Normal view
Android expands pilot for in-call scam protection for financial apps
Android uses the best of Google AI and our advanced security expertise to tackle mobile scams from every angle. Over the last few years, we’ve launched industry-leading features to detect scams and protect users across phone calls, text messages and messaging app chat notifications.
These efforts are making a real difference in the lives of Android users. According to a recent YouGov survey1 commissioned by Google, Android users were 58% more likely than iOS users to report they had not received any scam texts in the prior week2.
But our work doesn’t stop there. Scammers are continuously evolving, using more sophisticated social engineering tactics to trick users into sharing their phone screen while on the phone to visit malicious websites, reveal sensitive information, send funds or download harmful apps. One popular scam involves criminals impersonating banks or other trusted institutions on the phone to try to manipulate victims into sharing their screen in order to reveal banking information or make a financial transfer.
To help combat these types of financial scams, we launched a pilot earlier this year in the UK focused on in-call protections for financial apps.
How the in-call scam protection works on Android
When you launch a participating financial app while screen sharing and on a phone call with a number that is not saved in your contacts, your Android device3 will automatically warn you about the potential dangers and give you the option to end the call and to stop screen sharing with just one tap. The warning includes a 30-second pause period before you’re able to continue, which helps break the ‘spell’ of the scammer's social engineering, disrupting the false sense of urgency and panic commonly used to manipulate you into a scam.
Bringing in-call scam protections to more users on Android
The UK pilot of Android’s in-call scam protections has already helped thousands of users end calls that could have cost them a significant amount of money. Following this success, and alongside recently launched pilots with financial apps in Brazil and India, we’ve now expanded this protection to most major UK banks.
We’ve also started to pilot this protection with more app types, including peer-to-peer (P2P) payment apps. Today, we’re taking the next step in our expansion by rolling out a pilot of this protection in the United States4 with a number of popular fintechs like Cash App and banks, including JPMorganChase.
We are committed to collaborating across the ecosystem to help keep people safe from scams. We look forward to learning from these pilots and bringing these critical safeguards to even more users in the future.
Notes
-
Google/YouGov survey, July-August, n=5,100 (1,700 each in the US, Brazil and India), with adults who use their smartphones daily and who have been exposed to a scam or fraud attempt on their smartphone. Survey data have been weighted to smartphone population adults in each country. ↩
-
Among users who use the default texting app on their smartphone. ↩
-
Compatible with Android 11+ devices ↩
-
US users of the US versions of the apps; rollout begins Dec. 2025 ↩
Fallacy Failure Attack
Tracking RondoDox: Malware Exploiting Many IoT Vulnerabilities
-
Google Online Security
- Android Quick Share Support for AirDrop: A Secure Approach to Cross-Platform File Sharing
Android Quick Share Support for AirDrop: A Secure Approach to Cross-Platform File Sharing
Technology should bring people closer together, not create walls. Being able to communicate and connect with friends and family should be easy regardless of the phone they use. That’s why Android has been building experiences that help you stay connected across platforms.
As part of our efforts to continue to make cross-platform communication more seamless for users, we've made Quick Share interoperable with AirDrop, allowing for two-way file sharing between Android and iOS devices, starting with the Pixel 10 Family. This new feature makes it possible to quickly share your photos, videos, and files with people you choose to communicate with, without worrying about the kind of phone they use.
Most importantly, when you share personal files and content, you need to trust that it stays secure. You can share across devices with confidence knowing we built this feature with security at its core, protecting your data with strong safeguards that have been tested by independent security experts.
Secure by Design
We built Quick Share’s interoperability support for AirDrop with the same rigorous security standards that we apply to all Google products. Our approach to security is proactive and deeply integrated into every stage of the development process. This includes:
- Threat Modeling: We identify and address potential security risks before they can become a problem.
- Internal Security Design and Privacy Reviews: Our dedicated security and privacy teams thoroughly review the design to ensure it meets our high standards.
- Internal Penetration Testing: We conduct extensive in-house testing to identify and fix vulnerabilities.
This Secure by Design philosophy ensures that all of our products are not just functional but also fundamentally secure.
