly (combine with other data for confirmation)

AmCache-EvilHunter

Undoubtedly Amcache.hve is a very important forensic artifact. However, we could not find any tool that effectively parses its contents while providing threat intelligence for the analyst. With this in mind, we developed AmCache-EvilHunter a command-line tool to parse and analyze Windows Amcache.hve registry hives, identify evidence of execution, suspicious executables, and integrate Kaspersky OpenTIP and VirusTotal lookups for enhanced threat intelligence.

AmCache-EvilHunter is capable of processing the Amcache.hve file and filter records by date range (with the options --start and --end). It is also possible to search records using keywords (--search), which is useful for searching for known naming conventions adopted by attackers. The results can be saved in CSV (--csv) or JSON (--json) formats.

The image below shows an example of execution of AmCache-EvilHunter with these basic options, by using the following command:

amcache-evilhunter -i Amcache.hve --start 2025-06-19 --end 2025-06-19 --csv output.csv

The output contains all applications that were present on the machine on June 19, 2025. The last column contains information whether the file is an operating system component, or not.

Basic usage of AmCache-EvilHunter

Basic usage of AmCache-EvilHunter

CSV result

CSV result

Analysts are often faced with a large volume of executables and artifacts. To narrow down the scope and reduce noise, the tool is able to search for known suspicious binaries with the --find-suspicious option. The patterns used by the tool include common malware names, Windows processes containing small typos (e.g., scvhost.exe), legitimate executables usually found in use during incidents, one-letter/one-digit file names (such as 1.exe, a.exe), or random hex strings. The figure below shows the results obtained by using this option; as highlighted, one svchost.exe file is part of the operating system and the other is not, making it a good candidate for collection and analysis if not deleted.

Suspicious files identification

Suspicious files identification

Malicious files usually do not include any publisher information and are definitely not part of the default operating system. For this reason, AmCache-EvilHunter also ships with the --missing-publisher and --exclude-os options. These parameters allow for easy filtering of suspicious binaries and also allow fast threat intelligence gathering, which is crucial during an incident.

Another important feature that distinguishes our tool from other proposed approaches is that AmCache-EvilHunter can query Kaspersky OpenTIP (--opentip ) and VirusTotal (--vt) for hashes it identifies. In this way, analysts can rapidly gain insights into samples to decide whether they are going to proceed with a full analysis of the artifact or not.

Threat intel lookup

Threat intel lookup

Binaries of the tool are available on our GitHub page for both Linux and Windows systems.

Conclusion

Amcache.hve is a cornerstone of Windows forensics, capturing rich metadata, such as full paths, SHA-1 hashes, compilation timestamps, publisher and version details, for every executable that appears on a system. While it does not serve as a definitive execution log, its strength lies in documenting file presence and paths, making it invaluable for spotting anomalous binaries, verifying trustworthiness via hash lookups against threat‐intelligence feeds, and correlating LinkDate values with known attack campaigns.

To extract its full investigative potential, analysts should merge AmCache data with other artifacts (e.g., Prefetch, ShimCache, and Windows event logs) to confirm actual execution and build accurate timelines. Comparing InventoryApplicationFile entries against InventoryApplication reveals whether a file was merely dropped or formally installed, and identifying unexpected driver records can expose stealthy rootkits and persistence mechanisms. Leveraging parsers like AmCache-EvilHunter and cross-referencing against VirusTotal or proprietary threat databases allows IOC generation and robust incident response, making AmCache analysis a fundamental DFIR skill.

Driver of destruction: How a legitimate driver is being used to take down AV processes

Introduction

In a recent incident response case in Brazil, we spotted intriguing new antivirus (AV) killer software that has been circulating in the wild since at least October 2024. This malicious artifact abuses the ThrottleStop.sys driver, delivered together with the malware, to terminate numerous antivirus processes and lower the system’s defenses as part of a technique known as BYOVD (Bring Your Own Vulnerable Driver). AV killers that rely on various vulnerable drivers are a known problem. We have recently seen an uptick in cyberattacks involving this type of malware.