This feature is also protected by a multi-layered security approach to ensure a safe sharing experience from end-to-end, regardless of what platform you’re on.
- Secure Sharing Channel: The communication channel itself is hardened by our use of Rust to develop this feature. This memory-safe language is the industry benchmark for building secure systems and provides confidence that the connection is protected against buffer overflow attacks and other common vulnerabilities.
- Built-in Platform Protections: This feature is strengthened by the robust built-in security of both Android and iOS. On Android, security is built in at every layer. Our deep investment in Rust at the OS level hardens the foundation, while proactive defenses like Google Play Protect work to keep your device safe. This is complemented by the security architecture of iOS that provides its own strong safeguards that mitigate malicious files and exploitation. These overlapping protections on both platforms work in concert with the secure connection to provide comprehensive safety for your data when you share or receive.
- You’re in Control: Sharing across platforms works just like you're used to: a file requires your approval before being received, so you're in control of what you accept.
The Power of Rust: A Foundation of Secure Communication
A key element of our security strategy for the interoperability layer between Quick Share and AirDrop is the use of the memory-safe Rust programming language. Recognized by security agencies around the world, including the NSA and CISA, Rust is widely considered the industry benchmark for building secure systems because it eliminates entire classes of memory-safety vulnerabilities by design.
Rust is already a cornerstone of our broader initiative to eliminate memory safety bugs across Android. Its selection for this feature was deliberate, driven by the unique security challenges of cross-platform communication that demanded the most robust protections for memory safety.
The core of this feature involves receiving and parsing data sent over a wireless protocol from another device. Historically, when using a memory-unsafe language, bugs in data parsing logic are one of the most common sources of high-severity security vulnerabilities. A malformed data packet sent to a parser written in a memory-unsafe language can lead to buffer overflows and other memory corruption bugs, creating an opportunity for code execution.
This is precisely where Rust provides a robust defense. Its compiler enforces strict ownership and borrowing rules at compile time, which guarantees memory safety. Rust removes entire classes of memory-related bugs. This means our implementation is inherently resilient against attackers attempting to use maliciously crafted data packets to exploit memory errors.
Secure Sharing Using AirDrop's "Everyone" Mode
To ensure a seamless experience for both Android and iOS users, Quick Share currently works with AirDrop's "Everyone for 10 minutes" mode. This feature does not use a workaround; the connection is direct and peer-to-peer, meaning your data is never routed through a server, shared content is never logged, and no extra data is shared. As with "Everyone for 10 minutes" mode on any device when you’re sharing between non-contacts, you can ensure you're sharing with the right person by confirming their device name on your screen with them in person.
This implementation using "Everyone for 10 minutes” mode is just the first step in seamless cross-platform sharing, and we welcome the opportunity to work with Apple to enable “Contacts Only” mode in the future.
Tested by Independent Security Experts
After conducting our own secure product development, internal threat modeling, privacy reviews, and red team penetration tests, we engaged with NetSPI, a leading third-party penetration testing firm, to further validate the security of this feature and conduct an independent security assessment. The assessment found the interoperability between Quick Share and AirDrop is secure, is “notably stronger” than other industry implementations and does not leak any information.
Based on these internal and external assessments, we believe our implementation provides a strong security foundation for cross-platform file sharing for both Android and iOS users. We will continue to evaluate and enhance the implementation’s security in collaboration with additional third-party partners.
To complement this deep technical audit, we also sought expert third-party perspective on our approach from Dan Boneh, a renowned security expert and professor at Stanford University:
“Google’s work on this feature, including the use of memory safe Rust for the core communications layer, is a strong example of how to build secure interoperability, ensuring that cross-platform information sharing remains safe. I applaud the effort to open more secure information sharing between platforms and encourage Google and Apple to work together more on this."
The Future of File-Sharing Should Be Interoperable
This is just the first step as we work to improve the experience and expand it to more devices. We look forward to continuing to work with industry partners to make connecting and communicating across platforms a secure, seamless experience for all users.
Analysis of a Large-Scale DDoS Attack Against a Payment Processing Platform
Rust in Android: move fast and fix things
Last year, we wrote about why a memory safety strategy that focuses on vulnerability prevention in new code quickly yields durable and compounding gains. This year we look at how this approach isn’t just fixing things, but helping us move faster.
The 2025 data continues to validate the approach, with memory safety vulnerabilities falling below 20% of total vulnerabilities for the first time.
Updated data for 2025. This data covers first-party and third-party (open source) code changes to the Android platform across C, C++, Java, Kotlin, and Rust. This post is published a couple of months before the end of 2025, but Android’s industry-standard 90-day patch window means that these results are very likely close to final. We can and will accelerate patching when necessary.
We adopted Rust for its security and are seeing a 1000x reduction in memory safety vulnerability density compared to Android’s C and C++ code. But the biggest surprise was Rust's impact on software delivery. With Rust changes having a 4x lower rollback rate and spending 25% less time in code review, the safer path is now also the faster one.
In this post, we dig into the data behind this shift and also cover:
- How we’re expanding our reach: We're pushing to make secure code the default across our entire software stack. We have updates on Rust adoption in first-party apps, the Linux kernel, and firmware.
- Our first rust memory safety vulnerability...almost: We'll analyze a near-miss memory safety bug in unsafe Rust: how it happened, how it was mitigated, and steps we're taking to prevent recurrence. It’s also a good chance to answer the question “if Rust can have memory safety issues, why bother at all?”
Building Better Software, Faster
Developing an operating system requires the low-level control and predictability of systems programming languages like C, C++, and Rust. While Java and Kotlin are important for Android platform development, their role is complementary to the systems languages rather than interchangeable. We introduced Rust into Android as a direct alternative to C and C++, offering a similar level of control but without many of their risks. We focus this analysis on new and actively developed code because our data shows this to be an effective approach.
When we look at development in systems languages (excluding Java and Kotlin), two trends emerge: a steep rise in Rust usage and a slower but steady decline in new C++.
Net lines of code added: Rust vs. C++, first-party Android code.
This chart focuses on first-party (Google-developed) code (unlike the previous chart that included all first-party and third-party code in Android.) We only include systems languages, C/C++ (which is primarily C++), and Rust.
The chart shows that the volume of new Rust code now rivals that of C++, enabling reliable comparisons of software development process metrics. To measure this, we use the DORA1 framework, a decade-long research program that has become the industry standard for evaluating software engineering team performance. DORA metrics focus on:
- Throughput: the velocity of delivering software changes.
- Stability: the quality of those changes.
Cross-language comparisons can be challenging. We use several techniques to ensure the comparisons are reliable.
- Similar sized changes: Rust and C++ have similar functionality density, though Rust is slightly denser. This difference favors C++, but the comparison is still valid. We use Gerrit’s change size definitions.
- Similar developer pools: We only consider first-party changes from Android platform developers. Most are software engineers at Google, and there is considerable overlap between pools with many contributing in both.
- Track trends over time: As Rust adoption increases, are metrics changing steadily, accelerating the pace, or reverting to the mean?
Throughput
Code review is a time-consuming and high-latency part of the development process. Reworking code is a primary source of these costly delays. Data shows that Rust code requires fewer revisions. This trend has been consistent since 2023. Rust changes of a similar size need about 20% fewer revisions than their C++ counterparts.
In addition, Rust changes currently spend about 25% less time in code review compared to C++. We speculate that the significant change in favor of Rust between 2023 and 2024 is due to increased Rust expertise on the Android team.
While less rework and faster code reviews offer modest productivity gains, the most significant improvements are in the stability and quality of the changes.
Stability
Stable and high-quality changes differentiate Rust. DORA uses rollback rate for evaluating change stability. Rust's rollback rate is very low and continues to decrease, even as its adoption in Android surpasses C++.
For medium and large changes, the rollback rate of Rust changes in Android is ~4x lower than C++. This low rollback rate doesn't just indicate stability; it actively improves overall development throughput. Rollbacks are highly disruptive to productivity, introducing organizational friction and mobilizing resources far beyond the developer who submitted the faulty change. Rollbacks necessitate rework and more code reviews, can also lead to build respins, postmortems, and blockage of other teams. Resulting postmortems often introduce new safeguards that add even more development overhead.