It is important to note that Kaspersky products, such as Kaspersky Endpoint Security (KES), have built-in self-defense mechanisms that prevent the alteration or termination of memory processes, deletion of application files on the hard drive, and changes in system registry entries. These mechanisms effectively counter the AV killer described in the article.

In the case we analyzed, the customer sought our help after finding that their systems had been encrypted by a ransomware sample. The adversary gained access to the initial system, an SMTP server, through a valid RDP credential. They then extracted other users’ credentials with Mimikatz and performed lateral movement using the pass-the-hash technique with Invoke-WMIExec.ps1 and Invoke-SMBExec.ps1 tools. The attacker achieved their objective by disabling the AV in place on various endpoints and servers across the network and executing a variant of the MedusaLocker ransomware.

In this article, we provide details about the attack and an analysis of the AV killer itself. Finally, we outline the tactics, techniques, and procedures (TTPs) employed by the attackers.

Kaspersky products detect the threats encountered in this incident as:

  • Trojan-Ransom.Win32.PaidMeme.* (MedusaLocker variant)
  • Win64.KillAV.* (AV killer)

Incident overview

The attack began using valid credentials obtained by the attacker for an administrative account. The adversary was able to connect to a mail server via RDP from Belgium. Then, using Mimikatz, the attacker extracted the NTLM hash for another user. Next, they used the following PowerShell Invoke-TheHash commands to perform pass-the-hash attacks in an attempt to create users on different machines.

Invoke-WMIExec -Target "<IP>" -Domain "<DOMAIN>" -Username "<USER>" -Hash "<HASH>" -Command "net user User1 Password1! /ad" -verbose
Invoke-SMBExec -Target "<IP>" -Domain "<DOMAIN>" -Username "<USER>" -Hash "<HASH>" -Command "net user User2 Password1! /ad" -verbose
Invoke-SMBExec -Target "<IP>" -Domain "<DOMAIN>" -Username "<USER>" -Hash "<HASH>" -Command "net localgroup Administrators User1 /ad" -verbose

An interesting detail is that the attacker did not want to create the same username on every machine. Instead, they chose to add a sequential number to the end of each username (e.g., User1, User2, User3, etc.). However, the password was the same for all the created users.

Various artifacts, including the AV killer, were uploaded to the C:\Users\Administrator\Music folder on the mail server. These artifacts were later uploaded to other machines alongside the ransomware (haz8.exe), but this time to C:\Users\UserN\Pictures. Initially, Windows Defender was able to contain the ransomware threat on some machines right after it was uploaded, but the attacker soon terminated the security solution.

The figure below provides an overview of the incident. We were able to extract evidence to determine the attacker’s workflow and the involved artifacts. Fortunately, the analyzed systems still contained relevant information, but this is not always the case.

Incident flow

Incident flow

This kind of attack highlights the importance of defense in depth. Although the organization had an AV in place, the attacker was able to use a valid account to upload an undetectable artifact that bypassed the defense. Such attacks can be avoided through simple security practices, such as enforcing the use of strong passwords and disabling RDP access to public IPs.

The AV killer analysis

To disable the system’s defenses, the attackers relied on two artifacts: ThrottleBlood.sys and All.exe. The first is a legitimate driver originally called ThrottleStop.sys, developed by TechPowerUp and used by the ThrottleStop app. The application is designed to monitor and correct CPU throttling issues, and is mostly used by gamers. The driver involved in the incident has a valid certificate signed on 2020-10-06 20:34:00 UTC, as show below:

Status: The file is signed and the signature was verified
Serial number: 0a fc 69 77 2a e1 ea 9a 28 57 31 b6 aa 45 23 c6 
Issuer: DigiCert EV Code Signing CA
Subject: TechPowerUp LLC
TS Serial number: 03 01 9a 02 3a ff 58 b1 6b d6 d5 ea e6 17 f0 66 
TS Issuer: DigiCert Assured ID CA-1
TS Subject: DigiCert Timestamp Responder
Date Signed: 2020-10-06 20:34:00 UTC

Hash Value
MD5 6bc8e3505d9f51368ddf323acb6abc49
SHA-1 82ed942a52cdcf120a8919730e00ba37619661a3
SHA-256 16f83f056177c4ec24c7e99d01ca9d9d6713bd0497eeedb777a3ffefa99c97f0

When loaded, the driver creates a device at .\\.\\ThrottleStop, which is a communication channel between user mode and kernel mode.