In a self-reported survey from 2022, Google software engineers reported that Rust is both easier to review and more likely to be correct. The hard data on rollback rates and review times validates those impressions.
Putting it all together
Historically, security improvements often came at a cost. More security meant more process, slower performance, or delayed features, forcing trade-offs between security and other product goals. The shift to Rust is different: we are significantly improving security and key development efficiency and product stability metrics.
Expanding Our Reach
With Rust support now mature for building Android system services and libraries, we are focused on bringing its security and productivity advantages elsewhere.
- Kernel: Android’s 6.12 Linux kernel is our first kernel with Rust support enabled and our first production Rust driver. More exciting projects are underway, such as our ongoing collaboration with Arm and Collabora on a Rust-based kernel-mode GPU driver.
- Firmware: The combination of high privilege, performance constraints, and limited applicability of many security measures makes firmware both high-risk, and challenging to secure. Moving firmware to Rust can yield a major improvement in security. We have been deploying Rust in firmware for years now, and even released tutorials, training, and code for the wider community. We’re particularly excited about our collaboration with Arm on Rusted Firmware-A.
- First-party applications: Rust is ensuring memory safety from the ground up in several security-critical Google applications, such as:
- Nearby Presence: The protocol for securely and privately discovering local devices over Bluetooth is implemented in Rust and is currently running in Google Play Services.
- MLS: The protocol for secure RCS messaging is implemented in Rust and will be included in the Google Messages app in a future release.
- Chromium: Parsers for PNG, JSON, and web fonts have been replaced with memory-safe implementations in Rust, making it easier for Chromium engineers to deal with data from the web while following the Rule of 2.
These examples highlight Rust's role in reducing security risks, but memory-safe languages are only one part of a comprehensive memory safety strategy. We continue to employ a defense-in-depth approach, the value of which was clearly demonstrated in a recent near-miss.
Our First Rust Memory Safety Vulnerability...Almost
We recently avoided shipping our very first Rust-based memory safety vulnerability: a linear buffer overflow in CrabbyAVIF. It was a near-miss. To ensure the patch received high priority and was tracked through release channels, we assigned it the identifier CVE-2025-48530. While it’s great that the vulnerability never made it into a public release, the near-miss offers valuable lessons. The following sections highlight key takeaways from our postmortem.
Scudo Hardened Allocator for the Win
A key finding is that Android’s Scudo hardened allocator deterministically rendered this vulnerability non-exploitable due to guard pages surrounding secondary allocations. While Scudo is Android’s default allocator, used on Google Pixel and many other devices, we continue to work with partners to make it mandatory. In the meantime, we will issue CVEs of sufficient severity for vulnerabilities that could be prevented by Scudo.
In addition to protecting against overflows, Scudo’s use of guard pages helped identify this issue by changing an overflow from silent memory corruption into a noisy crash. However, we did discover a gap in our crash reporting: it failed to clearly show that the crash was a result of an overflow, which slowed down triage and response. This has been fixed, and we now have a clear signal when overflows occur into Scudo guard pages.
Unsafe Review and Training
Operating system development requires unsafe code, typically C, C++, or unsafe Rust (for example, for FFI and interacting with hardware), so simply banning unsafe code is not workable. When developers must use unsafe, they should understand how to do so soundly and responsibly
To that end, we are adding a new deep dive on unsafe code to our Comprehensive Rust training. This new module, currently in development, aims to teach developers how to reason about unsafe Rust code, soundness and undefined behavior, as well as best practices like safety comments and encapsulating unsafe code in safe abstractions.
Better understanding of unsafe Rust will lead to even higher quality and more secure code across the open source software ecosystem and within Android. As we'll discuss in the next section, our unsafe Rust is already really quite safe. It’s exciting to consider just how high the bar can go.
Comparing Vulnerability Densities
This near-miss inevitably raises the question: "If Rust can have memory safety vulnerabilities, then what’s the point?"
The point is that the density is drastically lower. So much lower that it represents a major shift in security posture. Based on our near-miss, we can make a conservative estimate. With roughly 5 million lines of Rust in the Android platform and one potential memory safety vulnerability found (and fixed pre-release), our estimated vulnerability density for Rust is 0.2 vuln per 1 million lines (MLOC).
Our historical data for C and C++ shows a density of closer to 1,000 memory safety vulnerabilities per MLOC. Our Rust code is currently tracking at a density orders of magnitude lower: a more than 1000x reduction.
Memory safety rightfully receives significant focus because the vulnerability class is uniquely powerful and (historically) highly prevalent. High vulnerability density undermines otherwise solid security design because these flaws can be chained to bypass defenses, including those specifically targeting memory safety exploits. Significantly lowering vulnerability density does not just reduce the number of bugs; it dramatically boosts the effectiveness of our entire security architecture.
The primary security concern regarding Rust generally centers on the approximately 4% of code written within unsafe{} blocks. This subset of Rust has fueled significant speculation, misconceptions, and even theories that unsafe Rust might be more buggy than C. Empirical evidence shows this to be quite wrong.
Our data indicates that even a more conservative assumption, that a line of unsafe Rust is as likely to have a bug as a line of C or C++, significantly overestimates the risk of unsafe Rust. We don’t know for sure why this is the case, but there are likely several contributing factors:
- unsafe{} doesn't actually disable all or even most of Rust’s safety checks (a common misconception).
- The practice of encapsulation enables local reasoning about safety invariants.
- The additional scrutiny that unsafe{} blocks receive.
Final Thoughts
Historically, we had to accept a trade-off: mitigating the risks of memory safety defects required substantial investments in static analysis, runtime mitigations, sandboxing, and reactive patching. This approach attempted to move fast and then pick up the pieces afterwards. These layered protections were essential, but they came at a high cost to performance and developer productivity, while still providing insufficient assurance.
While C and C++ will persist, and both software and hardware safety mechanisms remain critical for layered defense, the transition to Rust is a different approach where the more secure path is also demonstrably more efficient. Instead of moving fast and then later fixing the mess, we can move faster while fixing things. And who knows, as our code gets increasingly safe, perhaps we can start to reclaim even more of that performance and productivity that we exchanged for security, all while also improving security.
Acknowledgments
Thank you to the following individuals for their contributions to this post:
- Ivan Lozano for compiling the detailed postmortem on CVE-2025-48530.
- Chris Ferris for validating the postmortem’s findings and improving Scudo’s crash handling as a result.
- Dmytro Hrybenko for leading the effort to develop training for unsafe Rust and for providing extensive feedback on this post.
- Alex Rebert and Lars Bergstrom for their valuable suggestions and extensive feedback on this post.
- Peter Slatala, Matthew Riley, and Marshall Pierce for providing information on some of the places where Rust is being used in Google's apps.
Finally, a tremendous thank you to the Android Rust team, and the entire Android organization for your relentless commitment to engineering excellence and continuous improvement.
Notes
-
The DevOps Research and Assessment (DORA) program is published by Google Cloud. ↩
-
Google Online Security
- How Android provides the most effective protection to keep you safe from mobile scams
How Android provides the most effective protection to keep you safe from mobile scams
For years, Android has been on the frontlines in the battle against scammers, using the best of Google AI to build proactive, multi-layered protections that can anticipate and block scams before they reach you. Android’s scam defenses protect users around the world from over 10 billion suspected malicious calls and messages every month2. In addition, Google continuously performs safety checks to maintain the integrity of the RCS service. In the past month alone, this ongoing process blocked over 100 million suspicious numbers from using RCS, stopping potential scams before they could even be sent.
To show how our scam protections work in the real world, we asked users and independent security experts to compare how well Android and iOS protect you from these threats. We're also releasing a new report that explains how modern text scams are orchestrated, helping you understand the tactics fraudsters use and how to spot them.
Survey shows Android users’ confidence in scam protections
Google and YouGov3 surveyed 5,000 smartphone users across the U.S., India, and Brazil about their scam experiences. The findings were clear: Android users reported receiving fewer scam texts and felt more confident that their device was keeping them safe.
- Android users were 58% more likely than iOS users to say they had not received any scam texts in the week prior to the survey. The advantage was even stronger on Pixel, where users were 96% more likely than iPhone owners to report zero scam texts4.