ThrottleStop device driver communication overview

ThrottleStop device driver communication overview

Communication with the driver is carried out via IOCTL calls, specifically using the Win32 DeviceIoControl function. This function enables the use of IOCTL codes to request various driver operations. The driver exposes two vulnerable IOCTL functions: one that allows reading from memory and another that allows writing to it. Both functions use physical addresses. Importantly, any user with administrative privileges can access these functions, which constitutes the core vulnerability.

The driver leverages the MmMapIoSpace function to perform physical memory access. This kernel-level API maps a specified physical address into the virtual address space, specifically within the MMIO (memory-mapped I/O) region. This mapping enables reads and writes to virtual memory to directly affect the corresponding physical memory. This type of vulnerability is well-known in kernel drivers and has been exploited for years, not only by attackers but also by game cheaters seeking low-level memory access. The vulnerability in ThrottleStop.sys has been assigned CVE-2025-7771. According to our information, the vendor is currently preparing a patch. In the meantime, we recommend that security solutions monitor for the presence of this known vulnerable driver in the operating system to help prevent exploitation by EDR killers like the one described in this article.

The second artifact, All.exe, is the AV killer itself. Our analysis began with a basic inspection of the file.

Hash Value
MD5 a88daa62751c212b7579a57f1f4ae8f8
SHA-1 c0979ec20b87084317d1bfa50405f7149c3b5c5f
SHA-256 7a311b584497e8133cd85950fec6132904dd5b02388a9feed3f5e057fb891d09

First, we inspected its properties. While searching for relevant strings, we noticed a pattern: multiple antivirus process names inside the binary. The following image shows an excerpt of our query.

AV names inside the binary

AV names inside the binary

We were able to map all the processes that the malware tries to kill. The table below shows each one of them, along with the corresponding vendor. As we can see, the artifact attempts to kill the main AV products on the market.

Process names Vendor
AvastSvc.exe, AvLaunch.exe, aswToolsSvc.exe, afwServ.exe, wsc_proxy.exe, bccavsvc.exe Avast
AVGSvc.exe, AVGUI.exe, avgsvca.exe, avgToolsSvc.exe AVG Technologies (Avast)
bdlived2.exe, bdredline.exe, bdregsvr2.exe, bdservicehost.exe, bdemsrv.exe, bdlserv.exe, BDLogger.exe, BDAvScanner.exe, BDFileServer.exe, BDFsTray.exe, Arrakis3.exe, BDScheduler.exe, BDStatistics.exe, npemclient3.exe, epconsole.exe, ephost.exe, EPIntegrationService.exe, EPProtectedService.exe, EPSecurityService.exe, EPUpdateService.exe BitDefender
CSFalconContainer.exe, CSFalconService.exe, CSFalconUI.exe CrowdStrike
egui.exe, eguiProxy.exe, ERAAgent.exe, efwd.exe, ekrn.exe ESET
avp.exe, avpsus.exe, avpui.exe, kavfs.exe, kavfswh.exe, kavfswp.exe, klcsldcl.exe, klnagent.exe, klwtblfs.exe, vapm.exe Kaspersky
mfevtps.exe McAfee (Trellix)
MsMpEng.exe, MsMpSvc.exe, MSASCui.exe, MSASCuiL.exe, SecurityHealthService.exe, SecurityHealthSystray.exe Microsoft
QHPISVR.EXE, QUHLPSVC.EXE, SAPISSVC.EXE Quick Heal Technologies
ccSvcHst.exe, ccApp.exe, rtvscan.exe, SepMasterService.exe, sepWscSvc64.exe, smc.exe, SmcGui.exe, snac.exe, SymCorpUI.exe, SymWSC.exe, webextbridge.exe, WscStub.exe Symantec (Broadcom)
PSANHost.exe, pselamsvc.exe, PSUAMain.exe, PSUAService.exe Panda Security (WatchGuard)
SentinelAgent.exe, SentinelAgentWorker.exe, SentinelHelperService.exe, SentinelServiceHost.exe, SentinelStaticEngine.exe, SentinelStaticEngineScanner.exe, SentinelUI.exe SentinelOne
SophosFileScanner.exe, SophosFIMService.exe, SophosFS.exe, SophosHealth.exe, SophosNetFilter.exe, SophosNtpService.exe, hmpalert.exe, McsAgent.exe, McsClient.exe, SEDService.exe Sophos