- At the other end of the spectrum, iOS users were 65% more likely than Android users to report receiving three or more scam texts in a week. The difference became even more pronounced when comparing iPhone to Pixel, with iPhone users 136% more likely to say they had received a heavy volume of scam messages4.
- Android users were 20% more likely than iOS users to describe their device’s scam protections as “very effective” or “extremely effective.” When comparing Pixel to iPhone, iPhone users were 150% more likely to say their device was not effective at all in stopping mobile fraud.
YouGov study findings on users’ experience with scams on Android and iOS
Security researchers and analysts highlight Android’s AI-driven safeguards against sophisticated scamsIn a recent evaluation by Counterpoint Research5, a global technology market research firm, Android smartphones were found to have the most AI-powered protections. The independent study compared the latest Pixel, Samsung, Motorola, and iPhone devices, and found that Android provides comprehensive AI-driven safeguards across ten key protection areas, including email protections, browsing protections, and on-device behavioral protections. By contrast, iOS offered AI-powered protections in only two categories. You can see the full comparison in the visual below.
Counterpoint Research comparison of Android and iOS AI-powered protectionsCybersecurity firm Leviathan Security Group conducted a funded evaluation6 of scam and fraud protection on the iPhone 17, Moto Razr+ 2025, Pixel 10 Pro, and Samsung Galaxy Z Fold 7. Their analysis found that Android smartphones, led by the Pixel 10 Pro, provide the highest level of default scam and fraud protection.The report particularly noted Android's robust call screening, scam detection, and real-time scam warning authentication capabilities as key differentiators. Taken together, these independent expert assessments conclude that Android’s AI-driven safeguards provide more comprehensive and intelligent protection against mobile scams.
Leviathan Security Group comparison of scam protections across various devicesWhy Android users see fewer scams
Android’s proactive protections work across the platform to help you stay ahead of threats with the best of Google AI.
Here’s how they work:
- Keeping your messages safe: Google Messages automatically filters known spam by analyzing sender reputation and message content, moving suspicious texts directly to your "spam & blocked" folder to keep them out of sight. For more complex threats, Scam Detection uses on-device AI to analyze messages from unknown senders for patterns of conversational scams (like pig butchering) and provide real-time warnings6. This helps secure your privacy while providing a robust shield against text scams. As an extra safeguard, Google Messages also helps block suspicious links in messages that are determined to be spam or scams.
- Combatting phone call scams: Phone by Google automatically blocks known spam calls so your phone never even rings, while Call Screen5 can answer the call on your behalf to identify fraudsters. If you answer, the protection continues with Scam Detection, which uses on-device AI to provide real-time warnings for suspicious conversational patterns6. This processing is completely ephemeral, meaning no call content is ever saved or leaves your device. Android also helps stop social engineering during the call itself by blocking high-risk actions7 like installing untrusted apps or disabling security settings, and warns you if your screen is being shared unknowingly.
These safeguards are built directly into the core of Android, alongside other features like real-time app scanning in Google Play Protect and enhanced Safe Browsing in Chrome using LLMs. With Android, you can trust that you have intelligent, multi-layered protection against scams working for you.
Android is always evolving to keep you one step ahead of scams
In a world of evolving digital threats, you deserve to feel confident that your phone is keeping you safe. That’s why we use the best of Google AI to build intelligent protections that are always improving and work for you around the clock, so you can connect, browse, and communicate with peace of mind.
See these protections in action in our new infographic and learn more about phone call scams in our 2025 Phone by Google Scam Report.
1: Data from Global Anti-Scam Alliance, October 2025 ↩
2: This total comprises all instances where a message or call was proactively blocked or where a user was alerted to potential spam or scam activity. ↩
3: Google/YouGov survey, July-August, n=5,100 (1,700 each in the US, Brazil and India), with adults who use their smartphones daily and who have been exposed to a scam or fraud attempt on their smartphone. Survey data have been weighted to smartphone population adults in each country. ↩
4: Among users who use the default texting app on their smartphone ↩
5: Google/Counterpoint Research, “Assessing the State of AI-Powered Mobile Security”, Oct. 2025; based on comparing the Pixel 10 Pro, iPhone 17 Pro, Samsung Galaxy S25 Ultra, OnePlus 13, Motorola Razr+ 2025. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries. ↩
6: Google/Leviathan Security Group, “October 2025 Mobile Platform Security & Fraud Prevention Assessment”, Oct. 2025; based on comparing the Pixel 10 Pro, iPhone 17 Pro, Samsung Galaxy Z Fold 7 and Motorola Razr+ 2025. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries. ↩ ↩
7: Accuracy may vary. Availability varies. ↩ ↩ ↩
HTTPS by default
One year from now, with the release of Chrome 154 in October 2026, we will change the default settings of Chrome to enable “Always Use Secure Connections”. This means Chrome will ask for the user's permission before the first access to any public site without HTTPS.
The “Always Use Secure Connections” setting warns users before accessing a site without HTTPS
Chrome Security's mission is to make it safe to click on links. Part of being safe means ensuring that when a user types a URL or clicks on a link, the browser ends up where the user intended. When links don't use HTTPS, an attacker can hijack the navigation and force Chrome users to load arbitrary, attacker-controlled resources, and expose the user to malware, targeted exploitation, or social engineering attacks. Attacks like this are not hypothetical—software to hijack navigations is readily available and attackers have previously used insecure HTTP to compromise user devices in a targeted attack.
Since attackers only need a single insecure navigation, they don't need to worry that many sites have adopted HTTPS—any single HTTP navigation may offer a foothold. What's worse, many plaintext HTTP connections today are entirely invisible to users, as HTTP sites may immediately redirect to HTTPS sites. That gives users no opportunity to see Chrome's "Not Secure" URL bar warnings after the risk has occurred, and no opportunity to keep themselves safe in the first place.
To address this risk, we launched the “Always Use Secure Connections” setting in 2022 as an opt-in option. In this mode, Chrome attempts every connection over HTTPS, and shows a bypassable warning to the user if HTTPS is unavailable. We also previously discussed our intent to move towards HTTPS by default. We now think the time has come to enable “Always Use Secure Connections” for all users by default.
Now is the time.
For more than a decade, Google has published the HTTPS transparency report, which tracks the percentage of navigations in Chrome that use HTTPS. For the first several years of the report, numbers saw an impressive climb, starting at around 30-45% in 2015, and ending up around the 95-99% range around 2020. Since then, progress has largely plateaued.
HTTPS adoption expressed as a percentage of main frame page loads
This rise represents a tremendous improvement to the security of the web, and demonstrates that HTTPS is now mature and widespread. This level of adoption is what makes it possible to consider stronger mitigations against the remaining insecure HTTP.
Balancing user safety with friction
While it may at first seem that 95% HTTPS means that the problem is mostly solved, the truth is that a few percentage points of HTTP navigations is still a lot of navigations. Since HTTP navigations remain a regular occurrence for most Chrome users, a naive approach to warning on all HTTP navigations would be quite disruptive. At the same time, as the plateau demonstrates, doing nothing would allow this risk to persist indefinitely. To balance these risks, we have taken steps to ensure that we can help the web move towards safer defaults, while limiting the potential annoyance warnings will cause to users.
One way we're balancing risks to users is by making sure Chrome does not warn about the same sites excessively. In all variants of the "Always Use Secure Connections" settings, so long as the user regularly visits an insecure site, Chrome will not warn the user about that site repeatedly. This means that rather than warn users about 1 out of 50 navigations, Chrome will only warn users when they visit a new (or not recently visited) site without using HTTPS.
To further address the issue, it's important to understand what sort of traffic is still using HTTP. The largest contributor to insecure HTTP by far, and the largest contributor to variation across platforms, is insecure navigations to private sites. The graph above includes both those to public sites, such as example.com, and navigations to private sites, such as local IP addresses like 192.168.0.1, single-label hostnames, and shortlinks like intranet/. While it is free and easy to get an HTTPS certificate that is trusted by Chrome for a public site, acquiring an HTTPS certificate for a private site unfortunately remains complicated. This is because private names are "non-unique"—private names can refer to different hosts on different networks. There is no single owner of 192.168.0.1 for a certification authority to validate and issue a certificate to.