When the binary is executed, it first loads the ThrottleBlood.sys driver using Service Control Manager (SCM) API methods, such as OpenSCManagerA() and StartServiceW().

ThrottleStop/ThrottleBlood driver loading process

ThrottleStop/ThrottleBlood driver loading process

The AV killer needs the ThrottleStop driver to hijack kernel functions and enable the execution of kernel-mode-only routines from user mode. To invoke these kernel functions using the driver’s vulnerable read/write primitives, the malware first retrieves the base address of the currently loaded kernel and the addresses of the target functions to overwrite. It achieves this by utilizing the undocumented NtQuerySystemInformation function from Win32.

Kernel base address gathering

Kernel base address gathering

Passing the SystemModuleInformation flag allows the function to return the list of loaded modules and drivers on the current system. The Windows kernel is referred to as ntoskrnl.exe. The base address is always different because of KASLR (Kernel Address Space Layout Randomization).

To perform read/write operations using MmMapIoSpace, the system must first determine the physical address used by the kernel. This is achieved using a technique called SuperFetch, which is packed in the open-source superfetch project available on GitHub. This project facilitates the translation of virtual addresses to physical addresses through a C++ library composed solely of header files.

Physical address calculation

Physical address calculation

The superfetch C++ library makes use of the NtQuerySystemInformation function, specifically using the SystemSuperfetchInformation query. This query returns all current memory ranges and their pages. With this information, the superfetch library can successfully translate any kernel virtual address to its respective physical address.

Calling kernel functions

Now that the physical base address has been collected, the malware must choose a kernel function that can be indirectly called by a system call (from user mode). The chosen syscall is NtAddAtom, which is rarely used and easily callable through ntdll.dll.

NtAddAtom address collection

NtAddAtom address collection

By loading ntoskrnl.exe with the LoadLibrary function, the malware, among other things, can easily discover the offset of the NtAddAtom function and thus determine its kernel address by adding the current base address and the offset. The physical address is obtained in the same way as the kernel base. With the physical addresses and driver loaded, the malware can exploit the vulnerable IOCTL codes to read and write the physical memory of the NtAddAtom function.

Kernel code injection using vulnerable driver

Kernel code injection using vulnerable driver

To call any kernel function, the AV killer writes a small shellcode that jumps to a target address within the kernel. This target address can be any desired kernel function. Once the function completes, the malware restores the original kernel code to prevent system crashes.

Kernel code injection diagram

Kernel code injection diagram

Process killer main routine

Having obtained all the necessary information, the AV killer starts a loop to find target processes using the Process32FirstW() and Process32NextW API calls. As we mentioned earlier, the list of target security software, such as MsMpEng.exe (Windows Defender), is hardcoded in the malware.

MsMpEng.exe match found

MsMpEng.exe match found

The AV killer checks all running processes against the hardcoded list. If any match, it kills them by using the vulnerable driver to call the PsLookupProcessById and PsTerminateProcess kernel functions.

If a process is killed, a message indicating this, along with the name of the process, is displayed in the console, as depicted in the following image. This suggests that the malware was being debugged.

MsMpEng.exe was killed

MsMpEng.exe was killed

Like most antivirus software available today, Windows Defender will attempt to restart the service to protect the machine. However, the main loop of the program will continue to identify and kill the associated AV process.

Defender tries to restart, but is killed again

Defender tries to restart, but is killed again

YARA rule

Based on our analysis of the sample, we developed the following YARA rule to detect the threat in real time. The rule considers the file type, relevant strings, and library function imports.

import "pe"

rule AVKiller_MmMapIoSpace {
meta:
description = "Rule to detect the AV Killer"
author = "Kaspersky"
copyright = "Kaspersky"
version = "1.0"
last_modified = "2025-05-14"
hash = "a88daa62751c212b7579a57f1f4ae8f8"
strings:
$shellcode_template = {4? BA 00 00 40 75 00 65 48 8B}
$ntoskrnl = "ntoskrnl.exe"
$NtAddAtom = "NtAddAtom"
$ioctl_mem_write = {9C 64 00 80}
$ioctl_mem_read = {98 64 00 80}
condition:
pe.is_pe and
pe.imports("kernel32.dll", "DeviceIoControl")
and all of them
}

Victims

Based on our telemetry and information collected from public threat intelligence feeds, adversaries have been using this artifact since at least October 2024. The majority of affected victims are in Russia, Belarus, Kazakhstan, Ukraine, and Brazil.

Attribution

This particular AV killer tool was recently used in an attack in Brazil to deploy MedusaLocker ransomware within a company’s infrastructure. However, this type of malware is common among various threat actors, including various ransomware groups and affiliates.

Conclusion and recommendations

This incident offers several valuable lessons. First, that strong hardening practices must be implemented to protect servers against brute‑force attacks and restrict public exposure of remote‑access protocols. Had the victim limited RDP access and enforced robust password policies, the initial breach could have been prevented. Furthermore, this incident underscores the necessity of defense in depth. The AV killer was able to disable the system’s defenses, allowing the attacker to move laterally across machines with ease. To mitigate such threats, system administrators should implement the following mechanisms:

  • Application whitelisting and strict enforcement of least‑privilege access.
  • Network segmentation and isolation to contain breaches and limit lateral movement.
  • Multi‑factor authentication (MFA) for all remote‑access channels.
  • Regular patch management and automated vulnerability scanning.
  • Intrusion detection and prevention systems (IDS/IPS) to identify anomalous behavior.
  • Endpoint detection and response (EDR) tools for real‑time monitoring and remediation.
  • Comprehensive logging, monitoring, and alerting to ensure rapid incident detection.
  • Periodic security assessments and penetration testing to validate the effectiveness of controls.

Recently, we have seen an increase in attacks involving various types of AV killer software. Threat protection services should implement self-defense mechanisms to prevent these attacks. This includes safeguarding application files from unauthorized modification, monitoring memory processes, and regularly updating detection rules on customers’ devices.

Tactics, techniques and procedures

The TTPs identified from our malware analysis for the AV killer are listed below.

Tactic Technique ID
Discovery Process Discovery T1057
Defense Evasion Impair Defenses: Disable or Modify Tools T1562.001
Defense Evasion Impair Defenses: Indicator Blocking T1562.006
Privilege Escalation Create or Modify System Process: Windows Service T1543.003
Impact Service Stop T1489

Indicators of compromise

Vulnerable ThrottleBlood.sys driver
82ed942a52cdcf120a8919730e00ba37619661a3
Malware observed in the incident
f02daf614109f39babdcb6f8841dd6981e929d70 (haz8.exe)
c0979ec20b87084317d1bfa50405f7149c3b5c5f (All.exe)
Other AV killer variants
eff7919d5de737d9a64f7528e86e3666051a49aa
0a15be464a603b1eebc61744dc60510ce169e135
d5a050c73346f01fc9ad767d345ed36c221baac2
987834891cea821bcd3ce1f6d3e549282d38b8d3
86a2a93a31e0151888c52dbbc8e33a7a3f4357db
dcaed7526cda644a23da542d01017d48d97c9533

❌
❌