HTTP navigations to private sites can still be risky, but are typically less dangerous than their public site counterparts because there are fewer ways for an attacker to take advantage of these HTTP navigations. HTTP on private sites can only be abused by an attacker also on your local network, like on your home wifi or in a corporate network.
If you exclude navigations to private sites, then the distribution becomes much tighter across platforms. In particular, Linux jumps from 84% HTTPS to nearly 97% HTTPS when limiting the analysis to public sites only. Windows increases from 95% to 98% HTTPS, and both Android and Mac increase to over 99% HTTPS.
In recognition of the reduced risk HTTP to private sites represents, last year we introduced a variant of “Always Use Secure Connections” for public sites only. For users who frequently access private sites (such as those in enterprise settings, or web developers), excluding warnings on private sites significantly reduces the volume of warnings those users will see. Simultaneously, for users who do not access private sites frequently, this mode introduces only a small reduction in protection. This is the variant we intend to enable for all users next year.
“Always Use Secure Connections,” available at chrome://settings/security
In Chrome 141, we experimented with enabling “Always Use Secure Connections” for public sites by default for a small percentage of users. We wanted to validate our expectations that this setting keeps users safer without burdening them with excessive warnings.
Analyzing the data from the experiment, we confirmed that the number of warnings seen by any users is considerably lower than 3% of navigations—in fact, the median user sees fewer than one warning per week, and the ninety-fifth percentile user sees fewer than three warnings per week..
Understanding HTTP usage
Once “Always Use Secure Connections” is the default and additional sites migrate away from HTTP, we expect the actual warning volume to be even lower than it is now. In parallel to our experiments, we have reached out to a number of companies responsible for the most HTTP navigations, and expect that they will be able to migrate away from HTTP before the change in Chrome 154. For many of these organizations, transitioning to HTTPS isn't disproportionately hard, but simply has not received attention. For example, many of these sites use HTTP only for navigations that immediately redirect to HTTPS sites—an insecure interaction which was previously completely invisible to users.
Another current use case for HTTP is to avoid mixed content blocking when accessing devices on the local network. Private addresses, as discussed above, often do not have trusted HTTPS certificates, due to the difficulties of validating ownership of a non-unique name. This means most local network traffic is over HTTP, and cannot be initiated from an HTTPS page—the HTTP traffic counts as insecure mixed content, and is blocked. One common use case for needing to access the local network is to configure a local network device, e.g. the manufacturer might host a configuration portal at config.example.com, which then sends requests to a local device to configure it.
Previously, these types of pages needed to be hosted without HTTPS to avoid mixed content blocking. However, we recently introduced a local network access permission, which both prevents sites from accessing the user’s local network without consent, but also allows an HTTPS site to bypass mixed content checks for the local network once the permission has been granted. This can unblock migrating these domains to HTTPS.
Changes in Chrome
We will enable the "Always Use Secure Connections" setting in its public-sites variant by default in October 2026, with the release of Chrome 154. Prior to enabling it by default for all users, in Chrome 147, releasing in April 2026, we will enable Always Use Secure Connections in its public-sites variant for the over 1 billion users who have opted-in to Enhanced Safe Browsing protections in Chrome.
While it is our hope and expectation that this transition will be relatively painless for most users, users will still be able to disable the warnings by disabling the "Always Use Secure Connections" setting.
If you are a website developer or IT professional, and you have users who may be impacted by this feature, we very strongly recommend enabling the "Always Use Secure Connections" setting today to help identify sites that you may need to work to migrate. IT professionals may find it useful to read our additional resources to better understand the circumstances where warnings will be shown, how to mitigate them, and how organizations that manage Chrome clients (like enterprises or educational institutions) can ensure that Chrome shows the right warnings to meet those organizations' needs.
Looking Forward
While we believe that warning on insecure public sites represents a significant step forward for the security of the web, there is still more work to be done. In the future, we hope to work to further reduce barriers to adoption of HTTPS, especially for local network sites. This work will hopefully enable even more robust HTTP protections down the road.
Posted by Chris Thompson, Mustafa Emre Acer, Serena Chen, Joe DeBlasio, Emily Stark and David Adrian, Chrome Security Team